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We show that each loopless 2k-regular undirected graph on n vertices has at least ( 2-k (2{) r 
and at most V (~)" eulerian orientations, and that, for each fixed k, these ground numbers are 

best possible. 

Let for any undirected graph G=(V, E), e(G) denote the number of eulerian 
orientations of G. Here an eulerian orientation is an orientation of the edges so that in 
each vertex the indegree is equal to the outdegree. We are interested in upper and 
lower bounds for e(G) in terms of the degree sequence of G. We show that if G is a 
Ioopless 2k-regular undirected graph on n vertices, then 

(l) 

and moreover that for each fixed k the ground numbers in (1), as functions of k only, 
cannot be improved. That is, 

(2) infe(G)1llVCGJI = 2-k( 2k) 
G k and s~p e(G)I/IVCGJI = V(2~). 

where the infimum and supremum range over all loopless 2k-regular graphs G, and 
where V(G) denotes the vertex set of G. It is easy to see that in (2) inf and sup may be 
replaced by lim inf and lim sup. 

There is a direct relation between e ( G) and the matrix permanent function. 
If G=(V, E) is an undirected graph where each vertex v of G has degree deg (v) 
even, and if Bis the incidence matrix of G (with !VI rows and IEI columns), let the 
matrix A arise from B by repeating, for each vertex v, the row correspondingto 
v 1/2 deg (v) times. This matrix A then is a square matrix of order JE]. Now it is easy 
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to see that 

(3) 
per A 

e(G) = II H deg(v))! · 
vE V 

The upper bound in (1) follows now easily from Bregman's result [l] (Minc's 
conjecture [7], cf. [8]), saying that if A is a square (0, 1)-rnatrix of order m, with row 
sums r 1 , •.. , rm, then 

m 

(4) per A o§ II r; !1h. 
i=l 

Substitution of (4) in (3) gives 

(5) _. ( deg (v) )1. 
t:(G)==fl ict (), 

vE V z· eg V 

and the upper bound in (1) follows. The graph with two vertices connected by 2k pa­
rallel edges shows that we cannot have a lower ground number in this upper bound. 

Concerning lower bounds, Falikman [4] and Egorychev [2] proved Van der 
Waerden's conjecture [11], which can be formulated as: if A is a nonnegative square 

matrix of order m, with all row and column sums equal to r, then per A~ (;Jm m!. 

Substitution in (3) gives 

(6) (G)::?:; (3:.)"k. (nk) ! 
e - n k!n ' 

if G is a 2k-regular undirected graph on n vertices. Asymptotically this implies 

(7) ( 1 (2k )k)n 
e(G)~ k! e . 

In [9] it is conjectured that 

(8) >- ((r-1)'-l)m 
per A= r'_2 

if A is a square nonnegative integral matrix of order m with all row and column sums 
equal tor. (This bound was proved for r=3 by Voorhoeve [10], thereby showing a 
conjecture of Erdos and Renyi [3], and was shown to have the best possible gr01H~!l 
number as a function of r in [12] and [9].) Conjecture (8) would imply that 

(9) ( 1 (2k-1)2k-l)n 
i::(G) ~ TI (2k)2k-2 , 

if G is 2k-regular. The lower bound for e(G) given in (1) is higher than that in (9). 
This is not surprising, as generally the permanent function seems to approach its 
minimum if the matrix tends to have a random structure, whereas the matrix A 
derived from the incidence matrix of G has several equal rows. 

Actually we show a slightly more general result on the lower bound for e(G) 
for not-necessarily regular graphs. It will turn out that the lower bound in (1) also 
holds for not-loopless 2k-regular graphs. Here, by convention, a loop is counted for 
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2 in the degree, and it can be oriented in two directions. (Clearly, we may not skip 
"loopless" at the upper bound, as the graph G consisting of one vertex attached with 
k loops has e(G)=2k.) 

(10) 

Define, for natural numbers k1 , ... ,kn, 

E(2k1 , •.. , 2k,,) := min e(G), 
G 

where the minimum ranges over all undirected graphs G with degree sequence 2k1 , ... 

.. ., 2k,,. 

Th l 1 (2k1) (2k,,)- ,., _ 2"' (2k1 ) (2k") , 
eorem . 2m ki · ... · k,, = E(2k1 , •.. ,~kn)=: (Zm) ki · ... · kn , }or 

m 
any natural numbers k1 , ... , k", where m:=k1 + ... +kn (the number of edges). 

Proof. Without loss of generality we may assume that no k; is equal to 0. 
" I. We prove the lower bound by induction on Z (k;-1), the bound being 

i=l 

trivial if k1 = ... =kn= 1. Assume k"?;:2, and let G be a graph with degree sequence 
2k1 , ••• , 2kn, and with E (2k1 , .. ., 2kn) eulerian orientations. Let v be a vertex with 
degree 2kn, and let e1 , .. ., e2k,, be the edges incident with v. Let for all I ~i<j~2k,, 
eii denote the number of those eulerian orientations of Gin which e; and ei are orient­
ed in series (i.e., either ei enters t' and ei leaves v, or conversely). So, by replacing the 
edges e;={ii,v1} and ei={v,v2} bythenewedges e;:={v',v1} and ej:={v',v2}, 

where v' is a new vertex, we obtain a graph G' with degree sequence 2ki. ... , 2k11 _ 1 , 

2kn-2,2, such that eii is equal to e(G'). Hence, by induction, 

for all 1 ~i<j~2kn. Moreover, 

(12) Z eii = k! · e(G) = k~ · E(2k1 , .. ., 2kn), 
i<j 

as for each eulerian orientation of G there are k~ choices i,j (i<j) for which it is 
counted in e;i. 

Combining (11) and (12) we obtain the lower bound on E(2ki. .. ., 2kn). 
II. In order to prove the upper bound, let k1 , ... , kn be natural numbers, let 

m=k1 + ... +k,,, and let G=(V, E) be a I-regular undirected graph with \VI 
=2m and JEJ=m. Let f!J be the collection of partitions (Vi, ... , Vn) of V such that 
\V1!=2k1 , .. ., \Vnl=2kn. Define for each partition II =(Vi, ... , Vn) in f!J the graph 
Gn which arises from G by, successively, contracting Vi, ... , Vn, thus obtaining a 
graph with n vertices and degree sequence 2k1 , ... , 2kn (if an edge of G is contained 
in one of the classes V;, it yields a loop in Gn). 

Now we evaluate the sum Z e(Gn) in two ways. First 
IlEfP 

(13) Z e(Gn)?;: !&! ·E(2k1 , ... , 2kn) = (2k 2m Zk) ·E(2k1, ... ,2kn). 
TIEfP l• •.. , n 
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Second, since e.lch orientation of the edges of G induces a unique orientation of the 
edges of G fl. 

( 14) ;;?; r.(G'n) = 
II ( _y.; 

~' 
,, orii.:nt;~tion of G 

(number of fT in .'J/ such that r is an 

. . . f ( m )~ culenan orientation o · Grr) = 2m f· !· . 
\.t• ...• \Jl 

This follows from the fact the G has 2'" orientations, while for any fixed orientation 

, of the edges of G there are (k 111 k )
2 partitions n in .f! such that r. is an eulcrian 

1' ... ' 17 

orientation of Gu. Indeed, we must choose in the first cLtss k1 heads and k 1 tails, in 
the second cl:i~s k2 heads and k 2 tails, and so on. 

Combination of (13) and (14) gives the upper bound in Theorem I. II 

( (2k))" Corollary la. Each 2k-regu!ar 1111directed graph 011 n vertices has at least 2-k k. 

eulerian orientations. For.fixed k the ground number is best possible. 

Proof. Taking k 1 = ... = k 11 = k, and Liking the 11-th root of both bounds in Theorem 
l, gives with Stirling's asymptotical formula the required result. I 

In fact, also if we restrict ourselves to loopless graphs, the ground number in 
this corollary cannot be increased. 

Theorem 2. For each natural number k, let f(2k) be the highest possible number such 
that each loopless 2k-regu/ar undirected graph on n vertices has at least f(2k)" eulerian 

orientations. Then f(2k)=2-" (2£'). 
Proof. The inequality f(2k)~2-k (:;;)directly follows from Corollary la. To show 

the converse inequality, we first show that if G=(V, E) is an undirected graph with 
all degrees even and c' = {v, w} and e'' = {v, iv} are parallel edges, and if we denote 

( l 5) 

c:' (G): = the number of eulerian orientations of Gin which e' and e" have the 
same orientation, 

c:"(G):= the number of eulerian orientations of Gin which e' and e" have 
opposite orientations, 

(so c:(G)=e'(G)+e"(G)), then e'(G)~c:"(G). This could be proved using the 
"Alcxandroff-Fenchel permanent inequality" (used by Falikman and Egorychev to 
prove the Van der Wacrden conjecture-er. [5], [6]), but here we give a direct proof. 
The inequality is proved by induction on jEj. Choose a vertex u;;t:.v, w. (If no such 
vertex exists the inequality is easy.) Let e1 , ... , e2k be the edges incident with u, and 
define, for l :'fi<j:§.2k, 

(16) 

c:;i(G)= 

c:;j(G)= 

the number of eulerian orientations of Gin which e' and e" have the 
same orientation, and in which e; and ei are oriented in series; 
the number of eulerian orientations of G in which e' and c" have 
opposite orientations, and in which ei and ei are oriented in series. 
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Then, like in the proof or Theorem L 

(I 7) 

c'(C) = 1.;-c. Z <:;1 \G), 
1~i--:j:;.~2k 

Now for each i<j, e;;(G)-;ir:;;j(G), since the edges e;={s, 11} and e1={t, 11} can 
be replaced by one new edge ( s, t }. and then. by induction, for the new graph G' 
\VC know: 

(18) 

Combination of (!7) and (18) gives e'(G)2r:;"(G). 

In order to show f(2k)-=22-k (;), we have to show, for any D >O, the exist­

ence of a iDopless 2k-regular graph G = ( V, £) such that 

( 19) 

where n=W!. 
By Corollary la we know that there exists a 2k-regubr graph G=(V, E) 

satis(ving ( 19). Choose such G with as few loops as possible. Suppose I' and w are 
distinct vertices of G having loops. Replace one pai: of loops I'= {v, 11}, / "= {w, w} 
by two new parallel edges e' = {v, w} and e" = {11, w}, making up the graph G'. 
Let e' (G') and e" ( G') be as defined in (15). Then 

(20) e(G) = 2r:;''(G 1
) ~ e'(G1 )+e"(G1

) = e(G'). 

Hence also G' satisfies (19), contradicting our choice of G. 
H there is only one vertex v of G with, say p loops, let G' arise from G by dupli­

cating G (where v' denotes the duplicate of vertex v), and replacing the p loops atta­
ched to l' and the p loops attached to v' by 2p parallel edges {i', r'}. Then 

(21) 

As (19) holds for G, we know that (19) holds for G', with n replaced by 211. As G' 
is loopless, this proves the theorem. I 

Finally, two conjectures for simple graphs (i.e., without loops or parallel 
edges). First we conjecture that the lower bound in (1) has best possible ground 
number also if we restrict ourselves to simple graphs. Second, that the upper bound 
in (1) can be improved for simple graphs to: if G is a simple undirected graph with 
degree sequence 2k1 , •• ., 2kn, then 

ll 

(22) (Conjecture) e(G) :=§ [J e(K2k,+1Y/(2k,+iJ. 
i=l 

(K1 denotes the complete undirected graph on t vertices.) A problem we met in con­
structing a proof similar to that of Bregman's upper bound (cf. [8]) is that we could 
not find a suitable formula for e(K1). 
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