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Bounds on the Number of Hidden Neurons in 
Multilayer Perceptrons 

Shih-Chi Huang and Yih-Fang Huang, Member, IEEE 

Absrract-This paper investigates some fundamental issues concern- 
ing the capability of multilayer perceptrons with one hidden layer. The 
studies are focused on realizations of functions which map from a finite 
subset of E” into E“. Both real-valued and binary-valued functions are 
considered. In particular, a least upper bound is derived for the num- 
ber of hidden neurons needed to realize an arbitrary function which 
maps from a finite subset of E“ into E“. A nontrivial lower bound is 
also obtained for realizations of injective functions. This result will be 
useful in studying pattern recognition and database retrieval. In ad- 
dition, an upper hound is given for realizing binary-valued functions 
that are related to pattern classification problems. 

I. INTRODUCTION 
FUNDAMENTAL question that is often raised in the ap- A plications of neural networks is “how large does the net- 

work have to be to perform a desired task?”. Answers to this 
question are directly related to the capability of neural net- 
works, and should be given independently of the learning al- 
gorithms employed. This paper investigates such issues of 
capability for a class of neural networks, i.e.,  multilayer per- 
ceptrons (MLP) with one hidden layer [l]. This investigation is 
focused on function realization by an MLP. 

The input set considered in this paper is restricted to a finite 
subset of E” for the following two reasons. First, the theoretical 
results given in 121, [3] show that, if an MLP with one hidden 
layer is capable of realizing arbitrary continuous functions de- 
fined on a hypercube, the number of hidden neurons needed is 
infinite. Realistically, however, one can not build a device with 
infinite components. Second, if the MLP is trained by a learn- 
ing-by-rote algorithm [4], e.g. ,  the backpropagation algorithm, 
one can only expect the algorithm to have good performance 
with a finite training set. Furthermore, for those learning algo- 
rithms which update selectively by screening the input data 151- 
[7 ] ,  convergence to a desired solution in ajinite number of up- 
dates can only be achieved when the training set is finite. 

With regards to realization of an arbitrary function which 
maps from a finite subset S of E” into E d ,  the problem studied 
here is essentially the following: “Given a finite set S,  how 
many hidden neurons are needed for  an MLP (with one hidden 
layer) to realize arbitrary functions dejined on S?”. Section I1 
provides an answer to this question by presenting an upper 
bound, which turns out to be consistent with the optimal num- 
ber of hidden neurons determined by experimental results in 
[SI, 191. It is also shown that this upper bound is the least upper 
bound (LUB). 
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Section 111 then shows how to construct an MLP to realize 
arbitrary functions defined on a finite set. Interestingly enough, 
with the knowledge of the upper bound given in Section 11, 
function realization by an MLP can be accomplished by simply 
assigning values of connection weights. Learning algorithms of 
the gradient descent type are needed only when such knowledge 
is unavailable and the number of hidden neurons is insufficient. 

It is clear that a trivial lower bound on the number of hidden 
neurons of an MLP for realizing an arbitrary function is one. 
To  obtain a nontrivial bound, Section IV addresses realizations 
of a particular class of functions, i.e.,  the injective functions, 
which nullify the possibility of grouping inputs with the same 
output in one region. For realizing such one-to-one functions, 
the problem studied here is “how many hidden neurons does an 
MLP need to partition the input space such that different inputs 
will be contained in different regions?”. A lower bound on the 
number of hidden neurons is herewith derived by employing the 
function counting theorem [IO]-[ 131. However, an MLP with 
hidden neurons equal to the given lower bound can only sepa- 
rate certain kinds of input sets. A necessary condition of the 
distributed patterns for such sets is also given in Section IV. 

The problem of realizing an arbitrary binary-valued function 
defined on a finite set is essentially that of constructing an ar- 
bitrary dichotomy on that set. It will be seen that, for dichotomy 
construction on arbitrary finite sets, the least upper bound on 
the number of hidden neurons is the same as the LUB given in 
Section I1 for realizing arbitrary functions. However, the gen- 
eral position (81, [I41 condition may be imposed on the input 
set to obtain a tighter bound. In Section V ,  the input set is de- 
composed into a sequence of subsets, in which every subset is 
in general position and is contained in a linear variety [15]. 
With this decomposition, a different bound, somewhat tighter 
than the one obtained with the general position condition, is 
obtained for the case that the input set may not be in general 
position. Moreover, if the input set is continually decomposed, 
this upper bound will eventually approach the LUB. 

Section VI concludes this paper by discussing the capability 
of a fixed size MLP. In particular, the upper (lower) bounds on 
the number of hidden neurons considered on a k-element input 
set given in the preceding sections will be converted into the 
lower (upper) bounds on the number of elements in a finite input 
domain on which the concerned collection of functions can be 
realized by an MLP with m hidden neurons. 

11. THE LUB ON THE NUMBER OF HIDDEN NEURONS 
Because this notation will be used throughout the paper, it is 

useful to explain what each term means in the context of the 
multilayer perceptron with one hidden layer. The input is rep- 
resented by an n-dimensional vector x with components x ( j ). 
In the first layer, the input x goes to each of m perceptrons. The 
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i-th perceptron has weights and threshold represented by an ( n  
+ 1)-dimensionalvectorw(i) = [ w ( i l ) ,  w ( i 2 ) ,  . . . , w ( i n ) ,  
t (  i ) ] '  with scalar components w ( i j )  and t ( i ) .  In the second 
layer, there is one linear perceptron which has weights and 
threshold represented by an ( m  + 1 )-dimensional vector U'* = 
[ w * (  l ) ,  w*(2), . . - , wj*(m), r*]' with scalar components 
w * ( i )  and r* .  The vector0 = [wT( I ) ,  w T ( 2 ) ,  . . * , w r ( m ) ,  
UP*' 1' represents the totality of all the weights w ( i ) on the first 
layer and all the weights w* on the second layer. The function 
M( 0,  x )  represents the scalar output of the second layer of the 
multilayer perceptron with weight vector 0 and input vector x 
as shown in Fig. 1, where 

h ( i )  = sgn C x ( j ) w ( i j )  - t ( i )  1 I ,:1 ( 1 )  

( 2 )  
, 

~ ( 1 9 , x )  = C h(i)w*(i) - r*. 
I =  I 

Function realization studied here is formulated as follows: 
Let f be a function defined on a finite set S in the n-dimensional 
Euclidean space. Let M ( 0 )  be an MLP with an adjustable pa- 
rameter vector 0. The M ( 0 )  is said to be capable of realizing f 
if there exists a 19 such that M( 8 ,  x )  = f ( x ) ,  for any x E S. The 
problem is thus to determine m, the number of hidden neurons, 
such that M (  0 )  is capable of realizing arbitrary functions f d e -  
fined on a k-element set S, where k is a positive integer greater 
than one. Extensive simulations in [8], [9] using different learn- 
ing algorithms suggest that, in terms of learning efficiency, the 
optimal number of hidden neurons to realize a binary-valued 
function is m = k - 1. In this section, m = k - 1 is shown to 
be the least upper bound on the number of hidden neurons 
needed to realize an arbitrary real-valued function defined on S. 

Dejinition I: Let SI be a subset of a finite set S in E " ,  and 
let S2 = S - SI be the complement of SI in S. Consider a hy- 
perplane H = { x: a 7 x  = c }  in E" which partitions E" into two 
open halfspaces, i .e. ,  H ,  = { x: a 'x > c}  and H -  = { x :  a 'x 
< c}.  The hyperplane H is said to separate SI and S,, if SI is 
contained in one of the halfspaces and S, is contained in the 
other one. If there exists such a separating hyperplane H ,  SI and 
SI are called (linearly) separable subsets of S. 

Dejinition 2: An element x, E S is a (linearly) separable ele- 
ment in S if there exists a separating hyperplane which separates 
{ x l  } and S - { x l  } .  

In this paper, it is assumed that the hidden neurons are char- 
acterized by the signum function, and that separable means spe- 
cifically linearly separable. 

Lemma I: If S is a nonempty finite set in E",  there is at least 
one separable element in S. 

Proof: Let max,,,s I)x, 1) = r. Construct a closed ball B( o, 
r )  in E" with radius r and  center at the origin. Since S is a finite 
set, there is an element in S, say xl, such that ( (x I  I( = r .  Then, 
xI lies on the shell of E( 0, r ) .  Consider H ,  a tangent hyperplane 
to B( o, r )  at xI, which partitions the space into two open half- 
spaces H ,  and H -  such that B ( o ,  r )  - { xI } is contained in 
H - .  

Let minr,r,ES ))x, - xI 1) = 6. Construct a closed ba l lB(x , ,  6 )  
in E" with radius 6 and center at x I .  Let A be the intersection 
of the shell of B ( o ,  r )  and the shell of B ( x , ,  6 ) .  And, let d be 
the distance between H and an arbitrary element in A .  If H is 
shifted into H -  with distance less than d,  all the elements in S 
are in H - ,  except x1 which is in H,. So, xI is a separable ele- 
ment in S. vv 

I I T-' I 
h(2) I 

1 I t 
I 

represents f ist  layer perceptron 

represents second layer linear percepuon 

Fig. I .  An MLP with m hidden neurons 

Theorem 1 :  Let S be a k-element of E" where k > 1 is an 
integer, and letfbe an arbitrary real-valued function defined on 
S, i.e.,$ S -+ E .  An MLP with k - 1 hidden neurons is capable 
of realizing f .  

Proof: By Lemma 1 ,  there is at least one separable element 
in S .  Let x1 be one such element in S. Let H I  be a separating 
hyperplane of {x l  } and SI = S - { x l  } such that xI E H I + .  
Clearly, SI is also a finite set, and thus there is a separable 
element x2 in SI. Construct a separating hyperplane H2 to sep- 
arate { x2 } and S2 = SI - { x2 } such that x2 E H I + .  Repeat this 
procedure till Hk I is obtained. 

An MLP with k - 1 hidden neurons can now be constructed 
as follows: Let the vector a, and scalar c, of H, be, respectively, 
the values of connection weights and threshold of the j-th hid- 
den neurons, 1 I j 5 k - 1. Specifically, [a:, cr I T  = w( j ). 
Consider a k-by-k matrix D as follows: Let the j-th column of 
D be the j-th hidden neuron outputs with respect to inputs xI, 
x,, . . ' , xk,  1 I j I k - 1 .  Furthermore, let every element 
in the k-th column of D be 1. The hyperplane H, is constructed 
to separate { xr } and { xr + I ,  . . . , xk  } such that x, is in H,, , so 
D is an upper triangular matrix with value 1 for each diagonal 
element (Fig. 2). All x in Fig. 2 are undetermined elements 
which might be 1 or  0. Therefore, D is nonsingular. 

NOW, define a vector F = [f(x l ) ,  f ( x z ) ,  . . . , - f ( x k ) l '  

and a vector P = D-I F ,  where the k-tuple vector P is composed 
of the connection weights and threshold of the output neuron. 

vv 
Corollary I: An MLP with k - 1 hidden neurons is capable 

of realizing an arbitrary vector-valued function g :  S --t E". 
Proof: For any element x, in S, let g(x, ) = [ g,  (x, ), g, (x, ), 

* . . , g d ( x , ) ] ' ,  where gr: S + E ,  1 5 j 5 d .  The matrix D 
constructed in Theorem 1 is independent of the function. There- 
fore, as long as the j-th output neuron is constructed to realize 

vv 
Corollary 2: Consider a function h:  p -+ N ,  where every 

element in /3 is a doublet consisting of a particular k-element 
set S and a function f defined on S, and N is the set of natural 
numbers. Define h (S, f ) to be the minimum number of hidden 
neurons in an MLP needed to realize the function f defined on 
S. Then, h ( S ,  f )  5 k - 1. 

Then, this MLP realizes the function f .  

gr , the overall MLP realizes g. 
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Fig. 2 .  A k-by-k matrix D. 

Proof of this corollary can be easily inferred from Theorem 
1. In fact, k - 1 is the least upper bound (LUB) on h (S, f ).  
To see this, consider the following example: Given a k-element 
set S where xI, x2, . . . , xk lie along a line in E “ ,  let f be a 
function defined on S such that f (x, ) # f ( x ,  + ), for any 1 5 
i 5 k - 1. To  realize f, at least k - 1 hyperplanes are needed 
to separate those k elements from one another, as any hyper- 
plane in E“ that does not contain this line can only have at most 
one intersection with this line segment. So, k - 1 hidden neu- 
rons are needed to realize f. 

111. FUNCTION REALIZATION 
In Section 11, it was shown that an MLP with k - 1 hidden 

neurons can realize arbitrary functions defined on a k-element 
set. This section now presents a methodology for accomplishing 
such realizations. Section 111-A shows how to construct an ar- 
bitrary switching function by such an MLP, while Section 111-B 
discusses realization of an arbitrary function. 

A. Realization of Swirching Functions 
Let S be the 2”-element set in E “  where every element in S 

lies on a comer of a unit hypercube, and let SI be an arbitrary 
k-element subset of S. Consider a switching functionf: Si + 

{ 0, 1 }. If there exists a function g: S --+ E which is equivalent 
t o fon  those k elements in SI and g is realized by a network M ,  
we say that M also realizes f. In the sequel, an MLP as shown 
in Fig. 1 is used to realizef, and two methods for assigning the 
values of connection weights and thresholds are discussed. 

i) In this method, every hidden neuron is associated with a 
single element in SI and the relationship is given by the follow- 
ing observation. 

Observation 1: Let S be the 2” element set in E” where every 
element in S lies on a comer of a unit hypercube. Then, every 
element in S is a separable element. 

Proof: Let xJ = (x,( l ) ,  x,(2), . . . , x , ( n ) )  be an arbitrary 
element in S, where x, ( i  ) is either 0 or 1 ,  1 I i I t z .  Consider 
a hyperplane H, , where the ( n  + 1 )-tuple characteristic vector, 

(3 .a )  

tu:, cJ I = [ a j (  1 ), a , ( 2 ) ,  . . . , u , ( n ) ,  ci I ,  of H, is 

and 
q ( i )  = 2 ( x , ( i )  - 0 . 5 ) ,  1 5 i 5 n 

,, 
C, = -0.5 + C ~ , ( i ) .  (3.b) 

,=I 

Given an arbitrary element 

afx, - cJ = 2 

in S, 

x , ( i ) x k ( i )  - c x , ( i )  - 
,I I ,  ( 1  

x k ( i )  + 0.5. 
I =  I ,= I  ,= I  

( 4 )  

Since the components of x, and are either 0 or 1, 
n n 

, = I  C x,(i)x,(i)  5 , = I  C x , ( i )  for allx,, E S, 

so 
n 

1-1, i f x J # x x ,  

=0, if x, = xh. 
- x k ( i )  [ 

,=I  

Combining (4) and (6) ,  we have that x, is in H,+ and all the 
other elements of S are in HJ- .  So, H, separates x, from all the 
other elements in S. Therefore, every element in S is a separable 

Let x, be an element in SI .  Following Observation 1, con- 
struct H, as the separating hyperplane of x, such that x, E H , + .  
Furthermore, let a, and c,, defined in (3), be the connection 
weights and threshold of the j-th hidden neuron, respectively, 
1 5 j I k - 1. Let f ( xJ ) be the output of the switching func- 
tion with respect to the input xJ . To determine the values of the 
connection weights and threshold of the output neuron, i.e., w* 
= [w*(I), w * ( 2 ) ,  . . . ,w*(k) , r*IT ,wef i r s t l e t t*  = - f ( x h )  
where x ,  is the k-th element in SI. And, let 

w * ( j )  = f ( x , )  + f * ,  ( 7 )  

Then, this MLP maps every element in SI into its desired output 
and maps every element in S; = S - S, in tof (x , ) ,  and f i s  
realized by the MLP. 

ii) In the previous method, each hidden neuron corresponds 
to a separating hyperplane for an element in S, . Now, consider 
a case that each hidden neuron constructs a separating hyper- 
plane for a separable subset of S .  For any element x, = (x,  ( 1 ), 
x,( 2 ) ,  * . . , x, ( n ) )  in SI, consider a hyperplane H, whose char- 
acteristic vector is 

element. vv 

1 I j 5 k - 1. 

a , ( i )  = x J ( i ) ,  1 5 i 5 n (8.a) 

and 
1 

c, = -0.5 + c x , ( i ) .  
i =  I 

Given an element xA in S, 
n n 

aTx, - c, = c x , ( i ) x k ( i )  - x , ( i )  + 0.5. (9)  

Following ( 5 ) ,  H, separates the elements in S in such a way that 

, = I  ,=I 

,I , I  

if c x , ( i ) x k ( i )  < c x , ( i ) ,  thenx, E HJ- ,  
1 = 1  , = I  

and 
n n 

if x J ( i ) x , ( i )  = c x,(i) ,  thenx, E H,+.  (10)  

In ( lo) ,  an xA is in H,, if and only if all the nonzero components 
of x, have nonzero counterparts in xh .  Thus, the j-th hidden neu- 
ron performs an AND operation on the nonzero components of 
x, . The AND operation performed is independent of those com- 
ponents of x, that are zero, so the connections from those com- 
ponents to the j-th hidden neuron can be removed. With this 
argument, for the case that SI = S, only n ( 2 ”  ~ I - 1 ) connec- 
tion weights, in contrast to n(2” - 1) as in Method i), are 

, = I  ,= I  
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needed for the hidden neurons in Method ii). Moreover, for the 
case that SI is a k-element subset of S, if every element in SI is 
chosen independently and with equal probability, Method ii) 
can save approximately half of the connection weights for the 
hidden neurons. 

What needs to be done with Method ii) now is the determi- 
nation of w*, i .e.,  the connection weights between the hidden 
neurons and the output neuron. The network under considera- 
tion is essentially a higher order network [16], or a functional 
link net [17]. In [16] and [17], those connection weights are 
determined by the gradient descent type of learning algorithms, 
while a recursive method is used in [ 181. In the following, a 
more efficient method is used. 

Consider the situation that a switching function fdefined on 
a k-element input set SI is realized by an MLP. Suppose that, 
for some reasons, an element in SE = S - SI becomes one in 
SI and, thus, a hidden neuron is added to the MLP to realize 
this (k  + 1 )-th input. If the MLP is constructed by Method i), 
w ( k )  and w* ( k ) ,  i.e., the connection weights and thresholds 
in the MLP related to the (k  + 1)-th input, can be assigned 
using (3) and (7) without affecting the rest of the connection 
weights and thresholds. 

If, on the other hand, the MLP is constructed by Method ii), 
[a:,,, ck+  , ]  can be assigned by (8) without changing other 
connection weights and thresholds in the first layer. However, 
most of the components in w* have to be changed so that the 
MLP can realize the (k  + 1)-th input. As such, one may use 
the parallel network shown in Fig. 3 to calculate all the k + 1 
recursive equations. The purpose of this network is to make a 
possible on-line assignment for Method ii) in the situation men- 
tioned above. This network is similar to the Hopfield neural 
network for matrix inversion [19]. However, not every inver- 
tible matrix can be inverted by this network because the inter- 
action between neurons caused by feedbacks may drive some 
of the operational amplifiers (neurons) out of the linear region. 
Fortunately, the connection matrix [ T,, ] in this network is a 
triangular one. As such, the weights can be calculated by a set 
of recursive equations and this circumvents the aforementioned 
problem. Therefore, this parallel network is capable of solving 
the k + 1 recursive equations and calculating the values of con- 
nection weights of the output neuron for Method ii). 

B. Realization of Arbitrary Functions 

In this section, realization of arbitrary real-valued functions 
is considered. To  realize an arbitrary function defined on a k- 
element set S, we first need to determine the values of connec- 
tion weights and thresholds of the hidden neurons. Assume that 
minx,l,Es IIx, - xi 11 = 6 and that \ ) x i  I( = p are known. 
Arbitrarily pick an xi E S with 1 1  x, ( 1  = r , .  Let the characteristic 
vector of the first hidden neuron be a i  = x I / r I  and c1 = rl - 
6*/4ri. Repeat this procedure until every element in S, except 
one element x, with aTx, = p ,  is chosen. 

AS in Theorem I ,  construct a matrix D which is nonsingular. 
Consider a k-by-k matrix D‘  as follows: Let the j-th row of D’ 
be the ( k  + 1 - j ) - t h  row of DT, 1 I j I k. Then, if we let 
[ 7;, ] = D’, the connection weights and threshold of the output 
neuron can be determined by the parallel network given in Fig. 
3. And the MLP realizes the given function. 

Iv. A LOWER BOUND FOR INJECTIVE FUNCTIONS 
For the MLP shown in Fig. 1, every hidden neuron con- 

structs a hyperplane decision surface in the input space. An MLP 
with m hidden neurons will partition the input space into a cer- 

1 

. . . . .  

l l  
I 

Fig. 3. A parallel network for calculating ( k  + 1 )  recursive equations. 

tain number of nonempty polytopes. A polytope is an intersec- 
tion of a finite number of closed halfspaces. Thus, a polytope 
can be empty, bounded, or unbounded. An example is shown 
in Fig. 4(a) in which three lines partition E 2  into twenty-one 
unbounded polytopes and one bounded polytope. In this paper, 
an element is said to be contained in a polytope if this element 
is an interior point of the polytope. Also, m hyperplanes parti- 
tioning E” may create some polytopes which is an intersection 
of fewer than m closed halfspaces. For example, the shaded 
region in Fig. 4(b) is an unbounded polytope constructed by 
only two lines. To  specify the nonempty polytopes constructed 
by m hyperplanes, the following notion of m-polytope is needed 
for subsequent discussions. 

Dejinition 3: An m-polytope is a nonempty intersection of m 
closed halfspaces. 

Consider h (  S , f )  in Corollary 2 ,  wherefis an arbitrary func- 
tion. A trivial lower bound on h ( S ,  f )  is one, which is the 
smallest natural number. In this section, f i s  restricted to be an 
injective function defined on S. For the MLP shown in Fig. I ,  
inputs in the same m-polytope will map to the same output. 
Therefore, to realize such a one-to-one function, the number of 
hidden neurons has to be large enough so that every element in 
S is contained in a different m-polytope. With this condition, 
we investigate the lower bound on the number of hidden neu- 
rons, namely, “what is the minimum number of hyperplanes, 
denoted by m, ,  needed to partition E” into more than k 
m,-polytopes? ”. Answers to this question will provide useful 
information of the capability of MLP in pattern recognition and 
database retrieval [20]. The finction-counting theorem and its 
extensions have been employed to provide an answer to this 
question [IO]-[ 131. The maximum number of m-polytopes ob- 
tained by partitioning E” with m hyperplanes is 

where 
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(b) 
Fig. 4. (a) Three line partition the two-dimensional space into twenty-four 
unbounded polytopes and one bounded polytope. (b) An unbounded poly- 
tope constructed by only two lines. 

Thus, for any given k ,  
rn, = min { P ( m ,  n )  2 k > .  (12)  

m 

The number of m-polytopes given by the function-counting 
theorem is an upper bound, and it can only be achieved when 
the m hyperplanes partition the space in some particular ways. 
Therefore, the k elements in S are separated from one another 
by an MLP with rn,  hidden neurons only when S fits those par- 
ticular patterns. Consider, for instance, the seven-element sets 
SI in Fig. 5(a) and S,  in Fig. 5(b). There exists a set of three 
lines which partition E 2  into seven 3-polytopes such that every 
element in SI is contained in a different 3-polytope. On the other 
hand, no matter how E2 is partitioned by any set of three lines, 
there are two elements in S2 which are contained in the same 
3-polytope. The question here is "what kind of S will satisfy 
the restriction ? ' ' . 

Note that an rn-polytope can be either bounded or unbounded. 
The number of bounded rn-polytopes P , ( m ,  n )  and that of un- 
bounded m-polytopes P, (rn, n )  are given in [ 101 as 

i f m  5 n f 0  

and 
( 2" i f m  5 n 

- - r  
- ~ r - - -  

(b) 
Fig. 5 .  (a) A seven-element set in the two-dimensional space which can 
be contained in seven 3-polytopes. (b) A seven-element set in the two- 
dimensional space which can not be contained in seven 3-polytopes. 

For m 5 n,  P , ( m ,  n )  is achieved when the rn-th hyperplane 
divides each of the P,  (rn - 1,  n )  ( m  - 1 )-polytopes into two 
regions [12]. Therefore, when the number of elements k 5 2", 
S can be continually dichotomized into equal element subsets 
by hyperplanes, then every element in S can be contained in 
one of the P,(rn, ,  n )  m,-polytopes where m, is defined in (12). 
An example for this is the 2" element input set of switching 
functions. The following theorem, preceded by a lemma and 
two observations, gives a necessary condition for S to satisfy 
the restriction. To begin, let S be a nonempty finite subset of 
E",  and a convex hull of S ,  denoted by Co(S),  is the intersec- 
tion of all closed convex sets containing S. In this paper, a con- 
vex hull CO ( S ) is a convex polyhedron in E" as S is a finite set 
and thus an extreme point of CO ( S  ) is a vertex of the polyhe- 
dron [15]. 

Lemma 2:  Let S be a nonempty finite subset of E" and let 
CO (S ) be the convex hull of S. An element x in S is a separable 
element if and only if x is an extreme point of CO ( S ). 

Proof: Let x, be an extreme point of CO( S ) and let SI = S 
- { x ,  } . Then n, is an exterior point of CO ( SI ). According to 
the separating hyperplane theorem in [ 15 J ,  there is a hyperplane 
which separates { x ,  } and CO( SI). So, x ,  is a separable element 
in S. 

Consider an x2 E S which is not an extreme point of CO( S ). 
Then, every hyperplane H in E" containing x2 will either inter- 
sect at least one of the edges or contain one of the edges of 
CO( S ). For either cases, S - { x2 } can not be contained in H ,  

vv 
Remarks: 
1. The above lemma says that the number of separable ele- 

or in H - .  So, x2 is not a separable element in S. 
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ments in a finite set S is equal to the number of vertices of 

2. It has been shown in the previous section that every ele- 
ment in the input set of switching functions is a separable ele- 
ment. It is easy to see that those elements are extreme points in 
the convex hull of the input set. 

A supporting hyperplane H of CO(  S ) is a hyperplane con- 
taining CO (S ) in R ,  = { x: a T~ z c } and containing a bound- 
ary point of Co(S) [15]. In this paper, we only consider the 
case that CO (S ) is a polyhedron and an example is shown in 
Fig. 6 where the shaded Co(S) has five supporting hyper- 
planes. Let x be an extreme point of Co(S).  The opposite 
polytope p of x for CO( S )  is defined to be p = n, a,- where 
H, is a supporting hyperplane of CO ( S  ) which also contains x ,  
and the intersection is over all such H,. In the following obser- 
vation, we will see that p is an unbounded polytope. 

Observation 2: Let CO (S ) be the convex hull of a nonempty 
finite set S and let x be an extreme point of CO( S ) .  Then, the 
opposite polytope p of x for CO (S  ) is an unbounded polytope. 

Proof: Consider an interior point xI of CO( S ) .  Let x '  = x,  
- x, then, for every supporting hyperplane H, of CO ( S  ) con- 
taining x, we have 

a:x' = a fx ,  - a:x 

Co(S).  

= a:xl - c, 

> o  
because x I  is in H,+. Consider a point x2 = x - dx '  where d is 
a positive real number. Then, for every H , ,  we have 

afxz = a f x  - dafx '  

= c, - dafx '  

< c,. 
So, x2 is in H I - .  However, p = n, n,- and thus x2 E p for any 
d > 0. This argument holds when d -+ 03, s o p  is an unbounded 

Observation 3: Given m hyperplanes in E" which partition 
the space into a certain number of m-polytopes, consider m' 
hyperplanes of those m hyperplanes which partition E" into a 
certain number of m'-polytopes. Let q be an unbounded m'- 
polytope. Then, q contains at least one unbounded m-polytope. 

Proof: Consider a hyperplane H which is one of those m hy- 
perplanes but is not one of those m'  hyperplanes. If either H ,  
n q or E _  n q is empty, q is also an unbounded (m' + 1 )- 
polytope. Otherwise, either H ,  fl q or E- n q is an un- 
bounded (m'  + 1)-polytope and it is contained in q. Repeat 
this procedure to check all the other hyperplanes. Then, q con- 

vv 
Theorem 2:  Let S be a k-element set in E".  Consider m hy- 

perplanes in E" which partition E" into P ( m ,  n )  m-polytopes 
such that every element in S is contained in a different 
m-polytope. Then, the number of separable elements in S is no 
more than P , (m,  n ) .  

Pro03 Form 5 n ,  P,(m, n )  = P ( m ,  n ) .  Since every ele- 
ment in S is contained in a different m-polytope, k I P ( m ,  n ) .  
Therefore, the number of separable elements in S is no more 
than P u ( m ,  n ) .  

Form > n, P ( m , n )  = P , , ( m , n )  + P , ( m , n ) .  L e t g b e o n e  
of the P,(m, n )  bounded m-polytopes. For any vertex y ,  in g, 
consider the opposite polytope p , .  According to Observations 2 
and 3 ,  either p I  is one of the P, ( m ,  n ) unbounded m-polytopes 
or p i  will contain at least one of the P,(m, n )  unbounded 
m-polytopes. 

polytope. vv 

tains at least one unbounded m-polytope. 

I 

5 I 
Fig. 6.  A convex hull for five supporting hyperplanes. 

Let x ,  be a separable element in S which is contained in a 
bounded m-polytope g, .  Then, at least one of the vertices in gl  
is not contained in CO ( S  ) which implies that at least one of the 
opposite polytopes of those vertices contains no elements in S. 
Otherwise, g, will be contained in CO( S ) and x, will not be an 
extreme point in S. This contradicts the assumption that x ,  is a 
separable element, by Lemma 2 .  

The opposite polytope is unique in the sense that it is con- 
structed by the supporting hyperplanes of a particular bounded 
m-polytope containing a particular vertex. Therefore, even for 
two different polyhedrons which are adjacent to each other, the 
opposite polytopes for the same vertex are still different. Thus, 
for every separable element in S contained in a bounded 
m-polytope, there is at least one opposite unbounded m-poly- 
tope containing no elements in S. And every separable element 
in S is contained either in an unbounded m-polytope or in a 
bound m-polytope. So the number of separable elements in S is 
no more than P,(m, n) .  vv 

Remark: Consider a k-element set S with k ,  separable ele- 
ments. Let m ,  = min, { P ( m ,  n )  2 k}  and let m2 = min, 
{ P ,  (m, n )  2 k ,  } .  If every element in S is contained in a dif- 
ferent m-polytope, m L max { m,,  m2 }. 

v. AN UPPER BOUND FOR BINARY-VALUED FUNCTIONS 
In the literature, most of the results on capability of the MLP 

deal with realization of binary-valued functions, see e.g., [8], 
[9], [ 141, [2 11. Such problems are basically two-category clas- 
sification problems. Let the two disjoint categories be A and B .  
Then, an MLP M ( 8 )  as shown in Fig. 1 is said to be capable 
of constructing the classifier for A and B if there is a 8 such that 

M ( 8 ,  x)  > r ,  i f x  E A ,  and 

M ( 8 ,  x) < r ,  i f x  E B ,  (14) 

where 7(the threshold) is a constant. Without loss of general- 
ity, 7 can always be set to zero for the classifiers realized by 
M( 8 ) .  So, the goal here is to find a 8 such that { x 1 M (  8, x )  > 
0}  3 A and { x ( M ( O ,  x )  < 0}  3 B .  In Fig. 1, h = [ h (  l ) ,  
h ( 2  ), . . . , h ( m ) ]  is an m-tuple binary vector. As long as none 
of the m-tuple binary vectors h will make M ( 8 ,  x )  = 0 for a 
given 8 ,  both ( x I M ( 8 ,  x )  > 0 )  and { x ( M ( B ,  x )  < 0}  are 
the unions of polytopes in the input domain. As such, the sets 
A and B can be covered by unions of polytopes. 

~ - 1  

--1 - 
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In this section, we only consider the case that S = A U B is 
a k-element subset of E".  Then, an MLP is capable of con- 
structing a classifier for any two subsets A and B of S if and 
only if the MLP is capable of constructing arbitrary dichotomies 
on S. In [SI, [14], an upper bound on the number of hidden 
neurons for constructing arbitrary dichotomies is given for the 
case that S is in general position. The upper bound is based on 
the following two propositions. To  begin with, the notion of 
general position should be specified: 

Dejinition 4:  A k-element set S in E" is in general position 
if no ( j + 1 ) elements in S are in a ( j - 1 )-dimensional linear 
variety of E" for any j such that 2 5 j I n.  

A ( j - 1)-dimensional linear variety is a hyperplane in E' 
[ 151. It is easy to see that Definition 4 is equivalent to the one 
given in [SI, [21] when k 2 n + 1, which is slightly more 
restrictive than the notion of general position defined in [ l l ] ,  
1121. 

Proposition 1; Let S be a finite set of E" and let the elements 
of S be in general position. Then, for any k-element subset SI 
of S ,  where k I n ,  there is a hyperplane, which is an ( n  - 1)-  
dimensional linear variety of E " ,  containing SI and no other 
elements in S. 

Proposition 2:  Let h = [ h (  l ) ,  h ( 2 ) ,  . * . , h ( m ) l r  be an 
m-tuple binary vector and let I (  j ) be a collection of such vec- 
tors that .E:= , h (  i ) = j, where 0 5 j I m. Then, setting w* 
= [ 1, 1,  . . . , 1, j - 0.51' will make 

,n I ,,I \ 

h ( i ) w * ( i )  - t* > 0, for h E U Z(k) 
; = I  ( h - 1  

and 

h ( i ) w * ( i )  - t* < 0, for h + U I ( k )  . (15) 

Let the number of elements in A and B be k,  and k2, respec- 
tively. Then k, + k2 = k ,  as A U B = S. Without loss of 
generality, let k ,  I k/2 .  According to Proposition 1,  [ ( k ,  - 
l ) / n  + 1 1  hyperplanes can contain all those kl elements in A 
and no elements in B .  Note that [xn is the largest integer which 
is less than or  equal to x. Consider one of the [ (k ,  - 1 ) / n  + 
1 1  hyperplanes, say H ,  which is shifted infinitesimally into H +  
and into H-  to become H' and H " ,  respectively, such that every 
element contained in H is in H ;  n H:. And every element in 
S which is not contained in H is either in H+ fl H L  or in HL 
f l  HI;. Let all [ ( k ,  - 1 ) / n  + 11 hyperplanes be shifted that 
way and let m = 2[(k1  - l ) / n  + 1 1  hidden neurons in an 
MLP construct those hyperplanes. Then, the output vector of 
hidden neurons for every element in A belongs to I (  m / 2  + 1 ) 
and that for every element in B belongs to Z(m/2).  According 
to Proposition 2, this MLP is capable of constructing the di- 
chotomies A and B .  For a k-element set, the upper bound on the 
number of hidden neurons needed to construct arbitrary dichot- 
omies is thus m = 2 1 ( k  - 2) /2n  + 1 1. The derivation of this 
upper bound is based on the results given in [SI, [14], but a 
slight difference has resulted from the fact that the number of 
hidden neurons here has to be an even integer. 

One of the drawbacks for the above approach is that it is not 
suitable for input sets which are not in general position. In the 
following, input sets are decomposed into a sequence of subsets 
such that every subset is contained in a linear variety. With this 
decomposition, an upper bound is derived on the number of 
hidden neuron. Then, we show how to extend this approach to 
the case where the input sets are not in general position. More- 
over, when the subsets are continually decomposed into lower 

I =  I (1':, ) 

dimensional linear varieties, this upper bound will eventually 
approach the LUB. 

Dejinition 5:  Let S be a finite set in E" .  A hyperplane H 
which has S contained entirely in either H ,  or in H -  is called 
a nil-separating hyperplane of S. Any hyperplane in E" is a nil- 
separating hyperplane of the empty set. 

Lemma 3: If an n-element set S in E" is in general position 
as defined in Definition 4, then every subset of S is a separable 
subset. 

Proof: The characteristic vector of a particular hyperplane is 
an ( n  + 1 )-tuple vector [a ', c]. For a given xi E S, a ' x i  - c 
= 0 is a homogeneous hyperplane in the ( n  + 1)-dimensional 
weight-threshold space. S is in general position, so n homoge- 
neous hyperplanes partition E" + into 2" unbounded n-poly- 
topes as in (13) [ 121. Every [a', c ]  in the interior of a different 
n-polytope represents the characteristic vector of a hyperplane 
H which separates a subset of S and its complement, so that the 
subset is in H + .  Since S has 2" subsets, every subset of S is a 
separable subset. vv 

Remarks: 
1. According to Lemma 3 and (13), every subset of a j-ele- 

ment set in general position, 1 I j I n ,  is a separable subset. 
2. For a finite set S, there are hyperplanes which separates S 

and its complement 0. To distinguish those hyperplanes from 
a hyperplane which separates two nonempty subsets of S, they 
are called nil-separating hyperplanes in Definition 5. 

Dejnition 6: If S = S, 3 S, - , 3 * * 3 SI 3 So = 0 
and every S, is a separable subset of S, the sequence { S, } is 
said to be a sequence of separable subsets of S. 

Theorem 3: An MLP with 1 (k  - 2 ) / n  + 1 1  hidden neurons 
is capable of constructing arbitrary dichotomies for a k-element 
set S in E" ,  if there is a sequence of separable subsets {Si } of 
S such that 1) every Si = Si - Si - ,, 1 5 i I m, is in general 
position and has n elements except that Sh may have less than 
n elements, and 2) Hi,  the hyperplane containing S,' in E " ,  is a 
nil-separating hyperplane of both Si - and S - S,. 

Proof: According to Proposition 1, there is a hyperplane H, 
which contains all elements in S,'. Let S' and S - S' be an 
arbitrary dichotomy of S .  Consider the n points in H ,  with n;  
elements in S' and n - n ;  elements in S - S'. According to 
Lemma 3, HI can be rotated infinitesimally to separate those 
n; in HI + and those n - n ;  elements of Si in HI -.  HI is a nil- 
separating hyperplane of S - SI, so S - SI can be contained in 
HI- .  

Consider the n elements in Si with n; elements in S '  and n - 
n; elements in S - S ' .  As before, construct a hyperplane H ,  
which separates those n - n; elements of Si in H2+ and those 
n; elements in H z - .  Because H2 is a nil-separating hyperplane 
of SI and S - S2, SI can be contained in H2+ and S - S2 can 
be contained in H 2 - .  Repeat this procedure until H,,,, where m 
= [ (k  - l ) / n  + 11. 

Let m hidden neurons construct HI ,  H z ,  . . - , H,,,. Then, 
elements in S are transformed into m-tuple binary vectors. Let 
h, = [hl(  I ) ,  h 1 ( 2 ) ,  . . . , h1(m)lT, 1 5 j 5 m, be a binary 
vectorwith h , ( i )  = Ofor i < j a n d h , ( i )  = 1 f o r i  L j. In the 
outputs of the hidden neurons, every element in S '  is a binary 
vector h, where j is odd while every element in S - S' is a 
binary vector h, where j is even. Let w* = [ w* ( l ) ,  w* ( 2 ) ,  
. . .  , w*(m) ,  t*]'be w * ( l )  = 1 and w * ( i )  = -w*(i - l ) ,  
2 I i I m, and t* = 0.5w*(m). Then, the overall MLP con- 
structs the dichotomies: S '  and S - s'. 

Because Hi can be chosen to have either those ni elements or 
those n - nl elements in H ,  + , only m - 1 hidden neurons are 
needed for the case that SA is a single-element set. Therefore, 
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an MLP with C ( k  - 2 ) / n  + 1 
constructing arbitrary dichotomies for a k-element set in E".  

hidden neurons is capable of 

vv 
Consider realization of switching functions by an MLP. When 

n = 2, S is a four-element set in the two-dimensional space. 
Let the sequence of separable subets of S be SI = { ( 0 ,  0) ,  ( 1, 
0 )  } and S, = S. Then, this sequence satisfies the conditions in 
Theorem 3, and rn = [ ( 4  - 2 ) / 2  + 11 = 2. Because XOR 
can be realized by an MLP with two hidden neurons, rn = 2 is 
also the LUB in this case. When n = 3, S is an eight-element 
set. We first consider a seven-element set SI as given in Fig. 7 .  
Then, an MLP with two hidden neurons is sufficient to realize 
S,. Consider the hyperplane which separates SI from S. So, rn 
= 3 is sufficient to realize S. When n = 4, S is a sixteen-ele- 
ment set. Consider hyperplanes x (  1 )  + x ( 2 )  + x ( 3 )  + x ( 4 )  
- 1 = 0, x ( 1 )  + x ( 2 )  + x ( 3 )  + x ( 4 )  - 2 = 0,  a n d x ( 1 )  
+ x ( 2 )  + x (3 )  + x ( 4 )  - 3 = 0 which contain SI = ((0,  0, 
0 ,  11, ( 0 ,  0 ,  1,  O ) ,  ( 0 ,  1, 0 ,  01, ( 1 ,  0,  0,  O ) ) ,  s; = ( ( 0 ,  0,  
1 , 1 ) , ( 0 , 1 ,  1 , 0 ~ , ~ 1 , ~ , 0 , 0 ~ , ~ ~ , 0 , ~ , 1 ~ , ~ ~ , ~ , ~ , ~ ~ , ~ ~ ,  
0,  1, O ) ) ,  a n d %  = ( ( 1 ,  1, 1, 01, ( 1 ,  1 ,  0,  11, ( 1 ,  0,  1, I ) ,  
(0,  1 ,  1, 1 ) }, respectively. SI and Si are in general position. 
so, x ( 1 )  + x ( 2 )  + x ( 3 )  + x ( 4 )  - = 0 (x(l), x ( 2 )  + 
x (  3 )  + x ( 4 )  - 3 = 0)  can be rotated infinitesimally to sepa- 
rate the elements in SI (S i )  with the same output as ( 0 ,  0, 0, 
0) ( (  1, 1, 1 ,  1 ) )  in one side. Moreover, x(1)  + x ( 2 )  + x ( 3 )  
+ x ( 4 )  - 2 = 0 is a three-dimensional linear variety. And, 
S; is a six-element set in the linear variety. Consider two two- 
dimensional linear varieties which are the intersections of x ( 1 ) 
= O a n d x ( l )  + x ( 2 ) + ~ ( 3 ) + ~ ( 4 ) - 2 = 0 , a n d x ( l ) =  
1 a n d x (  1 )  + x ( 2 )  + x ( 3 )  + x ( 4 )  - 2 = 0. Each one of the 
two-dimensional linear varieties contains three elements of S; 
which satisfies the conditions given in Theorem 3. Then, an 
MLP with two hidden neurons is sufficient to realize Si. Thus, 
rn = 4 is sufficient to realize the sixteen-element set S. In con- 
trast, if the results of Section I1 were employed, the upper bound 
would have been 15. 

In Theorem 3, we require that every S,!, instead of S, be in 
general position. The example shown in Fig. 7 illustrates how 
to slice an input set S that is not in general position to meet the 
conditions. Also, Fig. 8 shows an input set S in general position 
which does not satisfy the second condition in Theorem 3. From 
these two examples, we see that the general position condition, 
Definition 4,  does not imply the two conditions specified in 
Theorem 3, and neither does vice versa. In the following theo- 
rem, the approach in Theorem 3 is extended such that input sets 
in general position also satisfy the decomposition conditions. 

Theorem 4: Let S,' be a separable subset of S, = S - U{.:; 
S:, 1 5 j 5 d, where Sh = 0. An MLP with m = 2 [ ( k  - 
2 ) / n  + 11 - 1 hidden neurons is capable of constructing ar- 
bitrary dichotomies for a k-element set S in E",  if there is a 
sequence of subsets { S, 3 of S such that 1) every S,' is in general 
position and has n elements except that SA may have less than n 
elements, and 2) H,, the hyperplane containing S,' in E",  is a 
nil-separating hyperplane of Sj - S,' . 

Proo) Since Sj is a separable subset of S, , let H,' be the sep- 
arating hyperplane of S' and Sj - S,' such that S' is contained 
in Hi+. H, is a nil-separating hyperplane of S, - Sj, so S, - Sl 
can be contained in H,- .  Let the hidden neurons construct H I ,  
Hi ,  H 2 ,  H;, . . . , HA- l ,  H d ,  where d = [ ( k  - 2 ) / n  + 11. 
Rotate H,, 1 5 j 5 d,  as in Theorem 3, to separate those ele- 
ments in S' into two dichotomies. Then, elements in S f l  H I +  
have same outputs for the hidden neurons. And, elements in S 
fl H,'+ fl H,- have same outputs for the hidden neurons. Also, 
elements in S fl Hi- fl H( ,+ I + have same outputs for the 

1 

Fig. 7 .  Two three-element subsets of a seven-element set contained in two- 
dimensional linear varieties. 

0 a 

a 

0 a 

0 

a a 
Fig. 8. An eight-element set in general position in the two-dimensional 

space. 

hidden neurons, 1 I j I d - 1. If elements in S with the same 
outputs for the hidden neurons are treated as one element, this 
problem will become a realization of a binary function defined 
on a 2d-element set. According to Theorem 1, an MLP with rn 
= 2 [ ( k  - 2 ) / n  + 11 - 1 hidden neurons is capable of con- 
structing arbitrary dichotomies on a k-element set S which sat- 
isfies the conditions. vv 

Remark: Theorem 4 also applies when the k-element set S is 
in an n-dimensional linear variety, because a linear variety can 
be shifted to be a space. 

Theorem 5: Let S be a k-element subset of E" in general 
position, where k 2 n. Then, there is an n-element separable 
subset SI of S such that H,, the hyperplane containing SI in E",  
is a nil-separating hyperplane of S - SI. 

P r o o t  Consider the convex hull CO (S ) which is a polyhe- 
dron in E". Let y ,  be a vertex of CO (S ) and let H I  be a sup- 
porting hyperplane of y , .  Then, H ,  contains a face of CO (S ) 
which implies that there are at least n vertices of CO (S ) con- 
tained in H I .  Because S is in general position, H I  contains no 
other elements in S except those n vertices. Let SI be the set of 
those n vertices which is a separable subset of S. And, H I  is a 

vv 
The conditions on input sets in Theorem 4 are a generalized 

version of those in Theorem 3. According to Theorem 5, a finite 
set S in general position also satisfies the conditions in Theorem 
4. Note that the least upper bound given in Section I1 can not 

nil-separating hyperplane of S - SI. 
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be reduced here, even though the output of the MLP is simply 
binary for two-category classification. However, 2 1 ( k  - 2 ) / n  
+ 11 - 1 5 k - 1 for n 2 2, the upper bound given in Theo- 
rem 4 is thus nontrivial. 

According to Theorem 5, there is a sequence of subsets { S, } 
of any finite set S which satisfies the second condition in Theo- 
rem 4. But, S,’ may contain more than n elements in S and the 
first condition is violated. However, with the fact that a hyper- 
plane is an ( n  - 1 )-dimensional linear variety of E “ ,  the finite 
set S is decomposed into d subsets in ( n  - 1 )-dimensional lin- 
ear varieties. Also, for any SI, H,’ , the hyperplane that separates 
S,’ and SI - S,’ , isolates S,’ from S I .  Then, S,’ is a finite subset 
of an ( n  - 1)-dimensional linear variety HI and Theorem 4 is 
still suitable for every decomposed subset. If a finite set S is 
continually decomposed to one-dimensional linear varieties and 
none of the decomposed subsets can satisfy the first condition, 
the bound in Theorem 4 will be eventually equivalent to that in 
Theorem 1 .  The example given after Corollary 2 is one such 
case. In that case, we only need those separating hyperplanes 
H,’ in Theorem 4 and the number of those hyperplanes is 
k - 1 .  

VI. CONCLUSION 
It has been seen here that an MLP with m hidden neurons 

(Fig. 1) will partition the input space into N m-polytopes, where 
(rn + 1 )  I N 5 P ( m ,  n ) ,  such that elements in the same 
m-polytope have the same outputs. In realization of arbitrary 
functions, we showed that at least ( m  + 1)  of N m-polytopes 
can be mapped into arbitrary real-valued outputs. Therefore, 
the MLP is capable of realizing arbitrary functions defined on 
an (rn + 1 )-element set. In realization of one-to-one functions, 
the maximum number of rn-polytopes that can be obtained by 
partitioning E “  with rn hyperplanes is P ( m ,  n). Consider a k -  
element subset S with k ,  separable elements. Two necessary 
conditions that every element in S is contained in a different m- 
polytope are k 5 P(rn ,  n )  and k ,  5 P,(rrr, P I ) .  In realization 
of binary-valued functions, the MLP is capable of constructing 
arbitrary dichotomies for an { n [(rn + 1 ) / 2 ]  + 1 }-element 
set which satisfies the conditions in Theorem 4 and for an ( m  
+ 1 )-element set without any conditions. 
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