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BOUNDS ON THE NUMBER OF VERTEX INDEPENDENT
SETS IN A GRAPH

Anders Sune Pedersen and Preben Dahl Vestergaard

Abstract. We consider the number of vertex independent sets i(G). In general,
the problem of determining the value of i(G) is NP -complete. We present
several upper and lower bounds for i(G) in terms of order, size or independence
number. We obtain improved bounds for i(G) on restricted graph classes such
as the bipartite graphs, unicyclic graphs, regular graphs and claw-free graphs.

1. NOTATION

We denote by G a graph of order n = |V (G)| and size m = |E(G)|. For a
vertex x in V (G) let deg G(x) denote its degree. Aleaf is a vertex of degree one
and a stem is a vertex adjacent to a leaf. Pn denotes a path on n vertices and Cn a
cycle on n vertices. The diameter of a graph G is the maximum distance between
two vertices in G. The complement of G is denoted by G. The complete graph on
n vertices is denoted by Kn, while Kn denotes the graph consisting of n isolated
vertices. By K1,n−1 we denote the star consisting of one center vertex adjacent
to n − 1 leaves. A corona graph G is a graph in which each vertex is a leaf or
is a stem adjacent to exactly one leaf. If H is a graph, then H ◦ K1 denotes the
corona graph constructed from H by attaching precisely one leaf at each vertex of
H . A graph is called unicyclic if it is connected and contains exactly one cycle.
The Fibonacci numbers, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... are defined recursively
by F (0) = 0, F (1) = 1, and for n ≥ 2, F (n) = F (n − 2) + F (n − 1). The
Lucas numbers are L(n) = F (n − 1) + F (n + 1) for n ≥ 1. Given a graph G, a
subset S ⊆ V (G) is called independent if no two vertices of S are adjacent in G.
The independence number of G, denoted by α(G), is the cardinality of a largest
independent set S in G. The set of independent sets in G is denoted by I(G).
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The empty set is independent. The set of independent sets in G which contains the
vertex x is denoted by Ix(G), while I−x(G) denotes the set of independents sets
which do not contain x. The number of independent sets in G is denoted by i(G).
The number of edge independent sets in G is denoted by i′(G). In the chemical
literature the graph parameter i(G) is referred to as the Merrifield-Simmons index
[14] while i ′(G) is referred to as the Hoyosa index [6].

2. INTRODUCTION

After the first papers by Miller and Muller [15] and Moon and Moser [16] about
maximal independent sets, Prodinger and Tichy [17] gave impetus to the study of
the number i(G) of independent sets in a graph. A survey by Chou and Chang
[2] and several other references are listed at the end. The problem of counting the
number of independent sets in a graph is NP-complete (see for instance Roth [18]).
However, for certain types of graphs the problem of determining i is polynomial.
For instance, Prodinger and Tichy [17] proved, by induction, that i(Pn) and i(Cn),
respectively, is the sequence of Fibonacci and Lucas numbers.

Theorem 2.1. ([17])

∀n ∈ N : i(Pn) = F (n + 2).

∀n ∈ N≥3 : i(Cn) = L(n) = F (n − 1) + F (n + 1).

We list some useful facts.

Fact (i) For a spanning proper subgraph H of G we have i(G) < i(H).
Fact (ii) Let G have components G1, G2, . . . , Gk. Then i(G) =

∏k
i=1 i(Gi). That

implies that if i(G) is a prime number then G is connected.
Fact (iii) Let G be any graph of order n. Then 1 + n ≤ i(G) ≤ 2n. The lower bound

is attained precisely for G � Kn and the upper bound precisely for G � Kn

([17]).
Fact (iv) Let G be any connected graph of order n. Then

1 + n ≤ i(G) ≤ 2n−1 + 1.

The lower bound is attained precisely for complete graphs Kn and the upper
bound precisely for stars K1,n−1.

Fact (v) Let T be any tree of order n. Then F (n + 2) ≤ i(T ) ≤ 1 + 2n−1 ([17]). By
induction it can be proven that the lower bound is attained precisely when T
is a path Pn and the upper bound precisely when T is a star K1,n−1 ([10]).
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Fact (vi) Let T be any tree of order n ≥ 7 distinct from Pn. Then

i(T ) ≥ 2F (n) + 3F (n − 3).

Equality holds if and only if T is the tree T = Yn obtained by identifying one
endvertex of a Pn−4 with the center-vertex of a P5 ([10]). Lin and Lin [10]
also characterized all trees T of order n ≥ 8 satisfying 2n−2+7 ≤ i(T )≤
2n−1+1.

Fact (vii) If T is a tree of order n and diameter at least k, then i(T ) ≤ F (k)+2n−kF (k+
1). Equality occurs if and only if T � Bn,k,1, where Bn,k,1 denotes the graph
constructed from the k-path by attaching n−k leaves to one endvertex of the
k-path ([20,021]).

Let Hn,k denote the graph constructed from the k-cycle by attaching n − k
leaves to one vertex of the k-cycle.

Fact (viii) If G is a connected graph which contains at least one cycle, then i(G) ≤
3 · 2n−3 +1. Equality holds if and only if G is a 4-cycle or G � Hn,3 ([21]).

Fact (ix) If G is a unicyclic graph not isomorphic to Hn,3, then i(G) ≤ 5 · 2n−4 + 2.
Equality occurs if and only if G � Hn,4 ([21]).

3. LOWER BOUNDS FOR i(G)

Our first result gives a lower bound of i(G) in terms of the order of G and the
independence number of G.

Theorem 3.1. Let G be any graph of order n with independence number
α = α(G). Then

i(G) ≥ 2α + n − α,

and equality occurs if and only if G can be constructed by joining each vertex in
a Kn−α to each vertex in a Kα.

Proof. Let S denote a maximum independent set in G. Then every subset of S

is an independent set in G and every singleton of V (G− S) is an independent set.
Consequently, i(G) ≥ 2|S| + |V (G) − S| = 2α + n − α. Assume equality occurs,
then any independent set of G is either a subset of S or a singleton in V (G) − S.
It follows that every two vertices of V (G) − S are adjacent and every vertex of
V (G)− S is adjacent to every vertex of S. Thus G can be constructed as claimed.
The converse is just as obvious.
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For t-regular graphs we have α(G) ≥ n
t+1 and n − α ≥ t, since a vertex in an

independent set S, |S| = α(G), has all its t neighbours in G − S. Thus we obtain

Corollary 3.2. Let G be a t-regular graph of order n. Then i(G) ≥ 2
n

t+1 + t,
and equality occurs if and only if G � K n.

The following lower bound is an improvement of Fact (iv).

Theorem 3.3. Let G denote a graph with n vertices and let m(G) denote the
number of edges in the complement G. Then i(G) ≥ 1 + n + m(G), and equality
occurs if and only if α(G) ≤ 2, that is, G is triangle-free.

Proof. The empty set and the singletons of G are in I(G). Every edge in G
corresponds to an independent set in G and so I(G) contains precisely m(G) sets
each with two elements. Thus, i(G) ≥ 1 + n + m(G). If α(G) > 2, then by
definition i(G) > 1 + n + m(G). Hence i(G) = 1 + n + m(G) implies α(G) ≤ 2.
The converse is just as obvious.

Corollary 3.4. Let G denote a graph of order n and let t denote the number
of components in G. Then i(G) ≥ 2n + 1− t, and equality occurs if and only if G

is a forest.

Proof. We simply observe that m(G) ≥ n − t and so Theorem 3.3 implies
i(G) ≥ 2n + 1 − t. If i(G) = 2n + 1 − t, then we must have m(G) = n − t, that
is, G is a forest and consequently also triangle-free.

4. UPPER BOUNDS FOR i(G)

Theorem 4.1. Let G be a graph without isolated vertices and let S be an
independent set in G. Then

i(G) ≤ 2α(i(G− S)− 1) + 1,

and equality occurs precisely if G � K 1,n−1 and S is the set of its leaves.

Proof. An independent set A in G can be written as the union of two sets
B = A ∩ S and C = A ∩ V (G − S). Any B 	= ∅ has a vertex with a neighbour
in G − S, so at least one independent set in G − S cannot be used as C together
with B. This gives at most (2|S|−1)(i(G−S)−1) independent sets while B = ∅

can be combined with i(G − S) sets, that adds up to i(G) ≤ 2 |S|(i(G − S) −
1) + 1 ≤ 2α(i(G − S) − 1) + 1 as claimed. Clearly K1,n−1 with S taken to be
its leaves gives equality. Let conversely S be an independent set in G such that
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i(G) = 2α(i(G − S) − 1) + 1. Then |S| = α(G), because otherwise |S| < α(G)
would imply i(G) ≤ 2|S|(i(G − S) − 1) + 1 < 2α(i(G − S) − 1) + 1. Also
G− S = {x} because assume otherwise {x, y} ⊆ G− S, then both x and y would
have a neighbour in S, so a set B in S containing these two neighbours could
only be combined with at most i(G − S) − 2 sets C in G − S and we would get
strict inequality for i(G). Therefore G − S = {x} and all vertices in S are joined
precisely to x giving G = K1,n−1.

Theorem 4.2. In the graph G, let x be a vertex of degree t ≥ 1. Then
i(G) ≤ 2i(G − x) − t, and equality holds precisely if each neighbour of x is
adjacent to every other vertex of G.

Proof. Let y1, y2, . . . , yt denote the neighbours of x. We may write I(G) =
Ix(G) ∪ I−x(G). Observe that |I−x(G)| = i(G − x). Every set S − {x} with
S ∈ Ix(G) is also a member of I−x(G), and so |Ix(G)| ≤ |I−x(G)|. But the t

singletons {yi}, 1 ≤ i ≤ t, are in I−x(G) and correspond to no set S−{x} with S ∈
Ix(G). Thus, |I−x(G)| ≤ |Ix(G)| − t which implies i(G) = |Ix(G)|+ |I−x(G)| ≤
2|I−x(G)| − t and the desired inequality is established. If i(G) = 2i(G − x) − t

we have yiz ∈ E(G) for each z ∈ V (G) \ {x, yi} for every i ∈ {1, . . . , t}, because
if zyi /∈ E(G) then {z, yi} ∈ I−x(G) and {z, yi, x} /∈ Ix(G) which would imply
|Ix(G)| < |I−x(G)| − t and hence i(G) < 2i(G − x) − t, a contradiction. The
converse is easily seen and Theorem 4.2 is proven.

Theorem 4.3. Let G be a graph on n ≥ 1 vertices without isolated vertices.
Then i(G) ≤ 2n−1 +1 and i(G) = 2n−1 +1 precisely if G = K1,n−1 or G = 2K2.

Proof. For any edge e in G we have i(G) < i(G−e). We may thus assume that
removal of any edge results in a graph with at least one isolated vertex, consequently
each component is a non-trivial star K1,r with i(K1,r) = 2r + 1 and Lemma 4.4
below gives the result.

Lemma 4.4. Let s ≥ 2 denote an integer and r1, . . . , rs denote positive
integers. Then

(2r1 + 1)(2r2 + 1) . . .(2rs + 1) ≤ 2r1+r2+···+rs+s−1 + 1,

and equality occurs if and only if s = 2 and r 1 = 1 = r2.

Proof.

(i) Suppose s = 2. If r1 = 1 = r2, then equality occurs. Suppose that at least
one of r1 and r2 is greater than one, say r1 > 1. Then

3 ≤ (2r1 − 1)(2r2 − 1) = 2r1+r2 − 2r1 − 2r2 + 1,
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which implies 2r1 + 2r2 < 2r1+r2 . Applying this result, we obtain

(2r1 + 1)(2r2 + 1) = 2r1+r2 + 2r1 + 2r2 + 1 < 2 · 2r1+r2 + 1,

and so we have strict inequality.

(ii) Suppose s ≥ 3. Then, by induction on

(2r1 + 1) · · · (2rs−1 + 1) ≤ 2r1+···+rs−1+(s−1)−1 + 1,

it follows that

(1) (2r1 +1) · · · (2rs−1 +1)(2rs +1) ≤ (2r1+···+rs−1+(s−1)−1 +1)(2rs +1).

Now we apply the result of Case (i) with r′1 := r1+ · · ·+rs−1+(s−1)−1 ≥
2s − 3 > 1, r′2 := rs and s′ := 2, and we obtain

(2)
(2r1+···+rs−1+(s−1)−1 + 1)(2rs+1) < 2r1+···+rs−1+(s−1)−1+rs+2−1+1

= 2r1+···+rs−1+rs+s−1 + 1.

Thus, the desired inequality follows from (1) and (2), and the lemma follows
by induction.

One might be inclined to expect that more edges would imply fewer indepen-
dent sets. However, Corollary 4.5 below shows that this is not true in general.
For instance, the graph rK2 (r ≥ 3), which has order 2r and size r, has fewer
independent sets than the graph K1,2r−1, which has order 2r and size 2r − 1.

From Theorem 4.3 one easily obtains the following result.

Corollary 4.5. If G is a graph on n ≥ 1 vertices and m ≥ 1 edges, then
i(G) ≤ 2n−1 + 2t, where t denotes the number of isolated vertices in G. Equality
occurs precisely when G � K1,n−t−1 ∪ Kt or t = n − 4 and G � 2K2 ∪ Kt.

5. INDEPENDENT SETS IN FORESTS

Lin and Lin [10] proved that for any forest F on n vertices, F (n+2) ≤ i(F ) ≤
2n; and moreover that i(F ) = F (n + 2) if and only if F � Pn, and i(F ) = 2n if
and only if F � Kn.

By adding the condition that the forest F contains no isolated vertex, we obtained
the following bounds.

Theorem 5.1. Let F be a forest on n vertices, none of which are isolated.
Then F (n + 2) ≤ i(F ) ≤ 1 + 2n−1 and moreover, i(F ) = F (n + 2) if and only if
F � Pn, and i(F ) = 1 + 2n−1 if and only if F � K1,n−1 or F � 2K2.
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Proof. If nessecary, add edges to F to obtain a tree T . Then the left inequality
follows from i(F ) ≥ i(T ) ≥ F (n + 2). Assume i(F ) = F (n + 2), then i(T ) =
F (n + 2) and, by Fact (v), T � Pn. If we added edges to F in order to obtain T ,
then i(F ) > i(T ) = F (n + 2), a contradiction. Hence F � T � Pn. The upper
bound and the remainder of the statement follows from Theorem 4.3.

6. INDEPENDENT SETS IN BIPARTITE GRAPHS

Theorem 6.1. Let G be a bipartite graph of order n with no isolated vertex.
Then 2

n
2
+1 − 1 ≤ i(G) ≤ 1 + 2n−1. The lower bound is attained precisely for

G � Kn/2,n/2, and the upper bound precisely for G � K 1,n−1 or G � 2K2.

Proof. Let V1, V2 be bipartition classes for G, V1∪V2 = V (G), V1∩V2 = ∅. Let
ni = |Vi| for i = 1, 2. We note that 0 ≤ (2n1/2−2n2/2)2 = 2n1 +2n2−2(n1+n2)/2+1

implies 2n/2+1 ≤ 2n1 +2n2 . All subsets of Vi, i = 1, 2, are independent, so counting
the empty set only once we have i(G) ≥ 2n1 + 2n2 − 1 ≥ 2n/2+1 − 1. For equality
to occur we must have n1 = n2 = n/2 and G � Kn/2,n/2. The upper bound and
its extremal graphs follow from Theorem 4.3.

7. UNICYCLIC GRAPHS

We have in [21] proven that among all unicyclic graphs of order n the smallest
number of independent subsets is obtained for two graphs, namely for Cn and for
the graph constructed by placing n−4 subdivision vertices on an edge pendent to a
3-circuit, the largest number of independent subsets is obtained for Hn,k, and when
n = 4 also for C4 (Fact (viii)). Specifying order and circuit length we obtain

Theorem 7.1. ([21]) If G is a unicyclic graph of order n and circuit length k,
then i(G) ≤ 2n−kF (k + 1) + F (k − 1). Equality occurs if and only if G � Hn,k .

We shall here sharpen this bound by not only prescribing order n and circuit
length k but also demanding that at least one vertex is at distance h from the circuit.

Theorem 7.3. Let n ≥ k ≥ 3, h ≥ 0 be integers and let G be a unicyclic
graph of order n with circuit length k and maximum distance h from a vertex in G
to the circuit. Then

i(G) ≤ F (k − 1)F (h + 1) + 2n−k−hF (k + 1)F (h + 2).

Equality holds if and only if either (i) h = 0, i.e. G is a circuit, or (ii) h ≥ 1 and G
can be obtained from a circuit of length k by attaching to the same vertex n−k−h

pendent edges and one more pendent edge having h − 1 subdivision vertices.
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Proof. If (i) occurs, i.e. if h = 0, we have k = n and G � Cn. From
Theorem 2.1 we have that i(Cn) = F (n − 1) + F (n + 1) and that is the statement
of Theorem 7.2. If (ii) occurs, let x be the unique stem on C. Then G − N [x]
consists of two disjoint paths Pk−3 and Ph−1, so |Ix(G)| = F (k−1)F (h+1) while
G − x consists of n − h − k isolated vertices and the disjoint paths Pk−1 and Ph,
so |I−x(G)| = 2n−k−hF (k + 1)F (h + 2) yielding i(G) = |Ix(G)| + |I−x(G)| =
F (k − 1)F (h + 1)+ 2n−k−hF (k + 1)F (h + 2) as stated in Theorem 7.2. We shall
now prove the main statement. For h = 0 we have just seen that G � Cn and
Theorem 7.2 holds. For h = 1 the inequality is i(G) ≤ F (k − 1) + 2n−kF (k + 1).
That and the characterization of the extremal graph is proven in [21]. We shall
proceed to prove the theorem by induction on n. The theorem is true for small
values of n, since it holds for h = 0, 1 and all values of k and n. So, let a unicyclic
graph G of order n, with a circuit C of length k and with h ≥ 2 be given. Assume
the theorem holds for all unicyclic graphs having order smaller than n, we shall then
prove it for G. We shall consider three cases depending on the maximum distance
in G−N [x] from a vertex to C, where x is a vertex at maximum distance from C

in G.
Let x0 ∈ V (C) and let x0x1 . . .xh be a longest path in G − E(C). Let

deg G(xh−1) = 2 + t, t ≥ 0, i.e. xh−1 is a stem with t + 1 leaves. We shall write
x = xh below.

Case 1, G − N [x] has a vertex at distance h from C. By the induction
hypothesis we have

|I−x(G)| ≤ F (k − 1)F (h + 1) + 2n−k−h−1F (k + 1)F (h + 2),

|Ix(G)| ≤ 2t
(
F (k − 1)F (h + 1) + 2n−k−h−t−2F (k + 1)F (h + 2)

)
.

As G−N [x] has order n−2 and contains t isolated vertices, the circuit C of length
k and at least a path with h further vertices we have t ≤ n − k − h − 2 and hence

2tF (k − 1)F (h + 1) < 2n−k−h−2F (k + 1)F (h + 2).

That implies
|Ix(G)| < 2n−k−h−1F (k + 1)F (h + 2)

and thus

i(G) = |I−x(G)|+ |Ix(G)| < F (k − 1)F (h + 1) + 2n−k−hF (k + 1)F (h + 2),

giving strict inequality in the theorem.

Case 2, in G − N [x] the maximum distance from a vertex to C is h − 1.
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(i) Assume t ≥ 1. By the induction hypothesis we have as in Case 1

|I−x(G)| ≤ F (k − 1)F (h + 1) + 2n−k−h−1F (k + 1)F (h + 2)

|Ix(G)| ≤ 2t
(
F (k − 1)F (h) + 2n−k−h−t−2F (k + 1)F (h + 2)

)

There are in N [x] two vertices and G − N [x] contains a component with at
least k + h− 1 vertices, namely C together with a path of length h− 1. That
implies 1 ≤ t ≤ n− k−h− 1. Using 2t ≤ 2n−k−h−1, F (k− 1) < F (k + 1)
and F (h) + F (h + 1) = F (h + 2) we obtain

|Ix(G)| < 2n−k−h−1F (h + 1)F (h + 2)

giving the desired strict inequality

i(G)= |I−x(G)|+|Ix(G<F (k−1)F (h + 1)+2n−k−hF (k+1)F (h + 2).

(ii) Assume t = 0.
From the induction hypothesis we now have

|Ix(G)| ≤ F (k − 1)F (h) + 2n−k−hF (k + 1)F (h + 1)

|I−x(G)| ≤ F (k − 1)F (h + 1) + 2n−k−h−1F (k + 1)F (h + 1)

≤ F (k − 1)F (h + 1) + 2n−k−hF (k + 1)F (h + 2)

−F (k − 1)F (h − 1) − 2n−k−hF (k + 1)F (h).

Therefore

i(G) = |I−x(G)|+ |Ix(G)| ≤ F (k−1)F (h+1)+2n−h−kF (k +1)F (h+2)

+F (k − 1)F (h − 2) − 2n−h−k−1F (k + 1)F (h − 2).

As n − h − k − 1 ≥ 0 we have for h > 2 that F (h − 2) > 0, giving strict
inequality in the theorem, while h = 2 gives equality.

In case 2 an extremal graph can occur only if h = 2 and t = 0.
If we for h = 2 have equality, i.e. if i(G) = 2F (k − 1) + 2n−k−2F (k + 1) · 3

then we must have equality throughout so that in particular

|I−x(G)| = F (k − 1) + 2n−1−kF (k + 1).

In [21] it is proven that this implies that G−x consists of a circuit of length k with
n − 1 − k leaves attached to one of its vertices. That in turn implies that G is as
decribed in the theorem.

Case 3, in G − N [x] the maximum distance from a vertex to C is h − 2.
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(i) Assume t ≥ 1.
By induction

|I−x(G)| ≤ F (k − 1)F (h + 1) + 2n−k−h−1F (k + 1)F (h + 2)

= F (k − 1)F (h + 1) + 2n−h−kF (k + 1)F (h + 2)

−2n−h−k−1F (k + 1)F (h + 2)

|Ix(G)| ≤ 2t
(
F (k − 1)F (h − 1) + 2n−k−h−tF (k + 1)F (h)

)
.

= 72tF (k − 1)F (h − 1) + 2n−k−hF (k + 1)F (h).

i(G) = |I−x(G)|+ |Ix(G)|
≤ F (k − 1)F (h + 1) + 2n−h−kF (k + 1)F (h + 2)

−2n−h−k−1F (k + 1)(2F (h) + F (h − 1))

+2tF (k − 1)F (h − 1) + 2n−h−kF (k + 1)F (h)

= F (k − 1)F (h + 1) + 2n−h−kF (k + 1)F (h + 2)

+(2tF (k − 1) − 2n−h−k−1F (k + 1))F (h − 1)

and as n − k − h ≥ t ≥ 1, h ≥ 2, F (h − 1) > 0 we have proven strict
inequality for the theorem. By induction

(ii) Assume t = 0.

i(G) = |I−x(G)|+ |Ix(G)| ≤ F (k − 1)F (h) + 2n−h−kF (k + 1)F (h + 1)

+F (k − 1)F (h − 1) + 2n−h−kF (k + 1)F (h)

= F (k − 1)F (h) + 2n−h−kF (k + 1)F (h + 2).

Thus the inequality is proven.

If equality holds, then i(G− x) = |I−x(G)| = F (k − 1)F (h) + 2n−h−kF (k +
1)F (h + 1) and G − x has order n − 1, circuit length k, maximum distance h − 1
from a vertex to the circuit, so by induction hypothesis G − x consists of C with
a vertex x0 having (n − 1) − k − (h − 1) pendent edges and one further pendent
edge x0xh−1 having h−2 subdivision vertices x1, x2, . . . , xh−2. To obtain G from
G − x we must join x = xh to xh−1 to obtain distance h from x to C.

8. INDEPENDENT SETS IN CLAW-FREE GRAPHS

In this section we determine the bounds for i(G) on the class of claw-free graphs.
A graph is said to be claw-free if it does not contain the star K1,3 as an induced
subgraph.
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Lemma 8.1. Every endvertex x of a longest induced path in a non-complete
connected claw-free graph G has the property that both G − x and G − N [x] are
connected.

Proof. Let P = x0x1 . . .xk denote a longest induced path in G, then k ≥ 2 as
G is not complete.

If xk were a cut-vertex of G, one component G1 of G − xk contains x0 and
another component G2 contains a vertex w adjacent to xk. But then x0x1 . . . xkw
would be a longer induced path in G, a contradiction.

G − N [xk] is connected because assume otherwise G1 is a component of G −
N [xk] containing x0 and G2 is another component of G−N [xk]. G2 has a vertex w

adjacent to a vertex z ∈ N (xk). If w were adjacent to xk−1 then G would contain
the claw {xk−2, xk−1, xk, w} with center xk−1, a contradiction.

Thus w is adjacent to z ∈ N (xk) \ {xk−1}. Note that xk−2z /∈ E(G)
as otherwise {xk−2, xk, w, z} would be a claw with center z. But then either
x0 . . .xk−1xkzw (if zxk−1 	∈ E(G)) or x0 . . . xk−1zw (if zxk−1 ∈ E(G)) is a
longer induced path in G. This contradiction proves Lemma 8.1.

Theorem 8.2. If G is a connected claw-free graph of order n, then 1 + n ≤
i(G) ≤ F (n + 2). The lower bound is attained if and only if G � K n, while the
upper bound is attained if and only if G � P n.

Proof. By Fact (iv) the lower bound holds for any connected graph and is
attained precisely for Kn which is claw-free. We prove the upper bound by induction
on n. If n ≤ 3, then G is a path and so the desired statement follows from
Theorem 2.1. Suppose n ≥ 4. If G is a complete graph, then i(G) = n + 1 <
F (n + 2). Hence we may assume that G is not complete. Now, by Lemma 8.1,
there exists a vertex x ∈ V (G) such that both G − x and G− N [x] are connected.
Since any induced subgraph of a claw-free graph is itself claw-free, the induction
hypothesis applies to both G − x and G − N [x]. Since n(G − x) = n − 1 and
n(G − N [x]) ≤ n − 2, we obtain

i(G) = i(G− x) + i(G− N [x]) ≤ F (n + 1) + F (n) = F (n + 2).

If i(G) = F (n + 2), then we must have i(G− x) = F (n + 1) and i(G−N [x]) =
F (n). Therefore, by induction, G− x and G− N [x] must be paths of order n − 1
and n − 2, respectively. This is only possible if G itself is a path. The converse,
that is, i(Pn) = F (n + 2) is stated in Theorem 2.1.

It is remarkable that the Fibonacci numbers again occur as a bound for the
graph parameter i, that is, if G is a connected claw-free graph on n vertices, then
i(G) ≤ F (n + 2), while if G is a tree on n vertices, then i(G) ≥ F (n + 2).
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Since every line graph is a claw-free graph, Theorem 8.2 also gives a bound
for the number of independent sets in a line graph. Moreover, the bound is optimal
since the extremal graphs i.e. the paths are line graphs.
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1. A. Brandstädt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM Mono-
graphs on Discrete Mathematics and Applications. Philadelphia, PA, USA 1999.

2. M. J. Chou and G. J. Chang, Survey on counting maximal independent sets, Editors in
S. Tangmance, E. Schulz, Proceedings of the Second Asian Mathematical Conference
World Scientific, Singapore, (1995), pp. 265-275.

3. M. J. Chou and G. J. Chang, The number of maximal independent sets in graphs,
Taiwanese J. Math., 4(4) (2000), 685-695.
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