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Bounds on the Performance of Belief Propagation
Decoding
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Abstract—We consider Gallager's soft-decoding (belief to evaluate the performance of belief propagation by evolving
propagation) algorithm for decoding low-density parity-check the distribution of the messages. Richardson and Urbanke [11]

(LDPC) codes, when applied to an arbitrary binary-input sym- eytended this idea, and showed how to apply density evolution
metric-output channel. By considering the expected values of efficiently:

the messages, we derive both lower and upper bounds on the . . )
performance of the algorithm. We also derive various properties ~ One practical obstacle encountered when using density evolu-

of the decoding algorithm, such as a certain robustness to the tion is the continuous nature of the messages. This problem may
_details of the channel noise. Our results apply both to regular and be part|a||y overcome by quantizing the messages using a suffi-

irregular LDPC codes. ciently large number of levels. A shortcoming of density evolu-

_Index Terms—Belief propagation, iterative decoding, low-den- tjon is thatit is hard to analyze. As an alternative, for the additive

sity parity-check (LDPC) codes, sum product algorithm. white Gaussian noise channel, Chu@l. [4] proposed using a

Gaussian approximation for the message distribution. The evo-

|. INTRODUCTION lution of the infinite-dimensional density space is then reduced

. . . to the evolution of a single parameter.
OW-density parity-check (LDPC) codes were mtroduce(? In this paper, we consider Gallager's soft-decoding algo-

b%/hGaII;:)ger [] |nR1963,thu'; lefere_ rel?lzlve_lyt@gor?d forgthm, when applied to an arbitrary binary-input symmetric-
more than years. kecently, folowing the Introduction q utput channel. Similar to [4], we reduce the evolution of the

turrbci godlesf?g/t Bre"toit ?lv[zr} LDPhC r:::dlesip\;a\l/ve ztt:scaec:raﬁtnf@ite-dimensional space to one dimension. To this end, we
great deal ot Interest. i-or various channeis, it was demonstra, a rigorous functional evolution approach. By considering

[12] tha.‘t _when properly designed, thes_e codes can be use h& conditional expectation of the messages given some known
transmit information reliably at rates which may be higher th 9., the all-zero) codeword, we derive both lower and upper
those achievable with turbo codes. In fact, for a considera Equs on the performance,of the algorithm. We also derive
pgmber 9f examples, Fh.e maximum transmission rate at Wh'& rious properties of the decoding algorithm. These properties
!t is possible to transmit |nform§1t|on reliably, using these COde|§1’clude the fact that the algorithm possesses a certain robust-
IS very cIo_se t(.) channel capaciy. . ness to the details of the channel noise. Another result applies
By considering the performance of these codes underopt|r|{1‘;¢’§\I|_DF,C codes which are based on regular graphs with large

(rrr]laxmtum—hkellhood, ML) decgdlqg,bLlDPC co?-es hgveéaee ough connectivity. In that case, we show that the decoding
shown to possess some very desirable properties [5], [8], [ ror probability after a finite number of iterations is bounded

In fact, it was shown [9] that for properly chosen ensembles way from zero for a sufficiently large block size. This result is

o ﬁﬁ%resting since in that case the error probability of a typical

codes have an error exponent arbitrarily close to the rand%lgde in the ensemble, when using optimal decoding, can be
coding error exponent. ' . '

. . . shown to approach the random coding error exponent [9].

ML decoding of LDPC codes is in general not feasible. IrFlence, as the connectivity of the graph increases, the gap in

stegd, .Gallager propos.ed an |terat|_ve soft-decoding algor'thgérformance between belief propagation and optimal decoding
which is also Ca"‘?d behef pro.pag'a.tlon [10]. Unfortunately, th| creases. In this paper, we analyze both regular and irregular
performance of this algorithm is d|ff|cultt0 analyzg. As an alterEDPC codes. For the case of irregular LDPC codes, our
native, Gallager proposed analyzing a hard-decision decod ults may be used for deriving simple methods to design the
algorithm, using that as a lower bound on the performance

) - ) _distribution of edge-degrees in the graph.
belief propagation. In his proof, Gallager assumed a tree-li €The paper is organized as follows. In Section II, we provide

graph structure gnd shpwed how to construct such graphs. L%%Yne background information on regular and irregular LDPC
etal.[7] generalized this f”“g“me”t to ra”do.”.‘ graphg. Gallqg ddes. We also briefly describe Gallager’s soft-decoding algo-
also noted that for any given channel conditions, it is possib Shm. In Sections Il and IV, we analyze the soft-decoding algo-

rithm for regular and irregular LDPC codes, respectively. Sec-
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check node w
XH]

variable node v

ensemble of irreqular LDPC codes that we consider in this
paper. The regular code ensemble is a special case of the e=(v,w)
irregular one. The irregular code ensemble is based on an
ensemble of irregular bipartite graphs [6]. We first specify two
probability vectors

A:()‘17"'7)‘c) p:(plv"'vpd)'

A is the fraction of edges with left degréep; is the fraction S E—

of edges with right degrek Let £ denote the total number of deg(v) — 1 variable nodes
edges. Then there argf /! left nodes with degreg andp,£/1
right nodes with degreleLet N denote the number of left nodes.
Similarly, A denotes the number of right nodes. Then

deg(v) — 1

check nodes

Fig. 1. A depth two tree spanned from= (v, w).

Our ensemble of bipartite graphs has the following property
c ) d [5], [7], [11]. Let 7; denote the event that the subgraph spanned
N=¢ Z 71 M=E& Z % from some edge to depthl is tree-like. For fixed values of,
=1 =1 p, andl we have

The £ edges originating from left nodes are labeled frbro lim P(7;) = 1. @)
£. The same procedure is applied to theedges originating N—oo

from right nodes. The ensemble of bipartite graphs is obtaingfjs property also holds for other ensembles of bipartite graphs
by choosing a permutationwith uniform probability from the  that define LDPC codes such as Gallager’s original ensemble

space of all permutations ¢1, 2, ..., £}. Foreach, the edge [5] and the ensemble described in [8]. Consequently, our results
labeled: on the left side is associated with the edge labeled i, this paper hold for these ensembles as well.

on the right side. Note that in this way multiple edges may link Gajjager's soft-decoding (belief propagation) algorithm uti-
a pair of nodes. _ _ _ lizesleftboundandrightboundmessages. A leftbound message
The nodes on the left side are associated with the codewgy¢h message transmitted from a check node to a variable node.

bits (variable nodes) and the nodes on the right are associgigtyhtbound message is a messages transmitted from a variable
with the parity-check equations (constraints or check nodeghde to a check node.

The mapping from the bipartite graph space to the parity-check| ¢ s, v =1, ..., N be the channel output for theh input

matrix space is such that an elemeht; in the matrix, corre- pit . — p(1|s,) denotes the conditional probability that the
sponding to theth node on the right angth node on the left, ., transmitted bit is one gives,. The algorithm is initialized

is set to 1" if there is an odd number of edges between the twgy assigning rightbound message values to each edge in the

nodes, and t/o()‘” otherwise. _ graph, such that for an edgewith left vertexw this value is
The rateR’ of each code in the ensemble satisfiéls> R, n.. The algorithm then proceeds as described in [5].
where Belief propagation is a “message-passing algorithm” in the
d sense that information is transmitted back and forth between
M > o/l variable and check nodes along the edges. The transmitted mes-
A =1 . . .
R=1- N = 1-= (1) sage along an edge is a function of all received messages at the
SN/l node except for the said edge. This property of the algorithm
=1

ensures that the incoming messages are independent when the

(the inequality is due to a possible degeneracy inithparity- SuPgraph spanned fromis tree-like.

check equations). Consider the subgraph of depth two spanned from an edge
A special case of the irregular code ensemble that was d\éjth Ieft_vertem, shownin Fig. 1. We assume that this subgraph

scribed above is obtained when all edges have left degaeel 1S tree-like. Denote the edges of this treeddy- (v, w), ¢; =

right degreed. In that case, the ensembleds- d regular and (v, vi),ande; ; (1 =1, ..., deg(v)=1;j =1, ..., deg(vi)—l

R = 1 — ¢/d. For various channels it was demonstrated [1212 forlevels 0, 1, and 2 of the tree, respectively. Denoteby

that by setting\ andp appropriately, the performance of irreg—t e rand_om varlable.(r.v.) cor_respondlng _to the rlght_bo_und value

ular LDPC codes can be made superior to the performanceP@gsed in the decoding algorithm alangf timet +1. Similarly,

both regular LDPC codes and turbo codes. denote byY; the leftbound message along the edgat time
We now describe the subgraph spanned from some etige - and by.X; ; the rightbound message along the edgg at

depthl. Forl = 0, this subgraph is. If I = 1, this subgraph timet. Letn =7, denote _the cond|t|on_al probability that the

has two levels. Level 0 comprisesLevel 1 comprises all other transmitted bit corresponding towas1, given thevth-channel

edges (excluding) originating fromw, wherev is the left vertex Output. Then the following relations hold:

of e. If [ = 2 there are three levels. The first two coincide with det
those of the deptt subgraph. Level 2 comprises all the edges yt—1{1_ 1_9xt . hered — dea(v:) (3
originating from the leaf vertices of the depthsubgraph, ex- v T2 jl;[l( i)l whered = deg(v;) (3)

cluding level 1 edges. This process may be repeated for an ar-
bitrary I. X =G, Ys, ..., Y 1), wherec =deg(v) (4)
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where Definition 3: For any symmetric .M/ we say thai’ is the
N binary-symmetric r.v. corresponding to U if U is a binary-
I1 a: symmetric r.v. such thatly = EU.
Gay, az, ..., an) EN i=1 ) By this definition
) . - 1
Iai+ 11 (1-a) 0~ BS(5 (1-vi- 2EU)>. @)
The reasoning behind belief propagation is as follows. Suppose
that the tree assumption holds! is the probability that = 1 [1l. BOUNDS ON THEPERFORMANCE—REGULAR GRAPHS

given the channel outputs corresponding to the nodes of the treg, rqer to analyze the algorithm we assume throughout

spanned by to depth2t. Given this data, ML decoding may e paper that the all-zero codeword was transmitted. We then

. ; i .
be realized by decoding as zero ifX* < 1/2, and as one if ,ain hounds on the conditional expectation of the messages
X' > 1/2.1f X* = 1/2 we choose between zero and one W'tBiven this assumption.

equal probabilities.

Itis easy to verify the following properties 6f. A. A Lower Bound on the Performance
1) Symmetry: Recall thatZ; denotes the event that the subgraph spanned
from some edge to depthl is tree-like. Letl = 2t 4+ 2 and
Glai, ag, ...y an) = Glar,, Qnyy o v vy G, ) (5) suppose thaf; is satisfied. TheX{ ,’s are then independent
and identically distributed (i.i.d.) and are also independent of
where(ry, ..., m,) IS some permutation @fl, ..., ). Let X* have the same (conditional) distribution as each of the
2) Chain rule: X! ;’'s. ThenE(X{ ,|7;) = E(X*|7;) for all 4, j. In fact, the
expectation is also conditional on an all-zero transmitted code-
Glai, az, ..., ap) = Glai, Glag, ..., ayn)). (6) word. However, in order to avoid complicated notation, we do

not explicitly indicate this conditioning throughout the paper.
Similarly, E(Y;'|7;) = E(Y*|7;), whereY has the same (con-

We now discuss the symmetry property of the messages.
y y propery g ditional) distribution as each of tHé"’s. From (3) we have

Definition 1: An r.v. (discrete, continuous, or mixed) is , 1 , i
said to besymmetricif 0 < U < 1 and E(Y'T) = 5(1 = [1 = 2B(XYT)). 8)
We make use of the following lemma, proved in Appendix A.
PU=wU € {u,1—u})=1—u, g P PP
forall 0<wu<1 andu#1/2. Lemma l:iletY;, 1 < i <mn ben_ symmetric stf_;ltistically
independent r.v.’s, and 1&f; be the binary-symmetric r.v. cor-

responding tay;. Define
Suppose that the all-zero codeword has been transmitted. It
Z=G(Y1,Ys, ..., Y,)

was shown in [12] that they,’s are symmetric and that the

messages (both rightbound and leftoound) remain symmetric Z1=G(Y, Y, ..., V1 Yy)
throughout the evolution of the decoding algorithm (as long asid
the tree assumption holds). Thus, we may assumethéxﬂ’gl;&s Zo = G(Y1, Ya, ... Yu_1, Vo).

are symmetric, and hence also #€s.
Note: In [12], symmetry is defined for log-likelinood ratio ThenEZ < EZ; < EZ,.

messages. For a continuous r.v. with probability denfity),  The lemma asserts that of all symmetrics with given ex-

symmetry may be defined by/(u) = (1 —u)f(1 — u). If pectations, the maximum dfZ is obtained when th&;'s are
the plain likelihood messages satisfy this condition, then thgjary-symmetric.

Iog-likelihood ratio satisfies the symmetry defi.niti_on 'in [12] Lemma 1 implies the following.

andvice versa To see that, letV denote the plain likelihood ) . ] )
message, and It denote the log-likelihood ratio message. Theorem 1:Consider a binary-input symmetric-output
Then,V = g(U) whereg(z) = log[(1 — x)/x]. Now, since channel and consider the belief propagation algorithm when
Ffr) = fu(w)/|g (w)], we havefy (v) = w(l — u) fu(uw). applied to decode an LDPC code chosen from the regular

Thus, the symmetry definition for log-likelihood ratigs (v) =  bipartite graph ensemble with parametersind d. For any
e? fi-(—v) impliesu fu (u) = (1 — w) fu (1 — u). e > 0, any integert and N sufficiently large
Definition 1 utilizes conditional expectations in order to gen- EX'T < (14 ) f(EX', ¢, d)

eralize the notion of symmetry to an arbitrary r.v. For conv%\-l

nience we also define the following. here L
A — -1 4 4
Definition 2: We say that an r.\l/ has abinary-symmetric flz, ¢, d) 2 Z <c . )(1 — )¢
distribution with parameted < = < 1, z # 1/2, and denote i=0 ¢
this asl/ ~ BS(z), if I/ equalsz with probabilityl — =, and 1
equalsl — z with probabilityz. U ~ BS(1/2) denoted/ = 1/2 By 9)

L m (1 q 2i—(c—1)
(i.e., U = 1/2 with probability 1). I+=7 (T)
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and I'(¢, d) < 1 ensures that with theandd under consideration,
q A 1(1 (- 235)%)' (10) th(=T _decod?ng glgorithm succeeds for large enaiNghith prob-
2 ability arbitrarily close tal.

Note: Recall thaty is the conditional probability that the Unfortunately, f(z, ¢, d) is too complex forl'(c, d) to be
transmitted bit isl given the channel output. Our assumptioanalytically solved. In order to estimal&c, d) we use the
that the all-zero codeword was transmitted determines the dislowing procedure. We first consider the ratfdz, ¢, d)/x
tribution of . for z « 1 andc odd. For this case, it can be shown that

Proof: Recall that7; is the event that the subgraphf(z, ¢, d)/« reduces to
spanned from some edge to depih a tree (withl = 2¢ + 2).

(e=1)/2
Note that fla e d) _ <ch11> <%) D2 gy
X
EX' = E(X'|T)P(T)) + B(X'|T7) P(T¢
( | l) ( l) ( | l) ( l) To (x(cfg)/g) (14)

2
((-)c denotes complementary event). Recalling (2) and using the
fact that0 < X* < 1 we thus have for any fixetl wherey = o(z) denotesy/xr — 0 asz — 01 (a similar
expression can be obtained wheis even). To derive (14), we

‘a3 st
EXT - E(X'T) =0, asy — oo. (11) consider the sum in (9). By examining the ratio of consecutive
To conclude the proof we show that terms, we show that the middle term is the dominant term in the
sum. Hence, foe > 3
E(X'"TYT) < F(E(X|T), c, d). fo e d)
X, C
. , . li =,
Now, under the tree assumptigrand theY,!’s are symmetric m£€+ -

and statistically independent r.v.’s. Set= ¢, Y; = Y;* (for

i =12 .. c—1),andY. = 5in Lemma 1. Using (7), Thus, if¢ is sufficiently small then for: > 3

Y; ~ BS(q) where (e, d) = sup {71” SELNC En]} .
1 / t
=3 (1 -2 |77))- (12) (Forc = 3, f(z, ¢, d)/x = (d — 1)Enp asz — 0. Hence, in
Thus, by Lemma 1E(X"*!|7;) = EZ < EZ;. Now this case, we requirn < 1/(d — 1)).
1 In addition to that, in Appendix B we show th#tz, ¢, d)
EZ=Ey, v, .., = v is monotonically increasing im. Thus, it is sufficient to parti-
I+ 55T =t tion the intervale, En] into intervals[z;, z,41] of lengthé, and
oy verify that f(x; 41, ¢, d)/z; < I'*, wherex; = ¢ + & for an
-y <C - 1>(1 gy upper bound™ on[I. Sincef(z, ¢, d) is continuous inz, set-
—~ i ting ¢ arbitrarily small yields a bound arbitrarily closeltéc, o).
A channelW’ is physically degradedvith respect to some
-E, 1 T other channélV if it can be represented as a concatenatioivof
14 =2 (ﬂ) and some auxiliary channél. For example, a binary-symmetric
K 1 channel (BSC) with some crossover parameter is degraded with
Finally, (10) follows from (8) and (12). O respect to a BSC with a smaller crossover. Consider two bi-

N .__nary-input symmetric-output channé#s andW’, such that?”’
B Lit ]g ' ?h]z(?re.muf ciisern(tjcvewarliltéirgscodeword assumptlonls degraded with respect #'. Suppose that belief propagation
0= &7 is applied to decode both channels. Also, suppose that the tree
B <(A+o)f(Ey, ¢, d), Ve > 0. (13) assumption holds. Consider the decoding error probability after
some number of iterations in both cases. Then by [11, Theorem
1], the decoding error probability ¥ cannot be larger than
the error probability oi¥’. Essentially this is due to the fact that
under the tree assumption, belief propagation is the ML decoder
given the channel outputs corresponding to the nodes of the tree.

. . - Hence, if using our method above we can show that belief prop-
enough (firstV — oo thent — <o) the bit error probability can agation when applied t6/" satisfiesP(X! > 1/2) — 0 as

be made arbitrarily small. To show that the block error prob?—N — oo (first N — oo, thent — oo), then the same applies
bility also approaches zero, expander graph arguments [13] rqg%v ' ' PP

be used. In particular, it was shown in [3] that for- 5 a van-
ishing bit error probability is a sufficient condition t(_) ensure that A Simplified Lower Bound
for N (code block length) large enough, the algorithm (slightly . o )
modified to include appropriate clipping) successfully decodes '€ bound in Theorem 1 may be simplified to obtain the fol-
all NV bits with probability arbitrarily close to one. lowing weaker bound.
Let us define Theorem 2:Consider a binary-input symmetric-output
A fz, ¢, d) channel and consider the belief propagation algorithm when
Dle, d) = Sup{ T »z €0, En]}' applied to decode an LDPC code chosen from the regular

Suppose thaf (z, ¢, d) satisfiesf(z, ¢, d) < vz, where0 <
~v < 1. Then by (13)E; < Eg~v*'. Thus,E, approache$ expo-
nentially with¢. By Markov's inequality,P(X* > 1/2) < 2E,.
But P(X* > 1/2) is just the decoding error probability of the
message at thigh iteration. Thus, ify < 1 thenfort andV large
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bipartite graph ensemble with parametersind d. For any (the second transition is Markov's inequality). Hence,

e > 0, any integert and N sufficiently large EXT1 — 0 implies P(X**! > %) — 0. However, in
EX™ < (14 e)f(EXt, ¢, d, p) Appendix D we show that < p’. Hence, by the monotonicity
of f(z, ¢, d, p) in the last argument (Appendix B)
where R R
. d éc—l c—1 f(‘Tv G, dvp)sf(xv ¢, dvp/)'
fw, e d,p) = ; i Hence, the first method to simplify Theorem 1, summarized in

Theorem 2, provides a tighter bound compared to the second
(1= p)(1 = q)igs—1— method, summarized in (16).
1op (1 ¥ (D) Example—The BSCtet p denote the crossover parameter

1+ =5 (_> of the BSC. The achievable crossover probabitityc, d) of
the decoding algorithm is defined such that for any crossover

p(1 — q)igs1 probability p < p*(c, d), limy_,o, P(X* > 1/2) = 0. To
+ 2i—(o=1) | - (15)  lower-boundp*(c, d) we define

Lo (5

q

q A ~
o w(e, d) = sup{p|l'(c, d, p) < 1}.
p = (1 — /T =2En) andq is given by (10). _ (¢ 4) o { | ( ) _ ) _
Proof: The proof is similar to the proof of Theorem 1,In view of the monotonicity of/(z, ¢, d, p) in p (Appendix B),
except that when applying Lemma 1 we use the asseitiorc ~ for anyp < n(c, d), I'(¢, d, p) < 1. Thus,=(c, d) is a lower
EZ, instead of£Z < EZ;. O boundorp*(c, d). Note that, by Theorem 2, the decoding algo-

] rithm succeeds for any binary-input symmetric-output channel
Note that the bound in Theorem 2 depends on the changgi, En < 2n(c, d)(1 — n(c, d)).

only throughkin. Hence En may be viewed as a quality measure _ _
of the channel. This shows that the algorithm possesses a certafgonsider the ensemble of LDPC codes witk 3 andd = 6.

robustness to the details of the channel noise. In Fig. 2, we plotf(z, ¢, d) for a BSC with crossover param-
Let eterp = 0.0708. In this case/(z, ¢, d) < z forz € (0, 1/2].
X R {f(x ¢, d, p) } Hencep*(3, 6) > 0.0708_. l_\/l_oreover, forp < 0.0708 the_ aI_go—_
I'(e, d, p) = sup{ ———* =z € (0, En] ;. rithm succeeds for any initial symmetric message distribution.
. Using density evolution it can be verified thét(3, 6) = 0.084

We computd’(c, d, p) using the same method that was outlinefiL1]. Our bound may also be compared to the bound obtained
above forl'(c, d). For that purpose, we utilize the monotonicitydy using Gallager’s hard-decoding Algorithm A7(3, 6) >
of f(xz, ¢, d, p)in z (Appendix B).I'(c, d, p) < 1 ensures that 0.0395 [1].
with thec, d, andp under consideration, the decoding algorithm
succeeds for large enougt with probability arbitrarily close C. An Upper Bound on the Performance
to 1. Sincef(z, ¢, d, p) is monotonically increasing ip, so is In Appendix C, we prove the following Lemma, which is
I'(c, d, p). analogous to Lemma 1.

There is another way to simplify Theorem 1. Using hard de- . , : .
cision, we can turn the channel into a BSC, such that given the-€Mma 2:LetY;, 1 < ¢ < m, ben symmetric statistically
received symbol corresponding to somedyithe output of the |n.dependen.t.r..v. S. LeY; be an r.v. taking th? value3§, gndO
BSCis settooneif, > 1/2andto zero otherwise. Lgt be the with probabilities2EY; andl — 2EY;, respectively. Define
r.v. corresponding to the probability that the transmitted symbol Z=GY1,Ys, ..., Y,)
was one given the output of the (combined) BSC. Denoting the 4
crossover probability of this BSC by and assuming that the - SN -
all-zero codeword was transmitteql, ~ BS(p’). Consider the Z2=G(Y, Yy, o Yoo, Vo).
belief propagation algorithm when applied to the BSC outputhenEZ > EZ.
instead of the original channel outputs. L&t denote the cor-
responding message value at tim®&y Theorem 1

EX" < (1+9f(EX", ¢, d, p) (16)

wheref(-) is defined in (15). Now, under the tree assumptioqj
P(X't > 1/2) is the error probability when using optimal
(ML) decoding given the original channel outputs corre-. _ .. :

sponding to the nodes of the treé( X'+ > 1/2) is the error ei)lga(r)tlt:n}g/]riii)gg ee; Z?,rg%esﬂitgem;agg: r@nd d. For any
probability when using optimal decoding given the (combined)”™
BSC outputs corresponding to the nodes of the tree. Since the ~ EX'*! > (1 — ¢)[1 — (1 — 2EX")41]*"1Ey.
BSC output is determined from the original channel output, we
have

Note thatY; is a symmetric r.v. taking the valuésand1/2.
Lemma 2 implies the following.

Theorem 3:Consider a binary-input symmetric-output
hannel and consider the belief propagation algorithm when
applied to decode an LDPC code chosen from the regular

Proof: We follow the proof of Theorem 1. Recalling (11),
it is sufficient to show that

1 1
pl xt+1 > = P t+l N = rt+1
< . 2) = <X . 2) =24 B(X"T) 2 (1 - [1 - 2B(X"[T))*~) " En.
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Fig. 2. Aplotoff(z, ¢, d) forc = 3,d = 6, and crossover parameter= 0.0708.

Under the tree assumption,and theY;'’s are symmetric and bipartite graph ensemble with parameterand d. For any

statistically independent r.v.’s. Set= ¢, ¥; = Y! (for< = ¢ > 0, any integert, and anyRZ, < 1 the following holds: Ifc
1,2,...,c—1),andY, = nin Lemma 2. By Lemma 2, andd are sufficiently large and satisfy— c/d > Ry, then for
E(X'* 7)) = EZ > EZ. Now N sufficiently large
el 1 1—¢
oI Vs P<Xt2§>>TF(1—\/1—2En).
Bz =B, e T = et 5 Proof: Fix some0 < ¢ < 1/2.If EX* > 6 then by
7721;[1 Yit (- 77)21;[1 (1= Theorem 3 for any > 0
=(2E(Y!|T7))° " En. EX* > (1-8)[1 — (1—26)" 1" 'En.
Using (8) we obtain the required bound. O Now (1 —26) < e . Hence

Theorem 3 may be used to obtain a lower boundEdat.

In order to obtain a lower bound on the bit error probability .

P(X' > 1/2), the following lemma may be used.

Lemma 3: Let X be a symmetric r.v. such th&#tX > «.
ThenP(X > 1/2) > 1/2(1 — /1 — 2a).
The proof of Lemma 3 is provided in Appendix E.

Now suppose thdt X* > «. Then by Lemma 3 and (11), for

anye > 0 andV sufficiently large, we have

P<Xt2%> > 1;(1—\/1—204). (17)

Theorem 3 and Lemma 3 imply the following.

}(1—}20)(1—1

EX' > (1-¢) [1 Gl Er.

nally,
- G_Q(d—l)é](l—Ro)d_l — 1, asd — oo.

Hence ifEX" > § then, under the conditions of the corollary,
EX' > (1 — €)En. Thus,EX* > (1—¢)En for any integert
(sinceEX°=En>0). The required result follows by (17).0

Example—The BSCConsider a BSC with a crossover pa-
rameterp. We now havelip = 2p(1 — p). Thus, Corollary 1
now reads

P<Xt2 %) > (1—e€)p.

Corollary 1: Consider a binary-input symmetric-output
channel and consider the belief propagation algorithm whétence, in this case, the bit error probability aftéerations ap-
applied to decode an LDPC code chosen from the regufamoaches the uncoded bit error probability, provided thais
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sufficiently large (under the tree assumption the bit error prob-If A andp have only one nonzero componehit,= p4 = 1,
ability is monotonically nonincreasing ). thenf(x, A, p) reduces tof (z, ¢, d) introduced in Section Il1.

It follows from [5, Theorem 3.3] that a necessary conditiohet
for a capacity-achieving sequence of codes is that the average
right degree approaches infinity. Hence, the average left degree I'(R) 2 lhin SUP{M7 z € (0, EU]} (20)
also approaches infinity (to keep the rate constant). For regular Ap z

codes this implies, d — oo. Combining this with Corollary 1

we see that regular codes cannot approach capacity. This re‘é’llj‘l?re.the minimum is taken over all prpbab|llty ve.ctdrar)d
was shown for the binary erasure channel in [6]. p, subject to the rate constraint (I)(R) is monotonically in-
creasing inR. To see that suppose th&t andp, achieve the

minimum for R = R; in (20). Now considet’(R») for some
Ry < R;. Seth; = Ay. Itis easy to verify that there exists
We now generalize the results of the previous section to thech that (1) holds foR, and such thag(p,) < g(p,) for all

irregular case. Equations (3) and (4) are still valid, but nowo < = < 1/2 (by shifting weight toward lower degrees). The
andd are r.v.’s. Thus, in place of (8) we now have assertion follows by the monotonicity gfin ¢ (which follows
1 immediately from the regular case in Appendix B, sinfe)

EYYT) == <1 — Zpi(l — QE(Xtm))il)_ (18) is the weighted sum of functions that are each monotonically

2 P increasing ing). Hence the valué, such thal’(Ry) = 1 pro-

Message symmetry still holds [12]. From (4) and Lemma 1 wédes alower bound on the achievable rate of belief propagation

IV. BOUNDS ON THEPERFORMANCE—IRREGULAR GRAPHS

have for the given channel. The term
B(X*H|T) = Z NE(GOYE, Y, . Y )T sup{f(z, A, p)/z, = € (0, En]}
< Z NEGYE YE, ... Y ) may be estimated as in the previous section, by samgling
i at sufficiently small intervals. Note that we utilize the mono-

i1 . tonicity of f(x, A, p) in z.
— Z \; Z <'L - 1) (1— q)jqi—l—j In order to obtainiz, and the corresponding values»and

- = Y p in (20) we may use some general optimization method. As
an alternative, linear programming may be employed using a
technique similar to the one proposed in [7] in the context of
Gallager’'s hard-decoding algorithm. Giverand R, we seek
for a probability vectoi that satisfiesf(z, A, p)/x < 1in the
whereY} is the binary symmetric r.v. correspondinglté and interval(0, Ex], as well as the rate constraint (1). If suchxists

?

1

1-m (1=g¢
1+n(q

E,

)21—(i—1)

whereq is given by thenRy, > R. As in [7], we sample the intervdD, Exn] and
1 search for a feasible solution to a linear programing problem.
7= (1 —v1- 2E(Yt|Tz))- It was found empirically that it is sufficient to consider only

. , right degree sequences with either one nonzero component or
Recalling (18) and following the proof of Theorem 1 we havg;,, consecutive ones. This observation is in accordance with the
the following. results in [1] that apply to Gallager’s hard-decoding algorithm.

Theorem 4:Consider a binary-input symmetric-output Example—The BSCConsider a BSC and an LDPC code
channel and consider the belief propagation algorithm whep, r — 1/2. Using the linear programming method discussed
appligd to decode an LDPC_: code chosen from the irregulgy, e we designed an irregular code with = 1 and with a
bipartite graph ensemble with parametérsand p. For any maximal left degre@00. The resulting code achieves reliable
¢ > 0, any integert and V sufficiently large communication at least for crossover parameter lessoaa.

EX™ < (146 f(EX', A, p) In Fig. 3, we showf(z, A, p) for this code for a crossover pa-
rameterp = 0.092. Note that by the converse to the coding
where theorem, the maximal crossover for any rate2code is0.110.
i—1 /.
/ 1—1 i ie1—j Ina similar way to the generalizationin Theorem 4, Theorems
A E A ' 1—q)Yqg—t7 y : '
f(z, A, p) EZ: ; < j >( 0’4 2 and 3 may be generalized as follows.

1 Theorem 5:Consider a binary-input symmetric-output
By 2—(i—1) channel and consider the belief propagation algorithm when
1+ 1%’7 (1%(1) applied to decode an LDPC code chosen from the irregular

and bipartite graph ensemble with parametérsand p. For any
¢ > 0, any integett and V sufficiently large

i EX' < (1+ o f(EX', X p, p)
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Fig. 3. Aplotof f(x, A, p) for rated /2 irregular LDPC code. The crossover parameter is 0.092.

where V. CONCLUSION

i1 We obtained bounds on the performance of Gallager’s soft-
P, A p, p) A Z A\ Z <L 1) d_ecodmg aIg_onthm, and derlveq various properties of_ the algo-
rithm. In particular, our bounds indicate that the algorithm pos-
sesses a certain robustness to the details of the channel noise.
For the case of LDPC codes based on regular bipartite graphs
Py with graph connectivity and block length sufficiently large, we
14 L=p (1;4 showed that the decoding algorithm cannot be very effective
after any fixed number of iterations (it is completely useless in
the BSC case).

+ p(l ~ Q)jqi_l'_j‘ ) In order to obtain a lower bound on the performance of belief
14 -2 (ﬂ)”_(”_l) propagation, Gallager [5] proposed analyzing a hard-decoding
1=p \ ¢ algorithm. Our approach for lower-bounding the performance

o is different. It utilizes properties of the iterative procedure and
p = 3(1—/T=2Ep) andq is given by (19). results in improved bounds.

Note again that the bound in Theorem 5 depends on theln order to derive our results we used the expected value of
channel only througlEn. Hence, if the bound is effective forthe messages conditioned on an all-zero transmitted codeword

some channel, it will be equally effective for any other chann8FSUMPtion. Itis possible that our results may be improved by
with the same quality measurgx). using the same technique with functionals other than simple ex-

pectation.
Theorem 6:Consider a binary-input symmetric-output

channel and consider the belief propagation algorithm when APPENDIX A

appllgd to decode an LDPC_: code chosen from the irregular PROOF OFLEMMA 1
bipartite graph ensemble with parametérsand p. For any . _ .

¢ > 0, any integett and N sufficiently large We begin by proving the following lemma.

Lemma 4: Let Y7 andY> be two symmetric statistically in-
dependent r.v.'s and léf; be the binary-symmetric r.v. cor-
EX"T > (1-EnY_ Ai|1->_ pj(1-2EX*)’"'| . responding toY;. Further defineZ = G(Y1, Y) andZ’ =

i j G(Y1, Y2). ThenEZ < EZ".

i—1
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Proof: We introduce the notation (the first equality follows from (26) by replacing; with ¥7).
_A The claim of the lemma follows from (28) and (29). O
z=z(1-2z). (21)

The following two properties hold for a symmetric rX.
1) Forall0 < z < 1,z # 1/2
P(X=2|X=7)=P(X=z|Xe{z, 1 —z})=1—-=.

We are now ready to prove Lemma 1.
Denote

A - -
Ck:G(na aYkaYk-I—la ?Yn)

22) and
2) Us'ng Cl/xéG(ﬁv "'7Yk—17Yk+17 7Yn)
i
= . - Theng;, is symmetric. Furthermore, by using (5) and (6) it may
Eyx(XX=a)= > 2P(X=2X=37) be verified that, = G(Yx, ¢) andGe_y = G(Ys, ). Em-
e=u, 1w ploying Lemma 4 withy, anddj, in place ofY; andYz, we thus
_ 2(1—2)=2u obtainE¢, 1 < E¢, for 1 < k < n. Therefore, we have
e=u, 1-u EZ =E¢( <E( £---<E¢-1 =EZ <E¢, =EZ,. O
we have
EX = ExE ¢ (X]|X)=2EX. (23) APPENDIX B )
Now PROOF OF THEMONOTONICITY OF f(z, ¢, d) AND f(z, ¢, d, p)
_ R (o We prove thaff (z, ¢, d) is monotonically increasing in. We
EZ =By, v.Z =By, v By, v v v (Zh, Y2).  (24) also prove thaf (z, ¢, d, p) is monotonically increasing both in
Using (22) we can write z and inp.
Ey w7 7 (Z|Y1 =7y, Yo = u3) It is evident from (10) that is monotonically increasing in
b z. Showing thatf is monotonically increasing ig will thus
= > > PMi=ulYi=m) establish the monotonicity of(z, ¢, d) in z.
Y1 =u1, l—u1 yo=uo, l—uy Deﬁne
y P(Yé = 212|72 = y_Q)G(yb 212) h(qla q2, -+ (Jc—l) é EG(Via Vv?a LR ch—la 77)
= (1—u1)(1—u2)G(uy, u) + ur (1—u2) G(1—u1, u) whereV; ~ BS(g;). Further define
+ (1—11,1)U,QG(U,1, 1—11,2) + U,1U,2G(1—U,1, 1—11,2) []z é G(‘/lv RS ‘/if?v Vviflv ‘/H—lv ‘/i+27 LR chflv 77)
= g(ur, Tz) (25) Then, using (5), (6), and (26) we have
where h(qb ERRE (_Zcfl) = EG(‘/;v UZ) = EQ(VZ, Uz) = Eg(@v Fl) )
. 27 Wz i=1,2...,c—1
9(“17 UQ) = T — e -
Uy + uy — 4y Uy (in the last transition we used the fact that= ;) Now, g(-, -)
By (24) and (25) is monotonically increasing in the first argumentfin 1/4], and
EZ = EG(Y;, Y2) = Eg(Y, Ta). (26) T [0, 1/2] — [0, 1/4] is monotonically increasing im. Thus,
_ ! ’ h(q1, g2, - .., ge—1) is monotonically increasing ig;.
Now, g(z1, x2) IS convex in _each grgument.separately (when Finally, the proof of Theorem 1 shows thiitz, ¢, d) =
the other argument IS kept fixed) in the regions @1, x2 < p(4 .. ¢) (there are: — 1 ¢'s. ¢ is given by (10)). The mono-
1/4. Applying Jensen’s inequality we thus obtain tonicity of f in ¢ follows immediately.
Ey- 729(71, Y2) The monotonicity off (x, ¢, d, p) bothinxz and inp is proved
; . ( (? ?) |?) in a very similar way. In this case, we use the function
= by by (g4, X2) |12 A
¥ YlY__ . o h(Qla"'an—lap):EG(Via"'aV;:—laW)
< Erg(B(Y2) . Ya) = EY_Z_L"(EK’_E) @7 \whereV; ~ BS(g:) andi ~ BS(p). O
(in the last transition we used the fact thatandY; are statisti-
cally independent). Equations (26) and (27) may be summarized APPENDIX C
as PROOF OFLEMMA 2
EZ = Eg(?b ?2) < Esg (ETb 72) (28) The proof is mostly analogous to that of Lemma 1. The main
: . __difference is that instead of using Jensen’s inequality (in (27)),
Now, recalling (21) and the definition df;, we havey; = EY;  we now need the following lemma.
(e, Y1 = EY; with probability 1). In addition to thal®}: = | emma 5: Let () be a convexa function on some interval
EY,. Hence, by property (235Y; = EY;. Thus,Y1 = EY1. [a, 1]. Let X be an r.v. satisfying < X < b, and letX be an
Therefore, r.v. satisfyingX € {a, b}. Suppose thdi X = EX. Then

EZ =Eg (71 72) = Ey;9(EY1, Ya) (29) Eh(X) > ER(X).
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Proof: Let f(x) be a function defined by Lemma 7: Let f(x) andg(x) be two nonnegative functions,
and letA C (—o0, o0). Then
z = f(z)a+ (1 - f(z))b. (30)
Sincea < X < b, we haved < f(X) < 1. Hence, we may < ! y + ! y )/ T du — <L
define a binary{a, b} r.v. Y as follows: Jaf@)de— [o(x)dz ) Ja 5765 + 509
PY =alX =2)=f(z) PY =bX =x)=1— f(z). Proof: Let
By (30) we have o / f@) do _ / o(z) dz,
EY =ExEy xY =Ex(f(X)a+(1 — f(X))b) =EX=EX. f? : A
A x

Y andX are both binan{a, b} r.v.’s with the same expectation. ) = a T
Hence they are identically distributed. In particulgf,(X) =
EA(Y). To conclude the proof we show thah(X) > EA(Y).

Now / f(2)g(z) dx
E(h(X) = h(Y)) aaf(z)+(1-a)gz)
=Ex(h(X) — Ey|xh(Y)) It can easily be verified that the expression on the left-hand side
B is convexu with respect tax (by differentiating it twice with
= Ex (h(X) = [f(X)h(a) + (1 = FLXDAE)D. (31) respect tax). Hence, the maximum value of the left-hand side
Using the convexity ofi(-) we have is obtained on the boundary éf, i.e., either whenx = 0 or
whena = 1. However, in both cases this expressiot.is [
JEOMa) + (1= (X )h(b) We now show thap < p’. By the definition ofp in Theorem 2
< h(F(Xa+ 1= FOR) = h(X). (32) En=2p(1 —p).In addition to that, by definition of/, Ery =
The required result follows from (31) and (32). O 2p'(1-p'). Hence, the claim will follow by showing thatn <
. Ern.
Next we prove the following. We now calculate’(1|z), the probability that the transmitted
Lemma 6: Let ¥; andY» be two symmetric statistically in- Symbol wasl given that the channel output wasLet f(z) =

dependent r.v.’s, and define an i, as in Lemma 2. Further P(«[1). ThenP(z|0) = f(—x) and
defineZ = G(Y1, Y2) andZ’ = G(Y1, Y2). ThenEZ > EZ".

Also, letae = a/(a + b). We need to show that

__ Proof: By definition of Y7, EY; = EY;. Hence, by (23),  P(l]z) = Pl -1/2 Plzl1)-1/2
EY; = EY;. Thus, settindi(z) = g(z, K),a = 0,andb = 1/4 P(z) Pz]1) - 1/2+ P(]0) - 1/2
in Lemma 5 (recall thag(x, K) is convexn in z) yields _ f(z) (34)
f@) + F (o)

Brg(Vi, K) > Bgg(V1, K)

forany0 < K < 1/4. Thus,

Under the all zero codeword assumption, and using (34)

> * f()f(—x)dx
o B — ) P(|g)de = | LBITT)w
Ex: v79(75 T2) v= [ JCortna= [ Glers
= By Byy; (9(1, 12)[V2) = ErfByg (Y1, Y2) B /°° 2di
_ _ - 1, 1
Ry ) 7 7
L
- _ . 35)
— B _¢(T, V. 33 / I 1 (
Y1,Y2'g( L 2) ( ) 0 min(f(x), f(—=)) + max(f(z), f(—=))

(the second transition is due to the statistical independence‘_;;.;,fthe definition ofp’
Y1 andY?; the fourth transition is due to the statistical indepen-

dence oft; andY?). From (26) and (33) we have p = % /Oo min(f(z), f(—))dz
EZ = Eg(Y1, V) > Eg (?1 YQ) —EZ. O =
:/ min( f(z), f(—=z))dz.
Lemma 2 is now proved, using Lemma 6, just as Lemma 1 0
was proved using Lemma 4. U Using
APPENDIX D /0 min(f(z), f(—=))dz

PROOFTHAT p < p oo
We shall need the following auxiliary lemma. +/0 max(f(x), f(—z))dr =1 (36)



122

we have

by =20/ - ) =2( | (o). f-0)) de )

: ( / " max(f(z), f(—2)) da:). (37)
Using Lemma 7, (35)—(37) impliin < E7'. O

APPENDIX E
PROOF OFLEMMA 3

SinceX is symmetric, for any) < z < 1/2 we have

PX>1|X=7)=P(X=1-2X=2)>z

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 1, JANUARY 2002

Now since X is symmetric, (23) applies. This fact together
with (38) and (39) implyP(X > 1/2) > ¢(EX/2). Finally,
noting that)(z) is monotonically increasing yields the required
result. O
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