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Bounds on the Performance of Belief Propagation
Decoding

David Burshtein, Senior Member, IEEE,and Gadi Miller

Abstract—We consider Gallager’s soft-decoding (belief
propagation) algorithm for decoding low-density parity-check
(LDPC) codes, when applied to an arbitrary binary-input sym-
metric-output channel. By considering the expected values of
the messages, we derive both lower and upper bounds on the
performance of the algorithm. We also derive various properties
of the decoding algorithm, such as a certain robustness to the
details of the channel noise. Our results apply both to regular and
irregular LDPC codes.

Index Terms—Belief propagation, iterative decoding, low-den-
sity parity-check (LDPC) codes, sum product algorithm.

I. INTRODUCTION

L OW-density parity-check (LDPC) codes were introduced
by Gallager [5] in 1963, but were relatively ignored for

more than 30 years. Recently, following the introduction of
turbo codes by Berrouet al. [2], LDPC codes have attracted a
great deal of interest. For various channels, it was demonstrated
[12] that when properly designed, these codes can be used to
transmit information reliably at rates which may be higher than
those achievable with turbo codes. In fact, for a considerable
number of examples, the maximum transmission rate at which
it is possible to transmit information reliably, using these codes,
is very close to channel capacity.

By considering the performance of these codes under optimal
(maximum-likelihood, ML) decoding, LDPC codes have been
shown to possess some very desirable properties [5], [8], [9].
In fact, it was shown [9] that for properly chosen ensembles of
LDPC codes, which are based on regular bipartite graphs, these
codes have an error exponent arbitrarily close to the random
coding error exponent.

ML decoding of LDPC codes is in general not feasible. In-
stead, Gallager proposed an iterative soft-decoding algorithm,
which is also called belief propagation [10]. Unfortunately, the
performance of this algorithm is difficult to analyze. As an alter-
native, Gallager proposed analyzing a hard-decision decoding
algorithm, using that as a lower bound on the performance of
belief propagation. In his proof, Gallager assumed a tree-like
graph structure and showed how to construct such graphs. Luby
et al. [7] generalized this argument to random graphs. Gallager
also noted that for any given channel conditions, it is possible
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to evaluate the performance of belief propagation by evolving
the distribution of the messages. Richardson and Urbanke [11]
extended this idea, and showed how to apply density evolution
efficiently.

One practical obstacle encountered when using density evolu-
tion is the continuous nature of the messages. This problem may
be partially overcome by quantizing the messages using a suffi-
ciently large number of levels. A shortcoming of density evolu-
tion is that it is hard to analyze. As an alternative, for the additive
white Gaussian noise channel, Chunget al.[4] proposed using a
Gaussian approximation for the message distribution. The evo-
lution of the infinite-dimensional density space is then reduced
to the evolution of a single parameter.

In this paper, we consider Gallager’s soft-decoding algo-
rithm, when applied to an arbitrary binary-input symmetric-
output channel. Similar to [4], we reduce the evolution of the
infinite-dimensional space to one dimension. To this end, we
use a rigorous functional evolution approach. By considering
the conditional expectation of the messages given some known
(e.g., the all-zero) codeword, we derive both lower and upper
bounds on the performance of the algorithm. We also derive
various properties of the decoding algorithm. These properties
include the fact that the algorithm possesses a certain robust-
ness to the details of the channel noise. Another result applies
to LDPC codes which are based on regular graphs with large
enough connectivity. In that case, we show that the decoding
error probability after a finite number of iterations is bounded
away from zero for a sufficiently large block size. This result is
interesting since in that case the error probability of a typical
code in the ensemble, when using optimal decoding, can be
shown to approach the random coding error exponent [9].
Hence, as the connectivity of the graph increases, the gap in
performance between belief propagation and optimal decoding
increases. In this paper, we analyze both regular and irregular
LDPC codes. For the case of irregular LDPC codes, our
results may be used for deriving simple methods to design the
distribution of edge-degrees in the graph.

The paper is organized as follows. In Section II, we provide
some background information on regular and irregular LDPC
codes. We also briefly describe Gallager’s soft-decoding algo-
rithm. In Sections III and IV, we analyze the soft-decoding algo-
rithm for regular and irregular LDPC codes, respectively. Sec-
tion V concludes the paper.

II. LDPC CODES AND THESOFT-DECODINGALGORITHM

Throughout the paper, we assume a binary-input ( ),
symmetric-output, memoryless channel. We first describe the
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ensemble of irregular LDPC codes that we consider in this
paper. The regular code ensemble is a special case of the
irregular one. The irregular code ensemble is based on an
ensemble of irregular bipartite graphs [6]. We first specify two
probability vectors

is the fraction of edges with left degree. is the fraction
of edges with right degree. Let denote the total number of
edges. Then there are left nodes with degree, and
right nodes with degree. Let denote the number of left nodes.
Similarly, denotes the number of right nodes. Then

The edges originating from left nodes are labeled fromto
. The same procedure is applied to theedges originating

from right nodes. The ensemble of bipartite graphs is obtained
by choosing a permutationwith uniform probability from the
space of all permutations of . For each, the edge
labeled on the left side is associated with the edge labeled
on the right side. Note that in this way multiple edges may link
a pair of nodes.

The nodes on the left side are associated with the codeword
bits (variable nodes) and the nodes on the right are associated
with the parity-check equations (constraints or check nodes).
The mapping from the bipartite graph space to the parity-check
matrix space is such that an element in the matrix, corre-
sponding to theth node on the right andth node on the left,
is set to “ ” if there is an odd number of edges between the two
nodes, and to “” otherwise.

The rate of each code in the ensemble satisfies ,
where

(1)

(the inequality is due to a possible degeneracy in theparity-
check equations).

A special case of the irregular code ensemble that was de-
scribed above is obtained when all edges have left degreeand
right degree . In that case, the ensemble is regular and

. For various channels it was demonstrated [12]
that by setting and appropriately, the performance of irreg-
ular LDPC codes can be made superior to the performance of
both regular LDPC codes and turbo codes.

We now describe the subgraph spanned from some edgeto
depth . For , this subgraph is. If , this subgraph
has two levels. Level 0 comprises. Level 1 comprises all other
edges (excluding) originating from , where is the left vertex
of . If there are three levels. The first two coincide with
those of the depth subgraph. Level 2 comprises all the edges
originating from the leaf vertices of the depthsubgraph, ex-
cluding level 1 edges. This process may be repeated for an ar-
bitrary .

Fig. 1. A depth two tree spanned frome = (v; w).

Our ensemble of bipartite graphs has the following property
[5], [7], [11]. Let denote the event that the subgraph spanned
from some edge to depth is tree-like. For fixed values of,
, and we have

(2)

This property also holds for other ensembles of bipartite graphs
that define LDPC codes such as Gallager’s original ensemble
[5] and the ensemble described in [8]. Consequently, our results
in this paper hold for these ensembles as well.

Gallager’s soft-decoding (belief propagation) algorithm uti-
lizes leftboundandrightboundmessages. A leftbound message
is a message transmitted from a check node to a variable node.
A rightbound message is a messages transmitted from a variable
node to a check node.

Let be the channel output for theth input
bit. denotes the conditional probability that the
th transmitted bit is one given . The algorithm is initialized

by assigning rightbound message values to each edge in the
graph, such that for an edgewith left vertex this value is

. The algorithm then proceeds as described in [5].
Belief propagation is a “message-passing algorithm” in the

sense that information is transmitted back and forth between
variable and check nodes along the edges. The transmitted mes-
sage along an edge is a function of all received messages at the
node except for the said edge. This property of the algorithm
ensures that the incoming messages are independent when the
subgraph spanned fromis tree-like.

Consider the subgraph of depth two spanned from an edge,
with left vertex , shown in Fig. 1. We assume that this subgraph
is tree-like. Denote the edges of this tree by ,

, and
for levels 0, 1, and 2 of the tree, respectively. Denote by

the random variable (r.v.) corresponding to the rightbound value
passed in the decoding algorithm alongat time . Similarly,
denote by the leftbound message along the edgeat time
, and by the rightbound message along the edge at

time . Let denote the conditional probability that the
transmitted bit corresponding towas , given the th-channel
output. Then the following relations hold:

where (3)

where (4)
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where

The reasoning behind belief propagation is as follows. Suppose
that the tree assumption holds. is the probability that
given the channel outputs corresponding to the nodes of the tree
spanned by to depth . Given this data, ML decoding may
be realized by decoding as zero if , and as one if

. If we choose between zero and one with
equal probabilities.

It is easy to verify the following properties of.

1) Symmetry:

(5)

where is some permutation of .
2) Chain rule:

(6)

We now discuss the symmetry property of the messages.

Definition 1: An r.v. (discrete, continuous, or mixed) is
said to besymmetric if and

for all and

Suppose that the all-zero codeword has been transmitted. It
was shown in [12] that the ’s are symmetric and that the
messages (both rightbound and leftbound) remain symmetric
throughout the evolution of the decoding algorithm (as long as
the tree assumption holds). Thus, we may assume that the’s
are symmetric, and hence also the’s.

Note: In [12], symmetry is defined for log-likelihood ratio
messages. For a continuous r.v. with probability density ,
symmetry may be defined by . If
the plain likelihood messages satisfy this condition, then their
log-likelihood ratio satisfies the symmetry definition in [12]
andvice versa. To see that, let denote the plain likelihood
message, and let denote the log-likelihood ratio message.
Then, where . Now, since

, we have .
Thus, the symmetry definition for log-likelihood ratios

implies .
Definition 1 utilizes conditional expectations in order to gen-

eralize the notion of symmetry to an arbitrary r.v. For conve-
nience we also define the following.

Definition 2: We say that an r.v. has abinary-symmetric
distribution with parameter , , and denote
this as BS , if equals with probability , and
equals with probability . BS denotes
(i.e., with probability ).

Definition 3: For any symmetric r.v. we say that is the
binary-symmetric r.v. corresponding to if is a binary-
symmetric r.v. such that .

By this definition

BS (7)

III. B OUNDS ON THEPERFORMANCE—REGULAR GRAPHS

In order to analyze the algorithm we assume throughout
the paper that the all-zero codeword was transmitted. We then
obtain bounds on the conditional expectation of the messages
given this assumption.

A. A Lower Bound on the Performance

Recall that denotes the event that the subgraph spanned
from some edge to depth is tree-like. Let and
suppose that is satisfied. The ’s are then independent
and identically distributed (i.i.d.) and are also independent of.
Let have the same (conditional) distribution as each of the

’s. Then for all . In fact, the
expectation is also conditional on an all-zero transmitted code-
word. However, in order to avoid complicated notation, we do
not explicitly indicate this conditioning throughout the paper.
Similarly, , where has the same (con-
ditional) distribution as each of the ’s. From (3) we have

(8)

We make use of the following lemma, proved in Appendix A.

Lemma 1: Let , be symmetric statistically
independent r.v.’s, and let be the binary-symmetric r.v. cor-
responding to . Define

and

Then .

The lemma asserts that of all symmetric’s with given ex-
pectations, the maximum of is obtained when the ’s are
binary-symmetric.

Lemma 1 implies the following.

Theorem 1: Consider a binary-input symmetric-output
channel and consider the belief propagation algorithm when
applied to decode an LDPC code chosen from the regular
bipartite graph ensemble with parametersand . For any

, any integer and sufficiently large

where

(9)
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and

(10)

Note: Recall that is the conditional probability that the
transmitted bit is given the channel output. Our assumption
that the all-zero codeword was transmitted determines the dis-
tribution of .

Proof: Recall that is the event that the subgraph
spanned from some edge to depthis a tree (with ).
Note that

( denotes complementary event). Recalling (2) and using the
fact that we thus have for any fixed

as (11)

To conclude the proof we show that

Now, under the tree assumptionand the ’s are symmetric
and statistically independent r.v.’s. Set , (for

), and in Lemma 1. Using (7),
BS where

(12)

Thus, by Lemma 1, . Now

Finally, (10) follows from (8) and (12).

Let . Under the all-zero codeword assumption,
. Theorem 1 is now written as

(13)

Suppose that satisfies , where
. Then by (13) . Thus, approaches expo-

nentially with . By Markov’s inequality, .
But is just the decoding error probability of the
message at theth iteration. Thus, if then for and large
enough (first then ) the bit error probability can
be made arbitrarily small. To show that the block error proba-
bility also approaches zero, expander graph arguments [13] may
be used. In particular, it was shown in [3] that for a van-
ishing bit error probability is a sufficient condition to ensure that
for (code block length) large enough, the algorithm (slightly
modified to include appropriate clipping) successfully decodes
all bits with probability arbitrarily close to one.

Let us define

ensures that with theand under consideration,
the decoding algorithm succeeds for large enoughwith prob-
ability arbitrarily close to .

Unfortunately, is too complex for to be
analytically solved. In order to estimate we use the
following procedure. We first consider the ratio
for and odd. For this case, it can be shown that

reduces to

(14)

where denotes as (a similar
expression can be obtained whenis even). To derive (14), we
consider the sum in (9). By examining the ratio of consecutive
terms, we show that the middle term is the dominant term in the
sum. Hence, for

Thus, if is sufficiently small then for

(For , as . Hence, in
this case, we require ).

In addition to that, in Appendix B we show that
is monotonically increasing in. Thus, it is sufficient to parti-
tion the interval into intervals of length , and
verify that , where for an
upper bound on . Since is continuous in , set-
ting arbitrarily small yields a bound arbitrarily close to .

A channel is physically degradedwith respect to some
other channel if it can be represented as a concatenation of
and some auxiliary channel. For example, a binary-symmetric
channel (BSC) with some crossover parameter is degraded with
respect to a BSC with a smaller crossover. Consider two bi-
nary-input symmetric-output channels and , such that
is degraded with respect to . Suppose that belief propagation
is applied to decode both channels. Also, suppose that the tree
assumption holds. Consider the decoding error probability after
some number of iterations in both cases. Then by [11, Theorem
1], the decoding error probability of cannot be larger than
the error probability of . Essentially this is due to the fact that
under the tree assumption, belief propagation is the ML decoder
given the channel outputs corresponding to the nodes of the tree.
Hence, if using our method above we can show that belief prop-
agation when applied to satisfies as

(first , then ), then the same applies
to .

B. A Simplified Lower Bound

The bound in Theorem 1 may be simplified to obtain the fol-
lowing weaker bound.

Theorem 2: Consider a binary-input symmetric-output
channel and consider the belief propagation algorithm when
applied to decode an LDPC code chosen from the regular
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bipartite graph ensemble with parametersand . For any
, any integer and sufficiently large

where

(15)

and is given by (10).
Proof: The proof is similar to the proof of Theorem 1,

except that when applying Lemma 1 we use the assertion
instead of .

Note that the bound in Theorem 2 depends on the channel
only through . Hence, may be viewed as a quality measure
of the channel. This shows that the algorithm possesses a certain
robustness to the details of the channel noise.

Let

We compute using the same method that was outlined
above for . For that purpose, we utilize the monotonicity
of in (Appendix B). ensures that
with the , , and under consideration, the decoding algorithm
succeeds for large enough with probability arbitrarily close
to . Since is monotonically increasing in, so is

.
There is another way to simplify Theorem 1. Using hard de-

cision, we can turn the channel into a BSC, such that given the
received symbol corresponding to some bit, the output of the
BSC is set to one if and to zero otherwise. Let be the
r.v. corresponding to the probability that the transmitted symbol
was one given the output of the (combined) BSC. Denoting the
crossover probability of this BSC by and assuming that the
all-zero codeword was transmitted, BS . Consider the
belief propagation algorithm when applied to the BSC outputs
instead of the original channel outputs. Let denote the cor-
responding message value at time. By Theorem 1

(16)

where is defined in (15). Now, under the tree assumption,
is the error probability when using optimal

(ML) decoding given the original channel outputs corre-
sponding to the nodes of the tree. is the error
probability when using optimal decoding given the (combined)
BSC outputs corresponding to the nodes of the tree. Since the
BSC output is determined from the original channel output, we
have

(the second transition is Markov’s inequality). Hence,
implies . However, in

Appendix D we show that . Hence, by the monotonicity
of in the last argument (Appendix B)

Hence, the first method to simplify Theorem 1, summarized in
Theorem 2, provides a tighter bound compared to the second
method, summarized in (16).

Example—The BSC:Let denote the crossover parameter
of the BSC. The achievable crossover probability of
the decoding algorithm is defined such that for any crossover
probability , . To
lower-bound we define

In view of the monotonicity of in (Appendix B),
for any , . Thus, is a lower
bound on . Note that, by Theorem 2, the decoding algo-
rithm succeeds for any binary-input symmetric-output channel
with .

Consider the ensemble of LDPC codes with and .
In Fig. 2, we plot for a BSC with crossover param-
eter . In this case, for .
Hence, . Moreover, for the algo-
rithm succeeds for any initial symmetric message distribution.
Using density evolution it can be verified that
[11]. Our bound may also be compared to the bound obtained
by using Gallager’s hard-decoding Algorithm A,

[1].

C. An Upper Bound on the Performance

In Appendix C, we prove the following Lemma, which is
analogous to Lemma 1.

Lemma 2: Let , , be symmetric statistically
independent r.v.’s. Let be an r.v. taking the values and
with probabilities and , respectively. Define

and

Then .

Note that is a symmetric r.v. taking the valuesand .
Lemma 2 implies the following.

Theorem 3: Consider a binary-input symmetric-output
channel and consider the belief propagation algorithm when
applied to decode an LDPC code chosen from the regular
bipartite graph ensemble with parametersand . For any

, any integer and sufficiently large

Proof: We follow the proof of Theorem 1. Recalling (11),
it is sufficient to show that
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Fig. 2. A plot off(x; c; d) for c = 3, d = 6, and crossover parameterp = 0:0708.

Under the tree assumption,and the ’s are symmetric and
statistically independent r.v.’s. Set , (for

), and in Lemma 2. By Lemma 2,
. Now

Using (8) we obtain the required bound.

Theorem 3 may be used to obtain a lower bound on .
In order to obtain a lower bound on the bit error probability

, the following lemma may be used.

Lemma 3: Let be a symmetric r.v. such that .
Then .

The proof of Lemma 3 is provided in Appendix E.
Now suppose that . Then by Lemma 3 and (11), for

any and sufficiently large, we have

(17)

Theorem 3 and Lemma 3 imply the following.

Corollary 1: Consider a binary-input symmetric-output
channel and consider the belief propagation algorithm when
applied to decode an LDPC code chosen from the regular

bipartite graph ensemble with parametersand . For any
, any integer , and any the following holds: If

and are sufficiently large and satisfy , then for
sufficiently large

Proof: Fix some . If then by
Theorem 3 for any

Now . Hence

Finally,

as

Hence if then, under the conditions of the corollary,
. Thus, for any integer

(since ). The required result follows by (17).

Example—The BSC:Consider a BSC with a crossover pa-
rameter . We now have . Thus, Corollary 1
now reads

Hence, in this case, the bit error probability afteriterations ap-
proaches the uncoded bit error probability, provided thatis
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sufficiently large (under the tree assumption the bit error prob-
ability is monotonically nonincreasing in).

It follows from [5, Theorem 3.3] that a necessary condition
for a capacity-achieving sequence of codes is that the average
right degree approaches infinity. Hence, the average left degree
also approaches infinity (to keep the rate constant). For regular
codes this implies . Combining this with Corollary 1
we see that regular codes cannot approach capacity. This result
was shown for the binary erasure channel in [6].

IV. BOUNDS ON THEPERFORMANCE—IRREGULARGRAPHS

We now generalize the results of the previous section to the
irregular case. Equations (3) and (4) are still valid, but now
and are r.v.’s. Thus, in place of (8) we now have

(18)

Message symmetry still holds [12]. From (4) and Lemma 1 we
have

where is the binary symmetric r.v. corresponding to and
where is given by

Recalling (18) and following the proof of Theorem 1 we have
the following.

Theorem 4: Consider a binary-input symmetric-output
channel and consider the belief propagation algorithm when
applied to decode an LDPC code chosen from the irregular
bipartite graph ensemble with parametersand . For any

, any integer and sufficiently large

where

and

(19)

If and have only one nonzero component, ,
then reduces to introduced in Section III.
Let

(20)

where the minimum is taken over all probability vectorsand
, subject to the rate constraint (1). is monotonically in-

creasing in . To see that suppose that and achieve the
minimum for in (20). Now consider for some

. Set . It is easy to verify that there exists
such that (1) holds for and such that for all

(by shifting weight toward lower degrees). The
assertion follows by the monotonicity ofin (which follows
immediately from the regular case in Appendix B, since
is the weighted sum of functions that are each monotonically
increasing in ). Hence the value such that pro-
vides a lower bound on the achievable rate of belief propagation
for the given channel. The term

may be estimated as in the previous section, by sampling
at sufficiently small intervals. Note that we utilize the mono-
tonicity of in .

In order to obtain and the corresponding values ofand
in (20) we may use some general optimization method. As

an alternative, linear programming may be employed using a
technique similar to the one proposed in [7] in the context of
Gallager’s hard-decoding algorithm. Givenand , we seek
for a probability vector that satisfies in the
interval , as well as the rate constraint (1). If suchexists
then . As in [7], we sample the interval and
search for a feasible solution to a linear programing problem.
It was found empirically that it is sufficient to consider only
right degree sequences with either one nonzero component or
two consecutive ones. This observation is in accordance with the
results in [1] that apply to Gallager’s hard-decoding algorithm.

Example—The BSC:Consider a BSC and an LDPC code
with . Using the linear programming method discussed
above, we designed an irregular code with and with a
maximal left degree . The resulting code achieves reliable
communication at least for crossover parameter less than.
In Fig. 3, we show for this code for a crossover pa-
rameter . Note that by the converse to the coding
theorem, the maximal crossover for any rate–code is .

In a similar way to the generalization in Theorem 4, Theorems
2 and 3 may be generalized as follows.

Theorem 5: Consider a binary-input symmetric-output
channel and consider the belief propagation algorithm when
applied to decode an LDPC code chosen from the irregular
bipartite graph ensemble with parametersand . For any

, any integer and sufficiently large
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Fig. 3. A plot off(x; ���; ���) for rate–1=2 irregular LDPC code. The crossover parameter isp = 0:092.

where

and is given by (19).

Note again that the bound in Theorem 5 depends on the
channel only through . Hence, if the bound is effective for
some channel, it will be equally effective for any other channel
with the same quality measure ().

Theorem 6: Consider a binary-input symmetric-output
channel and consider the belief propagation algorithm when
applied to decode an LDPC code chosen from the irregular
bipartite graph ensemble with parametersand . For any

, any integer and sufficiently large

V. CONCLUSION

We obtained bounds on the performance of Gallager’s soft-
decoding algorithm, and derived various properties of the algo-
rithm. In particular, our bounds indicate that the algorithm pos-
sesses a certain robustness to the details of the channel noise.
For the case of LDPC codes based on regular bipartite graphs
with graph connectivity and block length sufficiently large, we
showed that the decoding algorithm cannot be very effective
after any fixed number of iterations (it is completely useless in
the BSC case).

In order to obtain a lower bound on the performance of belief
propagation, Gallager [5] proposed analyzing a hard-decoding
algorithm. Our approach for lower-bounding the performance
is different. It utilizes properties of the iterative procedure and
results in improved bounds.

In order to derive our results we used the expected value of
the messages conditioned on an all-zero transmitted codeword
assumption. It is possible that our results may be improved by
using the same technique with functionals other than simple ex-
pectation.

APPENDIX A
PROOF OFLEMMA 1

We begin by proving the following lemma.

Lemma 4: Let and be two symmetric statistically in-
dependent r.v.’s and let be the binary-symmetric r.v. cor-
responding to . Further define and

. Then .
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Proof: We introduce the notation

(21)

The following two properties hold for a symmetric r.v..

1) For all ,

(22)

2) Using

we have

(23)

Now

(24)

Using (22) we can write

(25)

where

By (24) and (25)

(26)

Now, is convex in each argument separately (when
the other argument is kept fixed) in the region

. Applying Jensen’s inequality we thus obtain

(27)

(in the last transition we used the fact thatand are statisti-
cally independent). Equations (26) and (27) may be summarized
as

(28)

Now, recalling (21) and the definition of , we have
(i.e., with probability ). In addition to that

. Hence, by property (23), . Thus, .
Therefore,

(29)

(the first equality follows from (26) by replacing with ).
The claim of the lemma follows from (28) and (29).

We are now ready to prove Lemma 1.
Denote

and

Then is symmetric. Furthermore, by using (5) and (6) it may
be verified that and . Em-
ploying Lemma 4 with and in place of and , we thus
obtain for . Therefore, we have

APPENDIX B
PROOF OF THEMONOTONICITY OF AND

We prove that is monotonically increasing in. We
also prove that is monotonically increasing both in

and in .
It is evident from (10) that is monotonically increasing in

. Showing that is monotonically increasing in will thus
establish the monotonicity of in .

Define

where BS . Further define

Then, using (5), (6), and (26) we have

(in the last transition we used the fact that ) Now,
is monotonically increasing in the first argument in , and

is monotonically increasing in. Thus,
is monotonically increasing in .

Finally, the proof of Theorem 1 shows that
(there are ’s. is given by (10)). The mono-

tonicity of in follows immediately.
The monotonicity of both in and in is proved

in a very similar way. In this case, we use the function

where BS and BS .

APPENDIX C
PROOF OFLEMMA 2

The proof is mostly analogous to that of Lemma 1. The main
difference is that instead of using Jensen’s inequality (in (27)),
we now need the following lemma.

Lemma 5: Let be a convex function on some interval
. Let be an r.v. satisfying , and let be an

r.v. satisfying . Suppose that . Then
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Proof: Let be a function defined by

(30)

Since , we have . Hence, we may
define a binary r.v. as follows:

By (30) we have

and are both binary r.v.’s with the same expectation.
Hence they are identically distributed. In particular,

. To conclude the proof we show that .
Now

(31)

Using the convexity of we have

(32)

The required result follows from (31) and (32).

Next we prove the following.

Lemma 6: Let and be two symmetric statistically in-
dependent r.v.’s, and define an r.v. as in Lemma 2. Further
define and . Then .

Proof: By definition of , . Hence, by (23),
. Thus, setting , , and

in Lemma 5 (recall that is convex in ) yields

for any . Thus,

(33)

(the second transition is due to the statistical independence of
and ; the fourth transition is due to the statistical indepen-

dence of and ). From (26) and (33) we have

Lemma 2 is now proved, using Lemma 6, just as Lemma 1
was proved using Lemma 4.

APPENDIX D
PROOFTHAT

We shall need the following auxiliary lemma.

Lemma 7: Let and be two nonnegative functions,
and let . Then

Proof: Let

Also, let . We need to show that

It can easily be verified that the expression on the left-hand side
is convex with respect to (by differentiating it twice with
respect to ). Hence, the maximum value of the left-hand side
is obtained on the boundary of, i.e., either when or
when . However, in both cases this expression is.

We now show that . By the definition of in Theorem 2,
. In addition to that, by definition of ,

. Hence, the claim will follow by showing that
.

We now calculate , the probability that the transmitted
symbol was given that the channel output was. Let

. Then and

(34)

Under the all zero codeword assumption, and using (34)

(35)

By the definition of

Using

(36)
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we have

(37)

Using Lemma 7, (35)–(37) imply .

APPENDIX E
PROOF OFLEMMA 3

Since is symmetric, for any we have

where the inequality, rather than equality, is due to the case
. Let

Then , where is defined in (21). Hence for all

Therefore,

(38)

Differentiating twice we obtain .
Thus, for , , indicating that is
convex on . Jensen’s inequality therefore yields

(39)

Now since is symmetric, (23) applies. This fact together
with (38) and (39) imply . Finally,
noting that is monotonically increasing yields the required
result.
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