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Bounds on the Performance of Protocols for 
a Multiple-Access Broadcast Channel 

NICHOLAS PIPPENGER, MEMBER, IEEE 

A&ract- A general model is presented for synchronous protocols that 
resolve conflicts among message transmissions to a multiple-access broad- 
cast channel. An information-theoretic method is used now to show that if 
only finitely many types of conflicts can be distinguished by the protocol, 
utilization of the channel at rates approaching capacity is impossible. A 
random-coding argument is used to show that if the number of conflicting 
transmissions can be determined (which requires distinguishing infinitely 
many types of conflicts) then utilization of the channel at rates arbitrarily 
close to capacity can be achieved. 

I. INTRODUCTION 

C ONSIDER THE following idealized situation. Mes- 
sages arrive for transmission at geographically dis- 

persed locations according to a Poisson process in time 
with rate X messages per unit time throughout the interval 
[0, p). A multiple-access broadcast channel operates syn- 
chronously and is capable of transmitting one message per 
unit time; consider that the transmissions occur at the 
“service epochs” 1,2,3, . . . . A protocol is used to coordi- 
nate the transmission of messages over the channel. 

The protocol operates by designating a sequence 
y,, Y,, Y,, . . * of subsets of time. At the service epoch T, an 
attempt is made to transmit each message that arrived 
during Y, and that was not successfully transmitted at 
some preceding service epoch. There may be no such 
messages, in which case no transmission occurs. Or there 
may be just one such message, in which case it is success- 
fully transmitted. Or there may be two or more such 
messages, in which case they are simultaneously trans- 
mitted; this simultaneous transmission causes a “conflict” 
and none of the messages are successfully transmitted. The 
subset Y,, , designated for service epoch T-t 1 may de- 
pend upon which of these three outcomes occurs at each of 
the preceding service epochs I, 2,. . . , T. 

If the expected number of messages arriving during the 
interval [O,p) is denoted v = hp and the expected number 
of steps needed to transmit these messages successfully is 
denoted u, we may take the ratio v/a as a measure of the 
“throughput” of the protocol. A number of protocols of 
the type described have been presented in the literature; 
see, for example, Hayes [8], Capetanakis [2], and Tsybakov 
and Mikhailov [7]. In her thesis [5], Mosely presents a 
protocol achieving a throughput of 0.48775 . . . , which ap- 
pears to be the highest throughput achieved thus far. 

Manuscript received July 17, 1979; revised April 14, 1980. 
The author is with the Research Laboratory, IBM Corporation, San 

Jose, CA 95 193. 

In Section III. an information-theoretic method will be 
used to derive a bound on the performance of protocols. It 
will be shown that 

o>v/E, (1) 

for any protocol of the type described, where ,$ = 0.744 . . * 
is the unique solution of the equation 

-xlogx-(1 -x)log(l -x)+(1 -x)log2=xloge 

in the range O<x< 1 (e=2.718.. * denotes the base of the 
natural exponential). This bound supports the following 
conclusion: for Poisson arrivals, no protocol of the type 
described can approach throughput one or full utilization 
of the channel. 

It is instructive to determine the basis for this conclu- 
sion; that is, how the assumptions concerning the arrival 
process and the protocol might be changed without altering 
the conclusion. First it should be noted that the conclusion 
does not depend particularly on whether time is continuous 
or discrete. Consider what happens, for example, if the 
Poisson process is replaced by the outcome of a series of 
Bernoulli trials. Suppose that messages arrive indepen- 
dently and with the stationary probability p at each of the 
“arrival epochs” I, 2,3,. . . , so that the expected number of 
messages arriving during { 1,2; . .,M} is v=Mp. As be- 
fore, let the expected number of steps needed to transmit 
these messages successfully be denoted u. Then a bound of 
the form (1) can be derived (simply by replacing Poisson 
probabilities with Bernoulli probabilities in the proof), the 
constant 5 goes over to a constant &,, which depends on p 
and is determined by the equation 

-xlogx-(I-x)log(l-x)+(1-x)log2=xF(p), 

where 

F(P) = - ((1 -Pbg(l -P>vP. 

As p increases from zero to one, F(p) decreases from loge 
to zero, and ,$p increases from E = 0.744. . . to one. (See 
Fig. 1 and 2.) Thus Poisson arrivals are equivalent as usual 
to numerous Bernoulli arrivals with small probabilities. 
Furthermore, tr, < 1 if p < I, and so the conclusion stated 
for Poisson arrivals also holds for Bernoulli arrivals, pro- 
vided p is bounded below one. (This shows that the conclu- 
sion is not attributable to the fact that the number of 
Poisson arrivals is potentially unlimited, or to the fact that 
they may occur arbitrarily closely in time.) 

0018-9448/81/0300-0145$00.75 01981 IEEE 
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Fig. I. Numbers 6, .$,, 6”“. and $,” are the abscissae at which the 
graphs of the functrons G(x)=-xlogx-(l-x)log(l-x)+(I- 
x)log2 and G(“)(x)= -.xlog.x-(I -x)log(l -x)+(1 -x)log(d- 
1) intersect those of the linear functions xloge and x-F(p). 

Next, it should be noted that the assumption of ternary 
branching can be relaxed to d-ary branching for any fixed 
d. This allows consideration of protocols that learn more 
about the number of simultaneous transmissions at each 
step than is expressed by the three cases 0, I, 2 or more. 
They might learn for example, what is expressed by the d 
cases 0, I; . ., d - 2, d - 1 or more. Bounds of the form (1) 
can again be derived; for Poisson arrivals the constant t(d) 
is determined by the equation 

-xlogx-(1 -x)log(l -x)+(1 -x)log(d- 1) 
= xloge, 

while for Bernoulli arrivals the constant [y) is determined 
by the equation 

-xlogx-(1 -x)log(l -x)+(1 -x)log(d- 1) 

=xF(p), 

where F(p) is as defined above. (See Figs. 1 and 2.) For 
finite d,tCd) < 1, and ,$p (‘) < 1 if p < 1. Thus the conclusion 
stated for ternary branching holds also for d-ary branching, 
provided d is bounded. 

The requirement that p be bounded below one for dis- 
crete time is obviously necessary, for as p approaches one, 
the arrivals become completely predictable, and the proto- 
col that designates the singletons seriatim approaches full 
utilization of the channel. The requirement that d be 
bounded is also necessary; as d tends to infinity, protocols 
with d-ary branching can approach full utilization of the 
channel. The limiting case of this phenomenon is presented 
in Section IV, where a random-coding argument is used to 
show that a protocol with “infinitary branching” (that is, 
one that learns the number of simultaneous transmissions 

0 
0 

P 

J 
Fig. 2. Function F(p) = -((I -p)log(l -p))/p decreases from loge 

to zero as p increases from zero to one; it is concave and satisfies 
F’(O)=O, F’(I)= -03, 

at each step) can achieve 

o~v+O(v/(logv)1’2). (2) 

This will be shown for Poisson arrivals; the same result 
can be derived for Bernoulli arrivals. 

The protocol that achieves this bound can be adapted to 
give, for any n < I, a protocol with d-ary branching (for 
any sufficiently large d) for which u < v/q (for all suffi- 
ciently large v). No claims for its practicality are intended, 
however: the protocol does not correspond to an easily 
implemented algorithm, and the constant implicit in the 
0( v/(log v)‘/*) term is large. 

Finally, it should be mentioned that there is another 
class of protocols that are superficially dissimilar from 
those described above, but nonetheless amenable to the 
same analysis. These are protocols that use independent 
randomization at the geographically dispersed locations 
instead of, or in addition to, the arrival times of the 
messages to determine which message to transmit at each 
service epoch. (See Abramson [l] for examples and refer- 
ences.) As will become clear in the proofs, however, what 
matters is that messages can be separated from one another 
by the outcome of some random process; it is immaterial 
whether this is the result of differences in random arrival 
times, explicit randomization, or some combination of the 
two. 

II. MODEL 

Let X denote a finite interval of time and let the random 
variable E denote a set of Poisson arrivals during X. With 
probability one, E will be a finite subset of X, its elements 
will be called messages. In the Introduction, X was taken to 
be [O,p) and the arrival rate was taken to be h; here it 
will be equivalent and simpler to take X to be [0, 1) and the 
arrival rate to be v = PX. 

A protocol for X will be modeled by an infinite tree in 
which there is an initial node called the root, in which each 
node K is connected by branches to three offspring K(O), 
Kc’), Kc*) (which may be either leaves or other nodes) and 
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Fig. 3. Part of a protocol with ternary branching for [O,l). Nodes are 
indicated by circles, with the root at the top; leaves are indicated by 
squares. 

in which each node K is labeled with a measurable subset 
Y(K) of X. (See Fig. 3.) 

The execution of a protocol for X with respect to a finite 
subset E of X is a path through the tree defined as follows. 
Let K,, the first node of the path, be the root, and let 
E, = E. Suppose that K, and E, have been determined; 
then KR+, is defined to be Kjp’, Kh’), or KA2) according as 
E, n Y(K,) contains 0, 1, or 2 or more messages. If 
E, fl Y( KR) contains just one message, this message is said 
to be transmitted successfully by K,, and E,,, is obtained 
from E, by deleting this message; otherwise E,,, = E,. 

A protocol for X will be called valid if, for every finite 
subset E of X, the execution K,, K,, K,, * * . of the proto- 
col with respect to E terminates after finitely many steps at 
a leaf KS = L after each message in E has been successfully 
transmitted (so that Es is empty). The execution of a valid 
protocol with respect to the random set E is a random path 
K,, K,, K,, * * * which terminates at a random leaf L after 
a random number S of steps during which a random 
number N of messages are successfully transmitted. 

Let p(S) denote the probability that S=S; then 

2Pw=l> 
s 

process also generates entropy in the form of uncertainty 
as to the locations of the messages in time. A protocol must 
resolve some of this uncertainty in order for the messages 
to be transmitted successfully. There are two ways in which 
no message can be successfully transmitted (no transmis- 
sions and two or more transmissions), so the protocol can 
gain up to one bit of information in this case. There is, 
however, only one way in which a message can be success- 
fully transmitted, so the protocol gains no additional infor- 
mation in this case beyond the fact that a message was 
successfully transmitted. In this sense, a protocol can learn 
more from failure than from success, and it must risk 
failures to gain the required information. With finitary 
branching, only a bounded amount of information can be 
gained in return for such a risk. The final bound reflects 
the compromise necessary between the desire to transmit a 
message successfully at a given step and the desire to gain 
information in order to transmit messages successfully at 
later steps. 

Consider a function that assigns to every subset E of X 
containing N messages a partition U of X into N measur- 
able blocks U,; . *, U, such that each block in U contains 
just one message in E. A random partition U obtained in 
this way from the random set E will be called a resolution 
of E. 

Let U be a resolution of E and let p(U) denote the 
probability that U = U. Then 

zPw=l. 
u 

Let 

17= - zPP(UbgPw) 
u 

(5) 

denote the entropy of this distribution. Then 

vbvloge. (6) 

To see this, suppose that U is a partition of X into N 
blocks U,; . ., UN, and that u,; . +, N u are the measures of 
these blocks, so that 

I=SM<N 
(J= ;Pw If U= U, each block of U must contain just one message 

is the expected number of steps in the execution of the 
from E; thus 

protocol with respect to E. Let p( N) denote the probability PWN lJLN( uMvexp-bMv)) 
that N= N. Then 

. . 

zPw=l, 
N 

(3) = IINuM)vNexp-v. ( . . 
and 

v= x P(N)N 
N 

is the expected number of messages in E. 

III. hOOF OF (1) 

where “exp” denotes the natural exponential. Since a geo- 

(4) 
metric mean is bounded above by the corresponding arith- 
metic mean, 

p(U)C( z u,/N)Nv”exp-v 
l<MIN 

Before launching into the proof, it may be helpful to give 
=(v/N)Nexp-v. 

the gist of it. In addition to generating messages, the arrival Substituting this bound for the argument of the logarithm 

I 
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in (5) and rearranging yields Let 

q>vloge+ xp(N)Nlog(N/v). 
N 

Since xlog(x/v) is a convex function of x, (3) and (4) 
imply that 

~p(N)Nlog(N/v)>vlog(v/v)=O. 
N 

denote the entropy of this distribution. Each probability 
p(K) or p( L) can be expressed as a product of conditional 
probabilities q( K,, Jo) . . .q( K,, JR), where K,; . ., K, is 
the path from the root to K or L, and Jo; . . , JR designate 
the branches taken along this path. This allows (7) to be 
rewritten as 

This completes the proof of (6). 
Consider now a particular valid (but otherwise arbitrary) 

protocol. For each leaf L, let p(L) denote the probability 
that L = L, that is, that execution terminates at L. Then 

Thus 

ZP(L) = 1. 

Let 

l= - xP(L)logP(L) 
1. 

(7) 

denote the entropy of this distribution. Then 

{ 2 vloge. (8) 

To see this, observe that a valid protocol determines a 
resolution of E in the following way. Suppose that the 
execution with respect to E is a path K,, K,, K,, . . . which 
terminates at the leaf L, and suppose that KRc,); . ., KRcNj 
are the nodes at which the messages in E are successfully 
transmitted. Let U, = Y(K,(,,), U, = Y(K,(,)) - 
u,: . ., UN-, = Y( KRcNp,)) - (U, U . . . U &PI), UN = X 
-(U, u . . .UU,-,), and let U={U,;..,U,}. It is easy 
to see that this defines a resolution U of E. Since L 
determines U, the entropy { of L is at least as large as the 
entropy n of U. This completes the proof of (8). 

For each node K, let p( K) denote the probability that K 
is a member of {K,,K,,K,, ...}, that is, that execution 
passes through K. Then 

Ixp(K)=a, (9) 
K 

since execution passes through a node of the protocol at 
each step. 

For each node K, let q( K,O), q( K, I), and q( K,2) denote 
the conditional probabilities that execution passes from K 
to K(O), Kc’), and Kc2), given that execution passes through 
K. Then p( K)q( K, 1) is the probability that execution 
passes through both K and Kc’), and 

&@)q(Kl)=v, (10) 
K 

since execution passes from a node K to its offspring Kc’) 
when and only when a message is successfully transmitted 
by K. 

For each node K, 

2 dKJ)=l. 
OGJG2 

h(K)= - 2 q(K J)logq(K J> 
OCJG2 

5= xp(K)h(K). 
K 

xp(K)h(K)Zvloge. 
K 

Let 

G(x)= -xlogx-(1 -x)log(l -x)+(1 -x)log2 

denote the entropy of the scheme (( 1 - x)/2,x, (1 - x)/2). 
Then 

h(K) G G(q(K, I>)> 

since replacing q( K,O) and q( K,2) by their arithmetic 
mean (1 - q( K, 1))/2 can only increase the entropy. Thus 

xp(K)G(q(K,l)) a vlw’. (11) 
K 

The conclusion is now at hand. Since G(x) is a concave 
function of x, (9), (lo), and (11) imply that 

aG(v/a)>vloge. 

The inequality G( x)>xlog e holds if and only if x<[, 
where 5= 0.744 . . . is the unique solution of G(x) = x log e 
in the range O<x< 1. This completes the proof of (1). 

IV. PROOF OF (2) 

Again, it may be helpful to give the gist of the proof. 
With infinitary branching, the possibility exists of gaining 
an unbounded amount of information at a single step. To 
exploit this possibility, the protocol must designate large 
subsets, which are likely to contain many messages, so that 
the entropy of the number of messages will be large. These 
subsets must overlap in complicated ways, so that new 
information is gained at each step; complicated patterns of 
overlap can be obtained in a manageable way by means of 
a random-coding argument. While information is being 
gathered, successful transmissions of messages only con- 
fuse matters since they change the numbers of messages in 
various subsets. The protocol can avoid successful trans- 
missions by including large subsets that are known to 
contain at least two messages as “ballast” in the subsets it 
designates, thus deliberately causing a conflict. Once 
enough information has been gathered. all the messages 
can be successfully transmitted with few wasted steps. The 
final bound again reflects a compromise between gaining 
information and successfully transmitting messages. 
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The notation O(f(x)) will be used (following Bach- 
mann) to denote a function of x (not necessarily the same 
function at every occurrence) bounded above in absolute 
value by cl(x) for some constant c > 0. The notation 
&I( f(x)) will be defined similarly (following Knuth), with 
“bounded above in absolute value” replaced by “bounded 
below.” 

The protocol presented in this section will conform to 
the model presented in Section II, with ternary branching 
replaced by infinitary branching. This means simply that 
each node K is connected by branches to infinitely many 
offspring K , (0) K(l) K’2’ , ; . . , and that K,,, is defined to 
be Kf),K~~’ K(2) . . . 
0,1,2;.. ’ 

R ’ according as E, f’ Y(K,) contains 
messages. The protocol will be presented inform- 

ally, but it should be clear that it could be formalized 
within this model. 

With a single step, the protocol determines the number 
N of messages in E. In this case then, if N = N < 1, any 
message in E is thereby successfully transmitted. If N= N 
Z= 2, a simple calculation shows that the conditional distri- 
bution of the N messages is uniform and independent 
throughout X. It will be sufficient to show that the task of 
the protocol can be completed with an expected number 
N + 0( N/(logN )‘12) of steps, for (2) will then follow by 
averaging: 

z (N+O(N/(logN)“2))(vN/N!)exp-v 
N 

Suppose then that N>2 messages are distributed uni- 
formly and independently throughout X=[O, 1). Let 

B=2[N(log N)1’21, 

e= l/B 2 

and divide X into B subintervals, each of length c that will 
be called blocks: X, = [0, E), . . .,X, = [I - C, 1) Let 
N,; . . ,Ns denote the random numbers of messages in E 
falling in the blocks X,, . . .,X,. 

The remaining action of the protocol will be divided into 
two phases. The task of the first phase will be to determine 
N,; . . , Na. This could obviously be accomplished with B 
steps. The crux of the proof will be to show that it can be 
accomplished with an expected number 0( N/(log N)‘j2) 
of steps. The first phase will satisfy the following condi- 
tion: if any message in E is successfully transmitted, then 
all messages in E are successfully transmitted. Thus the 
first phase either acts purely as a gatherer of information, 
or it completes the task of the protocol and eliminates the 
need for a second phase. The second phase, if necessary, 
will complete the task of the protocol; this will be done 
with an expected number N + 0( N/(log N)‘12) of steps. 

An essential ingredient of both phases will be a crude 
procedure for causing a known number Ma2 of messages 
that are uniformly and independently distributed 
throughout an interval to be transmitted successfully with 
an expected number O(M) of steps. This procedure, which 

@I 
Fig. 4. (a) Five messages in the interval [0, 1). (b) Binary tree corre- 

sponding to application of recursive binary splitting to these messages. 
This type of tree, which corresponds to a single execution of a protocol, 
should not be confused with the type shown in Fig. 3, which represents 
a protocol in its entirety. 

will be called recursive binary splitting, is as follows. With 
two steps, the protocol determines the numbers M, and M2 
of messages in the left and right halves of the interval. If 
M, < 1 or M2 4 1 or both, any messages in the correspond- 
ing subintervals are thereby successfully transmitted. If 
M, 32 or M2 22 or both, the protocol causes the messages 
in the corresponding subintervals to be transmitted suc- 
cessfully by recursive binary splitting. 

This procedure is egregiously inefficient but has the 
merit of being easy to describe and analyze. Application of 
the procedure to the messages in an interval (which may be 
taken to be [0, 1) without loss of generality) gives rise to a 
binary tree in which the root corresponds to the interval 
[0, l), the nodes correspond to dyadic subintervals (that is, 
subintervals of the form [(K- 1)/2d, K/2d), for 1 G KG2d) 
which contain two or more messages, and the leaves corre- 
spond to dyadic subintervals which contain at most one 
message. (See Fig. 4.) The number of steps performed by 
the procedure is one less than the number of nodes and 
leaves in the tree since there is a step for each node or leaf 
except the root. Thus the number of steps is twice the 
number of nodes since in any binary tree the number of 
nodes is one less than the number of leaves. There are 2d 
dyadic subintervals of lengthl/2d, and the probability that 
such a subinterval contains two or more messages is 

Thus the expected number of steps is 

2 ( y(1/2d)“(l-l/2d)M-J. 
2IJGM 



150 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-27, NO. 2, MARCH 1981 

This expression is O(M), as is easily seen by considering 
separately the terms for which 2d <2M and those for 
which 2d >2M: for the former, the inner sum is at most 
one, and the contribution of these terms to the expression 
is at most 8M. For the latter, the inner sum is at most 
(M/2d)2, and the contribution of these terms is at most 
2M. (A more profound analysis of this expression follows 
the realization that recursive binary splitting of M mes- 
sages in the interval [0, 1) is equivalent to radix-exchange 
sorting of M records with keys in this interval, which has 
been analyzed by Knuth [4, section 5.2.21. The expression 
is 2A,,, in the notation of that analysis, where it is shown to 
be approximately (21og, e)M. Knuth’s analysis implicitly 
reduces the uniform and independent distribution of the 
keys to a Poisson distribution, thus reversing the strategy 
of the present proof.) 

The key to the operation of the first phase will be the 
following combinatorial proposition. For every natural 
number L, there is a natural number K= 0( L/log L) and 
a KX L binary matrix F with the following property: each 
L-dimensional vector G of natural numbers G,, . . * ,G, 
satisfying G, + * * . + G, <L is uniquely determined by the 
corresponding K-dimensional vector FG. This proposition 
will be proved by a random-coding argument. (The pro- 
position and its proof are generalizations of Theorem 1 and 
its proof in the paper [3] by Erdos and Bennyi.) 

For brevity, an L-dimensional vector G of natural num- 
bers G,; . ., G, satisfying G, + . . . + G, < L will be called 
an L-composition. With this terminology, the desired prop- 
erty of F is that if G and G’ are distinct L-compositions, 
then FG and FG’ are distinct. 

Two L-compositions G and G’ will be called disjoint if 
the sets 4 = {J: GJ > 0} and 9’ = {J: G; > 0} of indices 
for which their components do not vanish are disjoint. If 
(3,;. ., G, and G;; . ., GL are distinct L-compositions for 
which FG = FG’, and if H, = min {G,, G;}; * .,H, = 
min {GL, GL}, then G - H and G’ - H are distinct and 
disjoint L-compositions for which F(G - H) = F(G’ - H). 
Thus an equivalent formulation of the desired property is 
that if G and G’ are distinct and disjoint L-compositions, 
then FG and FG’ are distinct. 

A pair of distinct and disjoint L-compositions G and G’ 
for which B contains Q indices and 4’ contains Q’ indices 
will be called a failure mode of size Q + Q’. The size R of a 
failure mode must be in the range 1 <R <L. The number 
of failure modes of size R is 

since the multinomial coefficient enumerates the 

ways of choosing the sets 9 and 9’, enumerates the 

ways of choosing G in accordance with 9, and 

enumerates the ways of choosing G’ in accordance with 9’. 

A rough bound for this expression in terms of L and R is 

=( ;)2+ y)= expO(R+Rlog(L/R)). 

Let F be a random K X L binary matrix, in which each 
entry is zero or one equiprobably and independently. It 
will be shown that for a certain choice of K = 0( L/log L), 
the probability that F assumes a value F that fails to have 
the desired property tends to zero as L tends to infinity. It 
will follow that for a certain choice of K = 0( L/logL), 
there exists a matrix F with the desired property. (The 
probabilities in this argument are based on the randomness 
of F; they have nothing to do with probabilities elsewhere 
in this paper, which are based on the randomness of E.) 

If F is a K X L binary matrix, let 9, = {J: F, J = 
l}; . . ,“K = {J: FKJ = } 1 be the sets of column indices 
for which the entries in the various rows do not vanish. Let 
G and G’ be a failure mode of size R. The number of 
K X L binary matrices F for which FG = FG’ is at most 

[ZLR( ,;2,)] K9 

since for each of the K row indices I, there are 2L-R ways 
of choosing the L-R with column indices J 

not in 9 U 4 and at most ways of choosing the R 

entries with column (Each solution of the 
equation 

JEB ’ JECY ‘~ 

corresponds to a subset (9 n 9r) U (9’ - ‘%,I> of 9 U 8’. Any 
pair of distinct solutions corresponds to subsets that are 
incomparable in the sense that neither is contained within 
the other. By a theorem of Sperner [6], a family of pairwise 
incomparable subsets of an R element set can contain at 

most ,RR/2] i I 
subsets.) Thus for a given failure mode G 

and G’ of size R, the probability that FG = FG’ is at most 

[( ,;2,)/2R]K= exp-a(Klog(R+ 1)). 

Combining the estimates derived for the number of 
failure modes and for the probability of failure for each 
mode, the total probability of failure (the probability that 
F does not have the desired property) is at most 

,_~<Lexp{O(R+Rlog(L/R))--Q(Klog(R+l))}. 
--? 

If 
K = [CL/log L1, 

where C is a sufficiently large constant, then the probabil- 
ity of failure will tend to zero as L tends to infinity. To see 
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this, consider separately the terms with 1 G R < L/(log L)2 
and L/(log L)2 < R < L. For the former, O(R + 
Rlog(L/R))=O(Lloglog L/(log L)2) and Q(Klog(R+ 
l))= P( CL/log L); for the latter, 0( R + Rlog( L/R)) = 
O(L) and Q( Klog( R+ l))=Q(CL). This completes the 
proof of the combinatorial proposition. 

In the first phase, the protocol determines with two steps 
the populations NC’) =N, + . . * +N,,, and Nc2) = NB,2+ 1 
+ . . . +NB of X(‘)=X,U a.. UX,,, and Xc2)=XB 2+, 
U * * . U X, (recall that B was chosen to be even). If N & 1 
and No < 1, the task of the protocol is complete. 

If NC’)>2 and Nc2)<1 (or No)<1 and Nc2’>2), the 
protocol applies recursive binary splitting to Xc’) (or X”). 
In these cases, which arise with probability O(N2-N), the 
task of the protocol is completed with an expected number 
O(N) of steps. 

Finally, if N (‘) > 2 and Nc2) > 2, the protocol will de- 
termine N,, . . . , Ns without causing any messages to be 
transmitted successfully. To do this, it will use the combi- 
natorial proposition with L = B/2 = 0( N(logN)‘/2), so 
that K= O(N/(logN)1/2). The K X L binary matrix F 
corresponds to K subsets 9,; * .,TK of { 1; . a, L}. With K 
steps designating the subsets 

(LpJ)UX(%..(~ x.+x? 
I K 

the protocol determines the sums 

( z F,,,N,) +N(‘); . *,( 2 F,,,N,) +Nc2). 
l=GJGL l=GJGL 

Since N(‘) 22, this cannot cause the successful transmis- 

In the second phase, if it is necessary, the protocol 
designates each block X, for which NA = 1 (1 <A < B), 
thereby causing the messages in such blocks to be success- 
fully transmitted. It then applies recursive binary splitting 
to each block X, for which NA > 2 (1 <A < B), thus 
completing its task. In estimating the expected number of 
steps performed by the second phase, it may be assumed 
without undue optimism that the first phase always de- 
termines N,, . . . ,NB without causing any messages to be 
transmitted successfully, since the fact that the first phase 
sometimes completes the task of the protocol, can only 
decrease the quantity being estimated. There are B blocks. 
For each block X, (1 < A < B), the probability that NA = 1 
is 

A%(1 - c)~-’ <NC, 

and the protocol performs one step for each such block; 
the probability that NA = A42 2 is 

and the protocol performs an expected number O(M) of 
steps for each such block. Thus the expected number of 
steps performed by the second phase is at most 

B(Nc+ ;r, (Nc)“O(M)) 
2<M<N 

= B{Nc + O(N2c2)} 

= N + 0( N/(logN)“2). 

sion of any messages, and since No is known, it de- This completes the proof of (2). 
terrnines the sums 

‘<JCL l<JiL 

By the combinatorial proposition, this determines 
N,,. - -3 NL, since NI + . . . -f-N, fN<L. With Kmore steps 
designating the subsets 

x’l’u( i xL+J)‘**-,X(l)U( ,x xL+J), 

I K 

the protocol determines N,+ ,, . . . , N2 L. In this case, then 
the protocol determines N,; . *, NB with 2 K = 
0( N/(log N)‘12) steps. The expected number of steps per- 
formed by the first phase is 

2+O(N2-N)O(N)+O(N/(logN)1’2) 
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