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Abstract— A sphere decoder searches for the closest lattice
point within a certain search radius. The search radius provides
a tradeoff between performance and complexity. We derive tight
upper bounds on the performance of sphere decoding of linear
block codes. The performance of soft-decision sphere decoding on
AWGN channels as well as that of hard-decision sphere decoding
on binary symmetric channels is analyzed.

I. INTRODUCTION

Maximum likelihood (ML) decoding of linear block codes is
known to be NP-hard [1]. Fincke and Pohst (FP) [2] described
a ‘sphere decoder’ algorithm for closest point search in lattices
which could find the closest lattice point to the received vector
without actually searching all the lattice points. A fast variation
of it was given by Schnorr and Euchner [3]. Other efficient
closest point search algorithms exist (for a survey see [4]). The
sphere decoder algorithm was proposed for decoding lattice
codes [5]. Recently, a soft-decision (SD) sphere decoder was
used for joint detection and decoding of linear block codes
[6]. A hard decision (HD) sphere decoder was proposed for
decoding linear block codes over the binary symmetric channel
(BSC) [7]. The decoding radius of the sphere decoder provides
a tradeoff between performance and complexity.

Tight upper bounds on the performance of SD-ML decoding
of linear block codes over additive white Gaussian noise
(AWGN) channels were derived in the literature (e.g., [8], [9],
[10] and references therein). A tight bound on the performance
of the HD-ML decoder on the BSC is the Poltyrev bound [8].

In this paper, we find tight upper bounds on the performance
of HD and SD sphere decoding of linear block codes when
transmitted over the BSC and AWGN channels respectively.
This is done in sections II and III respectively. The perfor-
mance of sphere decoding of Reed Solomon codes is analyzed
in section IV. In section V, the analytic bounds are compared
to simulations. In section VI, we conclude the paper.

II. UPPER BOUNDS ON THE PERFORMANCE OF SOFT
DECISION SPHERE DECODING

Through out this paper, C will denote an (n, k) binary linear
code. Assuming that a codeword ¢ € C is transmitted over a
binary input AWGN channel, the received word is y = = + z,
where = M(e), M(c) 2 1 — 2¢ is the BPSK modulation
of ¢ and z = [z;]™, is the AWGN vector with variance o2
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A soft-decision sphere decoder with an Euclidean radius D,
SSD(D), solves the following optimization problem,

ly — M()|” M
ly — M(w)||* < D?,

¢ = argmin
veC
subject to

where ||z|| is the Euclidean norm of . Such decoders include
list-decoders that list all codewords whose modulated image
is within an Euclidean distance D from the received vector y
and choose the closest one.

Let £p denote the event of error or failure of SSD(D), then
the error plus failure probability, P(Ep) ! is

P(&p) = P(EplEmr)P(Emr) + P(Ep|Smr)P(Smr), (2)

where £y, and Sy, denote the events of an ML error and
an ML success respectively. Let € = ||y — M(c)||, then an ML
error results if there exists another codeword é € C such that
lly— M(é)]] < e. Since limiting the decoding radius to D will
not do better than ML decoding, then P(£p|Exr) = 1. Since
P(Sumr) <1, it follows that an upper bound on the decoding
performance is

P(€p) < P(Emr) + P(Ep|Smi). 3)

Let Qp be the Euclidean sphere of radius D centered around
the transmitted codeword. The probability that the added white
Gaussian noise will not lie in the sphere Qp is

P(z ¢ Qp) =P (xn, > D*) =1-T,(n/2,D*/20%) (4)

where X, = Y., 27 is a Chi-squared distributed random

variable with n degrees of freedom. Let T'(z) denote the
Gamma function, then the cumulative distribution function
(CDF) of x, is given by the regularized Gamma function I',.
[11],

w gv/2—1,—t/2

I (v/2,w/2) :{ o Ty At w20

5
0, w < 0. ©)

Define P(£xrz) to be an upper bound on the SD-ML
decoder error probability, then we have the following lemma,
Lemma 1: P(Ep) < P(EmL) + P(z ¢ Qp).

Through out this paper, P(X) will denote the probability that the event
X occurs.



Proof: Given an ML success, £p will only be due to
failures of the SSD(D) decoder, i.e.,

P(Epl|Sur) = P(lly — M(c)l| > D) = P(z ¢ Qp),

where the last equality follows from the linearity of the code
and without loss of generality one could assume that the all
zero codeword was transmitted. By definition, P(Ep) <
P(Exrr). By substituting in (3) we are done. [ |

Lemma 1 provides a way to bound the performance of
sphere decoding of linear block codes on a variety of channels
where additive white Gaussian noise is added and for a variety
of modulation schemes. (In this paper, we will concentrate on
the case that a binary linear block code is BPSK modulated and
transmitted over an AWGN channel.) If P(€y,y,) is the union
upper bound on the codeword error probability [12, Ch.8] for
BPSK modulation on an AWGN channel, then

P(&p) < Z GuwQ(V2YRw) + P(z ¢ Qp),  (6)

w>1

where GG, is the number of codewords with (binary) Hamming
weight w, ~ is the signal to noise ratio (SNR) and R is
the rate of the code. Eq. 6 was used in [13] to bound the
performance of a suboptimum decoder, used for soft decoding
of Reed Solomon codes when their binary image is used for
transmission. Lemma 1 implies that one could obtain a tighter
upper bound on P(£p) by tightening the bound on the ML
error probability, P(Exrr).

Shannon’s sphere packing bound [14] is a lower bound
on the error probability where he showed that the Voronoi
region of a codeword can be bounded by a right circular n-
dimensional cone with the codeword on its axis. The Poltyrev
tangential sphere bound (TSB) on the performance of the SD-
ML decoder is calculated by,

P(EML) Smein{P(gML,ZEV9)+P(Z¢V9)}, (7)

where Vj is an n-dimensional right circular cone with a half
angle § whose central line passes through the transmitted
codeword and whose apex is at an Euclidean distance +/n
from the transmitted codeword. Let the minimum of the
optimization problem in (7) be achieved at 8 = ¢, then the
following upper bound is tighter than (6),

P(Ep) < P(Enp,z € Vy) + Pz ¢ V) + Pz ¢ Qp). (8)

For the TSB, the optimum angle ¢ is related to the radius /T4

(see Fig. 1 or Fig. 2) by /7 /n = tan(¢), such that 4 is the
root of

n Os(70)
> Gy(ro) / sin" % (9)dY = B )
b=1 0

n—2
2 VTR and Gy(r,) 2

NC
cos™! %) Define ay(ro) 2 ro(1 — b/n), Gy(ro) =

Gy if b < ay(r,) and Gj(r,) = 0 otherwise. Let z; be
the component of the noise along the central axis of the
cone with a probability distribution function (PDF) N'(z1) =

when solved for r, [8], B

Fig. 1. Case A: The sphere §2p lies totally inside the Cone Vj
. 2 2 .
ﬁe‘” /27" and z, be the noise component orthogonal

A Vn—zn A _ 2_1)
to z;. Define 3., (b) = F and 7., (¢) = /Tg (1 =)
then the ML error probability given that the noise z is in the
cone Vy is [8]
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We observe that instead of directly substituting the TSB of
(7) for P(Eprr) in Lem. 1 as we did in (8), a tighter upper
bound than (8) could be found by noticing that the events
{z ¢ Vp} and {z ¢ Qp} are not in general mutually exclusive.
This is shown in the following lemma.

Lemma 2: P(Ep) is upper bounded by P(ép) <
P(Emr,z€Vy)+P(z¢ Qp)+P({z¢ Vel n{z € Qp}).

Proof: Using Bayes’ rule and defining the region
A(6,D) 2 {Vo N Qp} we get

P(Ep) < min{P(Eplz € A6, D)P(z € A9, D))

+P(Eplz ¢ AB,D))P(z ¢ A, D))}.(11)

From the definition of A(, D), it follows that P(Ep,z €
A0,D)) = P(Epmr,z € A(0,D)) < P(Enmr, z € Vy), where
the last inequality follows from that A(f, D) C Vy. Using
P(Eplz ¢ A(6,D)) <1, it follows that

P(Ep) < min{P(Eni,z € Vi) + P(z ¢ A6, D))}
< P(Emr,z€eVy)+P(z¢{VonQp}). (12)

The last inequality is due to the observation that ¢ does not

necessarily minimize (12). By de Morgan’s law, {VsNQp}© =

{Qp} U {{Vs} N Qp}, {.}¢ is the complement of {.}. W
We consider two cases;



Case A: The sphere Qp lies totally inside the cone V. (See

Fig. 1). This case is equivalent to the event A = {D < D},
where

Dy = Visin(@),

and will be called the critical decoding radius. It follows that
P({z ¢ Vs}n{z € Qp}|A) =0, which could be substituted
in Lem. 2. Furthermore, since A(#, D) = Q p, it follows from
(11) that a tighter upper bound is

P(Ep|A) < P(Emr,z € Qp) + P(z ¢ Qp),

P(SML,Z S QD) =

2 2
e Go [ N (7o) (25", P® ) dzo.
Let & be the half angle at which the cone Vj is tangential to
the sphere Qp, § = sin™'(D/\/n) (see Fig. 1), then another
tight upper bound is

P(Ep|A) < P(Eyr,z € Vs) + Pz ¢ Qp).

13)

(14)

15)

Case B: The sphere Slp intersects the cone Vy. (see Fig.
2). This could be divided into two cases depending on the
position of the apex of the cone. The apex of the cone
does not lie in the sphere when /nsin(¢) < D < +/n
(see Fig. 2a), and lies in the sphere when D > /n (see
Fig. 2b). In both cases the following analysis holds. Let the
origin, O, of the n-dimensional space be at the transmitted
codeword which is also the center of 2 p. Since the cone
and the sphere are symmetrical around the central axis, we
project on a two dimensional plane as in Fig. 2. The radial
component of the noise (along the axis of the cone) is z1. The
altitudes y, (¢, D) and y,(¢, D) at which the (double) cone
intersects the sphere are found by substituting the line equation
P = P, + u(P, — P1), where P = (z,y), P, = (0,/n) and
P, = (2y/ntan(¢), —/n) into the quadratic equation of the
sphere. Solving for w, it follows that

4n £ /1602 — 16n sec?(¢)(n — D?)
8n sec2 (o) ’

and ya,b(d):D) =y + ua,b(y2 - yl) \/ﬁ(l - 2“‘0«75)' It
is easy to check that at D = \/n, up 0 and yy is at the
apex of V. If D > /n then the intersection at y; is in the
lower nappe of the cone. It is also observed that V4 and {1p
do not intersect (2p C Vp) if 16n? < 16nsec?(¢)(n — D?)
or equivalently D < /nsin(¢) which is Case A.

Define B to be the event B 2 {D > /nsin(¢)}, fn-1(t)
to be the PDF of x,—1 = Y1, 27, and w? = D? — 27 (see
Fig. 2). From Lem. 2 and (4), the error probability is upper
bounded by P(Ep|B) <

Py, z € V¢)+P(Z ¢ Qp)+P({z ¢ V¢} N{z € Qp}|B)
such that P ({z ¢ Vu} N {z € Qp}B) =

Yv (¢7D) L‘)?l
[
Ya(¢,D) 2, (8)

To summarize the tight upper bound is given in the follow-
ing theorem,

(16)

Uq,b =

fn,1 (t) dtle .

Fig. 2.
cone Vy lies (a) outside the sphere Qp, (b) inside the sphere Qp.

Case B: The sphere Q2p intersects the cone Vj; the apex of the

Theorem 3: The performance of the soft decision sphere
decoder with an Euclidean decoding radius D on an AWGN
channel with noise variance o2 is upper bounded by:

A) If D < /nsin(¢):

P(Ep) < P(Emp,z € Vs) + 1 —T.(n/2,D?/20?%),

B) If D > \/nsin(¢):

P(&p) < P(Emp,z € Vy)+1—-T.(n/2,D?*/20%) +
vs(¢,D) (F not @5 _p (no1 5@ > N(z1)dz
Ya(¢,D) r P} r 9 9 242 1 1,

where P(Euvr, z € Vp) is given by (10), ry is the solution of
), rs = ntan?(§) and § = sin"*(D/\/n).

UJZI
) 20—2

III. UPPER BOUND ON THE PERFORMANCE OF
HARD-DECISION SPHERE DECODING

In this section, an upper bound on the performance of the
hard-decision sphere decoder, when the code is transmitted
over the BSC, is derived. Transmitting a binary codeword over
an AWGN channel followed by hard decisions is equivalent
to transmitting it on a BSC with a cross over probability
p = Q(v/2R~) where ~ is the bit signal to noise ratio. Let
y be the received word when the codeword c is transmitted
over an BSC channel. The HD sphere decoder with radius m,
HSD(m), finds the codeword ¢, if it exists, such that

d(y,v)
d(y,v) <m,

A7)

¢ = argmin
veC
subject to

where d(y,v) is the Hamming distance between y and wv.
Let ¢ = d(y,c), then, from the linearity of the code, the
probability that the received word is outside a Hamming
sphere (ball) of radius m — 1 centered around the transmitted

codeword is
P(C>m)=) (?)pt(l -p)" (18)
t=m
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Fig. 3. Bounds on the performance of soft-decision sphere decoding of the
(24,12) Golay code BPSK modulated over an AWGN channel.

Poltyrev [8] derived a tight bound on the performance of
the HD-ML decoder based on,

P(Enr) < min{P(Enr, ¢ <m)+PC>m)}.  (19)

The minimum of the above equation is at m , where m, is the
smallest integer m such that [8]

o > ()62 ()

The joint HD-ML error probability given that { < m is upper
bounded by the union bound [8],

(20)

m—1)

2(
P(Emp,(<m) < Y Gy
b=1

3
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We now turn our attention to the HD sphere decoder with an
arbitrary decoding radius. Let P(X,,), be the error plus failure
probability of HSD(m — 1), then P(X,,) could be written as

P(Ym) = P(Em,( <m) + P(Sn[¢ > m)P(¢ > m)
=P(Emr,( <m)+ P >m), (22)

where we used the fact that P(X,,|¢ > m) = 1 and the
observation that given that ( < m, the conditional error
probability of the HSD(m — 1) and the HD-ML decoders are
the same. The last term in the above equation is equal to the
failure probability of the HSD(m — 1) decoder. To develop a
tight upper bound on P(X,,), we consider two cases;

Case I: The decoding radius m > m,. The upper bound of
(22) could be written as

P(Em|m >m,) = P(Emr, ¢ <mp) +P(Emr,mo < (<
m) + P(¢ > m).
It follows that

P(Splm > me) < P(Enrr, ¢ < mo) + P(C>my). (23)
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Fig. 4. Bounds on the performance of hard-decision sphere decoding of the
(24,12) Golay code BPSK modulated over an AWGN channel.

We observe that the upper bound reduces to that of the HD-ML
case (19). By recalling that the minimum of (19) is achieved
at m,, the bound of (22) is looser than (23) when m > m,.
The intuition behind this is that the performance of a sphere
decoder with a decoding radius m, — 1 or greater approaches
that of the ML decoder. Moreover, it was shown in [8] that
m, is a lower bound on the covering radius of the code.

Case II: The decoding radius m < m,. Noticing that the
sphere {¢ < m} C {¢ < mo}, P(Z,n|m < m,) is indeed
given by (22).

Thus, we have proved the following theorem,

Theorem 4: The performance of a hard-decision sphere
decoder with a decoding radius m — 1 when used over an BSC
channel with a cross-over probability p is upper bounded by

P(Epr, ¢ <my) + P(C > my,),
P(Em) < { P(Eir.C <m) + P(C > m),

where m, is radius that minimizes (19) and is the solution
of (20). P(¢ > m) is given by (18) and P(Epr,( < m) is
upper bounded by (21).

m > My,
m < my,

IV. SPHERE DECODING OF RS CODES

We study the performance of Reed Solomon (RS) codes
defined over F»= when their binary image is transmitted over
an AWGN channel and the decoder is either a HD or SD
sphere decoder. Tight upper bounds on the performance of the
HD and SD maximum likelihood decoders were developed in
[15] by averaging the Poltyrev bounds over all possible binary
representations of the RS code. We use the same technique
here to analyze the performance of the sphere decoders, where
the average binary weight enumerator of the RS code (see
[15]) would be used in conjunction with theorems 3 and 4 to
derive averaged bounds on the performance of decoding RS
codes with the SSD and HSD respectively.

V. NUMERICAL RESULTS

In this section, the bounds developed for SD and HD sphere
decoding are evaluated and compared with the performance of
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Fig. 5. Bounds on the performance of hard-decision sphere decoding of the
(31,15) RS code BPSK modulated over an AWGN channel.

the corresponding sphere decoders, [6] and [7] respectively.
The simulation curves and the analytical bounds will be
labeled by ‘sim’ and ‘bnd’ respectively.

In figures 3 and 4, the performance of the soft and hard
decision sphere decoders of the (24,12) Golay code is shown
respectively. The minimum distance of the (24, 12) Golay code
is 8. For the SD sphere decoder, the critical decoding radius
is Dy = 3.772 (see (13)). At a codeword error rater (CER)
of 1078, the SSD with an Euclidean radius of 4 has a near
ML performance. The optimum Hamming radius for the HSD
bound is m, = 4. As expected, a sphere decoder with radius
m, — 1 or greater has a near ML performance. It is observed
that the analytical bounds are very tight. Similar results were
also observed for BCH codes.

In Fig. 5, we show bounds on the performance of HD
decoding of the near half rate (31,15) RS code over F»
when its binary image is transmitted over an AWGN channel.
The HD-ML decoder has more than 2 dB coding gain over
the Berlekamp Massey (BM) decoder [16], which can correct
8 symbol errors. We observe that the average performance
of an HD sphere decoder with a (binary Hamming) radius
8 closely upper bounds that of the HD-BM decoder. The
optimum decoding radius is 18 and the HSD has a competitive
performance with a radius of 15. In Fig. 6, the performance
of SD decoding of the (15,11) RS code over Fj¢ are shown.
The critical decoding radius is Dy, = 4.588. As expected,
the performance of a SSD with a larger decoding radius
approaches that of the SD-ML decoder at a lower SNR.

VI. CONCLUSIONS

Bounds on the error plus failure probability of hard-decision
and soft-decision sphere decoding of linear block codes were
derived. By comparing with the simulations of the corre-
sponding decoders these bounds are tight. The performance
of sphere decoding of binary images of Reed Solomon codes
was analyzed. Moreover, the bounds are extremely useful in
predicting the performance of the sphere decoders at the tail
of error probability when simulations are prohibitive.

Soft Decision Sphere Decoding of (15,11) RS Code

=

> SSD(3), bnd
SSD(3), sim
< SSD(3.5), bnd
- — — SSD(3.5), sim
—e—SSD(D)
—&— S8D(5)
SD-ML, bnd
SD-ML, sim

Codeword Error Rate

5 6
SNR (dB)

Fig. 6. Bounds on the performance of soft-decision sphere decoding of the
(15,11) RS code BPSK modulated over an AWGN channel.
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