
Mach Learn (2014) 94:401–437

DOI 10.1007/s10994-013-5404-1

Bounds on the sample complexity for private learning

and private data release

Amos Beimel · Hai Brenner ·

Shiva Prasad Kasiviswanathan · Kobbi Nissim

Received: 3 July 2011 / Accepted: 5 August 2013 / Published online: 18 September 2013

© The Author(s) 2013

Abstract Learning is a task that generalizes many of the analyses that are applied to col-

lections of data, in particular, to collections of sensitive individual information. Hence, it

is natural to ask what can be learned while preserving individual privacy. Kasiviswanathan

et al. (in SIAM J. Comput., 40(3):793–826, 2011) initiated such a discussion. They for-

malized the notion of private learning, as a combination of PAC learning and differential

privacy, and investigated what concept classes can be learned privately. Somewhat surpris-

ingly, they showed that for finite, discrete domains (ignoring time complexity), every PAC

learning task could be performed privately with polynomially many labeled examples; in

many natural cases this could even be done in polynomial time.

While these results seem to equate non-private and private learning, there is still a sig-

nificant gap: the sample complexity of (non-private) PAC learning is crisply characterized

in terms of the VC-dimension of the concept class, whereas this relationship is lost in the

constructions of private learners, which exhibit, generally, a higher sample complexity.

Looking into this gap, we examine several private learning tasks and give tight bounds

on their sample complexity. In particular, we show strong separations between sample com-

plexities of proper and improper private learners (such separation does not exist for non-

private learners), and between sample complexities of efficient and inefficient proper private

Editor: Phil Long.

A. Beimel (B) · K. Nissim

Dept. of Computer Science, Ben-Gurion University, Beer-Sheva, Israel

e-mail: beimel@cs.bgu.ac.il

K. Nissim

e-mail: kobbi@cs.bgu.ac.il

H. Brenner

Dept. of Mathematics, Ben-Gurion University, Beer-Sheva, Israel

e-mail: haib@bgu.ac.il

S.P. Kasiviswanathan

General Electric Research Center, San Ramon, CA, USA

e-mail: kasivisw@gmail.com

mailto:beimel@cs.bgu.ac.il
mailto:kobbi@cs.bgu.ac.il
mailto:haib@bgu.ac.il
mailto:kasivisw@gmail.com

402 Mach Learn (2014) 94:401–437

learners. Our results show that VC-dimension is not the right measure for characterizing the

sample complexity of proper private learning.

We also examine the task of private data release (as initiated by Blum et al. in STOC,

pp. 609–618, 2008), and give new lower bounds on the sample complexity. Our results

show that the logarithmic dependence on size of the instance space is essential for private

data release.

Keywords Differential privacy · PAC learning · Sample complexity · Private data release

1 Introduction

Consider a scenario in which a survey is conducted among a sample of random individuals

and data mining techniques are applied to learn information on the entire population. If such

information will disclose information on the individuals participating in the survey, then

they will be reluctant to participate in the survey. To address this question, Kasiviswanathan

et al. (2011) introduced the notion of private learning, where a private learner is required

to output a hypothesis that gives accurate classification while protecting the privacy of the

individual samples from which the hypothesis was obtained.

The definition of a private learner is a combination of two qualitatively different notions.

One is that of probably approximately correct (PAC) learning (Valiant 1984), the other of

differential privacy (Dwork et al. 2006). PAC learning, on one hand, is an average case re-

quirement, which requires that the output of the learner on most samples is good. Differential

privacy, on the other hand, is a worst-case requirement. It is a strong notion of privacy that

provides meaningful guarantees in the presents of powerful attackers and is increasingly ac-

cepted as a standard for providing rigorous privacy. Recent research on privacy has shown,

somewhat surprisingly, that it is possible to design differentially private variants of many

analyses. Further discussions on differential privacy can be found in the surveys of Dwork

(2009, 2011).

We next give more details on PAC learning and differential privacy. In PAC learning,

a collection of samples (labeled examples) is generalized into a hypothesis. It is assumed

that the examples are generated by sampling from some (unknown) distribution D and are

labeled according to an (unknown) concept c taken from some concept class C. The learned

hypothesis h should predict with high accuracy the labeling of examples taken from the

distribution D, an average-case requirement. In differential privacy the output of a learner

should not be significantly affected if a particular example is replaced with an arbitrary

example. Concretely, differential privacy considers the collection of samples as a database,

defines that two databases are neighbors if they differ in exactly one sample, and requires

that for every two neighboring databases the output distribution of a private learner should

be similar.

In this paper, we consider private learning of finite, discrete domains. Finite domains

are natural as computers only store information with finite precision. The work of Ka-

siviswanathan et al. (2011) demonstrated that private learning in such domains is feasible—

any concept class that is PAC learnable can be learned privately (but not necessarily effi-

ciently), by a “private Occam’s razor” algorithm, with sample complexity that is logarith-

mic in the size of the hypothesis class.1 Furthermore, taking into account the earlier result

1Chaudhuri and Hsu (2011) prove that this is not true for continuous domains.

Mach Learn (2014) 94:401–437 403

of Blum et al. (2005) (that all concept classes that can be efficiently learned in the statis-

tical queries model can be learned privately and efficiently) and the efficient private parity

learner of Kasiviswanathan et al. (2011), we get that most “natural” computational learning

tasks can be performed privately and efficiently (i.e., with polynomial resources). This is

important as learning problems generalize many of the computations performed by analysts

over collections of sensitive data.

The results of Blum et al. (2005), Kasiviswanathan et al. (2011) show that private learn-

ing is feasible in an extremely broad sense, and hence, one can essentially equate learning

and private learning. However, the costs of the private learners constructed in Blum et al.

(2005), Kasiviswanathan et al. (2011) are generally higher than those of non-private ones

by factors that depend not only on the privacy, accuracy, and confidence parameters of the

private learner. In particular, the well-known relationship between the sample complexity

of PAC learners and the VC-dimension of the concept class (ignoring computational effi-

ciency) (Blumer et al. 1989) does not hold for the above constructions of private learners;

the sample complexity of the algorithms of Blum et al. (2005), Kasiviswanathan et al. (2011)

is proportional to the logarithm of the size of the concept class. Recall that the VC-dimension

of a concept class is bounded by the logarithm of its size, and is significantly lower for many

interesting concept classes, hence, there may exist learning tasks for which “very practical”

non-private learner exists, but any private learner is “impractical” (with respect to the sample

size required).

The focus of this work is on a fine-grain examination of the differences in complexity be-

tween private and non-private learning. The hope is that such an examination will eventually

lead to an understanding of which complexity measure is relevant for the sample complexity

of private learning, similar to the well-understood relationship between the VC-dimension

and sample complexity of PAC learning. Such an examination is interesting also for other

tasks, and a second task we examine is that of releasing a sanitization of a data set that si-

multaneously protects privacy of individual contributors and offers utility to the data analyst.

See the discussion in Sect. 1.1.2.

1.1 Our contributions

We now give a brief account of our results. Throughout this rather informal discussion we

will treat the accuracy, confidence, and privacy parameters as constants (a detailed analysis

revealing the dependency on these parameters is presented in the technical sections). We use

the term “efficient” for polynomial time computations.

Following standard computational learning terminology, we will call learners for a con-

cept class C that only output hypotheses in C proper, and other learners improper. The

original motivation in computational learning theory for this distinction is that there exist

concept classes C for which proper learning is computationally intractable (Pitt and Valiant

1988), whereas it is tractable to learn C improperly (Valiant 1984). As we will see below,

the distinction between proper and improper learning is useful also when discussing private

learning, and for reasons other than making intractable learning tasks tractable. Our results

on private learning are summarized in Table 1.

1.1.1 Proper and improper private learning

It is instructive to look into the construction of the private Occam’s razor algorithm of Ka-

siviswanathan et al. (2011) and see why its sample complexity is proportional to the loga-

rithm of the size of the hypothesis class used. The algorithm uses the exponential mechanism

404 Mach Learn (2014) 94:401–437

Table 1 Our separation results (ignoring dependence on ǫ,α,β), where ℓ(d) is any function that grows as

ω(logd)

Concept class Sample complexity

POINTd Non-Private Learning

(Proper or Improper)

Improper Private

Learning

Proper Private

Learning

Θ(1) (Blumer et al. 1989; Ehrenfeucht et al. 1989) Θ(1) Θ(d)

P̂OINTd Non-Private Learning

(Efficient or Inefficient)

Inefficient Proper

Private Learning

Efficient Proper

Private Learning

a

Θ(1) (Blumer et al. 1989; Ehrenfeucht et al. 1989) Θ(ℓ(d)) Θ(d)

aThese bounds are for a slightly relaxed notion of proper learners as detailed in Sect. 6

of McSherry and Talwar (2007) to choose a hypothesis. The choice is probabilistic, where

the probability mass that is assigned to each of the hypotheses decreases exponentially with

the number of samples that are inconsistent with it. A union-bound argument is used in the

claim that the construction actually yields a learner, and a sample size that is logarithmic in

the size of the hypothesis class is needed for the argument to go through. The question is

whether such sample size is required?

To address the above question, we consider a simple, but natural, class POINT =
{POINTd} containing the concepts cj : {0,1}d → {0,1} where cj (x) = 1 for x = j , and 0

otherwise. The VC-dimension of POINTd is one, and hence, it can be learned (non-privately

and efficiently, properly or improperly) with merely O(1) samples.

In sharp contrast, (when used for properly learning POINTd) the above-mentioned pri-

vate Occam’s razor algorithm from Kasiviswanathan et al. (2011) requires

O(log(|POINTd |)) = O(d) samples—obtaining the largest possible gap in sample com-

plexity when compared to non-private learners! Our first result is a matching lower bound.

We prove that any proper private learner for POINTd must use Ω(d) samples, therefore,

answering negatively the question (from Kasiviswanathan et al. (2011)) of whether proper

private learners should exhibit sample complexity that is approximately the VC-dimension

(or even a function of the VC-dimension) of the concept class.2

A natural way to improve the sample complexity is to use the private Occam’s razor to

improperly learn POINTd with a smaller hypothesis class that is still expressive enough for

POINTd , reducing the sample complexity to the logarithm of the smaller hypothesis class.

We show that this indeed is possible, as there exists a hypothesis class of size O(d) that

can be used for learning POINTd improperly, yielding an algorithm with sample complex-

ity O(logd). Furthermore, this bound is tight, any hypothesis class for learning POINTd

must contain Ω(d) hypotheses. These bounds are interesting as they give a separation be-

tween proper and improper private learning—proper private learning of POINTd requires

Ω(d) samples, whereas POINTd can be improperly privately learned using O(logd) sam-

ples. Note that such a combinatorial separation does not exist for non-private learning, as

VC-dimension number of samples are needed and sufficient for both proper and improper

non-private learners. Furthermore, the Ω(d) lower bound on the size of the hypothesis class

maps a clear boundary to what can be achieved in terms of sample complexity using the pri-

vate Occam’s razor for POINTd . It might even suggest that any private learner for POINTd

should use Ω(logd) samples.

2Our proof technique yields lower bounds not only on private learning POINTd properly, but on private

learning of any concept class C with various hypothesis classes that we call α-minimal for C.

Mach Learn (2014) 94:401–437 405

It turns out, however, that the intuition expressed in the last sentence is at fault. We

construct an efficient improper private learner for POINTd that uses merely O(1) samples,

hence, establishing the strongest possible separation between proper and improper private

learners. For the construction, we extrapolate on a technique from the efficient private parity

learner of Kasiviswanathan et al. (2011). The construction of Kasiviswanathan et al. (2011)

utilizes a natural non-private proper learner, and hence, results in a proper private learner.

Due to the bounds mentioned above, we cannot use a proper learner for POINTd , and hence,

we construct an improper (rather unnatural) learner to base our construction upon. Our con-

struction utilizes a double-exponential hypothesis class, and hence, is inefficient (even out-

putting a hypothesis requires super-polynomial time). We use a simple compression using

pseudorandom functions (akin to Mishra and Sandler (2006)) to make the algorithm effi-

cient.

The above two improper learning algorithms use “heavy” hypotheses, that is, the hy-

potheses are Boolean functions that return 1 on many inputs (in contrast to a point function

that returns 1 on exactly one input). Informally, each such heavy hypothesis protects the pri-

vacy since it could have been returned on many different concepts. The main technical point

in these algorithms is how to choose a heavy hypothesis with a small error. To complete

the picture, we prove that using heavy hypotheses is unavoidable: Every private learning

algorithm for POINTd that uses o(d) samples must use heavy hypotheses.

Next we look into the concept class INTERVAL = {INTERVALd}, where for T = 2d

we define INTERVALd = {c1, . . . , cT +1} and, for 1 ≤ j ≤ T + 1, the concept cj : {1, . . . ,

T + 1} → {0,1} is defined as follows: cj (x) = 1 for x < j and cj (x) = 0 otherwise. As

with POINTd , it is easy to show that the sample complexity of any proper private learner

for INTERVALd is Ω(d). We give two results regarding the sample complexity of improper

private learning of INTERVALd . The first result shows that if a sublinear (in d) sample

complexity private learner exists for INTERVALd , then it must output, with high probability,

a very “complex looking” hypothesis in the sense that the hypothesis must switch from zero

to one (and vice-versa) exponentially many times, unlike any concept cj ∈ INTERVALd that

switches only once from one to zero at j . The second result considers a generalization of

the technique that yielded the O(1) sample improper private learner for POINTd , and shows

that it alone would not yield a private learner for INTERVALd with sublinear (in d) sample

complexity.

We apply the above lower bound on the number of samples for proper private learning

POINTd to show a separation in the sample complexity of efficient proper private learners

(under a slightly relaxed definition of proper learning) and inefficient proper private learn-

ers. More concretely, assuming the existence of a pseudorandom generator with exponential

stretch, we present a concept class P̂OINTd—a subset of POINTd—such that every efficient

private learner that learns P̂OINTd using POINTd requires Ω(d) samples. In contrast, an

inefficient proper private learner exists that uses only a super-logarithmic number of sam-

ples. This is the first example in private learning where requiring efficiency on top of privacy

comes at a price of larger sample size.

1.1.2 The sample size of non-interactive sanitization mechanisms

Given a database containing a collection of individual information, a sanitization is a release

of information that protects the privacy of the individual contributors while offering utility

to the analyst using the database. The setting is non-interactive if once the sanitization is

released, then the original database and the curator play no further role. Blum et al. (2008)

presented a construction of such non-interactive sanitizers for count queries. Let C be a

406 Mach Learn (2014) 94:401–437

concept class consisting of efficiently computable predicates from a discretized domain X to

{0,1}. Given a collection D of data items taken from X, Blum et al. employ the exponential

mechanism (McSherry and Talwar 2007) to (inefficiently) obtain another collection D′ with

data items from X such that D′ maintains approximately correct count of
∑

d∈D c(d) for all

concepts c ∈ C provided that the size of D is O(log(|X|) · VCDIM(C)). As D′ is generated

using the exponential mechanism, the differential privacy of D is protected. The database D′

is referred to as a synthetic database as it contains data items drawn from the same universe

(i.e., from X) as the original database D.

We provide a new lower bound for non-interactive sanitization mechanisms. We show

that for POINTd every non-interactive sanitization mechanism that is useful3 for POINTd

requires a database of size Ω(d). This lower bound is tight as the sanitization mechanism of

Blum et al. for POINTd uses a database of size O(d ·VCDIM(POINTd)) = O(d). Our lower

bound holds even if the sanitized output is an arbitrary data structure, i.e., not necessarily a

synthetic database.

A preliminary version of this paper appeared in the 7th Theory of Cryptography Con-

ference (TCC), 2010. The TCC paper contained a proof sketch of the results presented in

Sects. 3, 4.2, 6, and 7. The results presented in Sects. 4.1, 4.3, and 5 are new.

1.2 Related work

The notion of PAC learning was introduced by Valiant (1984). The notion of differential

privacy was introduced by Dwork et al. (2006). Private learning was introduced in Ka-

siviswanathan et al. (2011). Beyond proving that (ignoring computation) every concept

class with finite, discrete domain can be PAC learned privately (see Theorem 3.2 below),

Kasiviswanathan et al. proved an equivalence between learning in the statistical queries

model and private learning in the local communication model (a.k.a. randomized response).

The general private data release mechanism we mentioned above was introduced in Blum

et al. (2008) along with a specific construction for halfspace queries. Also as mentioned

above, both Kasiviswanathan et al. (2011) and Blum et al. (2008) use the exponential mecha-

nism of McSherry and Talwar (2007), a generic construction of differential private analyses,

which (in general) does not yield efficient algorithms.

A recent work of Dwork et al. (2009) considered the complexity of non-interactive san-

itization under two settings: (a) sanitized output is a synthetic database, and (b) sanitized

output is some arbitrary data structure. For the task of sanitizing with a synthetic database

they show a separation between efficient and inefficient sanitization mechanisms based on

whether the size of the instance space and the size of the concept class is polynomial in a

(security) parameter or not. For the task of sanitizing with an arbitrary data structure they

show a tight connection between the complexity of sanitization and traitor tracing schemes

used in cryptography. They leave the problem of separating efficient private and inefficient

private learning open.

Following the preliminary version of our paper (Beimel et al. 2010), Chaudhuri and Hsu

(2011) study the sample complexity for private learning infinite concept classes when the

data is drawn from a continuous distribution. Using techniques very similar to ours, they

show that, under these settings, there exists a simple concept class for which any proper

learner that uses a finite number of examples and guarantees differential privacy, fails to

satisfy accuracy guarantee for at least one unlabeled data distribution. This implies that

3Informally, a mechanism is useful for a concept class if for every input, the output of the mechanism main-

tains approximately correct counts for all concepts in the concept class.

Mach Learn (2014) 94:401–437 407

the results of Kasiviswanathan et al. (2011) do not extend to infinite hypothesis classes on

continuous data distributions.

Chaudhuri and Hsu (2011) also study learning algorithms that are only required to protect

the privacy of the labels (and not necessary protect the privacy of the examples themselves).

They prove upper bounds and lower bounds for this scenario. In particular, they prove a

lower bound on the sample complexity using the doubling dimension of the disagreement

metric of the hypothesis class with respect to the unlabeled data distribution. This result

does not imply our results. For example, the class POINTd can be properly learned using

O(1) samples while protecting the privacy of the labels, while we prove that Ω(d) samples

are required to properly learn this class while protecting the privacy of the examples and the

labels. It seems that label privacy may give enough protection in the restricted setting where

the content of the underlying examples is publicly known. However, in many settings this

information is highly sensitive. For example, in a database containing medical records we

wish to protect the identity of the people in the sample (i.e., we do not want to disclose that

they have been to a hospital).

It is well known that for all concept classes C, every learner for C requires Ω(VCDIM(C))

samples (Ehrenfeucht et al. 1989). This lower bound on the sample size also holds for private

learning. Blum et al. (2013) show that this result extends to the setting of private data release.

They show that for all concept classes C, every non-interactive sanitization mechanism that

is useful for C requires Ω(VCDIM(C)) samples (remember that the best upper bound is

O(log(|X|) · VCDIM(C))). We show in Sect. 7 that the lower bound of Ω(VCDIM(C)) is

not tight—there exists a concept class C of constant VC-dimension such that every non-

interactive sanitization mechanism that is useful for C requires a much larger sample size.

Tools for private learning (not in the PAC setting) were studied in a few papers; such

tools include, for example, private logistic regression (Chaudhuri and Monteleoni 2008) and

private empirical risk minimization (Chaudhuri et al. 2011; Kifer et al. 2012).

1.3 Questions for future exploration

The motivation of this work was to study the connection between non-private and private

learning. We believe that the ideas developed in this work are a first step in developing

a general theory of private learning. In particular, we believe that there is a combinato-

rial measure that characterizes private learning (for non-private learning such combinatorial

measure exists—the VC dimension). Such characterization was given recently in Beimel

et al. (2013).

In this paper, the ideas used for lower bounding sample size for proper private learning of

points is also used to establish a lower bound on the sample size for sanitization of databases.

Other connections between private learning and sanitization were explored in (Blum et al.

2008). The open question is there is a deeper connection between the models, i.e., does any

bound for one task imply a similar bound for the other?

1.4 Organization

In Sect. 2, we define private learning. In Sect. 3, we prove lower bounds on proper private

learning, and in Sect. 4, we describe efficient improper private learning algorithms for the

POINT concept class. In Sect. 5, we discuss private learning of the INTERVAL concept

class. In Sect. 6, we show a separation between efficient and inefficient proper private learn-

ing. Finally, in Sect. 7, we prove a lower bound for non-interactive sanitization.

408 Mach Learn (2014) 94:401–437

2 Preliminaries

Notation We use [n] to denote the set {1,2, . . . , n}. The notation Oγ (g(n)) is a shorthand

for O(h(γ) · g(n)) for some non-negative function h. Similarly, the notation Ωγ (g(n)).

We use negl(·) to denote functions from R+ to [0,1] that decrease faster than any inverse

polynomial.

2.1 Preliminaries from privacy

A database is a vector D = (d1, . . . , dm) over a domain X, where each entry di ∈ D repre-

sents information contributed by one individual. Databases D and D′ are called neighbors

if they differ in exactly one entry (i.e., the Hamming distance between D and D′ is 1). An

algorithm is private if neighboring databases induce nearby distributions on its outcomes.

Formally:

Definition 2.1 (Differential Privacy (Dwork et al. 2006)) A randomized algorithm A is ǫ-

differentially private if for all neighboring databases D,D′, and for all sets S of outputs,

Pr
[
A(D) ∈ S

]
≤ exp(ǫ) · Pr

[
A

(
D′) ∈ S

]
. (1)

The probability is taken over the random coins of A.

An immediate consequence of (1) is that for any two databases D,D′ (not necessarily neigh-

bors) of size m, and for all sets S of outputs, Pr[A(D) ∈ S] ≥ exp(−ǫm) · Pr[A(D′) ∈ S].

2.2 Preliminaries from learning theory

We consider Boolean classification problems. A concept c : X → {0,1} is a function that

labels examples taken from the domain X by either 0 or 1. The domain X is understood to

be an ensemble X = {Xd}d∈N (typically, Xd = {0,1}d) and a concept class C is an ensemble

C = {Cd}d∈N where Cd is a class of concepts mapping Xd to {0,1}. In this paper Xd is always

a finite, discrete set. A concept class comes implicitly with a way to represent concepts

and size(c) is the size of the (smallest) representation of the concept c under the given

representation scheme.

PAC learning algorithms are given examples sampled according to an unknown proba-

bility distribution D over Xd , and labeled according to an unknown target concept cd ∈ Cd .

Define the error of a hypothesis h : Xd → {0,1} as

error
D

(c,h) = Pr
x∼D

[
h(x) �= c(x)

]
.

Definition 2.2 (PAC Learning (Valiant 1984)) An algorithm A is an (α,β)-PAC learner of a

concept class Cd over Xd using hypothesis class Hd and sample size n if for all concepts c ∈
Cd , all distributions D on Xd , given an input D = (d1, . . . , dn), where di = (xi, c(xi)) with

xi drawn i.i.d. from D for all i ∈ [n], algorithm A outputs a hypothesis h ∈ Hd satisfying

Pr
[
error

D

(c,h) ≤ α
]
≥ 1 − β.

The probability is taken over the randomness of the learner A and the sample points chosen

according to D.

Mach Learn (2014) 94:401–437 409

An Algorithm A1, whose inputs are d,α,β , and a set of samples (labeled examples) D,

is a PAC learner of a concept class C = {Cd}d∈N over X = {Xd}d∈N using hypothesis class

H = {Hd}d∈N if there exists a polynomial p(·, ·, ·, ·) such that for all d ∈ N and 0 < α,β < 1,

the Algorithm A1 (d,α,β, ·) is an (α,β)-PAC learner of the concept class Cd over Xd using

hypothesis class Hd and sample size n = p(d, size(c),1/α, log(1/β)).4 If A runs in time

polynomial in d, size(c),1/α, log(1/β), we say that it is an efficient PAC learner. Also the

learner is called a proper PAC learner if H = C, otherwise it is called an improper PAC

learner.

A concept class C = {Cd}d∈N over X = {Xd}d∈N is PAC learnable using hypothesis class

H = {Hd}d∈N if there exists a PAC learner A learning C over X using hypothesis class H. If

A is an efficient PAC learner, we say that C is efficiently PAC learnable.

It is well known that improper learning is more powerful than proper learning. For ex-

ample, Pitt and Valiant (1988) show that unless RP = NP, k-term DNF are not efficiently

learnable by k-term DNF, whereas it is possible to learn a k-term DNF efficiently using

k-CNF (Valiant 1984). For more background on learning theory, see (Kearns and Vazirani

1994).

Definition 2.3 (VC-Dimension (Vapnik and Chervonenkis 1971)) Let C = {Cd} be a class

of concepts over X = {Xd}. We say that Cd shatters a point set Y ⊂ Xd if |{c(Y) : c ∈ Cd}| =
2|Y |, i.e., the concepts in Cd when restricted to Y produce all the 2|Y | possible assignments

on Y . The VC-dimension of Cd (VCDIM(Cd)) is defined as the size of a maximum point set

that is shattered by Cd , as a function of d .

Theorem 2.4 (Blumer et al. 1989) Let Cd be a concept class over Xd . There exists an (α,β)-

PAC learner that learns Cd using Cd using O((VCDIM(Cd) · log(1
α
) + log(1

β
))/α) samples.

2.3 Private learning

Definition 2.5 (Private PAC Learning (Kasiviswanathan et al. 2011)) Let d,α,β be as

in Definition 2.2 and ǫ > 0. A concept class C is privately PAC learnable using H if

there exists a learning Algorithm A1 that takes inputs ǫ, d,α,β,D, returns a hypothesis

A(ǫ, d,α,β,D), and satisfies

SAMPLE EFFICIENCY. The number of samples (labeled examples) in D is polynomial in

1/ǫ, d , size(c), 1/α, and log(1/β);

PRIVACY. For all d and ǫ,α,β > 0, algorithm A(ǫ, d,α,β, ·) is ǫ-differentially private (as

formulated in Definition 2.1);

UTILITY. For all ǫ > 0, algorithm A(ǫ, ·, ·, ·, ·) PAC learns C using H (as formulated in

Definition 2.2).

An Algorithm A1 is an efficient private PAC learner if it runs in time polynomial in 1/ǫ,

d , size(c), 1/α, log(1/β). Also the private learner is called proper if H = C, otherwise it is

called improper.

4The definition of PAC learning usually only requires that the sample complexity is polynomial in 1/β

(rather than log(1/β)). However, these two requirements are equivalent (see, e.g., Kearns and Vazirani 1994,

Sect. 4.2).

410 Mach Learn (2014) 94:401–437

Remark 2.6 The privacy requirement in Definition 2.5 is a worst-case requirement. That

is, Inequality (1) must hold for every pair of neighboring databases D,D′ (even if these

databases are not consistent with any concept in C). In contrast, the utility requirement is

an average-case requirement, where we only require the learner to succeed with high prob-

ability over the distribution of the databases. This qualitative difference between the utility

and privacy of private learners is crucial. A wrong assumption on how samples are formed

that leads to a meaningless outcome can usually be replaced with a better one with very

little harm. No such amendment is possible once privacy is lost due to a wrong assumption.

See Kasiviswanathan et al. (2011) for further discussion.

Note also that each entry di in a database D is a labeled example. That is, we protect the

privacy of both the example and its label.

Observation 2.7 The computational separation between proper and improper learning also

holds when we add the privacy constraint. That is, unless RP = NP, no proper private

learner can learn k-term DNF, whereas there exists an efficient improper private learner

that can learn k-term DNF using a k-CNF. The efficient k-term DNF learner of Valiant

(1984) uses statistical queries (SQ) (Kearns 1998), which can be simulated efficiently and

privately as shown by Blum et al. (2005), Kasiviswanathan et al. (2011).

More generally, such a gap can be shown for any concept class that cannot be properly

PAC learned, but can be efficiently learned (improperly) in the statistical queries model.

2.4 Concentration bounds

Chernoff bounds give exponentially decreasing bounds on the tails of distributions. Specif-

ically, let X1, . . ., Xn be independent random variables where Pr[Xi = 1] = p and Pr[Xi =
0] = 1 − p for some 0 < p < 1. Clearly, E[

∑
i Xi] = pn. Chernoff bounds show that the

sum is concentrated around this expected value: For every 0 < δ ≤ 1,

Pr

[∑

i

Xi ≥ (1 + δ)E

[∑

i

Xi

]]
≤ exp

(
−E

[∑

i

Xi

]
δ2/3

)
,

Pr

[∑

i

Xi ≤ (1 − δ)E

[∑

i

Xi

]]
≤ exp

(
−E

[∑

i

Xi

]
δ2/2

)
, (2)

Pr

[∣∣∣∣
∑

i

Xi −E

[∑

i

Xi

]∣∣∣∣ ≥ δ

]
≤ 2 · exp

(
−2δ2/n

)
.

The first two inequalities are known as the multiplicative Chernoff bounds (Chernoff 1952),

and the last inequality is known as the Chernoff-Hoeffding bound (Hoeffding 1963).

3 Proper learning vs. proper private learning

We begin by recalling the upper bound on the sample (database) size for private learning

from Kasiviswanathan et al. (2011). The bound in Kasiviswanathan et al. (2011) is for ag-

nostic learning, and we restate it for (non-agnostic) PAC learning using the following notion

of α-representation:

Definition 3.1 We say that a hypothesis class Hd α-represents a concept class Cd over the

domain Xd if for every c ∈ Cd and every distribution D on Xd there exists a hypothesis

h ∈ Hd such that errorD(c,h) ≤ α.

Mach Learn (2014) 94:401–437 411

Theorem 3.2 (Kasiviswanathan et al. (2011), restated) Assume that there is a hypothesis

class Hd that α/2-represents a concept class Cd . Then, for every 0 < β < 1, there exists a

private PAC learner for Cd using Hd that uses O((log(|Hd |) + log(1/β))/(ǫα)) samples,

where ǫ,α, and β are the parameters of the private learner. The learner might not be effi-

cient.

In other words, using Theorem 3.2 the number of samples that suffices for learning a con-

cept class Cd is logarithmic in the size of the smallest hypothesis class that α-represents Cd .

For comparison, the number of samples required for learning Cd non-privately is character-

ized by the VC-dimension of Cd (by the lower bound of Ehrenfeucht et al. (1989) and the

upper bound of Blumer et al. (1989)).

In the following, we will investigate private learning of the following simple concept

class. Let T = 2d and Xd = {1, . . . , T }. Define the concept class POINTd to be the set of

points over {1, . . . , T }:

Definition 3.3 (Concept Class POINTd) For j ∈ [T], define cj : [T] → {0,1} as cj (x) = 1

if x = j , and cj (x) = 0 otherwise. Furthermore, define POINTd = {cj }j∈[T].

We note that we use the set {1, . . . , T } for notational convenience only—when discussing

the concept class POINTd we never use the fact that the elements in T are integer numbers.

The class POINTd trivially α-represents itself, and hence, we get using Theorem 3.2

that it is (properly) PAC learnable using O((log(|POINTd |) + log(1/β))/(ǫα)) = O((d +
log(1/β))/(ǫα)) samples. For completeness, we give an efficient implementation of this

learner.

Lemma 3.4 There is an efficient proper private PAC learner for POINTd that uses O((d +
log(1/β))/ǫα) samples.

Proof We adapt the learner of Kasiviswanathan et al. (2011). Let POINTd = {c1, . . . , c2d }.
The learner uses the exponential mechanism of McSherry and Talwar (2007). Let D =
((x1, y1), . . . , (xm, ym)) be a database of samples (the labels yi ’s are assumed to be con-

sistent with some concept in POINTd). Define for every cj ∈ POINTd ,

q(D, cj) = −
∣∣{i : yi �= cj (xi)

}∣∣,

i.e., q(D, cj) is negative of the number of points in D misclassified by cj . The private learner

A is defined as follows: output hypothesis cj ∈ POINTd with probability proportional to

exp(ǫ · q(D, cj)/2). Since the exponential mechanism is ǫ-differentially private (McSherry

and Talwar 2007), A is ǫ-differentially private. By Kasiviswanathan et al. (2011), if m =
O((d + log(1/β))/(ǫα)), then A is also a proper PAC learner.

We now show that A can be implemented efficiently. Implementing the exponential

mechanism requires computing q(D, cj) for 1 ≤ j ≤ 2d . However, q(D, cj) is same for

all j /∈ {x1, . . . , xm} and can be computed in O(m) time, that is, q(D, cj) = qD , where

qD = −|{i : yi = 1}|. Also for any j ∈ {x1, . . . , xm}, the value of q(D, cj) can be computed

in O(m) time. Let

P =
(∑

j∈{x1,...,xm}
exp

(
ǫ · q(D, cj)/2

))
+

(
2d − m

)
exp(ǫ · qD/2).

412 Mach Learn (2014) 94:401–437

The Algorithm A1 can be efficiently implemented as the following sampling procedure:

1. For j ∈ {x1, . . . , xm}, with probability exp(ǫ · q(D, cj)/2)/P , output cj .

2. With probability (2d −m) ·exp(ǫ ·qD/2)/P , pick uniformly at random a hypothesis from

POINTd \{cx1
, . . . , cxm} and output it. �

3.1 Separation between proper learning and proper private learning

We now show that private learners may require many more samples than non-private ones.

We prove that for any proper private earner for the concept class POINTd the required num-

ber of samples is at least logarithmic in the size of the concept class, matching Theorem 3.2,

whereas there exists non-private proper learners for POINTd that use only a constant number

of samples.

To prove the lower bound, we show that a large collection of m-record databases

D1, . . . ,DN exists, with the property that every PAC learner has to output a different hy-

pothesis for each of these databases (recall that in our context a database is a collection of

labeled examples, supposedly drawn from some distribution and labeled consistently with

some target concept). As any two databases Da and Db differ on at most m entries, dif-

ferential privacy implies that a private learner must output on input Da the hypothesis that

is accurate for Db (and not accurate for Da) with probability at least (1 − β) · exp(−ǫm).

Since this holds for every pair of databases, unless m is large enough we get that the private

learner’s output on Da is, with high probability, a hypothesis that is not accurate for Da .

In Theorem 3.6, we prove a general lower bound on the sample complexity of private

learning of a class Cd by a hypothesis classes Hd that is α-minimal for Cd as defined in

Definition 3.5. In Corollary 3.8, we prove that Theorem 3.6 implies the claimed lower bound

for proper private learning of POINTd . In Lemma 3.9, we improve this lower bound for

POINTd by a factor of 1/α.

Definition 3.5 If Hd α-represents Cd , and every H
′
d �Hd does not α-represent Cd , then we

say that Hd is α-minimal for Cd .

Theorem 3.6 Let Hd be an α-minimal representation for Cd . Then, any private PAC learner

that learns Cd using Hd requires Ω((log(|Hd |) + log(1/β))/ǫ) samples, where ǫ,α, and β

are the parameters of the private learner.

Proof Let Cd be a class of concepts over the domain Xd and let Hd be α-minimal for Cd .

Since for every h ∈ Hd , the class Hd \ {h} does not α-represent Cd , we get that there exists a

concept ch ∈ Cd and a distribution Dh on Xd such that on inputs drawn from Dh and labeled

by ch, every PAC learner (that learns Cd using Hd) has to output h with probability at least

1 − β .

Let A be a private learner that learns Cd using Hd , and suppose A uses m samples. We

next show that for every h ∈ Hd there exists a database Dh ∈ Xm
d on which A has to output h

with probability at least 1 − β . To see that, note that if A is run on m examples chosen i.i.d.

from the distribution Dh and labeled according to ch, then A outputs h with probability at

least 1 − β (where the probability is taken over the randomness of A and the sample points

chosen according to D). Hence, a collection of m labeled examples over which A outputs h

with probability at least 1 − β exists, and Dh is set to contain these m samples.

Take h,h′ ∈ Hd such that h �= h′ and consider the two corresponding databases Dh and

Dh′ with m entries each. Clearly, they differ in at most m entries, and hence, we get by the

Mach Learn (2014) 94:401–437 413

differential privacy of A that

Pr
[
A(Dh) = h′] ≥ exp(−ǫm) · Pr

[
A(Dh′) = h′]

≥ exp(−ǫm) · (1 − β).

Since the above inequality holds for every two databases corresponding to a pair of hypothe-

ses in H, we fix an arbitrary h ∈ H and get,

Pr
[
A(Dh) �= h

]
= Pr

[
A(Dh) ∈ Hd \ {h}

]
=

∑

h′∈Hd\{h}
Pr

[
A(Dh) = h′]

≥ (|Hd | − 1) · exp(−ǫm) · (1 − β).

On the other hand, we chose Dh such that Pr[A(Dh) = h] ≥ 1−β , equivalently, Pr[A(Dh) �=
h] ≤ β . Therefore, (|Hd | − 1) · exp(−ǫm) · (1 − β) ≤ β . Solving the last inequality for m,

we get m = Ω((log(|Hd |) + log(1/β))/ǫ) as required. �

Using Theorem 3.6, we now prove a lower bound on the number of samples needed for

proper private learning concept class POINTd .

Proposition 3.7 POINTd is α-minimal for itself for every α < 1.

Proof Clearly, POINTd α-represents itself. To show minimality, consider a subset H′
d �

POINTd , where ci /∈ H
′
d . Under the distribution D that chooses i with probability one,

errorD(ci, cj) = 1 for all j �= i. Hence, H′
d does not α-represent POINTd . �

The VC-dimension of POINTd is one.5 It is well known that a standard (non-private)

proper learner uses approximately VC-dimension number of samples to learn a concept

class (Blumer et al. 1989). In contrast, we get that far more samples are needed for any

proper private learner for POINTd . The following corollary follows directly from Theo-

rem 3.6 and Proposition 3.7:

Corollary 3.8 Every proper private PAC learner for POINTd requires Ω((d+ log(1/β))/ǫ)

samples.

We now show that the lower bound for POINTd can be improved by a factor of 1/α,

matching (up to constant factors) the upper bound in Theorem 3.2.

Lemma 3.9 Every proper private PAC learner for POINTd requires Ω((d + log(1/β))/

(ǫα)) samples.

Proof Define the distributions Di (where 2 ≤ i ≤ T) on Xd as follows: point 1 is picked

with probability 1 − α and point i is picked with probability α. The support of Di is on

points 1 and i.

We say a database D = (d1, . . . , dm) where dj = (xj , yj) for all j ∈ [m] is good for

distribution Di if at most 2αm points from x1, . . . , xm equal i. Let Di be a database

5Note that every singleton {j} where j ∈ [T] is shattered by POINTd as cj (j) = 1 and cj ′ (j) = 0 for all

j ′ �= j . No set of two points {j, j ′} is shattered by POINTd as cj ′′ (j) = cj ′′ (j ′) = 1 for no j ′′ ∈ [T].

414 Mach Learn (2014) 94:401–437

where x1, . . . , xm are i.i.d. samples from Di with yj = ci(xj) for all j ∈ [m]. By Cher-

noff bound, the probability that Di is good for distribution Di is at least 1 − exp(−αm/3).

Let A be a proper private learner. On Di , A has to output h = ci with probability at

least 1 − β (otherwise, if A outputs some h = cj , where j �= i, then errorDi
(ci, h) =

errorDi
(ci, cj) = Prx∼Di

[ci(x) �= cj (x)] > α, thus, violating the PAC learning condition for

accuracy). Hence, the probability that either Di is not good or A fails to return ci on Di is

at most exp(−αm/3) + β . Therefore, with probability at least 1 − β − exp(−αm/3), the

database Di is good and A returns ci on Di . Thus, for every i there exists a database Di

that is good for Di such that A returns ci on Di with probability at least 1 − Γ , where

Γ = β + exp(−αm/3).

Fix such databases D2, . . . ,DT . For every j , the databases D2 and Dj differ in at most

4αm entries (since each of them contains at most 2αm entries that are not 1). Therefore, by

the guarantees of differential privacy,

Pr
[
A(D2) ∈ {c3, . . . , cT }

]
≥ (T − 2) exp(−4ǫαm)(1 −Γ) =

(
2d − 2

)
exp(−4ǫαm)(1 −Γ).

Algorithm A1 on input D2 outputs c2 with probability at least 1 − Γ . Therefore,

(
2d − 2

)
exp(−4ǫαm)(1 − Γ) ≤ Γ.

Solving for m, we get the claimed bound. �

We conclude this section showing that every hypothesis class H that α-represents

POINTd should have at least d hypotheses. Therefore, if we use Theorem 3.2 to learn

POINTd we need Ω(logd) samples.

Lemma 3.10 Let α < 1/2. |H| ≥ d for every hypothesis class H that α-represents POINTd .

Proof Let H be a hypothesis class with |H| < d . Consider a table whose T = 2d columns

correspond to the possible 2d inputs 1, . . . , T , and whose |H| rows correspond to the hy-

potheses in H. The (i, j)th entry in the table is 0 or 1 depending on whether the ith hy-

pothesis gives 0 or 1 on input j . Since |H| < d = log(T), at least two columns j �= j ′ are

identical, that is, h(j) = h(j ′) for every h ∈ H. Consider the concept cj ∈ POINTd (defined

as cj (x) = 1 if x = j , and 0 otherwise), and the distribution D with probability mass 1/2 on

both j and j ′. We get that errorD(cj , h) ≥ 1/2 > α for all h ∈ H (since for any hypothesis

h(j) = h(j ′), the hypothesis either errs on j or on j ′). Therefore, H does not α-represent

POINTd . �

4 Proper private learning vs. improper private learning

We now use POINTd to show a separation between proper and improper private PAC learn-

ing. One-way of achieving a smaller sample complexity is to use Theorem 3.2 to improperly

learn POINTd with a hypothesis class H that α-represents POINTd , but is of size smaller

than |POINTd |. By Lemma 3.10, we know that every such H should have at least d hy-

potheses.

In Sect. 4.1, we show that there does exist a H with |H| = O(d) that α-represents

POINTd . This immediately gives a separation—proper private learning POINTd requires

Mach Learn (2014) 94:401–437 415

Ωα,β,ǫ(d) samples, whereas POINTd can be improperly privately learned using Oα,β,ǫ(logd)

samples.6

We conclude that α-representing hypothesis classes can, hence, be a natural and power-

ful tool for constructing efficient private learners. One may even be tempted to think that

no better learners exist, and furthermore, that the sample complexity of private learning is

characterized by the size of the smallest hypothesis class that α-represents the concept class.

Our second result, presented in Sect. 4.2, shows that this is not the case, and in fact, other

techniques yield a much more efficient learner using only Oα,β,ǫ(1) samples, and hence

demonstrating the strongest possible separation between proper and improper private learn-

ers. The reader interested only in the stronger result may choose to skip directly to Sect. 4.2.

4.1 Improper private learning of POINTd using Oα,β,ǫ(logd) samples

We next construct a private learner applying the construction of Theorem 3.2 to the class

POINTd . For that we (randomly) construct a hypothesis class Hd that α-represents the con-

cept class POINTd , where |Hd | = Oα(d). Lemma 3.10 shows that this is optimal up to con-

stant factors. In the rest of this section, a set A ⊆ [T] represents the hypothesis hA, where

hA(i) = 1 if i ∈ A and hA(i) = 0 otherwise.

To demonstrate the main idea of our construction, we begin with a construction of a

hypothesis class Hd = {A1, . . . ,Ak} that α-represents POINTd , where k = O(
√

T /α) =
O(

√
2d/α) (this should be compared to the size of POINTd which is 2d). Every Ai ∈ Hd is

a subset of {1, . . . , T }, such that

(1) For every j ∈ {1, . . . , T } there are more than 1/α sets in H that contain j ; and

(2) For every 1 ≤ i1 < i2 ≤ k, |Ai1 ∩ Ai2 | ≤ 1.

We next argue that the class Hd α-represents POINTd . For every concept cj ∈ POINTd

there are hypotheses A1, . . . ,Ap ∈ Hd that contain j (where p = ⌊1/α⌋ + 1) and are oth-

erwise disjoint (that is, the intersection between any two sets Ai1 and Ai2 is exactly j).

Fix a distribution D. For every Ai , errorD(cj ,Ai) = PrD[Ai \ {j}]. Since there are more

than 1/α such sets and the sets Ai \ {j} are disjoint, there exists at least one set such that

errorD(cj ,Ai) ≤ α. Thus, Hd α-represents the concept class POINTd .

We want to show that there is a hypothesis class, whose size is O(
√

T /α), that satisfies

the above two requirements. As an intermediate step, we show a construction of size O(T).

We consider a projective plane with T points and T lines (each line is a set of points)

such that for any two points there is exactly one line containing them and for any two lines

there is exactly one point contained in both of them. Such projective plane exists whenever

T = q2 + q + 1 for a prime power q (see, e.g., Hughes and Piper 1973). Furthermore, the

number of lines passing through each point is q + 1. If we take the lines as the hypothesis

class for q ≥ 1/α, then they satisfy the above requirements, thus, they α-represent POINTd .

However, the number of hypotheses in the class is T and no progress was made.

We modify the above projective plane construction. We start with a projective plane with

2T points and choose a subset of the lines: We choose each line at random with probabil-

ity O(1/(
√

T α)). Since these lines are part of the projective plane, they satisfy the above

requirement (2). It can be shown that with positive probability for at least half of the j ’s

requirement (1) is satisfied and the number of chosen lines is O(
√

T /α). We choose such

6Remember, the notation Oα,β,ǫ(g(n)) is a shorthand for O(h(α,β, ǫ) · g(n)) for some non-negative func-

tion h. Similarly, the notation Ωα,β,ǫ(g(n)).

416 Mach Learn (2014) 94:401–437

lines, eliminate points that are contained in less than 1/α chosen lines, and get the required

construction with T points and O(
√

T /α) lines. The details of the last steps are omitted. We

next show a much more efficient construction based on the above idea.

Lemma 4.1 For every α < 1, there is a hypothesis class Hd that α-represents POINTd such

that |Hd | = O(d/α2).

Proof We will show how to construct a hypothesis class Hd = {S1, . . . , Sk}, where every

Si ∈ Hd is a subset of {1, . . . , T } and for every j

There are p = logT · (1 + ⌊1/α⌋) sets A1, . . . ,Ap in Hd that contain j such that

for every b �= j, the point b is contained in less than logT of the sets A1, . . . ,Ap.
(3)

First we show that Hd α-represents POINTd . Fix a concept cj ∈ POINTd and a distribu-

tion D, and consider hypotheses A1, . . . ,Ap in Hd that contain j . Since every point in these

hypotheses is contained in less than logT sets,

p∑

i=1

Pr
D

[
Ai \ {j}

]
< logT · Pr

D

[
p⋃

i=1

(
Ai \ {j}

)
]

≤ logT .

Thus, there exists at least one set Ai such that errorD(cj ,Ai) = PrD[Ai \{j}] ≤ logT/p < α.

This implies that Hd α-represents the concept class POINTd .

We next show how to construct Hd . Let k = 8ep2/ logT (that is, k = O(logT/α2)). We

choose k random subsets of {1, . . . ,2T } of size 4pT/k. We will show that a point j satisfies

(3) with probability at least 3/4. We assume d ≥ 16 (and hence, p ≥ 16 and T ≥ 16).

Fix j . The expected number of sets that contain j is k · (4pT/k)/(2T) = 2p, thus, by

Chebyshev inequality, the probability that less than p sets contain j is less than 2/p ≤ 1/8.

We call this event BAD1.

Let j be such that there are at least p sets that contain j and let A1, . . . ,Ap be p of

them. Notice that A1 \ {j}, . . . ,Ap \ {j} are random subsets of {1, . . . ,2T } \ {j} of size

(4pT/k) − 1. Now fix b �= j . The probability that a random subset of {1, . . . ,2T } \ {j} of

size (4pT/k) − 1 contains b is (4pT/k − 1)/(2T − 1) < 2p/k. For logT random sets of

size (4pT/k)−1, the probability that all of them contain b is less than (2p/k)logT . Thus, the

probability that there is a b ∈ {1, . . . ,2T }, where b �= j , and logT sets among A1, . . . ,Ap

such that these logT sets contains b is less than

2T ·
(

p

logT

)
(2p/k)logT ≤ 2T · (ep/ logT)logT (2p/k)logT

(
where e = exp(1)

)

= 2T ·
(
2ep2/(k logT)

)logT
.

By the choice of k, 2ep2/(k logT) = 1/4, thus, the above probability is at most 2T ·
(1/4)logT = 2/T ≤ 1/8. We call this event BAD2.

To conclude, the probability that j does not satisfy (3) is the probability that either BAD1

or BAD2 happens which is at most 1/4. Therefore, the expected number of j ’s that do

not satisfy (3) is less than T/2. By Markov inequality, the probability that more than T

points j do not satisfy (3) is less than 1/2. We take k = O(logT/α2) subsets of {1, . . . ,2T },
denoted S1, . . . , Sk , such that at least T points j satisfy (3). By the probabilistic argument

above, such sets exist. Let V be a set of size T of the points that satisfy (3), and define

Mach Learn (2014) 94:401–437 417

Hd = {S1 ∩ V, . . . , Sk ∩ V }. Finally, by a simple renaming, we can assume that Hd contains

subsets of {1, . . . , T } as required. �

From Lemma 4.1 and Theorem 3.2 we get:

Theorem 4.2 There exists an improper private PAC learner for POINTd that uses

O((logd + log 1
α

+ log 1
β
)/ǫα) samples, where ǫ,α, and β are the parameters of the private

learner.

There is a difference between the use of improper learning in Theorem 4.2 and typical

use of improper learning in non-private settings. Typically, a non-private learner uses a hy-

pothesis class that is larger than the size of concept class. This larger class enables learning

in polynomial time. We get an improved sample complexity by learning using a hypothesis

class whose size is smaller than the concept class.

4.2 Improper private learning of POINTd using Oα,β,ǫ(1) samples

We now show a stronger separation result, namely, that POINTd can be privately (and effi-

ciently) learned by an improper learner using just Oα,β,ǫ(1) samples. We begin by present-

ing a non-private improper PAC learner A1 for POINTd that succeeds with only constant

probability. Roughly, A1 applies a simple proper learner for POINTd , and then modifies

its outcome by adding random “noise”. We then use sampling to convert A1 into a private

learner A2; like A1 the probability that A2 succeeds in learning POINTd is only a constant.

Later we amplify the success probability of A2 to get a private PAC learner. Both A1 and

A2 are inefficient as they output hypotheses with exponential description length. However,

using a pseudorandom function it is possible to compress the outputs of A1 and A2, and

achieve a private learning algorithms whose running time is efficient. This is explained in

Sect. 4.2.1.

Algorithm A2 described below is ǫ⋆-differentially private, where ǫ⋆ = ln(4) is a fixed

constant. To construct an ǫ-differentially private algorithm for every ǫ, we describe a trans-

formation in Lemma 4.4 that takes a bigger sample and replaces some samples with ⋆ and

executes A2 on the resulting sample. Therefore, we assume that some of the sample points

given to A1 and A2 are ⋆.

Algorithm A1 Given a sample z1, . . . , zm, where every zi is either a labeled example (xi, yi)

or ⋆, Algorithm A1 performs the following:

1. If z1, . . . , zm is not consistent with any concept in POINTd , return ⊥ (this happens only

if for two indices i, j ∈ [m] such that zi = (xi, yi) and zj = (xj , yj) either (1) xi �= xj

and yi = yj = 1 or (2) xi = xj and yi �= yj).

2. If yi = 0 for all i ∈ [m] such that zi �= ⋆, then let c = 0 (the all zero hypothesis); other-

wise, let c be the (unique) hypothesis from POINTd that is consistent with the labeled

examples in the sample.

3. Modify c at random to get a hypothesis h: for each x ∈ [T] independently let h(x) =
1 − c(x) with probability α/8 and, otherwise let h(x) = c(x). Return h.

We next argue that if the sample z1, . . . , zm contains at least 2 ln(4)/α examples zi =
(xi, yi) such that each xi is drawn i.i.d. according to a distribution D on [T], and the ex-

amples are labeled consistently according to some cj ∈ POINTd , then Pr[errorD(cj , c) ≥

418 Mach Learn (2014) 94:401–437

α/2] ≤ 1/4. If the examples are labeled consistently according to some cj �= 0, then c �= cj

only if (j,1) is not in the sample and in this case c = 0. If Prx∼D[x = j] < α/2 and

(j,1) is not in the sample, then c = 0 and errorD(cj ,0) < α/2. Otherwise Prx∼D[x = j] ≥
α/2; thus, the probability that all examples of the form (xi, yi) are not (j,1) is at most

((1 − α/2)2/α)ln(4) ≤ 1/4 (as there are at least 2 ln(4)/α such examples).

To see that A1 PAC learns POINTd (with confidence at least 1/2) note that,

Eh

[
error

D

(c,h)
]
= Eh Ex∼D

[∣∣h(x) − c(x)
∣∣] = Ex∼D Eh

[∣∣h(x) − c(x)
∣∣] = α

8
,

and hence, using Markov’s inequality,

Pr
h

[
error

D

(c,h) ≥ α/2
]
≤ 1/4.

Combining this with Pr[errorD(cj , c) ≥ α/2] ≤ 1/4 and errorD(cj , h) ≤ errorD(cj , c) +
errorD(c,h), implies that Pr[errorD(cj , h) ≥ α] ≤ 1/2.

Algorithm A2 We now modify the learner A1 to get a private learner A2 (a similar idea

was used in Kasiviswanathan et al. (2011) for learning parity functions). Given a sample

z1, . . . , zm′ , where every zi is either a labeled example (xi, yi) or ⋆, Algorithm A2 performs

the following:

1. With probability α/8, return ⊥.

2. Construct a set S ⊆ [m′] by picking each element of [m′] with probability p = α/4.

3. Run the non-private learner A1 on the examples indexed by S.

Claim 4.3 Let α < 1/2, ǫ⋆ = ln(4), and β⋆ = 3/4. Algorithm A2 is an ǫ⋆-differentially

private (α,β⋆)-PAC learner for the class POINTd provided that it is given a sample which

contains at least 32 ln(4)/α2 labeled examples (i.e., m′ ≥ 32 ln(4)/α2).

Proof We first show that A2 PAC learns POINTd with confidence at least β⋆ = 3/4. Let S

be the set chosen by A2. The expected number of samples is at least p · (32 ln(4))/α2 =
8 ln(4)/α. By Chernoff bound, the probability that the sample indexed by S contains less

than 2 ln(4)/α (in fact, 4 ln(4)/α) samples is less than exp(− ln(4)/α) < 1/16 (since A2

gets at least 32 ln(4)/α2 labeled examples and α < 1/2). Algorithm A2 can err only when

either A1 does not get 2 ln(4)/α labeled examples, or when A1 errs, or when A2 returns ⊥
in Step (1). Therefore, we get that A2 PAC learns POINTd with accuracy parameter α′ = α

and confidence parameter β ′ = 1/16 + 1/2 + α/8 ≤ 3/4.

We next show that A2 is ǫ⋆-differentially private. Let D,D′ be two neighboring

databases, and assume that they differ on the ith entry. Recall that after sampling S, one

of them can be consistent with some cj , while the other might not be consistent. First let us

analyze the probability of A2 outputting ⊥:

Pr[A2(D) =⊥]
Pr[A2(D′) =⊥] = p · Pr[A2(D) =⊥ | i ∈ S] + (1 − p) · Pr[A2(D) =⊥ | i /∈ S]

p · Pr[A2(D′) =⊥ | i ∈ S] + (1 − p) · Pr[A2(D′) =⊥ | i /∈ S]

≤ p · 1 + (1 − p) · Pr[A2(D) =⊥ | i /∈ S]
p · 0 + (1 − p) · Pr[A2(D′) =⊥ | i /∈ S]

= p

(1 − p) · Pr[A2(D′) =⊥ | i /∈ S] + 1 ≤ 8p

α(1 − p)
+ 1,

Mach Learn (2014) 94:401–437 419

where the last equality follows by noting that if i /∈ S then A2 is equally likely to output ⊥
on D and D′, and the last inequality follows as ⊥ is returned with probability α/8 in Step (1)

of Algorithm A2.

For the more interesting case, where A2 outputs a hypothesis h, we get:

Pr[A2(D) = h]
Pr[A2(D′) = h] = p · Pr[A2(D) = h | i ∈ S] + (1 − p) · Pr[A2(D) = h | i /∈ S]

p · Pr[A2(D′) = h | i ∈ S] + (1 − p) · Pr[A2(D′) = h | i /∈ S]

≤ p · Pr[A2(D) = h | i ∈ S] + (1 − p) · Pr[A2(D) = h | i /∈ S]
p · 0 + (1 − p) · Pr[A2(D′) = h | i /∈ S]

= p

1 − p
· Pr[A2(D) = h | i ∈ S]

Pr[A2(D) = h | i /∈ S] + 1,

where the last equality uses the fact that if i /∈ S then A2 is equally likely to output h on

D and D′. If in D the ith row is ⋆, then Pr[A2(D) = h | i ∈ S] = Pr[A2(D) = h | i /∈ S] =
Pr[A2(D

′) = h | i /∈ S], and the above ratio is bounded by p/(1 − p) + 1 = 1/(1 − α/4) <

4/3 < eǫ⋆
.

To complete the proof, we need to bound the ratio of Pr[A2(D) = h | i ∈ S] to

Pr[A2(D) = h | i /∈ S] when zi = (xi, yi).

Pr[A2(D) = h | i ∈ S]
Pr[A2(D) = h | i /∈ S]

=
∑

R⊆[m′]\{i} Pr[A2(D) = h | S = R ∪ {i}] · Pr[A2 selects R from [m′] \ {i}]
∑

R⊆[m′]\{i} Pr[A2(D) = h | S = R] · Pr[A2 selects R from [m′] \ {i}]

≤ max
R⊆[m′]\{i}

Pr[A2(D) = h | S = R ∪ {i}]
Pr[A2(D) = h | S = R] . (4)

In the max in (4), we only need to consider sets R such that the sample labeled by the

elements in R is consistent, that is, Pr[A2(D) = h | S = R] > 0. Now having or not having

access to (xi, yi) can only affect the choice of h(xi), and since A1 flips the output with

probability α/8, we get

max
R⊆[m′]\{i}

Pr[A2(D) = h | S = R ∪ {i}]
Pr[A2(D) = h |S = R] ≤ 1 − α/8

α/8
≤ 8

α
.

Putting everything together, we get

Pr[A2(D) = h]
Pr[A2(D′) = h] ≤ 8p

α(1 − p)
+ 1 = 8

(4 − α)
+ 1 < 3 + 1 = eǫ⋆

.
�

Algorithm A2 is ǫ⋆-differentially private for some fixed ǫ⋆. We reduce ǫ⋆ to any desired

ǫ using the following lemma (implicit in Kasiviswanathan et al. (2011)). In this lemma,

we assume that the learning algorithm can handle “undefined entries”, i.e., entries of the

form ⋆.7

7These ⋆ entries cannot be simply removed as the question if two databases are neighbors depends on the

locations of the ⋆’s.

420 Mach Learn (2014) 94:401–437

Lemma 4.4 Let A be an ǫ⋆-differentially private algorithm. Construct an algorithm B that

on input a database D = (d1, . . . , dn) constructs a new database Ds whose ith entry is

di with probability f (ǫ, ǫ⋆) = (exp(ǫ) − 1)/(exp(ǫ⋆) + exp(ǫ) − exp(ǫ − ǫ⋆) − 1) and ⋆

otherwise, and then runs A on Ds . Then, B is ǫ-differentially private.

Proof Let D,D′ be neighboring databases, and assume they differ on the ith entry. Let

S ⊆ [n] denote the indices of the random set of entries that are not changed to ⋆. Let q =
f (ǫ, ǫ⋆). Since D and D′ differ in just the ith entry, for any outcome t , Pr[A(Ds) = t |i /∈
S] = Pr[A(D′

s) = t |i /∈ S]. Thus,

Pr[B(D) = t]
Pr[B(D′) = t]

= q · Pr[A(Ds) = t |i ∈ S] + (1 − q) · Pr[A(Ds) = t |i /∈ S]
q · Pr[A(D′

s) = t |i ∈ S] + (1 − q) · Pr[A(Ds) = t |i /∈ S]

=
∑

R⊆[n]\{i} Pr[S \ {i} = R] · (q · Pr[A(Ds) = t |S = R ∪ {i}] + (1 − q) · Pr[A(Ds) = t |S = R])
∑

R⊆[n]\{i} Pr[S \ {i} = R] · (q · Pr[A(D′
s) = t |S = R ∪ {i}] + (1 − q) · Pr[A(Ds) = t |S = R])

≤ max
R⊆[n]\{i}

q · Pr[A(Ds) = t |S = R ∪ {i}] + (1 − q) · Pr[A(Ds) = t |S = R]
q · Pr[A(D′

s) = t |S = R ∪ {i}] + (1 − q) · Pr[A(Ds) = t |S = R]

≤ max
R⊆[n]\{i}

q · exp(ǫ⋆) · Pr[A(Ds) = t |S = R] + (1 − q) · Pr[A(Ds) = t |S = R]
q · exp(−ǫ⋆) · Pr[A(Ds) = t |S = R] + (1 − q) · Pr[A(Ds) = t |S = R]

= 1 + q · (exp(ǫ⋆) − 1)

1 − q · (1 − exp(−ǫ⋆))
= exp(ǫ).

The last inequality follows because by the guarantees of differential privacy

Pr
[
A(Ds) = t |S = R ∪ {i}

]
≤ exp

(
ǫ⋆

)
· Pr

[
A(Ds) = t |S = R ∪ ∅

]
,

and

Pr
[
A

(
D′

s

)
= t |S = R ∪ {i}

]
≥ exp

(
−ǫ⋆

)
· Pr

[
A

(
D′

s

)
= t |S = R ∪ ∅

]

= exp
(
−ǫ⋆

)
· Pr

[
A(Ds) = t |S = R ∪ ∅

] (
as R ⊆ [n] \ {i}

)
.

Therefore, B is an ǫ-differentially private algorithm. �

Claim 4.5 Let α < 1/2, 0 < β ≤ 1 and 0 < ǫ < 1. There exists an ǫ-differentially pri-

vate (α,β)-PAC learner for the class POINTd which uses a sample of size poly(1/ǫ,1/α,

log(1/β)).

Proof We first apply the transformation described in Lemma 4.4 on Algorithm A2. Call the

resulting Algorithm A3. In this case ǫ⋆ = ln(4) and

f
(
ǫ, ǫ⋆

)
= exp(ǫ) − 1

exp(ǫ⋆) + exp(ǫ) − exp(ǫ − ǫ⋆) − 1
> ǫ/6

for ǫ < 1 (since exp(ǫ) − 1 ≥ ǫ). By Chernoff bound, if we take a sample of size

384 ln(4)/(ǫα2) and choose each example with probability at least ǫ/6, then with proba-

bility at least 1 − exp(−32 ln(4)) the resulting sample size is at least 32 ln(4)/α2. Now if

Mach Learn (2014) 94:401–437 421

given 32 ln(4)/α2 samples, A2 returns a hypothesis with error at most α with probability

at least 1/4. Therefore, the total probability that A2 returns a hypothesis with error greater

than α is at most exp(−32 ln(4)) + 3/4 (the first term comes from A2 not getting enough

samples and the second term comes from A2 returning a hypothesis with error greater than

α even after getting enough samples). Thus, the algorithm resulting from the transformation

described in Lemma 4.4 returns a hypothesis with error at most α with probability at least

1 − (exp(−32 ln(4)) + 3/4) > 1/5 (i.e., confidence parameter of the above learner is 4/5).

We next privately boost the confidence parameter of the learner from 4/5 to any value

β > 0 similar to Kasiviswanathan et al. (2011). We execute N = log5/4(5/β) times algo-

rithm A3 with accuracy α/8 and disjoint samples; we get N hypotheses Hyp = {h1, . . . , hN }.
With probability at least 1 − (4/5)N = 1 − β/5 at least one of the hypotheses has error less

than α/8. We need to privately choose such a hypothesis. To achieve this goal we take a

fresh sample of size m = 24 ln(3/β2)/(ǫα), compute the mistake of each hypothesis on this

sample, and use the exponential mechanism of McSherry and Talwar (2007) to choose the

hypothesis. Specifically, let mi be the number of errors that hypothesis hi has on the sample;

return the hypothesis hi with probability

exp(−ǫmi/2)
∑N

j=1 exp(−ǫmj/2)
.

Changing one example can reduce mi by at most 1 and increase mj by at most one for every

i �= j (thus, increasing
∑N

j=1 exp(−ǫmj/2) by at most exp(−ǫ/2)); therefore the selection

of the hypothesis is ǫ-differentially private.

We next argue that with probability at least 1 − β the selected hypothesis hi has error

at most α. With probability at least 1 − β/5, at least one of the hypotheses from Hyp has

error less than α/8; by Chernoff bound with probability at least 1−β2/3 this hypothesis has

empirical error8 at most α/4. Let us call E1 the event that there exists a hypothesis with error

less than α/8 and empirical error less than α/4 in Hyp. Event E1 happens with probability

at least (1 − β/5)(1 − β2/3) > 1 − (β/5 + β2/3).

On the other hand, the probability that a hypothesis hj that has error greater than α has

empirical error ≤ α/2 is less than β2/3. By the union bound, the probability that there is

such hypothesis in Hyp is at most β/3 (since N ≤ 1/β for β ≤ 0.01). Let us call E2 the event

that all hypotheses in Hyp with error greater than α have empirical error greater than α/2.

Event E2 happens with probability at least 1 − β/3.

Conditioned on E1, the probability that a hypothesis with empirical error ≥ α/2 is se-

lected by the exponential mechanism is at most

exp(−ǫαm/4)
∑N

j=1 exp(−ǫmj/2)
≤ exp(−ǫαm/4)

exp(−ǫαm/8)
= exp(−ǫαm/8).

The first inequality holds because conditioned on E1 there exists a hypothesis (say, hℓ) in

Hyp with empirical error less than α/4. Therefore, mℓ ≤ (α/4)m, and

N∑

j=1

exp(−ǫmj/2) ≥ exp(−ǫmℓ/2) ≥ exp(−ǫαm/8).

8Given an input D = (d1, . . . , dm) where each di = (xi , c(xi)) is a labeled example, the empirical error of h

is 1
m |{i : h(xi) �= c(xi)}|.

422 Mach Learn (2014) 94:401–437

Since m = 24 ln(3/β)/(ǫα), the value of exp(−ǫαm/8) is at most β3/27. Therefore, con-

ditioned on E1 and E2, the probability that a specific hypothesis with error greater than α is

selected by the exponential mechanism is at most β3/27, and by the union bound, the prob-

ability that a hypothesis with error greater than α is selected by the exponential mechanism

is at most N ·β3/27 ≤ β2/27. By removing all the conditioning, we get that the selected hy-

pothesis has error greater than α with probability at most β/5+β2/3+β/3+β2/27 ≤ β . �

4.2.1 Making the learner efficient

The outcome of A1 (hence, A2) is a hypothesis whose description is exponentially long

(since it contains a list of the indices where the output was flipped). We now complete our

construction by compressing this description using a pseudorandom function. The running

time of the resulting algorithm is polynomial and the hypothesis it returns has a short de-

scription.

We use a slightly non-standard definition of (non-uniform) pseudorandom functions from

binary strings of size d to bits; these pseudorandom functions can be easily constructed given

standard pseudorandom functions (which in turn can be constructed under standard assump-

tions (Goldreich 2001)). Roughly speaking, a collection of functions is pseudorandom if

it cannot be distinguished from truly random functions. We start by defining the random

functions in our definition.

Definition 4.6 Define H
q

d : {0,1}d → {0,1} as a random variable, where each value H
q

d (x)

for x ∈ {0,1}d is selected i.i.d. to be 1 with probability q and 0 otherwise.

We consider a (non-uniform) polynomial-time distinguishing algorithm (represented by a

circuit) Cd that can query a function in polynomially many points. Any such algorithm

should not be able to distinguish if the answers of the function are random or are answered

according to a random function from the pseudorandom family. Formally,

Definition 4.7 Let F = {Fd}d∈N be a function ensemble, where for every d , Fd is a set of

functions from {0,1}d to {0,1}. We say that the function ensemble F is q-biased pseudo-

random if for every family of polynomial-size circuits with oracle access {Cd}d∈N, every

polynomial p(·), and all sufficiently large d’s,

∣∣Pr
[
C

f

d

(
1d

)
= 1

]
− Pr

[
C

H
q
d

d

(
1d

)
= 1

]∣∣ <
1

p(d)
. (5)

In the above inequality, the first probability is taken over the random choice of f with uni-

form distribution from Fd , and the second probability is taken over the random variable H
q

d .

For convenience, for d ∈N, we consider Fd as a set of functions from {1, . . . , T } to {0,1},
where T = 2d . We set q = α/4 in the above definition. Using an α/4-biased pseudorandom

function ensemble F (such functions can be constructed from standard pseudorandom func-

tions (Goldreich 2001)), we change Step (3) of Algorithm A1 as follows:

(3)′ If c = 0, let h be a random function from Fd . Otherwise (i.e., c = cj for some j ∈ [T]),
let h be a random function from Fd subject to h(j) = 1. Return h.

Call the resulting modified Algorithm A4. We next show that A4 is a PAC learner. Note that

there exists a negligible function negl such that for large enough d ,

∣∣Pr
[
h(x) = 1|h(j) = 1

]
− α/4

∣∣ ≤ negl(d)

Mach Learn (2014) 94:401–437 423

for every x ∈ {1, . . . , T } (as otherwise, we get a non-uniform distinguisher for the ensemble

F). Thus,

Eh∈Fd

[
error

D

(c,h)
]
= Eh∈Fd

Ex∼D

[∣∣h(x) − c(x)
∣∣]

≤ Eh∈Fd
Ex∼D

[
h(x)

]
= Ex∼D Eh∈Fd

[
h(x)

]
≤ α

4
+ negl(d).

The first inequality follows as for all x ∈ [T], h(x) ≥ c(x) by our restriction on the choice

of h. Thus, by the same arguments as for A1, Algorithm A4 is a PAC learner.

We next modify Algorithm A2 by executing the learner A4 instead of the learner A1. Call

the resulting modified Algorithm A5. To see that Algorithm A5 preserves differential privacy

it suffices to give a bound on (4). By comparing the case where S = R with S = R ∪ {i}, we

get that the probability for a hypothesis h can increase only if c = 0 when S = R, and c = ci

when S = R ∪ {i}. Therefore,

max
R⊆[m′]\{i}

Pr[A5(D) = h | S = R ∪ {i}]
Pr[A5(D) = h |S = R] ≤ 1

(α/4) − negl(d)
≤ 1

(α/8)
= 8

α
.

Applying the same steps as in the proof of Claim 4.5, we get the following result.

Theorem 4.8 There exists an efficient improper private PAC learner for POINTd that uses

Oα,β,ǫ(1) samples, where ǫ,α, and β are the parameters of the private learner.

Lemma 3.9 and Theorem 4.8 give the following separation:

Theorem 4.9 Every proper private PAC learner for POINTd requires Ω((d + log(1/β))/

(ǫα)) samples, whereas there exists an efficient improper private PAC learner that can learn

POINTd using Oα,β,ǫ(1) samples. Here, ǫ,α, and β are the parameters of the private learn-

ers.

4.3 Restrictions on the hypothesis class of private learners with low sample complexity

We conclude this section by showing that every (improper) private learner for POINTd us-

ing o(d) samples must return hypotheses that evaluate to one on many points (in contrast,

every hypothesis in POINTd returns the value one on just one input). This explains why our

algorithms for POINTd that use o(d) samples return “complex” hypotheses.

Definition 4.10 (weight) The weight of a hypothesis h is the number of points for which it

returns the value one, i.e., |{i : h(i) = 1}|.

Theorem 4.11 There exists no private PAC learner for POINTd with sample complexity

oα,β,ǫ(d) that for every distribution returns, with probability at least half, hypotheses with

weight 2oα,β,ǫ (d) (where the probability is taken over the randomness of the learner and the

sample points chosen according to the distribution). Here, ǫ,α, and β are the parameters of

the private learner.

Proof In the proof assume the contrary, i.e., there exists a private learner that for every

distribution returns hypotheses with weight 2oα,β,ǫ (d) with probability at least half. We prove

424 Mach Learn (2014) 94:401–437

that, under this assumption, there is a proper private learning algorithm for POINTd with

sample complexity oα,β,ǫ(d), in contradiction with Lemma 3.9.

Let ct ∈ POINTd be the target concept. Assume for contradiction that there exists an ǫ-

differentially private (α,β)-PAC learner A′ for POINTd with sample complexity oα,β,ǫ(d)

that for every distribution returns, with probability at least 1/2, hypotheses of weight less

than z, for z = 2oα,β,ǫ (d) (where the probability is taken over the randomness of A′ and the

sample points chosen according to the distribution).

Let D denote the underlying sample distribution. Construct a proper learner A (for

POINTd) which on input ǫ, d,α,β does the following:

1. Let k = ln(β/2)/ ln(3/4).

2. Invoke k times the algorithm A′ with parameters ǫ, d,α/2, β ′ = 1/4, each time on a fresh

log z sized i.i.d. sample drawn from D and labeled by ct . Let h1, . . . , hk′ (where k′ ≤ k)

be the hypotheses returned in these executions with weight less than z.

3. If k′ = 0 halt with failure, otherwise set Hd = {cj : hi(j) = 1 for some i ∈ [k′]}.
4. Invoke the proper private learner of Lemma 3.4 with parameters ǫ,α,β/2 and hypothesis

class Hd on a fresh ℓ = O((log(|Hd |) + log(1/β))/(ǫα)) sized i.i.d. sample drawn from

D and labeled by ct . Output the hypothesis returned by the learner.

Note that ℓ = O((log(|Hd |)+ log(1/β))/(ǫα)) = oα,β,ǫ(d), and that the sample complex-

ity of A is k log z + ℓ = oα,β,ǫ(d). Furthermore, A always returns a hypothesis in POINTd

(note that Hd ⊂ POINTd). Hence, if A is a private learner for POINTd , we get a contradic-

tion to Lemma 3.9.

Note that A is ǫ-differentially private (follows since A′ is ǫ-differentially private and

in Step (4), we invoke the ǫ-differentially private algorithm from Lemma 3.4 on a fresh

sample).

To conclude the proof we show that A is indeed a learner for POINTd . Note that for each

of the hypotheses hi returned by A′ in Step (2), we have that

Condition 1: Pr
[
error

D

(ct , hi) ≤ α/2
]
≥ 1 − β ′ = 3

4
,

and

Condition 2: Pr[hi has weight less than z] ≥ 1

2
,

where the probability is taken over the randomness of A′ and the sample points chosen

according to D. We get that hi satisfies both the above conditions with probability at least

1/4, and the probability that none of the hypotheses A′ outputs satisfy both these conditions

is at most (3/4)k = β/2.

We henceforth assume that a hypothesis, hi , returned by A′ in Step (2) is of weight less

than z and errorD(ct , hi) ≤ α/2. We claim that in this case Hd contains a hypothesis cj ∈ Hd

for which errorD(ct , cj) ≤ α/2, as if hi(t) = 1 then we can set j = t , and otherwise, j can

be any point such that hi(j) = 1, as

error
D

(ct , cj) = Pr
x∼D

[x = t] + Pr
x∼D

[x = j] ≤ Pr
x∼D

[x = t] + Pr
x∼D

[
hi(x) = 1

]

= error
D

(ct , hi) ≤ α/2.

In other words, Hd α/2-represents {ct }.

Mach Learn (2014) 94:401–437 425

To conclude the proof, we observe that having Hd α/2-represent {ct } suffices for the

proof of Theorem 3.2, and hence, the hypothesis (in Step (4)) returned by the learner of

Theorem 3.2 is with probability at least 1 − β/2 within error α from ct .

To summarize, we get that A is a proper private learner for POINTd under distribution D

with sample complexity oα,β,ǫ(d). Since this holds for every D this leads to a contradiction

to Lemma 3.9 (the lemma shows that there exists a distribution for which there is no proper

private learner for POINTd with sample complexity oα,β,ǫ(d)). �

5 Private learning of intervals (partial results)

In this section, we examine INTERVALd , a concept class that like POINTd is very nat-

ural and simple and has VC-dimension 1. By Theorem 3.6, any proper private learner

for INTERVALd requires Ωα,β,ǫ(d) samples (as INTERVALd is α-minimal for itself), and

we ask whether stronger separation results than we showed for POINTd can be proved

forINTERVALd . Specifically, we ask if we can prove a lower bound of ωα,β,ǫ(1) for any

private learner forINTERVALd (i.e., also for improper private learners).

We give partial results towards answering this question. In Sect. 5.1, we show that if there

exists an Oα,β,ǫ(1) sample sized improper private learner for INTERVALd , then it must

use hypotheses that are very unlike intervals, and in fact must switch exponentially many

times between zero and one (this is similar to the result presented for POINTd in Sect. 4.3).

Then, in Sect. 5.2, we take a deeper look into improper private learning of INTERVALd ,

and prove that the technique from Sect. 4.2 that yielded the efficient private learner for

POINTd with sample complexity Oα,β,ǫ(1) cannot yield an algorithm for INTERVALd with

sample complexity oα,β,ǫ(d). In other words, the technique of adding independent noise

from Sect. 4.2, even with exponentially many switch points, does not yield a learner for

INTERVALd with oα,β,ǫ(d) sample complexity.

Before proving the above results, let us first formally define INTERVALd and establish

a sample complexity lower bound for proper private learning this concept class.

Definition 5.1 The concept class INTERVALd is {cj : j ∈ {1, . . . , T + 1}} where T = 2d

and the concept cj : [T] → {0,1} maps all x < j to 1 and all x ≥ j to 0.

Unlike the concept class POINTd , the values of elements of Xd are significant in the sense

that the geometric relation of which point is to the left of the other is meaningful. Note that

the cardinality of INTERVALd is 2d + 1, and that it is α-minimal for itself (for all α < 1/2),

and hence, we can use Theorem 3.6 and get a lower bound on the sample complexity of

proper private learners for INTERVALd .

Lemma 5.2 Every proper private PAC learner for INTERVALd requires Ω((d + (1/β))/ǫ)

samples.

5.1 Restrictions on the hypothesis class of private learners with low sample complexity

We give an insight on the structure of the hypothesis class of an improper private learner

for INTERVALd with sample complexity oα,β,ǫ(d). We show that if such a learner for

INTERVALd exists, then it must return, with high probability, a hypothesis that switches

frequently between zero and one. Therefore, the hypothesis outputted by the learner has

a very different structure compared to the concepts in INTERVALd , which switch exactly

426 Mach Learn (2014) 94:401–437

once from 1 to 0. This result resembles Theorem 4.11, where we proved a similar structural

statement for private learning POINT class.

Definition 5.3 (Switching Point) We say that j is a switching point in hypothesis h if h(j) �=
h(j − 1). If h(j − 1) = 1 we say that j is a decreasing switching point. Otherwise, we say

the switching point is increasing. The points 1 and T + 1 are also referred to as switching

points. The point 1 is a increasing switching point if h(1) = 1 and decreasing otherwise. The

point T + 1 is a increasing switching point if h(T) = 0 and decreasing otherwise.

We next prove that every private learner with sample complexity oα,β,ǫ(d) returns with

high probability a hypothesis with an exponential number of switching points. We prove this

using a method similar to the proof of the previous theorem. We assume that a learner exists

which returns with constant probability a hypothesis with too little switching points. We

then show that a proper private learner can be reconstructed from this hypothesis. For the

reconstruction, we use a simplified version of the exponential mechanism of McSherry and

Talwar (2007). Existence of a proper private learner for the class INTERVALd with sample

complexity oα,β,ǫ(d) leads to a contradiction to Lemma 5.2.

Theorem 5.4 There exists no private PAC learner for INTERVALd with sample complex-

ity oα,β,ǫ(d) that for every distribution returns, with probability at least half, hypotheses

with 2oα,β,ǫ (d) switching points (where the probability is taken over the randomness of the

learner and the sample points chosen according to the distribution). Here, ǫ,α, and β are

the parameters of the private learner.

Proof Let D denote the underlying sample distribution. Every concept c ∈ INTERVALd

consists of exactly one decreasing switching point. Discovering this point is discovering the

accurate concept. Assume first that the target concept is ct for some 1 ≤ t ≤ T + 1 and we

have a hypothesis h such that errorD(ct , h) ≤ α. Let j and k be two consecutive switching

points in h such that j ≤ t ≤ k.9 Assume first that the switching point j is decreasing (and,

thus, k is increasing). Note that cj (x) = ct (x) = 1 for every x < j and cj (x) = ct (x) = 0 for

every x ≥ t . Therefore, cj is a hypothesis which only errs on {j, . . . , t − 1}. Also cj (x) =
h(x) = 0 for every x ∈ {j, . . . , t − 1}.

Therefore, we can refer to cj as a concept which is reconstructed from h (it is chosen

from h’s switching points) and which fixes all of h’s errors in {1, . . . , j − 1} ∪ {t, . . . , T }.
On the other hand, h errs on every point in {j, . . . , t − 1}, so cj does not introduce new

errors to h. We get that

error
D

(ct , cj) ≤ error
D

(ct , h) ≤ α.

Similarly, if j is an increasing switching point, then k is decreasing, then ck is such that

error
D

(ct , ck) ≤ error
D

(ct , h) ≤ α.

Define

SWITCH(h) = {cj : j is a switching point in h}.

9The switching points j and k exist as points 1 and T + 1 are always switching points.

Mach Learn (2014) 94:401–437 427

Note that SWITCH(h) �= ∅ by construction. By our discussion above, if h is such that

errorD(ct , h) ≤ α then so is the case for at least one concept in SWITCH(h). Clearly,

|SWITCH(h)| is bounded by the number of switching points in h.

Remark 5.5 Note that if the empirical error of h on some sample database D is less than α,

then using same arguments as above there exists a concept in SWITCH(h) whose empirical

error on D is also less than α.

As in Kasiviswanathan et al. (2011), we use the exponential mechanism in order to

choose a hypothesis out of SWITCH(h) (we used the same mechanism in the proof of

Claim 4.5).

We now have enough tools for the proof. Assume that A′ is an ǫ-differentially pri-

vate (α,β)-PAC learner for the class INTERVALd with a sample complexity oα,β,ǫ(d)

that on every distribution returns, with probability at least 1/2, hypotheses with at most

z = z(α,β, ǫ, d) = 2oα,β,ǫ (d) switching points. Let s = 8 ln(12
β

)/(α2) + 8 ln(
(6−β)z

β
)/(αǫ) +

K(1
α

log 1
β

+ 1
α

log 1
α
) for some constant K to be set below.

Construct a proper private learner A as follows:

1. Let α′ = α
4
;β ′ = β

6
.

2. For i in {1, . . . , log 1
β ′ }:

(a) Draw oα,β,ǫ(d) new samples from D and label it by ct . Let D′ denote these labeled

examples.

(b) Apply A′ with parameters ǫ,α′, β ′ on D′. Let hi be the returned hypothesis.

3. Let ĥ denote the first hypothesis in {h1, . . . , hlog(1/β ′)} such that |SWITCH(hi)| ≤ z. If no

such ĥ exists, return “FAIL”.

4. Draw s additional samples according to D and label it by ct . Let Ds denote these labeled

examples.

5. Choose a concept c out of SWITCH(ĥ) using the exponential mechanism on Ds with

parameter ǫ and return it.

We now show that A is a proper private (α,β)-PAC learner with sample complexity

oα,β,ǫ(d). This is a contradiction to Lemma 5.2.

First, note that according to the assumption, Step (2a) is given enough samples. Also ac-

cording to the assumption, for every i we have that Pr[|SWITCH(hi)| ≥ z] ≤ 1/2. Therefore,

Step (3) fails with probability at most (1/2)log(1/β ′) = β ′. Since the chosen hypothesis ĥ is a

uniformly distributed hypothesis conditioned on |SWITCH(ĥ)| ≤ z (an event with probabil-

ity at least half), the probability that errorD(ct , ĥ) ≥ α′ is at most 2β ′ +β ′ = 3β ′ (2β ′ comes

from the Step (2b) and β ′ from Step (3)).

In our next analysis, we assume that errorD(ct , ĥ) < α′. Denote by êrrorDs (h
′) the

empirical error of a hypothesis h′ on the samples Ds , and let Q = êrrorDs (ĥ). Clearly,

EDs [Q] = errorD(ct , ĥ) ≤ α′, where the expectation is over the drawing of the samples

Ds in Step (4). We can bound Q with high probability using Chernoff-Hoeffding bound

(Inequality (2)) and get

Pr
[∣∣Q −EDs [Q]

∣∣ ≥ α′] ≤ 2 exp
(
−2sα′2).

Since s > 8 ln(12
β

)/(α2) = ln(2
β ′)/(2α′2), we have

Pr
[∣∣Q −EDs [Q]

∣∣ ≥ α′] ≤ β ′.

428 Mach Learn (2014) 94:401–437

Since EDs [Q] ≤ α′, we now have Pr[Q ≥ 2α′] ≤ β ′. For the analysis of the last step we

assume that indeed

êrrorDs (ĥ) ≤ 2α′.

Next, we analyze the complexity and accuracy of the exponential mechanism step. Let

good(Ds, ĥ) =
{
cj ∈ SWITCH(ĥ) : êrrorDs (cj) ≤ 3α′}.

That is, good(Ds, ĥ) contains the concepts in SWITCH(ĥ) that are inconsistent with less

than 3α′s samples, i.e., concepts such that mcj
≤ 3α′s. Let bad(Ds, ĥ) be all the other con-

cepts in SWITCH(ĥ). Let Egood (resp. Ebad) be the event that a concept in good(Ds, ĥ)

(resp. bad(Ds, ĥ)) is chosen by the exponential mechanism in Step (5). Remember, we

assumed êrrorDs (ĥ) ≤ 2α′. Also remember that if êrrorDs (ĥ) ≤ 2α′, then, according to ob-

servations mentioned in Remark 5.5 there is at least one concept c⋆ ∈ SWITCH(ĥ) whose

empirical error is also bounded by 2α′ (therefore, c⋆ ∈ good(Ds, ĥ)). So in Step (5),

Pr[Egood]
Pr[Ebad]

=
∑

cj ∈good(Ds ,ĥ) exp(−ǫ · mcj
/2)

∑
cj ∈bad(Ds ,ĥ) exp(−ǫ · mcj

/2)

≥ exp(−ǫ · mc⋆/2)∑
cj ∈bad(Ds ,ĥ) exp(−ǫ · mcj

/2)
≥ exp(−α′sǫ)∑

cj ∈bad(Ds ,ĥ) exp(−3α′sǫ/2)

≥ exp(−α′sǫ)

|SWITCH(ĥ)| · exp(−3α′sǫ/2)
= exp(α′sǫ/2)

|SWITCH(ĥ)|

≥ exp(α′sǫ/2)

z
.

Since s > 8 ln(
(6−β)z

β
)/(αǫ) = 2 ln(

(1−β ′)z
β ′)/(α′ǫ), we get that

Pr[Egood]
1 − Pr[Egood]

= Pr[Egood]
Pr[Ebad]

≥ 1 − β ′

β ′

and, thus, Pr[Egood] ≥ 1 − β ′. Therefore, if ĥ satisfies êrrorDs (ĥ) ≤ 2α′ and it has less

than z switching points, then Step (5) returns with probability at least 1 − β ′ a concept

c ∈ INTERVALd such that êrrorDs (c) ≤ 3α′. For our last analysis, we assume that indeed a

concept with empirical error bounded by 3α′ was chosen in Step (5).

Finally, we show that c, the concept returned by A, has indeed errorD(c, ct) ≤ α with

high probability. As the VC-dimension of INTERVALd is 1, by Blumer et al. (1989),

there exists a constant ℓ such that whenever more than ℓ(1
α′ log 1

β ′ + 1
α′ log 1

α′) samples

are drawn from some distribution D, then Pr[|errorD(ct , c) − êrrorDs (c)| ≥ α′] ≤ β ′. Re-

member that s > K(1
α

log 1
β

+ 1
α

log 1
α
) for some constant K (depending on ℓ). As we as-

sumed êrrorDs (c) ≤ 3α′, we finally have that errorD(ct , c) ≤ 4α′ = α with probability at

least 1 − β ′.
Next we analyze the confidence parameter of A. We now list the bad events. As said

before, the probability of errorD(ct , ĥ) ≥ α′ at the end of Step (3) is bounded by 3β ′. After

this ĥ is chosen in Step (3), its empirical error on the samples Ds is too high with probability

bounded by β ′. The exponential mechanism fails to return a concept c with low empirical

error on Ds with probability bounded by β ′. Finally, if the exponential mechanism success-

fully returned a concept with low empirical error, then the misclassification error of c is too

Mach Learn (2014) 94:401–437 429

high with probability bounded by β ′. Using the union bound, we get that the probability of

any of the above bad events happening is bounded by 6β ′. Therefore,

Pr
[
error

D

(ct , c) ≥ α
]
≤ 6β ′ = β.

We now calculate the sample complexity. Note that samples are drawn in Step (4) and

many times in Step (2a). As we assumed the sample complexity of A′ is oα,β,ǫ(d) and it is ex-

ecuted log(1/β ′) times, we get that the total sample complexity of this step is oα,β,ǫ(d). (Re-

member that α′ and β ′ are of the same order as α and β .) Also note that since z = 2oα,β,ǫ (d),

the sample complexity of Step (4) is s = oα,β,ǫ(d). Therefore, the sample complexity of A

is log(1/β ′) · oα,β,ǫ(d) + s = oα,β,ǫ(d).

Finally, note that we assumed A′ maintains ǫ-differential privacy. Also the exponential

mechanism maintains ǫ-differential privacy. Since any execution of the inner algorithms is

on different independently drawn samples of the whole sample set, the learner A maintains

ǫ-differential privacy.

Combining all the above statements we have that if there is an ǫ-differentially private

(α/4, β)-PAC learner for INTERVALd with sample complexity oα,β,ǫ(d) that for every dis-

tribution returns, with probability at least half, a hypotheses with 2Ωα,β,ǫ (d) switching points,

then there is a proper ǫ-differentially private (α,β)-PAC learner for INTERVALd with sam-

ple complexity oα,β,ǫ(d). This contradicts Lemma 5.2. �

5.2 Impossibility of private independent noise learners with low sample complexity

We next show that the ideas used to construct in Sect. 4.2 a private learner for POINTd with

sample complexity Oα,β,ǫ(1) cannot be used for INTERVALd . We begin by formalizing a

class of independent noise learners that generalizes the construction in Sect. 4.2. We note

that independent noise learners are allowed to output hypotheses whose description is ex-

ponential in d (recall that this issue was resolved for POINTd by using compression with

pseudorandom functions).

Definition 5.6 (Private Independent Noise Learner) A private independent noise learner for

a concept class Cd over Xd using sample size m′ and parameters α′, β ′, ǫ is a pair of algo-

rithms (Aouter,Ainner), called the outer and inner learners respectively, that for all concepts

c ∈ Cd , all distributions D on Xd , given an input D = (d1, . . . , dm′), where di = (xi, c(xi))

with xi drawn i.i.d. from D for all i ∈ [m′], does the following:

1. The outer learner Aouter is a private PAC learner (as defined in Definition 2.5) for Cd

using the class of all 2|Xd | functions Xd → {0,1}. Furthermore, Aouter(ǫ, d,α′, β ′,D) is

restricted to execute as follows:

(a) Select parameters α⋆ ≤ α′, β⋆ ≤ β ′, and a noise rate μ as a (deterministic) function

of ǫ,α′, β ′.
(b) Run Ainner(d,α⋆, β⋆,D). Denote the output hypothesis c⋆.

(c) If c⋆ /∈ Cd then output “fail” and halt. Otherwise, produce a hypothesis h by addition

of noise to all entries of c⋆ independently, i.e., for all x ∈ Xd set h(x) = 1 − c⋆(x)

with probability μ, and h(x) = c⋆(x) otherwise.

2. The inner learner Ainner outputs with probability at least 1 − β⋆ (over the random-

ness of Ainner and the sampling of D according to D) a hypothesis c⋆ ∈ Cd such that

errorD(c⋆, c) ≤ α⋆.

430 Mach Learn (2014) 94:401–437

Example 5.7 We show that Algorithm A2, described in Sect. 4.2, is a private independent

noise learner for POINTd . In order to do this, we describe Algorithm A2 in a different way

than the description in Sect. 4.2.10 The outer learner is the learner defined in Definition 5.6

selecting parameters α⋆ = α′/2, β ′ = 3/4, β⋆ = 1/2, and a noise rate μ = α′/8. The inner

learner does the following:

1. Set α = α′.
2. Get a sample (x1, y1), . . . , (xm′ , ym′), where xi ’s are chosen according to D and m′ =

32 ln(4)/α2.

3. With probability α/8, return ⊥.

4. Construct a set S ⊆ [m′] by picking each element of [m′] with probability α/4.

5. If ((xi, yi))i∈S is not consistent with any concept in POINTd , return ⊥.

6. If yi = 0 for all i ∈ S, then let c = 0 (the all zero hypothesis); otherwise, let c

be the (unique) hypothesis from POINTd that is consistent with the labeled example

((xi, yi))i∈S .

As analyzed in Sect. 4.2, Algorithm A2 is ln(4)-differentially private. It is also (α′, β ′)-
PAC learner. To construct an algorithm that is ǫ-differentially private for smaller values of ǫ,

we use a transformation described in Lemma 4.4. It can be seen that the resulting algorithm

is also a private independent noise learner.

Furthermore, in the above description of A2, the confidence parameter is β ′ = 3/4. In

Sect. 4.2, we boosted the confidence parameter by using the exponential mechanism. The

resulting learning algorithm is not a private independent noise learner. However, for any

constant β ′, we can modify A2 such that the resulting algorithm has confidence β ′ and is a

private independent noise learner; however, the sample complexity of the resulting algorithm

is not polynomial in log(1/β ′).

We next show that there is no private independent noise learner for INTERVALd using

only oα,β,ǫ(d) samples. We will show that in this case, we can essentially recover the out-

come of the inner learner (with probability at least 1 −β a hypothesis in INTERVALd) from

the outcome of the outer learner. It follows then that the existence of a private independent

noise learner for INTERVALd that uses oα,β,ǫ(d) samples implies a proper private learner

for INTERVALd that uses oα,β,ǫ(d) samples, in contradiction with Lemma 5.2.

Theorem 5.8 There is no private independent noise learner for INTERVALd for β ′ < 1/4

and α′ < β ′/100 that learns using m′ = oα′,β ′,ǫ(d) samples.

Proof Assume towards a contradiction that a private independent noise learner (Aouter,Ainner)

exists for INTERVALd . Let D denote the underlying sample distribution and ct ∈
INTERVALd denote the target concept. Consider an execution of Aouter when invoked with

parameters α′, β ′ where β ′ < 1/2 (we will further restrict α′, β ′ below). We first show a

simple bound on the noise rate μ = μ(α′, β ′) selected by Aouter. Denote by α⋆ ≤ α′, β⋆ ≤ β ′

the parameters that Aouter selects for the inner learner. Denote by c⋆ the concept returned by

Ainner and by h the concept returned by Aouter (or ⊥ if Aouter halts without an output).

Note that by the definition of a private independent noise learner, Ainner outputs c⋆ ∈
INTERVALd satisfying errorD(ct , c

⋆) ≤ α⋆ with probability at least 1 − β⋆. Similarly, since

Aouter is a learner, we get that Aouter outputs h satisfying errorD(ct , h) ≤ α′ with probability

10For simplicity of the description, we ignore the fact that some of the sample points can be ⋆.

Mach Learn (2014) 94:401–437 431

at least 1−β ′. In both cases, the probability is taken over the randomness in the execution of

the learner (for Aouter this includes the randomness of Ainner) and the sample points chosen

according to D. We, hence, define the event

E : A
inner outputs c⋆ ∈ INTERVALd satisfying errorD(ct , c

⋆) ≤ α⋆; and

Aouter outputs h satisfying errorD(ct , h) ≤ α′

and conclude that Pr[E] ≥ 1 − β ′ − β⋆ > 0.

In the following, we bound Eh[errorD(ct , h)] � Eh Ex∼D[|h(x) − ct (x)|], assuming E .

This will yield an upper bound on μ.

Eh

[
error

D

(ct , h) |E
]
= Eh Ex∼D

[∣∣h(x) − ct (x)
∣∣ |E

]

≥ Eh

[
Ex∼D

[∣∣h(x) − c⋆(x)
∣∣ |E

]
−Ex∼D

[∣∣ct (x) − c⋆(x)
∣∣ |E

]]
(6)

≥ Eh Ex∼D

[∣∣h(x) − c⋆(x)
∣∣ |E

]
− α⋆ (7)

= Ex∼D Eh

[∣∣h(x) − c⋆(x)
∣∣ |E

]
− α⋆ = μ − α⋆. (8)

Inequality (6) follows from the triangle inequality, i.e., |h(x) − c⋆(x)| ≤ |h(x) − ct (x)| +
|ct (x) − c⋆(x)|, and Inequality (7) follows from errorD(ct , c

⋆) ≤ α⋆. On the other hand, by

the definition of E

Eh

[
error

D

(ct , h) |E
]
< α′. (9)

Noting that the setting of μ is deterministic (and, hence, the setting of μ does not depend

on whether the event E holds), we get from Inequalities (8) and (9) that α′ ≥ μ − α⋆, and

hence, μ ≤ 2α′. It follows that by choosing α′ to be small enough, we restrict μ to be small.

We now show how to reconstruct c⋆ from h. The reconstruction algorithm is as follows:

1. For every t ∈ {1, . . . , T + 1} define mismatch(t, h) = |{x < t : h(x) = 0}| + |{x ≥ t :
h(x) = 1}|.

2. Find ℓ for which mismatch(ℓ,h) is the lowest and return cℓ.

3. If no such unique point exists, return “FAIL”.

We now bound the probability that cℓ �= c⋆. We call a point x for which noise was added

by Aouter (i.e., h(x) �= c⋆(x)) dirty, otherwise we call x clean. Let j be such that cj = c⋆.

Then, mismatch(j, h) is the number of dirty points. The reconstruction algorithm fails to

return c⋆ if and only if there is some point k such that mismatch(k,h) ≤ mismatch(j, h).

In this case, we say that k is bad. We show that for small enough μ, such a bad point exists

only with constant probability. In the following, we assume that k > j (the case k < j

is symmetric). First note that cj and ck disagree agree only on points in {j, . . . , k − 1}
(i.e., mismatch(j, h) and mismatch(k,h) have the same contribution from points not

between j and k). Now every dirty point in {j, . . . , k − 1} contributes 1 to mismatch(j, h)

and nothing to mismatch(k,h), and similarly each clean point between {j, . . . , k − 1}
contributes 1 to mismatch(k,h) and nothing to mismatch(j, h). Since we assumed that

mismatch(k,h) ≤ mismatch(j, h), it should be the case that at least half the entries in

{j, . . . , k − 1} are dirty.

We consider the case where there is a bad point bigger than j (the case where it is smaller

than j is handled analogously). Let k > j be the smallest bad point which is bigger than j ,

that is, k is the smallest such that the number of dirty points in {j, . . . , k − 1} is at least

the number of clean points. Hence, k = j + 1 if and only if j is a dirty point; if k > j + 1

432 Mach Learn (2014) 94:401–437

then for all j < ℓ < k the number of clean entries in {j, . . . , ℓ − 1} exceeds the number

of dirty points (otherwise ℓ is a bad point smaller than k). From the above arguments it

follows that the number of clean points in {j, . . . , k − 1} equals the number of dirty points

in {j, . . . , k − 1}.
Let noisej be a sequence starting from j which indicates which entries in c⋆ were

flipped by Aouter, i.e., every dirty point bigger than j is marked by 1 in noisej , and every

clean point is marked by 0. According to the above analysis, we get that there exists a bad

point k > j only if

• noisej begins with 1 (this if the case when k = j + 1), or

• noisej begins with some Dyck word, where a Dyck word is a balanced string of “paren-

theses” in the sense that it consists of n zeros and n ones, and in every prefix the number

of ones does not exceed the number of zeros (this is the case when k > j + 1).

The probability of noisej to begin with 1 is μ. The probability of noisej to start with

a specific Dyck word of length 2n is μn(1 − μ)n. The number of Dyck words of length 2n

is the nth Catalan number, Cn = 1
n+1

(
2n

n

)
, and we get that the probability of a bad k > j is

bounded by

μ +
∞∑

n=1

Cn · μn(1 − μ)n.

Note that this is a loose bound because as every Dyck word is a prefix of longer Dyck words,

and so we over count many possibilities of bad noise. Using the Stirling approximation,

Cn ≅
4n

n3/2
√

π
≤ 4n

n
√

π
for every n ≥ 1. Therefore, the probability of failure to reconstruct cj

from h due a bad k > j is bounded by

μ +
∞∑

n=1

Cn · μn(1 − μ)n ≤ μ +
∞∑

n=1

Cn · μn

≤ μ +
∞∑

n=1

(4μ)n

n
√

π
= μ + 1√

π

∞∑

n=1

(4μ)n

n

= μ + 1√
π

(
− ln (1 − 4μ)

)
.

The last equality follows from the Taylor series of ln(x). As (− ln (1 − 4μ)) < 5μ for every

μ ≤ 0.09, the probability of failure to reconstruct c⋆ out of h due to a bad k > j is bounded

by μ + 1√
π

· 5μ < 4μ. Due to symmetry, the probability of failing because of a bad k < j

is also bounded by 4μ. Thus, for small enough values of μ, the probability of failure to

reconstruct Ainner’s original output c⋆ (i.e., the probability that cℓ �= c⋆) from h is bounded

by 8μ.

To conclude the proof, we construct A, a proper private learner for INTERVALd , using

Aouter. Learner A executes as follows:

1. Let β ′ = β

4
and α′ = min(α,β)

100
.

2. Apply Aouter with parameters ǫ, d,α′, β ′ to improperly learn INTERVALd using

oα′,β ′,ǫ(d) samples. Let h be the output of Aouter. If Aouter fails then halt.

3. Reconstruct a concept cℓ ∈ INTERVALd out of the noisy hypothesis h (as described in

the reconstruction algorithm above) and return it.

Mach Learn (2014) 94:401–437 433

Note that the sample complexity of A is oα′,β ′,ǫ(d) = oα,β,ǫ(d). Also note that the recon-

struction step does not access D, but only the output of Aouter. As Aouter is ǫ-differentially

private, so is A. Finally, note that the probability that A fails to output cℓ ∈ INTERVALd

such that errorD(cℓ, c) ≤ α is bounded by the probability that the reconstruction algorithm

fails, (i.e., cℓ �= c⋆) and the probability that Ainner fails to output c⋆ ∈ INTERVALd such that

errorD(c⋆, c) ≤ α⋆ ≤ α′ ≤ α. Remember that μ ≤ 2α′. Since 2α′ ≤ 0.02 (for α ≤ 1) this

implies that μ ≤ 0.02 and the above condition μ ≤ 0.09 is satisfied, and hence,

Pr
[
error

D

(cℓ, ct) ≥ α
]
≤ β⋆ + 8μ ≤ β ′ + 8 · 2α′ ≤ β

4
+ 16 · β

100
≤ β.

Note that β⋆ ≤ β ′ from the definition of private independent noise learner. Thus, the

algorithm A returns a concept cℓ = c⋆ ∈ INTERVALd such that Pr[errorD(cℓ, ct) ≥ α] ≤ β ,

and so it is a proper ǫ-differentially private (α,β)-PAC learner for INTERVALd with sample

complexity oα,β,ǫ(d), in contradiction to Lemma 5.2. �

6 Separation between efficient and inefficient proper private PAC learning

In this section, we use the sample size lower bound for proper private learning POINTd

(Corollary 3.8) to obtain a separation between the sample complexities of efficient and inef-

ficient proper private PAC learning. In the case of efficient proper private learning, we use a

slightly relaxed notion of proper learning for reasons explained below.

In our separation we use pseudorandom generators, which we now define. Let Ur

represent a uniformly random string from {0,1}r . Let ℓ(d) : N → N be a function and

G = {Gd}d∈N be a deterministic algorithm such that on input from {0,1}ℓ(d) it returns an

output from {0,1}d . Informally, we say that G is pseudorandom generator if on ℓ(d) truly

random bits it outputs d bits that are indistinguishable from d random bits. Formally, for

every probabilistic polynomial time algorithm B there exists a negligible function negl(d)

(i.e., a function that is asymptotically smaller than 1/dc for all c > 0) such that

∣∣Pr
[
B
(
Gd(Uℓ(d))

)
= 1

]
− Pr

[
B(Ud) = 1

]∣∣ ≤ negl(d). (10)

Pseudorandom generators G with ℓ(d) = ω(logd) exist under various strong hardness as-

sumptions (Goldreich 2001). The difference d − ℓ(d) is defined as the stretch of the pseu-

dorandom generator. Let POINTd = {c1, . . . , c2d }. To an efficient (polynomially bounded)

private learner, the concept cGd (Uℓ(d)) would appear as a uniformly random concept picked

from POINTd . Define concept class

P̂OINTd =
{
cGd (r) | r ∈ {0,1}ℓ(d)

}
.

First, we show that, assuming G is a pseudorandom generator, there exists no efficient

proper learner for P̂OINTd (note that this statement holds even without the privacy con-

straint). Assume Ap is an efficient proper learner for P̂OINTd . We use Ap to construct a

distinguisher for the pseudorandom generator as follows: Given j ∈ {1, . . . ,2d}, we con-

struct the database D with m entries (j,1). If Ap(D) = cj , then the distinguisher returns 1,

otherwise it returns 0.

(1) If j is in the image of Gd , then by the utility guarantee of the proper learner, Ap has

to return cj on D with probability at least 1 − β . Thus, the distinguisher returns 1 with

probability at least 1 − β when j is chosen from Gd(Uℓ(d)).

434 Mach Learn (2014) 94:401–437

(2) If j is not in the image of Gd , then the database D is not labeled consistently by any

concept in P̂OINTd . Consider any such j , a proper learner that returns a hypothesis from

P̂OINTd implies a distinguisher that never returns 1 (i.e., always returns 0). Therefore,

the probability that the distinguisher returns 1 when j = Ud is at most the probability

that j is in the image of Gd , which is at most ℓ(d)/2d = negl(d).

To summarize, assuming Ap is an efficient proper learner for P̂OINTd , the distinguisher

will return 1 with probability at least 1−β when j = Gd(Uℓ(d)), and with probability at most

negl(d) when j = Ud , in contradiction to (10). We conclude that no efficient proper learner

exists for P̂OINTd and, therefore, we relax in the following our notion of proper private

learners for P̂OINT to allow outputting hypothesis from POINT. We show that under this

liberal relaxation, efficient proper learning of P̂OINTd with sample complexity o(d) is not

possible. However, we show that inefficient proper private learning of P̂OINTd with sample

complexity o(d) is possible under the strict definition of proper learning.

Sample complexity of efficiently private learning P̂OINTd using POINTd Consider an ef-

ficient private learner Aeff that learns P̂OINTd using POINTd and has sample complexity

m. We now show that either a distinguisher exists for the pseudorandom generator Gd or

m = Ωβ,ǫ(d). Assume β < 1/4.

We use Aeff to construct a distinguisher for the pseudorandom generator as follows:

Given j ∈ {1, . . . ,2d}, we construct the database D with m entries (j,1). If Aeff(D) = cj ,

then the distinguisher returns 1, otherwise it returns 0.

If for at least a 3/4th fraction of the values j ∈ [2d], algorithm Aeff, when applied to

a database with m entries (j,1), does not return cj with probability at least 3/4, then the

distinguisher succeeds in breaking the pseudorandom generator. This is because if the above

statement is not true then the distinguisher returns 1 with probability at most 3/4 when

j = Ud , and the distinguisher will return 1 with probability at least 1 − β > 3/4 when

j = Gd(Uℓ(d)).
11

However, arguments similar as in the proof of Theorem 3.6 show that it is not possible to

have a learner that on 3/4th fraction of the values j ∈ [2d], when applied to a database with

m = o((d + log(1/β))/ǫ) entries (j,1), returns cj with probability at least 3/4. This means

that either we have a distinguisher for the pseudorandom generator or the sample complexity

of Aeff is at least Ωβ,ǫ(d). So, assuming the existence of a pseudorandom generator, we

get that there exists no efficient private learner that learns P̂OINTd using POINTd and has

o((d + log(1/β))/ǫ) sample complexity.12

Sample complexity of inefficient proper private learners for P̂OINTd If the learner is not

polynomially bounded, then it can use the algorithm from Theorem 3.2 to privately learn

P̂OINTd . Since |P̂OINTd | = 2ℓ(d), the private learner from Theorem 3.2 uses O((ℓ(d) +
log(1/β))/(ǫα)) samples.

We get the following separation between efficient and inefficient proper private learning:

Theorem 6.1 Let ℓ(d) be any function that grows as ω(logd). Assuming the existence

of a pseudorandom generator Gd : {0,1}ℓ(d) → {0,1}d , there exists no efficient proper

11If j is in the image of Gd , then the analysis is same as (1) above. By utility guarantees, Aeff has to return

cj on D with probability at least 1 −β . Thus, the distinguisher returns 1 with probability at least 1 −β when

j chosen from Gd (Uℓ(d)).

12An almost matching upper bound of O((d + log(1/β))/ǫα) on the sample complexity for efficiently private

learning P̂OINTd using POINTd can be obtained as in Lemma 3.4.

Mach Learn (2014) 94:401–437 435

PAC learner for P̂OINTd and every efficient (polynomial-time) private PAC learner that

learns P̂OINTd using POINTd requires Ω((d + log(1/β))/ǫ) samples, whereas there ex-

ists an inefficient proper private PAC learner that can learn P̂OINTd using O((ℓ(d) +
log(1/β))/(ǫα)) samples.

Remark 6.2 In the non-private setting, there exists an efficient proper learner that can learn

P̂OINTd using POINTd with O((log(1/α) + log(1/β))/α) samples (as

VCDIM(P̂OINTd) = 1). In the non-private setting, we also know that even inefficient learn-

ers require Ω(log(1/β)/α) samples (Ehrenfeucht et al. 1989; Kearns and Vazirani 1994).

Therefore, for P̂OINTd the sample complexity difference that we observe in Theorem 6.1

does not exist without the privacy constraint.

7 Lower bounds for non-interactive sanitization

We now prove a lower bound on the database size (or sample size) needed to privately

release an output that is useful for all concepts in a concept class. We start by recalling a

definition and a result of Blum et al. (2008).

Let X = {Xd}d∈N be some discretized domain and consider a class of predicates C over

X. A database D contains points taken from Xd . A predicate query Qc for c : Xd → {0,1}
in C is defined as

Qc(D) = |{di ∈ D : c(di) = 1}|
|D| .

A sanitizer (or data release mechanism) is a differentially private algorithm A that gets as

input a database D and outputs another database D̂ with entries taken from Xd . An algorithm

A is (α,β)-useful for predicates in the class C if for every database D with probability at

least 1 − β the algorithm A(D) returns a database D̂ such that for every c ∈ C,

∣∣Qc(D) − Qc(D̂)
∣∣ < α.

Theorem 7.1 (Blum et al. 2008) For any class of predicates C, and any database D ∈ Xm
d ,

such that

m ≥ O

(
log(|Xd |) · VCDIM(C) log(1/α)

α3ǫ
+ log(1/β)

ǫα

)
,

there exists an (α,β)-useful mechanism A that preserves ǫ-differential privacy. The algo-

rithm might not be efficient.

We show that the dependency on log(|Xd |) in Theorem 7.1 is essential: there exists a

class of predicates C with VC-dimension O(1) that requires |D| = Ωα,β,ǫ(log(|Xd |)). For

our lower bound, the sanitized output D̂ could be any arbitrary data structure (not necessarily

a synthetic database). Remember that a synthetic database contains data drawn from the

same domain as the original database and Theorem 7.1 outputs a synthetic database. For

simplicity, however, here we focus on the case where the output is a synthetic database. The

proof of this lower bound uses ideas from Sect. 3.1.

Theorem 7.2 Every ǫ-differentially private non-interactive mechanism that is (α,β)-useful

for POINTd requires an input database of size Ω((d + log(1/β))/(ǫα)).

436 Mach Learn (2014) 94:401–437

Proof Let T = 2d and Xd = [T] be the domain. Consider the class POINTd . For every

i ∈ [T], construct a database Di ∈ Xm
d by setting (1 − 3α)m entries as 1 and the remaining

3αm entries as i (for i = 1 all entries of D1 are 1). For i ∈ [T] \ {1}, we say that a database

D̂ is α-useful for Di if 2α < Qci
(D̂) < 4α and 1 − 4α < Qc1

(D̂) < 1 − 2α. We say that D̂

is α-useful for D1 if 1 − α < Qc1
(D̂) ≤ 1. It follows that for i �= j , if D̂ is α-useful for Di

then it is not α-useful for Dj .

Let D̂i be the set of all databases that are α-useful for Di . Note that for all i �= 1, databases

D1 and Di differ on 3αm entries, and by our previous observation, D̂1 ∩ D̂i = ∅. Let A be

an (α,β)-useful private release mechanism for POINTd . For all i, on input Di mechanism

A should pick an output from D̂i with probability at least 1 − β . We get by the differential

privacy of A that

Pr
[
A(D1) ∈ D̂i

]
≥ exp(−3ǫαm)Pr

[
A(Di) ∈ D̂i

]
≥ exp(−3ǫαm) · (1 − β).

Hence,

Pr
[
A(D1) /∈ D̂1

]
≥ Pr

[
A(D1) ∈

⋃

i �=1

D̂i

]

=
∑

i �=1

Pr
[
A(D1) ∈ D̂i

]
(sets D̂i are disjoint)

≥ (T − 1) exp(−3ǫαm) · (1 − β).

On the other hand, since A is (α,β)-useful, Pr[A(D1) /∈ D̂1] < β , and hence, we get that

m = Ω((d + log(1/β))/(ǫα)). �

Acknowledgements We thank Benny Applebaum, Eyal Kushilevitz, and Adam Smith for helpful initial

discussions.

Amos Beimel’s research was partly supported by the Israel Science Foundation (grant No. 938/09) and by

the Frankel Center for Computer Science at Ben-Gurion University. Shiva Prasad Kasiviswanathan thanks Los

Alamos National Laboratory and IBM T.J. Watson Research Center for supporting him while this research

was performed. Hai Brenner and Kobbi Nissim’s research was supported by the Israel Science Foundation

(grant No. 860/06).

References

Beimel, A., Kasiviswanathan, S. P., & Nissim, K. (2010). Bounds on the sample complexity for private

learning and private data release. In D. Micciancio (Ed.), LNCS: Vol. 5978. TCC (pp. 437–454). Berlin:

Springer.

Beimel, A., Nissim, K., & Stemmer, U. (2013). Characterizing the sample complexity of private learners. In

ITCS (pp. 97–110).

Blum, A., Dwork, C., McSherry, F., & Nissim, K. (2005). Practical privacy: the SuLQ framework. In PODS

(pp. 128–138). New York: ACM.

Blum, A., Ligett, K., & Roth, A. (2008). A learning theory approach to non-interactive database privacy. In

STOC (pp. 609–618). New York: ACM.

Blum, A., Ligett, K., & Roth, A. (2013). A learning theory approach to non-interactive database privacy.

Journal of the ACM, 60(2), 12.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989). Learnability and the Vapnik-

Chervonenkis dimension. Journal of the ACM, 36(4), 929–965.

Chaudhuri, K., & Hsu, D. (2011). Sample complexity bounds for differentially private learning. Journal of

Machine Learning Research, 19, 155–186.

Chaudhuri, K., & Monteleoni, C. (2008). Privacy-preserving logistic regression. In D. Koller, D. Schuurmans,

Y. Bengio, & L. Bottou (Eds.), NIPS, Cambridge: MIT Press.

Mach Learn (2014) 94:401–437 437

Chaudhuri, K., Monteleoni, C., & Sarwate, A. D. (2011). Differentially private empirical risk minimization.

Journal of Machine Learning Research, 12, 1069–1109.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of obser-

vations. The Annals of Mathematical Statistics, 23, 493–507.

Dwork, C. (2009). The differential privacy frontier. In O. Reingold (Ed.), LNCS: Vol. 5444. TCC (pp. 496–

502). Berlin: Springer.

Dwork, C. (2011). A firm foundation for private data analysis. Communications of the ACM, 54(1), 86–95.

Dwork, C., McSherry, F., Nissim, K., & Smith, A. (2006). Calibrating noise to sensitivity in private data

analysis. In S. Halevi & T. Rabin (Eds.), LNCS: Vol. 3876. TCC (pp. 265–284). Berlin: Springer.

Dwork, C., Naor, M., Reingold, O., Rothblum, G., & Vadhan, S. (2009). On the complexity of differentially

private data release. In STOC (pp. 381–390). New York: ACM.

Ehrenfeucht, A., Haussler, D., Kearns, M. J., & Valiant, L. G. (1989). A general lower bound on the number

of examples needed for learning. Information and Computation, 82(3), 247–261.

Goldreich, O. (2001). Foundations of cryptography, volume basic tools. Cambridge: Cambridge University

Press.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the Ameri-

can Statistical Association, 58(301), 13–30.

Hughes, D. R., & Piper, F. C. (1973). Projective planes (Vol. 6). Berlin: Springer.

Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhodnikova, S., & Smith, A. (2011). What can we learn

privately? SIAM Journal on Computing, 40(3), 793–826.

Kearns, M. J. (1998). Efficient noise-tolerant learning from statistical queries. Journal of the ACM, 45(6),

983–1006. Preliminary version in proceedings of STOC’93.

Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computational learning theory. Cambridge: MIT

Press.

Kifer, D., Smith, A. D., & Thakurta, A. (2012). Private convex optimization for empirical risk minimization

with applications to high-dimensional regression. Journal of Machine Learning Research, 23, 25.

McSherry, F., & Talwar, K. (2007). Mechanism design via differential privacy. In FOCS (pp. 94–103). New

York: IEEE Press.

Mishra, N., & Sandler, M. (2006). Privacy via pseudorandom sketches. In PODS (pp. 143–152). New York:

ACM.

Pitt, L., & Valiant, L. G. (1988). Computational limitations on learning from examples. Journal of the ACM,

35(4), 965–984.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134–1142.

Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies of events

to their probabilities. Theory of Probability and Its Applications, 16, 264.

	Bounds on the sample complexity for private learning and private data release
	Abstract
	Introduction
	Our contributions
	Proper and improper private learning
	The sample size of non-interactive sanitization mechanisms

	Related work
	Questions for future exploration
	Organization

	Preliminaries
	Preliminaries from privacy
	Preliminaries from learning theory
	Private learning
	Concentration bounds

	Proper learning vs. proper private learning
	Separation between proper learning and proper private learning

	Proper private learning vs. improper private learning
	Improper private learning of POINTd using Oalpha,beta,epsilon(logd) samples
	Improper private learning of POINTd using Oalpha,beta,epsilon(1) samples
	Making the learner efﬁcient

	Restrictions on the Hypothesis Class

	Private Learning of Intervals
	Restrictions on the Hypothesis Class
	Impossibility of private independent noise learners with low sample complexity

	Separation between efﬁcient and inefﬁcient proper private PAC learning
	Sample complexity of efﬁciently private learning POINTd using POINTd
	Sample complexity of inefﬁcient proper private learners for POINTd

	Lower bounds for non-interactive sanitization
	Acknowledgements
	References

