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Abstract .  In this paper we study a Bayesian or average-case model of concept learning with 
a twofold goal: to provide more precise characterizations of learning curve (sample complexity) 
behavior that depend on properties of both the prior distribution over concepts and the sequence of 
instances seen by the learner, and to smoothly unite in a common framework the popular statistical 
physics and VC dimension theories of learning curves. To achieve this, we undertake a systematic 
investigation and comparison of two fundamental quantities in learning and information theory: 
the probability of an incorrect prediction for an optimal learning algorithm, and the Shannon 
information gain. This study leads to a new understanding of the sample complexity of learning 
in several existing models. 
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1. Introduct ion 

Consider  a simple concept learning model  in which the  learner a t t emp t s  to infer an  

u n k n o w n  target concept f ,  chosen from a known concept class .~ of (0, 1}-valued 

funct ions  over an ins tance  space X.  At each tr ial  i, the  learner  is given a po in t  

xi c X and  asked to predict  the  value of f (x i ) .  If the  learner predicts  f(x~) 

incorrectly, we say the learner makes a mistake. After making  its predict ion,  the  

learner  is told the  correct value. 

Informal ly  speaking,  there are at least two na tu r a l  measures  of the  per formance  

of a learning a lgor i thm in this sett ing: 

1. The  probabi l i ty  the  a lgor i thm makes a mistake on f (x ,~+ l ) ,  having  already seen 

the  examples (Xl, f ( x l ) ) , . . .  , (xm, f(Xm)).  Regarded as a funct ion  of m, this  

familiar  measure  is known as the a lgor i thm's  learning curve. 

2. The  to ta l  n u m b e r  of mistakes made  by the  a lgor i thm on the  first m trials  

/ ( x l ) , . . . , f ( X m ) .  This  measure counts the  cumulative mistakes of the  algo- 

r i thm.  
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These measures are clearly closely related to each other. In either measure, we are 

interested in the asymptotic behavior of a learning algorithm as m becomes large. 

Since the learning curve can be used to determine how large m must be before the 

probability of mistake drops below a desired value c, the study of learning curves 

may also be viewed as the study of the sample complexity of learning. 

The recent and intensive investigation of concept learning undertaken by the 

research communities of neural networks, artificial intelligence, cognitive science 

and computational learning theory has resulted in the development of at least 

two fairly general and successful viewpoints of the learning process in terms of 

learning curves and cumulative mistakes. One of these, arising from the study 

of Valiant's distribution-free or probably approximately correct model (1984) and 

having roots in the pattern recognition and minimax decision theory literature, 

characterizes the distribution-free, worst-case sample complexity of concept learning 

in terms of a combinatorial parameter known as the Vapnik-Chervonenkis (VC) 
dimension (Vapnik, 1982; Blumer et al. 1989). In contrast, the average-case sample 

complexity of learning in neural networks has recently been investigated from a 

standpoint that is essentially Bayesian 1, and is strongly influenced by ideas and 

tools from statistical physics, as well as by information theory (Denker et al., 1987; 

Tishby, Levin and Solla, 1989; Gyorgyi and Tishby, 1990; Sompolinsky, Tishby and 

Seung, 1990; Opper and Haussler, 1991). While each of these theories has its own 

distinct strengths and drawbacks, there is little understanding of what relationships 

hold between them. 

In this paper, we study an average-case or Bayesian model of learning with two 

primary goals. First, we are interested in ultimately developing a general framework 

that provides precise characterizations of learning curves and expected cumulative 

mistakes that extends and refines the VC dimension and statistical physics theories. 

The results presented here are a first step in this direction. Second, we would 

like this framework to smoothly incorporate both of these previous theories, thus 

yielding a unified viewpoint that can be used both for giving realistic estimates of 

average-case performance in the case that the distributions on the concept class 

and instance space are known, and for giving good worst-case estimates in the case 

that these distributions are not known. 

In a setting where the target concept is drawn at random according to a fixed but 

arbitrary prior distribution P, we undertake a systematic investigation and compar- 

ison of two fundamental quantities in learning and information theory: the proba- 

bility of mistake (known as the 0-1 loss in decision theory) for an optimal learning 

algorithm, and the Shannon information gain from the labels of the instance se- 

quence. In doing so, we borrow from and contribute to the work on weighted 

majority and aggregating learning strategies (Littlestone, 1989; Littlestone and 

Warmuth, 1989; Vovk, 1990; DeSantis, George and Wegman, 1988; Barzdin and 

Freivald, 1972; Littlestone, Long and Warmuth, 1991), as well as to the VC dimen- 

sion and statistical physics work. This study leads to a new understanding of the 

sample complexity of learning in several existing models. 
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One of our main motivations for this research arises from the frequent claims of 

machine learning practitioners that  sample complexity bounds derived via the VC 

dimension are overly pessimistic in practice (Buntine, 1990; Pazzani and Sarrett,  

1992). This pessimism can be traced to three assumptions that  are implicit in 

results tha t  are based on the VC dimension. The first pessimistic assumption is tha t  

only the worst-case performance over possible target concepts counts. This is the 

minimax pessimism. We may think of an adversary choosing the hardest possible 

concept for the learner, rather than the Bayesian approach which incorporates prior 

beliefs regarding which concepts might be "more likely". 

The second pessimistic assumption is tha t  even though VC dimension analysis 

allows a distribution 7P over the instance space X,  this distribution is also assumed 

to be the hardest possible for learning the class ~c. Thus, the VC dimension is also 

based on a worst-case assumption over instance space distributions. In addition 

to the VC dimension, Vapnik and Chervonenkis (1971) have a distribution-specific 

formulation that  overcomes this limitation, but apart from Natarajan's  work (1992), 

it has not been used much in computational learning theory. We extend this idea 

further in Section 9. 

The third and perhaps most subtle pessimistic assumption can be seen by not- 

ing that  the VC dimension provides upper bounds on the learning curves of any 

consistent learning algorithm. Thus, even the hypothetical algorithm that  always 

manages to find a hypothesis that  is consistent with the examples so far but tha t  

has the largest possible error with respect to 7P is covered by VC dimension analy- 

sis. (This is the uniform convergence property of the VC dimension). In practice it 

seems unlikely that  one would encounter such algorithms - -  reasonable algorithms 

should manage to find an "average" consistent hypothesis (in terms of error on 7P) 

rather than the "worst" consistent hypothesis. 

In this paper we a t tempt  to address each of these pessimistic assumptions in 

the hopes of obtaining a more realistic picture of sample complexity. To relax the 

worst-case assumption over the concept class 3 c, we adopt a Bayesian framework 

that  places a prior distribution P over )c. If we also assume that  the target concept 

is drawn according to P ,  then this allows us to derive bounds on learning curves 

and cumulative mistakes that  depend on properties of the particular prior P .  

Our solution to the worst-case assumption over the instance space distribution 7P 

is twofold. For most of the paper, we in fact do not need to assume that  there is a 

distribution governing the generation of sample points, and instead fix an arbitrary 

sequence of instances x = X l , . . . , X m , Z m + l , . . .  that  is seen by the learner. We 

do not assume that  this sequence is worst-case (distinguishing this setting from 

the various adversary-based on-line learning models that  count worst-case mistake 

bounds), or that  it is drawn randomly (distinguishing this setting from the VC 

dimension and statistical physics theories). Thus our bounds on learning curves 

and cumulative mistakes also depend on properties of x. Two advantages that  

come from allowing x to be a parameter are that  we incorporate t ime-dependent 

instance sequences, and we model the fact that  a learning algorithm does in fact 

have the training data  in its possession, and may be able to exploit this knowledge. 



~6 D. HAUSSLER, M. KEARNS AND R.E. SCHAPIRE 

For some of our later results, particularly for comparing our bounds with those 

derived via the VC dimension, we will need to revert to the assumption that the 

instances in x are generated independently at random according to an instance 

space distribution :D (but here again, our bounds will depend on properties of the 

particular :D in contrast to worst-case bounds). 

Finally, to address the pessimism implicit in demanding uniform convergence, 

we will study particular learning algorithms of interest rather than giving bounds 

for any consistent algorithm. In addition to analyzing the learning curve and cu- 

mulative mistakes of the optimal prediction algorithm (the Bayes algorithm), we 

simultaneously study the algorithm that outputs a random consistent hypothesis 

(the Gibbs algorithm). The motivation for this latter algorithm is exactly that of 

relaxing the uniform convergence demand while still making realistic assumptions 

about practical learning algorithms, since this algorithm will output a consistent 

hypothesis whose error with respect to the instance space distribution D is the 

average (over ~), not the worst. 

One appealing aspect of our approach is the elementary nature of most of the 

proofs, which rest almost entirely on well-known or easily derived algebraic expres- 

sions for the information gain and the probability of mistake, and employ simple 

inequalities relating these expressions. The additivity of the Shannon information 

is invoked repeatedly in order to obtain easy and useful bounds on otherwise com- 

plicated sums. For instance, our results include a short and transparent derivation 

of an upper bound on the expected total number of mistakes in terms of the VC 

dimension that is tight to within a constant factor. 

Perhaps the main strength of this research is the unifying framework it provides 

for several previously unrelated theories and results. By beginning in a model 

that averages over both the concept class and the instance space, then gradually 

removing the averaging in favor of combinatorial parameters that upper bound cer- 

tain expectations, we can move smoothly from the information theoretic bounds of 

the Bayesian and statistical physics theory to bounds based on the VC dimension. 

Thus, our bounds can be used both for average-case analyses of particular distri- 

butions, or for worst-case bounds in situations where the prior or instance space 

distribution is arbitrary. 

The aim of this paper is to demonstrate the applicability of information theory 

tools in an average-case learning model, and to show how some important results 

in the VC dimension theory can be reconstructed from these simple mechanisms. 

Towards ease of exposition and technical simplicity and clarity, we have chosen the 

simplest concept learning model that is still of general interest; clearly this model 

is far from being a perfect model of the real world. In a later companion paper, we 

hope to develop our methods further and apply them to more varied and realistic 

models; some of this ongoing work is outlined in Section 12. Many beautiful results 

on the performance of Bayesian methods are also given in the statistics literature, 

see, for example, Clarke and Barron (1990, 1991) and references therein. 
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2. Summary of results 

Following a brief introduction of some notation in Section 3, our results begin 

in Section 4. Here we define the Shannon information gain of an example, and 

introduce the two learning algorithms we shall study. The pr imary purpose of this 

section is to derive expressions for the information gain and the probabilities of 

mistake for the two learning algorithms in terms of an important  random variable 

known as the volume ratio. 

In Section 5 we prove tha t  the probabilities of mistake for our two learning al- 

gorithms can be bounded above and below by simple functions of the expected 

information gain. As in the paper  of Tishby, Levin and Solla (1989), we upper  

bound the probabil i ty of mistake by the information gain. We also provide an 

information-theoretic lower bound on the probabili ty of mistake, which can be 

viewed as a special case of Fano's inequality (1952; Cover and Thomas,  1991). To- 

gether these bounds provide a general characterization of learning curve behavior 

tha t  is accurate to within a logarithmic factor. 

In Section 6 we exploit the learning curve bounds of Section 5 and the addit ivity 

of information to obtain upper and lower bounds on the cumulative mistakes of our 

algorithms tha t  are simple functions of the total  information gain. These bounds are 

again tight to within a logarithmic factor. The total  information gain is natural ly 

expressed here as an appropriate  entropy expression. This entropy forms the crucial 

link between the Bayesian approach and the VC dimension bounds. This link is 

investigated in detail in Section 9. 

In Section 7 we investigate the important  variation of the basic Bayesian model 

in which the target  concept f is drawn according to a true prior Q tha t  may  differ 

from the learner's perceived prior 50. We again bound learning curves by information 

gain and cumulative mistakes by an entropy depending only on Q plus an additive 

"penalty term" measuring the distance between 5 ° and Q. 

In Section 8 we prove tha t  if the instances are chosen randomly according to an 

instance space distribution 79 then the instantaneous information gain is a non- 

increasing function of m. This result is used in Section 9, where we demonstra te  

tha t  some important  results in the VC dimension theory of learning curves and 

cumulative mistakes can in fact be recovered from the simple information-theoretic 

results in the Bayesian model. This is primarily accomplished by gradually remov- 

ing averaging over the instance space and the target  class in favor of combinatorial  

parameters  tha t  upper  bound certain expectations. The main technical tool re- 

quired is the Sauer /VC combinatorial lemma. In Section 10 we extend these ideas 

to show how the VC dimension can be used to obtain improved bounds in the case 

tha t  the perceived prior and true prior differ. 

In Section 12 we draw some conclusions and mention extensions of the results 

presented here. 
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3. Notational conventions 

Before presenting our results, we establish a few notational conventions. Let X be 

the instance space. A concept class jr over X is a (possibly infinite) collection of 

subsets of X.  We will find it convenient to view a concept f c j r  as a function 

f : X --~ {0, 1}, where we interpret f (x)  = 1 to mean tha t  x E X is a positive 

example of f ,  and f (x)  = 0 to mean x is a negative example of f .  

The  symbols 7), Q and ~ are used to denote probabili ty distributions. The 

distributions 7) and Q are over ~ ,  and :D is over X.  When ~" and X are countable 

we assume tha t  these distributions are defined as probabili ty mass functions. For 

uncountable j r  and X they are assumed to be probabil i ty measures over some 

appropriate  a-algebra. All of our results hold for both countable and uncountable 

.T and X.  

We use the notation Elep[x( f )  ] for the expectation of the random variable X 

under the distribution 7), and PryeT, [cond(f)] for the probabili ty under the distri- 

bution 7) of the set of all f satisfying the predicate cond(f). Everything tha t  needs 

to be measurable is assumed to be measurable. 

4. Instantaneous information gain and mistake probabilities 

In this section we begin the analysis of the three quantities tha t  form the backbone 

of the theory developed here: the Shannon information gain from a labeled exam- 

ple, and the probabili ty of mistake for the Bayes and Gibbs learning algorithms. 

Our immediate  goal is to define these algorithms and quantities, and to derive ex- 

pressions for the behavior of each in terms of an important  random variable tha t  

we shall call the volume ratio. 

Let j r  be a concept class over the instance space X.  Fix a target concept f E Jr 

and an infinite sequence of instances x = X l , . . . ,  Xm, x,~+l,. . ,  with Xm E X for all 

m. For now we assume tha t  the fixed instance sequence x is known in advance to 

the learner, but tha t  the target  concept f is not. Let 7) be a probabili ty distribution 

over the concept class $-. We think of 7) in the Bayesian sense as representing the 

prior beliefs of the learner about which target  concept it will be learning. 

In our setting, the learner receives information about  f incrementally via the 

label s e q u e n c e / ( X l ) , . . . ,  f(Xm), f (Xm+l ) , . . . .  At t ime m, the learner receives the 

label f(Xm). For any m ~ 1 we define (with respect to x, f )  the ruth version space 

Ym(X, f )  -- ( f  e j r :  f ( x l )  = f ( x l ) , . . . , f ( X m )  = f(Xm)) 

and the ruth volume V~P(x, f )  = 7)[$'m(x, f)]. We define ~0(x,  f )  = 9 r for all x 

and f ,  so V0P(x, f )  = 1. The version space at t ime m is simply the class of all 

concepts in j r  consistent with the first m labels of f (with respect to x), and the 

ruth volume is the measure of this class under 7 ). For the first par t  of the paper,  

the infinite instance sequence x and the prior ~o are fixed, thus we simply write 

.Tin(f) and V,~(f). Later, when we need to discuss distributions other than  7), or 
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when the sequence x is chosen randomly, we will reintroduce these dependencies 

explicitly. 

For each m > 0 let us define the mth  posterior distribution 7Dm by restricting 

P to the ruth version space ~-,~(f), that  is, for all (measurable) S c Y:, 7Pro[S] = 

~P[S N ~m(f)]/Ta[.Trn(f)] = 7~[S A .~m(f)]/Vm(f). Note that  ~D m has an implicit 
dependence on x and f that  we have omitted for notational brevity. The posterior 

probability distribution Pm can be interpreted as the subjective probability distri- 

bution over various possible target concepts, given the labels f ( x l ) , . . . ,  f (xm) of 
the first m instances. 

Digressing momentarily from the problem of learning f ,  in this setting we may 

now ask the following question: Having already seen f ( x ; ) , . . . ,  f(xm), how much 

information (assuming the prior 7 ~) does the learner gain by seeing f(xm+l)? (We 

think of this as the instantaneous information gain, since we address the gain only 

on the m + 1st label.) The classic answer provided by information theory is that  

the information carried by f(x,~+z) is given by the quantity 

P 
Zm~+l(X,/) = Zm+l(f)  

= -logPrfcp.~[f(Xm+l) = f(Zm+l)lf(Xi) = f(xi),  1 < i < rn] 

= - l o g  Vm+l(f) 
vm(f) 

= - l o g x m + l ( f )  

where we define the m + 1st volume ratio by 

P 
)~m-+-l( x ,  f )  = X m + l ( f )  = Vm+l(f)/Vm(f) 

We shall be primarily interested in the expected information gain when f is chosen 

randomly according to P, which may now be expressed 

Efe'p[:Trn+l(f)] = EIc'p[-logxm+z(f)] (1) 

We now return to our learning problem, which we define to be that  of predicting 

the label f(xm+l) given only the previous labels f ( x z ) , . . . ,  f(xm). The first learn- 

ing algorithm we consider is called the Bayes optimal classification algorithm (Duda 

and Hart, 1973), or the Bayes algorithm for short. It is a special case of the weighted 

majority algorithm (Littlestone and Warmuth, 1989). For any m and b E {0, 1}, 

define $ ' b ( x , f )  ---- 9~bm(f) = { f  E 5~m(X, f )  : f(Xm+l) = b}. Then the Bayes 

algorithm behaves as follows: 

If 7~,~[5Clm(f)] > "Pm[Y:°m(f)], it predicts that  f(xm+z) = 1. 

If 7),~[~1(f)] < 7~m[gr~(f)], it predicts that  f(Xm+l) = O. 

If Pm[~-l(f)]  = 7am[Y:°m(f)], it flips a fair coin and uses the outcome to predict 

f(Xm+l). 
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When the target concept f is drawn at random according to the prior distribution 

7 ), then the Bayes algorithm is optimal in the sense that it minimizes the probability 

that f(xm+l) is predicted incorrectly. 

Despite the optimality of the Bayes algorithm, it suffers the philosophical (and 

potentially practical) drawback that its hypothesis at any time m may not be a 

member of the target class 5 ~. (Here we define the hypothesis of an algorithm at 

time m to be the (possibly probabilistic) mapping f : X -~ {0, 1} obtained by 

letting f (x)  be the prediction of the algorithm when Xm+l = x.) This drawback is 

absent in our second learning algorithm, which is called the Gibbs algorithm (Opper 

and Haussler, 1991), and behaves as follows: 

Given the labels f ( x l ) , . . . ,  f(Xm), a hypothesis concept ] is chosen randomly : 

according to the posterior distribution Pro. 

Given Xm+l, the algorithm then predicts that f(Xm+l) = ](xm+l). 

Thus, the Gibbs algorithm simply chooses a hypothesis randomly (according to 

7)) from ~ among those that are consistent with the labels seen so far. The Gibbs 

algorithm is the "zero-temperature" limit of the learning algorithm studied in sev- 

eral recent papers (Denker et al., 1987; Tishby, Levin and Solla, 1989; Gyorgyi and 

Tishby, 1990; Sompolinsky, Tishby and Seung, 1990). 

It is important to note that both the Bayes and Gibbs algorithms are quite dif- 

ferent from the well-known maximum a posteriori algorithm, which chooses the 

hypothesis f that maximizes the posterior probability P,~ []]. While this algorithm 

maximizes the probability of exactly identifying the target concept, it may do quite 

poorly in the instantaneous mistake (learning curve) measure. In contrast, the 

Bayes algorithm has the optimal learning curve, and we shall see shortly that the 

Gibbs algorithm has a nearly optimal learning curve. 

We now wish to derive expressions for the probability that f(Xm+l) is predicted 

incorrectly by these two algorithms. These are the instantaneous mistake probabil- 
ities, since they only address the probability of a mistake on the m + 1st label. As 

was the case for the expected information conveyed by f(x,~+l) with respect to 7) 

given by Equation (1), we would like these probabilities to be expressed in terms 

of the volume ratio Xm+l (f). 
For the Bayes algorithm, note that a mistake in predicting f(x,~+l) is made with 

probability 1 if Vm+l(f) < ½Vm(f), with probability ½ if V,~+l(f) = ½Vm(f), and 
with probability 0 otherwise. Thus we may express the Bayes mistake probability 

on f ( x m + l )  as 

Bayes:+l(x , f )  = Bayesm+l(f) = ~) ( 1 -  Xm+l(f))  

where O(x) = 1 if x > 0, (9(0) -- ½, and O(x) -- 0 otherwise. The probability of 

mistake when f is chosen randomly according to 7 ) is thus simply 
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For the Gibbs algorithm, note that  the prediction of f(Xm+l) is correct if and 

only if the randomly chosen hypothesis f is in $ 'm+l(f) .  Since f is chosen ran- 

domly according to the posterior T'm, and the probability of Ym+l(f) under Pm is 

exactly Vm+l(f)/Vm(f) = Xm+l(f), we may write the probability that  f(Xm+l) is 

predicted incorrectly for fixed x, f and T' as 

GibbsPm+l(x, f) = Gibbsm+l(f) = 1 - Xm+l(f)  

In the case that  f is drawn according to ;o we have 

Ezep[GibbsPm+l(x,f)] = Efcp[1  - Xm+l(f)] (3) 

Note that  by the definition of the Gibbs algorithm, Equation (3) is exactly the 

probability of mistake of a random consistent hypothesis in 9 r,  using the distribution 

on 5 c defined by the prior. Thus if we also average over x, bounds on this expectation 

provide an interesting contrast to those obtained via VC dimension analysis, which 

always gives bounds on the probability of mistake of the worst consistent hypothesis. 

5. Bounding the mistake probabilities by the information gain 

Now that  we have obtained expressions for the information gain and mistake prob- 

abilities in terms of the volume ratio, in this section we use these expressions to 

show that  the mistake probabilities can always be bounded above and below by 

simple functions of the information gain. 

First we extend our notation 5rr~(f) and Vm(f) to allow a sequence of bits, y = 

(Yl, . . . ,Y~) (n > rn), representing labels of X l , . . . , x n ,  to replace the argument 

f .  Thus, we define ~'m(X,y) = ~-,~(y) = { f  E Y : f(xl) = Yl,.. . ,f(xm) = 

y,~}. Note that  in the case that  n > m, the last n - m bits of the sequence are 

ignored, in the same way that  in the notation 5 re ( f )  only the first m values of f 

on x are relevant. Similarly, we define V~P(x,y) = V,~(y) = P[$'m(Y)] and thus 

X~m+l( X, Y) = Xm+I(Y) = Vm+l(y)/Km(y). 
Let G be an arbitrary real-valued function of one argument, and let us examine the 

expectation EI~p[G(Xm+I(f))]. Note that  by Equations (1), (2) and (3); we may 

write the expectations (over the random choice of f according to 7') of Zm+l(f), 
Bayesm+l(f) and Gibbs,~+l(f)in this form. Since 

grn+l(Y) = P r f e p [ f ( x l )  = Yl A . . .  A f(zrn+l)  = Yrn+l] 

we have 

= E Vm+I(Y)~(Xm+I(Y)) 
yc{o,1} ~+l 

= E [Vm+l ({y, O))G(Xm+l ({y, 0 ) ) ) +  Vm+l ({y, 1))G(X.~+I ({y, 1)))] 

yc{0,1} "~ 
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E 
yc{0,1}~+l 

= E Vm(Y)[Xm+I((y'O))~(Xm+I((y'O))) 
y e ( o , 1 }  "~ 

+ Xm+I((Y, 1))G(Xrn+I((Y, 1)))] 

Vm+l(y) [Xm+I(Y)~(Xm+I(Y)) -t- Xm+I(Y ) (Xm+I(Y))] 

where y '  is the vector of labels obtained from y by flipping the last label. Since 

X m + l ( y  t) = 1 - X m + I ( Y ) ,  it follows that  

= E Vm+I(I)[Xm+I(Y)~(Xm+I(F)) 
ye{0,1} m+l 

+ (1 - Xm+l(y))~(1 - Xm+I(Y))] 

= Efe 'p[Xm+l( f )~(Xm+l( f ) )  + (1 -- Xm+l(f))G(1 -- Xm+l(f))] (4) 

The form of the expression inside the expectation of Equation (4) is pC(p) + (1 - 

p)6(1 - p) (using the substitution p = Xm+l(f)) ,  and is suggestive of a binary 

"entropy", in which we interpret p E [0, 1] as a probability, and 6(P) to be the 

"information" conveyed by the occurrence of an event whose probability is p. 

We now apply Equation (4) to the three forms of ~ we have been considering, 

namely ~(p) = - l o g p  (from Equation (1)), G(p) = O(½ - p )  (from Equation (2)), 

and ~(p) = 1 - p  (from Equation (3)). From these three equations and some simple 

algebra we obtain 

E f e p  [Zm+l (f)] = E f e p  [-  log )~rn+l (f)] = E f e p  [~'~(~rn+l (f))] (5) 

for the expected information gain from f (xm+l) ,  where 7"/ is the familiar binary 

entropy function 

T/(p) = - p l o g p  - (1 - p)log(1 - p) 

Note that  since 0 ~ Xm+l(f)  ~ 1, this implies that  on average, at most 1 bit of 

Shannon information can be obtained from a labeled example. 

For the probability of mistake of the Bayes algorithm, we obtain 

EfE'P[gayeSrn-t-l(f)] = EfEP [O(1-)Cm+l(f))] 

= E f e p [ m i n ( x m + l ( f ) , l  - Xm+l(f))] (6) 

For the probability of mistake of the Gibbs algorithm, we have 

Eic.[aibbS +l(f)] = 

= Ef~p[2Xm+l(f)(1 - X-~+l(f))] (7) 

Now it is easily verified that  for any p E [0, 1], 

min(p, 1 - p) < 2p(1 - p) < l ~ ( p )  (8) 
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Let us now define an inverse to 7-/by letting 7-/-~(q), for q E [0, 1], be the unique 

p e [0, 1/2] such tha t  7-/(p) : q. Note that  

7-/-1(7-/(p)) = min(p, 1 - p) 

Then from Equations (5)-(8), and Jensen's inequality, we may conclude 

~-l(Eyep[Zm+l(f)]) = 7-/-l(Eyep[7-/(Xm+l(/))]) 

< E/~p[7-{-l(7-l(Xm+l(f)))] 

= Eyep[min(Xm+l(f) , 1 - Xm+l(f))] 

= Eyep[Bayesm+l(f) ] 

<_ Eyep[Gibbs,n+l(f)] 

= 1E/e~,[Zm+l (f)] (9) 

Thus we see that  the probabilities of mistake for both the Bayes and the Gibbs 

algorithms are between 7-1-1 (Eye~ [Z,~+l(f)]) and ½ Eye~ [Zm+l(f)]. These upper 

and lower bounds are equal (and therefore tight) at both extremes E f e p  [Zm+l (f)] : 

1 (maximal information gain) and Eyep [Zm+l(f)] = 0 (minimal information gain). 

As the information gain becomes smaller, the difference between the upper and 

lower bounds shrinks, but the ratio of the two bounds grows logarithmically in 

the inverse of the information gain. In particular, it can be shown that  there is a 

constant co > 0 such that  for all p > 0, 7-/-1(p) ~ cop/log(2/p), so we may also 

write the chain of inequalities ending with Equation (9) as 

COEse, [Zm+l(/)] 
<_ Eye:~[Bayesm+l(f)] log(2/Es . [Zm+l (/)]) 

<_ E/ep[Gibbsm+l(f)] 

1 
_< (10) 

Note that  the upper and lower bounds given in both versions depend on properties 

of the particular prior :P, and on properties of the particular fixed sequence x. 

Finally, if all that  is wanted is a direct comparison of the performances of the 

Gibbs and Bayes algorithms, a tighter relationship can be obtained from Equations 

(6), (7), (8), and the simple observation p(1 - p) < min(p, 1 - p), giving 

E/~p[Bayesm+l(f)] < Eyep[Gibbsm+l(.f)] <_ 2Eyep[Bayesm+i(f)] (11) 

6. Bounding the cumulative mistakes by the partition entropy 

So far we have been primarily interested in analyzing the expectations of Bayesm+ l( f)  
and Gibbsm+l(f). These expectations may be thought of as the instantaneous 
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mistake probabilities: they are the probabilities a mistake is made in predicting 

f(Xm+l), and as such do not explicitly address what happened on the predictions 

of f ( x l ) , . . . ,  f(x,O. Similarly, Zm+l ( f ) i s  the instantaneous information, the infor- 

mation conveyed by f(x,~+l),  without explicit regard for the information conveyed 

by the previous labels. A natural alternative measure is a cumulative bound - -  

namely, the expected total information gained from the first m labels, or the ex- 

pected number of mistakes made in the first m trials. While direct analysis of the 

expressions for the expected number of mistakes for the Bayes and Gibbs algorithms 

is difficult due to the lack of a simple closed-form expression, the situation for the 

cumulative information gain is quite different due to the additivity of information. 

More precisely, we may w r i t e  

m m 

= ES .[Z-logx (f)] 
i = 1  i = I  

m 

= E f e P [ E ( l o g  Vi- l ( f )  - logV/(f))] 
i = l  

= Efcp[-logVm(f)] (12) 

since Vo(f) = 1, and recalling the definition of the volume ratio x i ( f ) .  

The final expression obtained in Equation (12) has a natural interpretation. The 

first m instances X l , . . . ,  xm of x induce a partition g~m(X) of the concept class 5 r 

defined by IlYm(X) = II~m = {~ra(x, f ) :  f E 9r}. Note that  III~l is always at most 
2 rn, but may be considerably smaller, depending on the interaction between ~ and 

xl,  •. •, Xm. It is clear that  

E f~ . [ - logWm(f ) ]  -- - y ]  P[~]log~[~] 

I rEI I~  

Thus the expected cumulative information gained from the labels of X l , . . . ,  xm, is 

simply the entropy of the partition H~m under the distribution P.  We shall denote 

this entropy by 
= = 

We may now use this simple expression for the cumulative information gain in 

conjunction with Jensen's inequality and the chain of inequalities ending with Equa- 

tion (9) to obtain the following bounds on the expected total number of mistakes 

made by the Gibbs and Bayes algorithms on the first m trials: 

< 

i = l  

< EEfcT:,[7-{-l(7-{(xi(f)))] 
i = t  
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m 

= Erep[EBayesi(f)] 
i = l  

m 

i = l  

1 
~_ ~Efep[-logVm(f)] 

1 p (13) = 

As in the instantaneous case, the upper and lower bounds here depend on properties 

of the particular P and x. Also, analogous to the instantaneous case, when the 

cumulative information gain is maximum (~-/~m = m), the upper and lower bounds 

are tight, and the ratio of the bounds grows logarithmically as the entropy becomes 

small. 

These bounds on learning performance in terms of a parti t ion entropy are of 

special importance to us, since they will form the crucial link between the Bayesian 

setting and the Vapnik-Chervonenkis dimension theory. 

7. Handling incorrect priors 

A common criticism of any Bayesian setting is the assumption of the learner's 

knowledge of an accurate prior P.  Taken to its logical extreme, this objection leads 

us back to worst-case analysis, whose pitfalls and pessimisms we specifically seek to 

avoid. However, there is a middle ground: namely, we can assume that  the learner's 

perception of the world (formalized as a perceived prior) may differ somewhat from 

the "truth".  In this section we present some initial results in this direction that  are 

based on the information-theoretic techniques developed thus far. 

Let us use Q to denote the true prior and )P to denote the perceived prior. Then 

when f is chosen randomly according to Q but the observer uses the prior P,  we 

obtain the following analogues of Equations (1), (2), and (3): 

EreQ[BayesPm+l ( f ) ]  

ErEQ[ aibbsPm+ l (f)] 

= E/eQ[- log X m+l(f)] 
= E/eQ [O (1 - 

= 

respectively representing the expected information gain from f(Xm+l), the proba- 

bility of mistake for the Bayes algorithm on f(Xm+l), and the probability of mistake 

for the Gibbs algorithm on f(Xm+l). 
Since for any 0 < p < 1 we have @(½ - p) ~ - logp, it follows that  

Ef~Q[BayesPm+l(f)] < EfEQ[Zm~+I(f)] 
Since for any 0 < p < 1 we have 1 - p  < - l n p  = - l n ( 2 ) l o g p ,  we have 

E/eQ[GibbsP~+l(f)] <_ ln(2)EfcQ[IP~+l(f)] 
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Thus, the probabilities of a mistake on f(Xm+l) for both algorithms are bounded 

above by a small constant times the expected information gain. Note that  in this 

general case in which the prior may be incorrect, the upper bound we get for the 

Gibbs algorithm is actually slightly better  than the upper bound we get for the 

Bayes algorithm. 

We now obtain bounds on the cumulative number of mistakes on the first rn trials. 

By analogy with Equation (12), from the above we may derive 

and 

m 

E]eQ[~-~ Bayes~(f)] <_ EIeQ[-logVmP(f)]  

i=1 

m 

ESeQ[~--~ Gibbs• (f)] 
i=1 

Note that  we may write 

EI Q[- log V£ (f)] 

< ln(2)EyeQ [ -  log V~P (f)] 

= EfcQ[-logVmQ(f)] + EfcQ[log 

: + Z m ( Q I f 7 9 )  

where Tim Q is the entropy of the partition II~m(x) induced on Y by x l , . . . ,  xm with 

respect to Q, and Im(QI[7 )) is the Kullback-Leibler divergence between Q and 7 9 

with respect to this partition. 

Our best lower bounds for both the instantaneous mistake probability and the 

cumulative number of mistakes for the case of an incorrect prior are obtained by 

observing that  the mistake probability is minimized by the Bayes algorithm when 

7 ) = Q. Thus coEfeQ[ZQm+I(I)]/Iog(2/Ef~Q[ZQm+I(f)]) is a lower bound on the 

instantaneous mistake probability, and CoT-lQm/log(2m/7-/Qm) is a lower bound on the 

cumulative number of mistakes for both the Bayes and Gibbs algorithms, for any 

perceived prior :P. It would be interesting to obtain lower bounds that  incorporate 

properties of the perceived prior P.  

8. The average instantaneous information gain is decreasing 

In all of our discussion so far, we have assumed that  the instance sequence x is fixed 

in advance, but that  the target concept f is drawn randomly according to 7 v. We 

now move to the completely probabilistic model, in which f is drawn according to 

:P, and each instance Xm in the sequence x is drawn randomly and independently 

according to a distr ibution/3 over the instance space X. 

In this model, we now prove a result that  will be used in the next section, but  is 

also of independent interest: namely, that  the expected instantaneous information 

gain Efep ,xe~*  [Zm(X, f)] is a non-increasing function of m. (Here we have intro- 

duced the notation x c :D* to indicate that  each element of the infinite sequence x 

is drawn independently according to :D.) 
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We begin by showing that  the expected information gain from the first label is 

at least that  of the second. Let us fix the pair of instances xl,  x2 E X that  are the 

first two instances seen, but let the order of their appearance be chosen uniformly 
at random. Then we may write 

E/e~,xe{(~l,x=),(~2,~)}[Zl(x,f)] =- 1T t~ ( I I~ (x l ) )+  l ~ ( I I ~ ( x 2 ) )  

where the subscript x c {(xl,x2), (x2,xl)} of the expectation indicates that  x is 

chosen uniformly at random from these two ordered pairs, and we recall the notation 

7-/;°(H) for the entropy with respect to 7 ) of a partition H on ~ .  

To obtain an expression for the expected value of 272 under these same conditions, 

we use the additivity of information: 

E/e;o,xe{(~,,~2),(~2,zl)} [272 (x, f)] 

= ?'/~(Yi2~(xl, x2)) - E/e~,,xe{(~,,~2),(~2,z~)) [Z~(x,/)] 

However, since the partition H2~(xl, x2) is a refinement of the partitions H~(xl)  

and II~(x2), we have (see e.g. Renyi (1970)) 

Thus 

EfC'P,XE((Xl ,x2),(x2,xl)} [~'2 (x,  f ) ]  

= E/e;oxc{(Xl,Z2),(z2,zl))[Zl(x, f)] 

Since xl and x2 were arbitrary, we may write 

Efep,xev*[Z2(x,f)] ~_ Ef~p,xcv.[Zl(x,f)] 

Now for general m, we can compare terms of Zm and Zm+l by fixing the instances 

x l , . . . ,  Xm-1 on this sequence, then applying the above argument to the version 

space :Tm-]( (x l , . . .  ,x ,~-l) ,  f )  and its corresponding posterior 7),~_1, giving the 
desired inequality 

EfE~o,x@~-[~m+l(X, f)] <_ Efep,xE~*[27m(X,f)] 

We may apply this result to obtain bounds on the average instantaneous mistake 

probabilities for the Bayes and Gibbs algorithms on the ruth random example in 

terms of the average entropy of the partition induced by the first m examples. 

First note that  since the total expected information gained by the first m labels is 

Exe~* [:H~(x)], with the additivity of information and the above result, we have 

E/e;o,xeg*[Zm(X,f)] _< 1Exev.[7-/P(x)]  
m 
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Thus, using the chain of inequalities ending with Equation (13), we have 

Eyep,xcv*[Bayesm(x,f)] < Eyep,xev*[Gibbsm(x,f)] 
1 

< 2 ,  E x e ~ .  [~P(x)] (14) 

For the remainder of the paper we shall find it notationally more convenient to 

discuss the instantaneous mistake probability at trial m (as is done in Equation 

(14)) rather than at trial m + 1. 

9. Bayesian learning and the VC dimension: correct priors 

Although we have given upper bounds on both the instantaneous probability of 

mistake and the expected cumulative number of mistakes for the Bayes and Gibbs 

algorithms in terms of 7-/Pro (x), we are still left with the problem of evaluating this 

entropy, or at least obtaining reasonable upper bounds on it. We can intuitively 

see that  the "worst case" for learning occurs when the partit ion entropy 7-/~ (x) is 

as large as possible. In our context, the entropy is qualitatively maximized when 

two conditions hold: 

The instance sequence x induces a partition of 5 c that  is the largest possible. 

The prior 7 ) gives equal weight to each element of this partition. 

In this section, we move from our Bayesian average-case setting to obtain worst-case 

bounds by formalizing these two conditions in terms of combinatorial parameters 

depending only on the concept class 5 c. In doing so, we form the link between the 

theory developed so far and the VC dimension theory. 

The second of the two conditions above is easily quantified. Since the entropy of 

a parti t ion is at most the logarithm of the number of classes in it, a trivial upper 

bound on the entropy which holds for all priors 7 ) is 

n~m(x) < log ln~(x) l  

Now let Z) be a distribution on the instance space X and assume that  instances in 

x are drawn independently at random according to i/) as in the previous section. 

Then using Equation (14) we have that  for all 7 9 , 

Eyep,xev* [Gibbsm(X, f)] 

1 
< 2mExc~.[loglYi~(x)l]  (15) 

E y ~ p , x ~ .  [Bayesm(X, f)] 

and using Equation (13) that  

m 

Eyep,xe~* [ E  Bayesi(x' f)] 
i = 1  

m 

_< E I E T , , x e ~ - [ E  Gibbsi(x, f)] 
i=1 

1 
<_ ~ E x ~ . [ l o g l n ~ ( x ) l ]  (16) 
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The expectation 

Ex~v* [log I ~  (x)J] 

is the VC entropy defined by Vapnik and Chervonenkis (1971) in their seminal 

paper on uniform convergence, and plays a central role in their characterization 

of the uniform convergence of empirical frequencies to probabilities in a class of 

events. Here we see how simple information-theoretic arguments can be used to 

relate the VC entropy to the learning curves of the Bayes and Gibbs algorithms. 

In the remainder of this section we will show how the other combinatorial pa- 

rameter introduced in the paper of Vapnik and Chervonenkis, known in the com- 

putational learning theory literature as the Vapnik-Chervonenkis (VC) dimension 

of the concept class jr ,  can provide useful bounds on the size of II~m(X), and how 

it can be used directly to give bounds on the instantaneous probability of mistake 

that  are independent of the prior P and the distribution T) on the instance space 

X. 

We say that  the instances x l , . .  •, Xd C X shatter the concept class j r  if 

[I l fm((Xl,  . . - , x d ) ) [  = 2 d, 

tha t  is, for every possible labeling of Xl , . . . ,Xd  there is some target concept in 

j r  that  gives this labeling. For any set S C_ X, the Vapnik-Chervonenkis (VC) 

dimension of j r  on S, denoted dim(J r, S), is the largest d such that  there exist 

instances X l , . . . ,  Xd C S that  shatter jr. If arbitrarily long sequences of instances 

from S shatter Jr then dim(jr, S) = oe. Often S = X, so we abbreviate dim(Jr, X)  

by dim(Jr). Further, if x = Xl ,X2 , . . .  is an infinite sequence of instances from 

X,  for each m > 1 we use dimm(jr, x) to denote d i m ( j r , { X l , . . . , X m } ) .  Clearly 

dimm(jr, x) < dim(jr) for all x and all m. 

The VC dimension has been calculated for many of the fundamental concept 

classes. For example, if the instance space X = It" and j r  is the set of all linear 

threshold functions on X then dim(Jr) = n + 1; if the threshold functions are 

homogeneous (i.e., the threshold is 0) then dim(jr) = n. If j r  is the set of all 

indicator functions for axis-parallel rectangles in Rn then dim(jr) = 2n; also if 

j r  is the set of all indicator functions for n-fold unions of intervals on X = It 

then dim(jr) = 2n. These and many other examples are given in the papers of 

Dudley (1984) and Blumer et al. (1989) and elsewhere. 

The following important  combinatorial result relating dim,~(jr, x) and ]II~(x)l 

has been proven independently by Sauer (1972), Vapnik and Chervonenkis (1982), 

and others (see Assouad (1983)): for all x, 

dim,~ (hr-,X) 

(:) 
i=0 

m 
< (1 ÷ o(1)) dimm(jr, x) log dim,~(jr, x) 

(17) 

where o(1) is a quantity that  goes to zero as a = m/dim,~(jr ,  x) goes to infinity. 

This result can be used directly in conjunction with Equations (15) and (16) to get 
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instantaneous and cumulative mistake bounds. Thus we have that for all 7), 

Efep,xev*[Bayesm(x, f)] _< Efep,xe~*[Gibbsm(x, f)] 

r dimm (5 c, x) rn 
_ (1 + o(1))Exe~.[. ~ log dimm(JC, x) ]. 

dim(5 c) m 
< (1 + o(1))---~--- m log dim(gO ) (18) 

and 
?92 

E/e;°,xe~" [ E  Bayesi(x' f)l 
i = l  

m 

_< aibbs,(x,/)1 
i=1  

< (1 + o(1))Exev.[ dimm(gc'x) log 
- 2 

< ( 1 + o ( 1 ) ) ~ 1 o g  dim~SC ) 

m 

dimm(~, x) ] 

(19) 

Haussler, Littlestone and Warmuth (1990; Section 3, latter part) show that spe- 

cific distributions T) and priors 7 ) can be constructed for each of the classes ~- 
listed above (i.e., (homogeneous) linear threshold functions, indicator functions for 
axis-parallel rectangles and unions of intervals) for which 

EIcp,xe~* [ E  Bayesi(x' f)] >- (1 - o(1)) In dim(5C ) (20) 
i=1  

This shows that the bound given by Equation (19) is tight to within a factor of 
1/ln(2) ~ 1.44 in each of these cases and hence cannot be improved by more than 
this factor in general. It also follows that the expected total number of mistakes of 
the Bayes and the Gibbs algorithms differ by a factor of at most about 1.44 in each 
of these cases; this was not previously known. Opper and Haussler (1991) give a 
similar comparison between the instantaneous mistake bounds for the Bayes and 
Gibbs algorithms for homogeneous linear threshold functions using different priors 
and instance space distributions. Finally, note that the simplicity of the derivation 
of the bound in Equation (19) makes this a very appealing way to obtain useful 
average-case cumulative mistake bounds. 

Unfortunately the instantaneous mistake bound given in Equation (18) is not 

as tight as possible. However, using the results of Haussler, Littlestone and War- 
muth (1990), we can show that 2 for all 7), 

[dimm( 9c, ] dim(9c) 
E/ep,xe:D* [Bayesm(X, f)] <_ Exe~* x) j _< (21) 

m m 

Ignoring the middle bound for the moment, the proof of this fact is straightfor- 
ward, given the results of Haussler, Littlestone and Warmuth (1990) (which are 
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not straightforward to prove, as far as we know). In particular, Theorem 2.3 of 

that  paper shows that  for any instance space X and any class Y of concepts on 

X, there exists a randomized learning algorithm A (the 1-inclusion graph alto- 
rithm) such that  for any distribution 59 on X and any target concept f in Y, when 

instances x l , . . . ,  xm are drawn randomly from X according to 59 and A is given 

(Xl, f (Xl ) ) , - . . ,  (Xm-l, f(Xrn-1)) and Xm, the probability that  A makes a mistake 

predicting f(xm) is at most dim(Y)/m.  It follows that  for any prior 7 ) on Y, when 

f is selected at random according to P,  the probability that  A makes a mistake 

predicting f(Xm) is at most dim(Y)/m. Thus the probability of a mistake for Bayes 

algorithm is also at most dim(Y)/m,  by the optimality of Bayes algorithm. (From 

a statistical viewpoint, here we are just using the fact that  the Bayes risk is always 

less than the maximum risk of any statistical procedure.) 

To prove the middle bound of Equation (21), we can generalize the proof of 

Haussler, Littlestone and Warmuth's (1990) Theorem 2.3 to obtain this sharper, 

instance space distribution dependent form of the bound for the 1-inclusion graph 

algorithm for all target concepts, and then apply the argument described in the 

previous paragraph to obtain the desired result. Alternately, we can also derive the 

result directly from the lemmas used in establishing their Theorem 2.3. This latter 

approach is outlined in the discussion section of Haussler (1991). 

From Equation (21) we can also obtain similar upper bounds for the Gibbs al- 

gorithm. In particular, using Equation (11) and Equation (21) we have for all 

r2 dimm(Y, ~ 2 dim(Y) 
Efcp,xe~* [Gibbsm(X, f)] < Exc~* L x)] -< (22) 

m m 

Note that  in each of Equations (21) and (22) the second inequality gives a bound 

that  is independent of the distribution 59 on the instance space, and of the prior 

on the concept class Y. 

The same specific distributions and priors constructed by Haussler, Littlestone 

and Warmuth (1990) that  we mentioned above also show that  for each of the classes 

Y of (homogeneous) linear threshold functions, indicator functions for axis-parallel 

rectangles and unions of intervals, there is an instance space distribution 59 and a 

prior P such that  

dim(Y) 
E/ep,xc~*[Bayesm(x,f) ]  > (1 - o(1)) 2m 

This shows that  the bound given by Equation (21) is tight to within a factor of 1/2 
in each of these cases and hence cannot be improved by more than this factor in 

general. We conjecture that  in fact the lower bound is correct, and thus the upper 

bounds in Equations (21) and (22) can each be improved by a factor of 1/2. It 

should be noted that  if this conjecture holds, then using standard inequalities for 

partial sums of the harmonic series, the bounds in Equation (21) could be summed 

to give bounds similar to those in Equation (19), but using In in place of log. 

As mentioned above, this bound would be best possible as far as multiplicative 

constants are concerned. 
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It  is both a strength and a weakness of these bounds that  they are given in a 

form that  is independent of the prior P,  and possibly also of the distribution 7) on 

the instance space: a strength because the same upper bounds hold for all 7) and 

79, and a weakness because they may not be tight for specific 7 ) and 79. While it is 

always possible to construct degenerate 7 ) and 79 for which these upper bounds are 

far too high, the real question is how far off they are for "typical" or "natural" prior 

and instance space distributions, as might arise in practice. The distributions used 

in the lower bounds from the latter part of Section 3 of Haussler, Littlestone and 

Warmuth (1990) mentioned above are unfortunately not very natural. However, 

in a recent paper (Opper and Haussler, 1991) the natural case in which ~ is the 

set of homogeneous linear threshold functions o n  ~ d  and both the distribution 79 

and the prior 7) on possible target concepts (represented also by vectors in ~d) are 

uniform on the unit sphere in ~}~d is examined. (For homogeneous linear threshold 

functions only the directions of the target concept and the instance matter,  so 

the specific choice of the unit sphere is actually immaterial.) In this case, under 

certain reasonable assumptions used in statistical mechanics, it is shown that  for 

m > >  d > >  1, 

0.44d 
Efe;D,xc~* [Bayesm(X, f)] 

m 

(compared with the 0.5d/m conjectured general upper bound and the d/m proven 

general upper bound given for any class of VC dimension d above) and, as was 

previously shown by Gyorgyi and Tishby (1990), 

0.62d 
Efc;~,xe~.  [Gibbsm(X, f)] 

m 

(compared with the 2d/m general upper bound proven above). Thus at least in 

this case, the bounds are still accurate to within a constant factor. 

10. Bayesian learning and the VC dimension: incorrect priors 

We now look at how the notion of VC dimension can be used to get better  bounds on 

the performance of the Bayes and Gibbs algorithms when the prior 7) is incorrect - -  

that  is, the target concept is actually chosen at random from some different distri- 

bution Q on 9 c, as in Section 7. Let us say that  the prior 7 ) is nondegenerate for ~ if 

for any instances x l , . . .  ,x,~ e X and any f e 5 ~, we have VPm((Xl,... ,xm), f )  > 0, 

tha t  is, 7 ) never assigns zero probability to any legitimate version space from 5 ~. 

Note that  by assigning arbitrarily small probabilities to certain version spaces, the 

upper bounds given on cumulative mistakes in Section 7 can be made arbitrarily 

high, even for a nondegenerate prior 7). The same holds for the instantaneous 

mistake bounds. However, the actual probability of mistake, and expected total  

number of mistakes in m trials, are trivially bounded by 1 and m respectively, so 

these bounds cannot be very tight in these extreme cases. 

Better-behaved bounds can be obtained using the VC dimension. In particular, in 

terms of instantaneous mistake bounds, it can be shown that  for any nondegenerate 
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prior 7 ), any actual distribution Q on ~c and any distribution 73 on the instance 

space 

E fe  Q,xe~* [Gibbs~+l(X, f)] 

( [lIIm+k(Xl'''"Xm+k)']+l k) < inf l n E x e ~ .  J: 

< (1 + o(1)) dim(SO) in m 
- m dim(SC--------~ ( 2 3 )  

where o(1) represents a quantity that  goes to zero as a = m~ dim(5 c) goes to infinity. 

A similar result holds for the Bayes algorithm, but with an additional factor of 2, 

giving 

E re  e,xev* [BayesPm+l(X, f)] 

f l n  Exez~. [[II~m+k(xl[:.. ,Xm+k)]] + 1 1 )  
_< 2k_>linf ~ kln(1 + re~k) + -£ 

< (1 +o(1) )  2dim(~c) In m (24) 
- m dim(~) 

The argument required to establish these bounds is fairly lengthy, and hence is 

given in the appendix. 

Because these bounds do not depend on the distribution Q used to choose the 

target concept, they are essentially worst case bounds on the performance of the 
Bayes and Gibbs algorithms over all possible target concepts in ~ .  Furthermore, 

the bounds in the second inequalities do not depend on the distribution 73 on 

the instance space X either. If tighter versions of these bounds are desired, the 
distribution-specific forms given in the middle inequalities may be used. 

The middle inequalities also have an interesting consequences when 5 c if finite. 

In this case we note that  J= IHm+k(xl, . . .  ,xm+k)l < I~-I for all Xl , . . .  ,Xm+k- Hence 

Ef6Qxez~*[GibbsP~+l(x'f)]' -< k>_linf \ k ln(1 ~ ln[S[+ +1m/k) + k) - In IJC[m + 1  (25) 

since a ln(1  + i / a )  _< 1 for c~ > 0, and lim~__.~ aln(1 + l / a )  = 1. A similar result 

holds for the Bayes algorithm with an additional factor of two. 
A bound similar to that  given in Equation (23) is given by Haussler, Littlestone 

and Warmuth (1990), but with a slightly higher constant. As in that  paper, it 

can be shown that  the bound given in Equation (23) holds not only for the Gibbs 

algorithm but for any algorithm that always predicts by finding a hypothesis in 5 v 
that  is consistent with all the labels of examples it has seen so far (see the appendix). 
This includes the maximum a posteriori algorithm, which returns the hypothesis 

with the maximum posterior probability, mentioned in Section 4. Furthermore, 

a result given in that  paper (Theorem 4.2) shows that the leading asymptotic 

constant of 1 in our bound cannot be improved below 1 - l / e ,  indicating that  for 
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bounds of this generality, this is about the best that  can be done. It is unclear 

how information-theoretic tools, or other VC dimension tools such as those used 

in obtaining the results of the previous sections, could be used to give stronger 

versions of this result that  depend explicitly on the distributions 7) and Q. 

11. Learning classes of  infinite VC dimens ion  

One limitation of the basic VC dimension analysis given thus far is the assumption 

that the target concept is drawn from a class of finite VC dimension. Vapnik has 

extended the theory to include the case when 5 c has infinite VC dimension, but can 

be decomposed into a sequence 5Cl C -7"2 C . . .  of subclasses with nonzero, finite VC 

dimensions dl, d2, . . . ,  respectively (Vapnik, 1982). A typical decomposition might 

let 5ci be all neural networks of a given type with at most i weights, in which case 

di = O(i  log i) (Baum and Haussler, 1989). 

We can also look at this from a Bayesian point of view by letting the prior 7 ) be 
0o 

over all concepts in 5 c, and decomposing it as a linear sum 7) = ~ i=1  aiT)i, where 

Pi is an arbitrary prior over 5ci and c~ 1. We now derive upper bounds on E i = I  O~i 

the cumulative number of mistakes and the instantaneous mistake probabilities for 

the Bayes and Gibbs algorithms by bounding the information gain. 

Fix the instance sequence x. As in the analysis of Section 5, we find it convenient 

to replace the random selection of the target concept f C 5 c with a sequence y E 

{0, 1} m, representing the boolean labels for the first m instances of x. We define 

7)i(Y) = P r f c p ~ [ f ( x l )  = Y l , . . .  , f ( X m )  = Ym]. This immediately gives 7)(y) = 

~ i ~ t  aiT)~(y). Letting ~Pm denote the entropy with respect to 7) of the parti t ion 

induced on 5 ~ by Xl , . . .  ,Xm (as was done in Section 6), we may write 

n~m = -  E 7)(y)log~(y) 
y~{0,1} T M  

(2<9 

-< - E E ai7)i(y)log af l ) i (y)  
ye{0,1}m i=1 

= -- E ai7)i(y) logozi  + a i7 ) i ( y ) log 'P i ( y  

yc{0,1}-~ i=1 

= - oli log ai  E 7)i (Y) 

ye{0,1}~ 
oo oo 

- ~ ~i log ~ + ~ a ~,.~'~.~ 
i=1  i=1  

- oei E 7)~(y) log 7)i(y) 

yc{o,1}-~ 
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Here we have used the fact - log(x+y)  < m i n ( -  log x, - log y). The final expression 
o o  

obtained shows an interesting decomposition: the sum -Y~i=l  c~i log c~i is simply 

the entropy of the infinite sequence of c~ = c~1, c~2,..., which we shall denote ~(c~). 

The sum 2_,i=1 (~irtm is a sum of the entropies of the component distributions 7)i, 
weighted by the contribution of each component to 7). Now from Equation (13) we 

may immediately write 

m 

Efc~, [~-~. Bayesi(f)] 
i=1 

m 

_< E S e ~ [ E  Gibbsi(f)] 
i ~ l  

-< 2 g ( a ) +  c~g 
i=1 / 

Recall from Section 9 that  ~Pm(X) < log ]H~m(X)l for any 9 r and any prior 7 ) on 

5 r .  By using a variant of Sauer's lemma (Equation 17), it can be shown that  if the 

VC dimension of 5 r is d _> 1, then 

d 

z + 1)_< + 
i=0 

for all m > 1. Hence 

~r~ ' < di log(m + 1) for all i. 

Combined with the above, this yields 3 

Yr~ m 

Efez:,[E Bayesi(f) ] < E/~p[  E Gibbsi(f)] 
i ~ l  i = l  

< - g ( ~ ) +  ~ a ~ l o g ( m + l )  
- -  2 i = 1  

1 ~(c~) + log(m + 1) ~d~ 
2 i=1 

We may interpret this final bound as follows: the term 7g(c~) can be regarded as a 

"penalty" for our uncertainty as to which ~i the target will be drawn from. Pro- 

vided the sequence of c~ decreases more rapidly than ~ (roughly), this penalty 

will be only a constant number of mistakes. The term log(m + 1) ~ 1  c~di is the 

usual logarithmic bound times a kind of VC dimension, only now this dimension is 

actually a kind of "effective VC dimension" ~ Y~=I aidi,  where the contribution of 

each di is proportional to the weight c~ of ~i.  This is the dominant term in the 

final bound, and will result in a cumulative mistake bound that  is logarithmic in 

m provided that  ~i~=1 ctidi is finite. 

Finally, we may obtain bounds on the instantaneous mistake probabilities in the 

setting where each instance in x is drawn randomly according to :D by applying 
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Equation (14), giving 

Efcp,xe~* [Bayesm(X, f)] _< Efcp,xe~).[Gibbsm(x,f)] 

< 

+ Exc * 

log(.  + 1) 
2---~ + 2m E (~idi 

i=1 

12. Conclusions and future research 

Perhaps the most important general conclusion to be drawn from the work pre- 

sented here is that the various theories of learning curves based on diverse ideas 

from information theory, statistical physics and the VC dimension are all in fact 

closely related, and can be naturally and beneficially placed in a common Bayesian 

framework. 

The focus of our ongoing research is that of making the basic theory presented here 

more applicable to the situations encountered by practitioners of machine learning 

in neural networks, artificial intelligence, and other areas. Below we briefly mention 

some extensions of our model for which we have partial results: 

Learning with noise. Here we extend many of our general results relying on 

information-theoretic notions to handle the case where the classification labels 

may be corrupted by noise. 

Learning multi-valued functions. Here we relax the restriction that the target 

function have {0, 1}-valued output to allow multiple possible output values. 

These results can be used to study the learning of real-valued functions, which 

is often the situation in empirical neural network research. 

Learning with other loss functions. In conjunction with the above extension, here 

we seek to generalize the theory by studying measures of a learning algorithm's 

performance other than the {0, 1}-loss function studied here. A typical choice 

is the quadratic loss, often used to obtain the standard sum-of-squared-errors 

measure for real-valued or vector-valued functions. 
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Appendix 

Here we give the derivation of Equations (23) and (24). First we will need to 

establish a few lemmas. 

L e m m a  1 Let M be an arbitrary n by m matrix of Os and ls. Suppose that t of 

the m columns of M are selected at random without replacement and eliminated, 

along with all rows of M that have a 1 in any of these columns. Let M ~ be the 

remaining matrix. Let the random variable ~b denote the maximum number of ls  

in any row of M t, or 0 if  M '  is empty. Then 

l n n +  1 

E(~b) ~ l n ( m / ( m -  t)) + 1 

where the expectation is over the random choice of the t columns. 

P r o o f :  Let k = m - t .  C l e a r l y 0 _ < ¢ <  k. For each j ,  l < _ j  < k, l e t p j  be the 

probability that  ¢ > j .  Then 
k 

E ( ¢ )  = Z p j  

j = l  

Now fix j ,  and fix a particular row of M that  has r _> j ls. If we choose t of the m 

columns at random and eliminate all rows that  contain a 1 in any of these columns, 

then the probability that  this row is not eliminated is 

( 7 )  = (k - = r e ( m -  1 ) - . - ( m  - r + 1) S _< 

Hence the probability that  there is any row of M with j or more ls that  is not 

eliminated is at most min(1 ,n(k /m)J) .  Since ¢ > j only if there is a row of M 

with j or more ls that  is not eliminated, it follows that  

pj ~ min(1, n ( k / m )  j) 

Thus 

E(¢ )  < 

k 

E min(1, n ( k / m )  j) 

j : l  
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oo 

s + n (k/m)J for any s > < 0 

j = s + l  

(klm) s+' 
= s + n- 1 _ ( k / m )  

nk  
= s + m - k  e-sln('~/k) 

Let s be the least integer greater than 

ln( m---~ k l n (m/k ) )  

l n ( . # k )  

Making this substitution and simplifying, we obtain 

ln n + l n ( ( k / ( m - k ) ) l n ( m / k ) )  + 1 
E(¢) <_ 

in(re~k) 

Since In(x) < x - 1 for all x > 0, we have 

l n (mlk )  <_ (re~k) - 1 = (m - k ) l k ,  

and thus l n ( ( k l (m  - k ) ) l n ( m l k ) )  < 0. It follows that  

l n n +  1 

E(¢)  < l n (m/k )  + 1 

giving the result. 

÷ i 

L e m m a  2 Let 7 ) be a nondegenerate prior distribution on ~ .  Let x l , . . .  ,Xm be 

any sequence of instances in the instance space X and f be any (unknown) target 

concept in ~ .  Suppose that t + l of the m instances x l  , . • •, xm are selected uniformly 

at random without replacement, we are given the values of f on the first t of these 

instances, and we are asked to predict the value of f on the last instance. Then i f  

we use the Gibbs learning algorithm with prior 7 ), or indeed any learning algorithm 

that always predicts by selecting a hypothesis in ~= that is consistent with all the 

examples it has seen so far, the probability that we predict incorrectly is at most  

l n n +  1 1 
+ 

(m - t ) l n ( m / ( m  - t)) m - t 

whe re  n = I I - I~(x l , . . . ,  x~)l .  F u r t h e r m o r e ,  i f  we use the B a y e s  a l g o r i t h m  w i t h  p r i o r  

"P, the probability that we predict incorrectly is at most twice this value. 

P r o o f :  Choose a representative fi c .P for each equivalence class o f I I ~ ( x l , . . . ,  x,~), 

for 1 < i < n. Define the n by m matrix M by letting M~,j = 1 if f~(xj)  = f ( x j )  

and Mi,j = 0 otherwise. Thus each row in M indicates for which instances in 
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X l , . . . ,  Xm the functions in the i th equivalence class will predict the wrong label. 

In particular, the row representing the equivalence class of f itself is all 0s. 

Let us assume tha t  the instances Xj l , . . .  ,xj~+l are chosen at random without  

replacement from X l , . . . , x , ~  and tha t  we are given the value of f on the first 

t of these chosen instances. Consider the problem of predicting the value of f 

on xj~+~. Suppose we are using a learning algorithm tha t  predicts by choosing a 

hypothesis / from $" tha t  is consistent with the labels it has seen so far, tha t  is, 

/ ( X j l  ) = f ( x j ~ ) , . . . ,  ] (x j , )  = f ( x j ~ ) .  The Gibbs algorithm is one such algorithm. 

Since all tha t  mat ters  as far as mistakes in prediction on points in x l , . . . , x m  

is concerned is the equivalence class of the hypothesis chosen, any such learning 

algorithm corresponds to choosing a row i in M with a 0 in each of the t columns 

j l , - . .  , j r .  Now since the t + 1st instance xj~+~ is randomly chosen from among 

the m - t instances left after the first t instances are chosen, the probabil i ty (with 

respect to the choice of this t + 1st random instance but fixing the choice of the 

first t instances) tha t  the label of the t + 1st instance is predicted incorrectly is 

r i / ( m  - t), where ri is the number of ls in the row i of M chosen by the algorithm. 

Let M '  be the matr ix  obtained from M by eliminating the t columns j l , . . - ,  Jr, 

and eliminating any row tha t  has a 1 in any of these columns. Note tha t  M '  is 

nonempty  since M has an all 0 row. Then for any row i chosen by a consistent 

learning algorithm we have r i / ( m  - t)  < ~b/(rn - t), where ~b is the max imum 

number  of ls  in any row of M' .  I t  follows that  the probabili ty (with respect to 

the random choice of all t + 1 instances) tha t  the label of this t + 1st instance is 

predicted incorrectly is at most E ( ~ b ) / ( m - t ) ,  where the expectation is with respect 

to the random choice of the first t instances. By the previous lemma, 

E(¢)  < lnn + 1 1 
+ 

m - t - ( m  - t ) l n ( m / ( m  - t ))  m - t 

This gives the first result. 

For the second result, again assume tha t  the instances x y l , . . . ,  xj, are the first 

t instances selected at random (without replacement) from X l , . . . ,  xm and define 

the matr ix  M '  as above. Given the labels f ( x j ~ ) , . . . ,  f ( x j , ) ,  let 79t be the posterior 

distribution induced on ~ as defined in Section 4. For each i let Pi denote the 

probability, with respect to Pt,  of the equivalence class represented by row i of the 

mat r ix  M ~. Since 7) is nondegenerate, Pi > 0 for each row i of M r. 

Let us define the mis take  weight  p ( j )  of column j of M r by letting 

p( j )  = E p i M i , j  
i 

Thus p ( j )  is the total  posterior probabili ty of all rows tha t  have a 1 in column j .  

Note tha t  a mistake is made by the Bayes algorithm in predicting the label of the 

t + 1st random instance xj~+l with probabili ty 1 if the mistake weight P( j t+ l )  ~ 1/2, 

and with probabil i ty 1/2 if P( j t+ l )  = 1/2. Thus this probabil i ty of a mistake on 

the t + 1st random instance is at most v / ( m  - t),  where 7 is the number  of columns 

in M '  with mistake weight at least 1/2. 
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Let us define the total mistake weight p of M t by p = y~j p(j).  Since the number 

of columns with mistake weight at least 1/2 is at most twice the total  mistake 

weight of all columns, we have 7 < 2p. However, since p = Y~i,jpiMi,j = ~ i P i r i ,  

where ri is the number of ls  in row i of M ~, it is also clear tha t  p < ¢,  where ¢ is 

the maximum number of ls  in any row of M ~. Hence, the probabil i ty of a mistake 

for the Bayes algorithm on the t + 1st random instance is at most 2¢/(rn - t). The 

remainder of the proof is as above. • 

T h e o r e m  1 Let 7 ) be a nondegenerate prior on ~ and Q be any distribution on 

.~. Let 7) be a distribution on X .  Assume the target function f is drawn at random 

from jz according to Q. Suppose that t + 1 instances are selected independently at 

random with replacement from X according to 7). Assume we are given the values of 

f on the first t of these instances, and we are asked to predict the value of f on the 

last instance. Then if  we use the Gibbs learning algorithm, or indeed any learning 

algorithm that always predicts by selecting a hypothesis in .~ that is consistent with 

all the examples it has seen so far, the probability that we predict incorrectly is at 

most 

inf \ k ln(1 + t / k )  + k___l 

I f  we use the Bayes algorithm, the probability that we predict incorrectly is at most 

twice this value. Further, if  d = dim(~ r) < 0% then this value is at most 

d i n  d (I + o(1)) 7 

where o(1) represents a quantity that goes to zero as t / d  goes to infinity. 

P r o o f i  Fix k > 1 and let m = t + k. Fix the target  concept f E Y. The previous 

lemma shows tha t  for any fixed sequence x = (Xl , . . .  ,xt+k) of instances from X,  

if we randomly select t + 1 of these, and use the labels of the first t to predict the 

label of the t + 1st, then using any consistent learning algorithm, the probabil i ty 

we predict incorrectly is at most 

lnn  + 1 1 l n n +  1 1 

(m - t ) l n ( m / ( m  - t)) + - (A.1) m - t k ln(1 - t / k )  + 

where n = IH~k(x) l .  Since this bound holds for any fixed sequence x c X t+k, 

it also holds if the xis in x are drawn independently with replacement from any 

distribution on X,  when n is replaced with Exe~+k( IHt~k(x) l  ). However, when 

x l , . . . ,  xt+k are drawn independently with replacement from some fixed distribu- 

tion 7) and then t + 1 of these t + k instances are selected at random (without 

replacement),  the overall distribution on the set of all possible sequences of the 

resulting t + 1 instances is the same if they were directly selected from 7) indepen- 

dently with replacement. Hence, for each k _> 1, the value (A.1) above is a bound 

on the probabili ty of a mistake in predicting the label of the last instance in a se- 

quence of t + 1, drawn independently with replacement, given the labels of the first 
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t variables. Finally, since this bound holds for any target f E 3 v, it also holds in 

expectation when the target f is selected at random according to any distribution 

Q on ~.  This gives the first result of the theorem. The argument is similar for the 

result about the Bayes algorithm, using the second part of the previous lemma. 

To establish the last result, note that by Sauer's lemma (Equation (17)), 

t + k  jz 
l n E x ~ + k  (IIt+k(x)) < (1 + o(1))dln d 

Let k = Ftln(t/d)]. Then 

lnExE. ÷k ( a S k ( x ) )  + 1 

kln(1 + t/k) 

1 
÷ - 

k 

(1 + o(1))dln t+tln(t/d) 
d 

t ln(t/d) ln(1 + 1/ln(t/d)) 

(1 + o(1))dln(t/d) 

t ln(t/d) ln(1 + 1/ln(t/d)) 

(1 + o(1))d 

t ln(1 + 1/ln(t/d)) 

(1+  o(1)) ln~ 

This gives the result. 

Note that the trick employed in the proof above of varying the additional number 

of instances k to get better averages has also been used by Shawe-Taylor, Anthony 

and Biggs (1989) and by Massart (1986) to get other bounds on related measures 

based on the VC dimension. 

Notes 

1. More general Bayesian approaches to learning in neural networks are described in recent papers 
(MacKay, 1992; Buntine and Weigend, 1991). 

2. Vapnik (1979) had obtained the special case of this result for homogeneous linear threshold 
functions. Also, see Talagrand (1988) for further interesting properties of ExE~* [dimm(5 r, x)]. 

3. Somewhat stronger, but  more complex upper bounds can be obtained by using more refined 
d 

upper bounds on ~ i = 0  (r~). 
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