
ELA

BOUNDS ON THE SPECTRAL RADIUS OF

HADAMARD PRODUCTS OF POSITIVE

OPERATORS ON ℓP -SPACES∗

ANTON R. SCHEP†

Abstract. Recently, K.M.R. Audenaert (2010), and R.A. Horn and F. Zhang (2010) proved

inequalities between the spectral radius of Hadamard products of finite nonnegative matrices and

the spectral radius of their ordinary matrix product. We will prove these inequalities in such a way

that they extend to infinite nonnegative matrices A and B that define bounded operators on the

classical sequence spaces ℓp.
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1. Introduction. In [1], K.M.R. Audenaert proved a conjecture of X. Zhan [5]

by proving that for nonnegative n×n matrices A and B the spectral radius ρ(A ◦B)

of the Hadamard product satisfies

ρ(A ◦ B) ≤ ρ
1

2 ((A ◦ A)(B ◦ B)) ≤ ρ(AB),

where AB denotes the ordinary matrix product of A and B. These inequalities

were established via an intricate inequality involving traces. Using the fact that the

Hadamard product is a principal submatrix of the Kronecker product A ⊗ B, R.A.

Horn and F. Zhang [3] proved that

ρ(A ◦ B) ≤ ρ
1

2 (AB ◦ BA) ≤ ρ(AB).

They noted in their paper that their methods could be used to derive the right-hand

side of the inequalities of Audenaert, but that the left-hand side appeared to be

deeper.

In this paper, we will show that we can derive the left-hand side of this inequality

without using the characterization of the spectral radius as a limit of traces. We will

prove in fact the inequalities

ρ(A ◦ B) ≤ ρ
1

2 ((A ◦ A)(B ◦ B)) ≤ ρ
1

2 (AB ◦ BA) ≤ ρ(AB)
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in such a way that the proofs are valid for positive operators on ℓp spaces, where

we will assume throughout the paper that 1 ≤ p < ∞. In this context, the method

of Audenaert is not applicable, while the method of Horn and Zhang is not directly

applicable, but we do follow many of the ideas of [3]. Our main tool is the formula

ρ(A) = limn→∞ ‖An‖ 1

n , where ‖A‖ denotes the operator norm of A on ℓp, and ℓp is

equipped with the usual ‖ · ‖p-norm.

2. Hadamard product of matrices of operators on ℓp. First we recall some

terminology and notations. We write x ≥ 0 for x = (ξn) ∈ ℓp, whenever ξn ≥ 0 for

all n ≥ 1, and we denote by ℓ+p the set of all x ≥ 0 in ℓp. A bounded linear operator

A : ℓp → ℓp is called positive (denoted by A ≥ 0) if Ax ≥ 0 for all x ∈ ℓ+p . As

we assume p < ∞, every bounded operator on ℓp has a matrix representation with

respect to the standard basis, and we will identify the operator with its matrix. In

case A ≥ 0, we have A = [aij ] , where each aij ≥ 0. We will use frequently that if

0 ≤ A ≤ B on ℓ+p (i.e., A − B ≥ 0), then ‖A‖ ≤ ‖B‖. Given two bounded linear

operators A = [aij ], B = [bij ] on ℓp, we define A ◦ B by the matrix [aijbij ].

Our first lemma shows that A ◦ B defines a bounded linear operator on ℓp. This

result is known in greater generality than stated here, see e.g. [2], but for completeness

we include a short proof .

Lemma 2.1. Let A and B be positive linear operators on ℓp. Then A ◦ B is a

positive linear operator on ℓp and ‖A ◦ B‖ ≤ ‖A‖‖B‖.

Proof. By homogeneity it is sufficient to prove that ‖A ◦ B‖ ≤ 1, whenever

‖A‖ = ‖B‖ = 1. Assume B = [bij ]. From ‖B‖ = 1 it follows that bi,j ≤ 1 for all i, j,

so that 0 ≤ A ◦ B ≤ A. This implies immediately that A ◦ B is a positive operator

from ℓp to ℓp and ‖A ◦ B‖ ≤ 1.

We denote by A( 1

2
) the pointwise (“Hadamard”) square root of the operator A.

The following lemma is a special case of the Krivine calculus in Banach lattices; see

Proposition 1.d.2 of [4].

Lemma 2.2. Let A and B be positive operators on ℓp. Then A( 1

2
) ◦ B( 1

2
) is a

positive operator on ℓp and ‖A( 1

2
) ◦ B( 1

2
)‖ ≤ ‖A‖ 1

2 ‖B‖ 1

2 .

Proof. We use the identity (ab)
1

2 = min{ t2

2 a + 1
2t2

b; t > 0} to get

A( 1

2
) ◦ B( 1

2
) ≤ t2

2
A +

1

2t2
B for all t > 0.

This implies that A( 1

2
) ◦ B( 1

2
) is a positive operator on ℓp, and

‖A( 1

2
) ◦ B( 1

2
)‖ ≤ t2

2
‖A‖ +

1

2t2
‖B‖ for all t > 0.

By taking the minimum over t, we get the desired inequality.
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A more general version of the following proposition for integral operators appears

in [2]. As it is an essential step of the main result, we include a simple proof.

Proposition 2.3. Let A, B, C and D be positive operators on ℓp. Then we have

(A ◦ B)(C ◦ D) ≤ ((A ◦ A)(C ◦ C))(
1

2
) ◦ ((B ◦ B)(D ◦ D))(

1

2
).

Proof. Let [ai,j ], [bi,j ], [ci,j ], and [di,j ] denote the matrices of the operators A, B,

C, and D respectively. Then the matrix of the operator product (A ◦ B)(C ◦ D) is

given by [
∑∞

l=1 ailbilcljdlj ]. From the Cauchy-Schwarz inequality we get

∞
∑

l=1

ailbilcljdlj ≤
(

∞
∑

l=1

a2
ilc

2
lj

)
1

2

(

∞
∑

l=1

b2
ild

2
lj

)
1

2

,

which is the entrywise statement of the assertion.

Corollary 2.4. Let A and B be positive operators on ℓp. Then we have

(A ◦ B)2 ≤ ((A ◦ A)(B ◦ B))(
1

2
) ◦ ((B ◦ B)(A ◦ A))(

1

2
)(2.1)

and

(A( 1

2
) ◦ B( 1

2
))2 ≤ (A2)(

1

2
) ◦ (B2)(

1

2
).(2.2)

Proof. For the first inequality, we take D = A and C = B in Proposition 2.3. For

the second inequality, we substitute A( 1

2
) for both A and C, and B( 1

2
) for both B and

D in Proposition 2.3.

One final pointwise inequality we need is the following inequality, which is proved

in [3] for finite matrices by means of tensor product arguments.

Lemma 2.5. Let A and B be positive operators on ℓp. Then we have

(A ◦ A)(B ◦ B) ≤ AB ◦ AB.

Proof. Let [ai,j ] and [bi,j ] denote the matrices of A and B, respectively. Then the

(i, j)th entry of (A ◦ A)(B ◦ B) is
∑∞

k=1 a2
ikb2

kj , and

∞
∑

k=1

a2
ikb2

kj ≤ (

∞
∑

k=1

aikbkj)
2,

which proves the inequality.

Theorem 2.6. Let A and B be positive operators on ℓp. Then we have

ρ(A( 1

2
) ◦ B( 1

2
)) ≤ ρ(A)

1

2 ρ(B)
1

2 and ρ(A ◦ B) ≤ ρ(A)ρ(B).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 22, pp. 443-447, April 2011



ELA

446 A.R. Schep

Proof. The first inequality is a special case of a theorem in [2]. For completeness

we include a proof. From equation (2.2) it follows that

(

A( 1

2
) ◦ B( 1

2
)
)2n

≤ (A2n

)(
1

2
) ◦ (B2n

)(
1

2
).

Taking norms we get

‖
(

A( 1

2
) ◦ B( 1

2
)
)2n

‖ ≤ ‖A2n‖ 1

2 ‖B2n‖ 1

2 .

Taking 2nth roots on both sides, and then the limit for n → ∞, we get

ρ(A( 1

2
) ◦ B( 1

2
)) ≤ ρ(A)

1

2 ρ(B)
1

2 .

To get the second inequality, we first prove that ρ(A ◦ A) ≤ ρ(A)2. To this end, take

A = B in the preceding lemma to get (A ◦ A)2 ≤ A2 ◦ A2. Iterating this we get

(A ◦ A)2
n ≤ A2n ◦ A2n

. Taking norms and using Lemma 2.1, we get

‖(A ◦ A)2
n‖ ≤ ‖A2n‖2,

which implies as before that ρ(A ◦ A) ≤ ρ(A)2. To obtain the second inequality, use

the first inequality to get

ρ(A ◦ B) ≤ ρ(A ◦ A)
1

2 ρ(B ◦ B)
1

2 ,

from which the second inequality follows, since ρ(A ◦ A) ≤ ρ(A)2 and ρ(B ◦ B) ≤
ρ(B)2.

We are now in a position to prove the main inequalities.

Theorem 2.7. Let A and B be positive operators on ℓp. Then we have

ρ(A ◦ B) ≤ ρ
1

2 ((A ◦ A)(B ◦ B)) ≤ ρ
1

2 (AB ◦ BA) ≤ ρ(AB),(2.3)

and

ρ(A( 1

2
) ◦ B( 1

2
)) ≤ ρ(AB)

1

2 .(2.4)

Proof. From (2.1) we get

(A ◦ B)2 ≤ ((A ◦ A)(B ◦ B))(
1

2
) ◦ ((B ◦ B)(A ◦ A))(

1

2
).

Applying (2.2) to powers on the right hand side, we get

(A ◦ B)2
n ≤

(

((A ◦ A)(B ◦ B))2
n−1
)( 1

2
)

◦
(

((B ◦ B)(A ◦ A))2
n−1
)( 1

2
)

.
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Taking norms, we get

‖(A ◦ B)2
n‖ ≤ ‖((A ◦ A)(B ◦ B))2

n−1‖ 1

2 ‖((B ◦ B)(A ◦ A))2
n−1‖ 1

2 .

Now taking 2nth roots and limits, we get

ρ(A ◦ B) ≤ ρ((A ◦ A)(B ◦ B))
1

4 ρ((B ◦ B)(A ◦ A))
1

4 = ρ((A ◦ A)(B ◦ B))
1

2 .

From (A ◦ A)(B ◦ B) ≤ AB ◦ AB we now conclude that

ρ((A ◦ A)(B ◦ B)) ≤ ρ(AB ◦ AB) ≤ ρ(AB)2,

which completes the proof of (2.3). To prove the inequality (2.4), we just substitute

A( 1

2
) for A, and B( 1

2
) for B in the left-most inequality of (2.3).

One may ask whether it is necessary to restrict oneself to ℓp-spaces. The answer

is no. All of our results are valid for positive operators on more general sequence

spaces. On the other hand, we cannot extend the main result to function spaces. The

reason is that the Hadamard product for positive operators on function spaces on

non-atomic measure spaces does not in general define a bounded operator, e.g., if A

denotes the integral operator on L2[0, 1] with kernel 1√
|x−y|

, then the kernel 1
|x−y| of

A ◦ A does not define an operator on L2[0, 1], or any other Lp space. On the other

hand, as already noted in [2], if A and B are positive integral operators on a Banach

function space Lp, then A( 1

2
) ◦ B( 1

2
) defines a bounded operator on Lp. We have

therefore the following result, which can be proved along the exact same lines as the

main result Theorem 2.7.

Theorem 2.8. Let A and B be positive integral operators on Lp. Then we have

ρ(A( 1

2
) ◦ B( 1

2
)) ≤ ρ(AB)

1

2 .
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