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Abstract

A network which sorts n numbers, when used to sort numbers of 

only two sizes, 0 and 1, can be regarded as forming the n frontal (unate) 

symmetric boolean functions of n arguments. When sorting networks are con­

structed from comparator modules they appear to require: (1) delay time or

number of levels of order (log^n) , (2) size or number of elements of order 

n(l°g2n) > and (3) formula length or number of literals of order n^°^2n . .

If one permits the use of negations in constructing the corresponding boolean 

functions, these three measures of complexity can be reduced to the orders of 

1°§2n > n > anc  ̂ respectively. The latter network however is incapable of 

sorting numbers and may be thought of as merely counting the number of 

inputs which are 1. One may incorporate this network, however, in a larger 

network which does sort and in time proportional to only log^u.

This work was supported in part by the Joint Services Electronics Program 

(U.S. Army, U.S. Navy, and U.S. Air Force) under contract DAAB-07-67-C-0199, 
and by NSF grant GP-23707.
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BOUNDS TO COMPLEXITIES OF NETWORKS FOR SORTING AND FOR SWITCHING

1. It has been noted that boolean expressions are useful in the 

analysis of sorting networks [l,3]. Two basic operations often used in 

sorting networks are the formation of the maximum and the minimum of a pair 

of numbers. These operations are usually performed at the same time by a 

two-input, two-output device called a comparator module which may be regarded 

as being composed of two more basic elements. The first is a comparison 

element with binary output indicating which of the two inputs is larger and 

the second is a crossover switch which is set by the output of the first 

element so as to place the larger number on one line and the smaller on 

the other.

Using boolean notation, we write aVb and ab for the maximum and 

minimum respectively of the two numbers a and b. A network of comparator 

modules sorts n numbers if and only if it realizes the n frontal (unate) 

symmetric boolean functions of n variables [3], This fact is easily seen, 

since a sorting network can be used with numbers which are of just two sizes,

0 and 1. Conversely, if all input configurations of 0's and l's are properly 

sorted, the output functions are uniquely defined as the frontal symmetric 

functions. These functions are also the ones which,when applied to arbi­

trary numbers appearing at the inputs, uniquely describe the properly sorted 

numbers at the outputs.

In this paper we consider networks constructed exclusively from 

comparator modules and equivalent networks constructed using other basic elements 

as well. We shall compare the two classes of networks from the viewpoints 

of three criteria of complexity. These criteria are: 1) delay, or number
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of levels; 2) equipment, or number of elements; and 3) length of formula, or 

number of literals in the corresponding boolean expressions.

2. To determine the minimum number D(n) of levels of comparator 

modules required to sort, assuming fan-out is allowed, we need only consider 

the minimum time required to compute the frontal symmetric boolean function 

S([n/2]) of deg ree r«/2i , assuming just two-input AND and OR operations are 

available and that these take equal time. It has been shown [2,3] that

_ _ ri°g2n| (1+flog n“l )
(l°g2n| £ D(n) £ -------------------- (1)

The value of D(n) is known exactly for small n and has been found to lie 

closer to the upper bound than the lower. We conjecture that D(n) approaches

riog2nl (l+riog2nl )
------------------ — asymptotically as n becomes large. This conjecture has

been expressed by other workers [4] for the case in which comparator modules 

are used without fan-out. We prove later in this paper that by using the 

more basic elements described earlier, a sorting network can be designed 

which sorts n numbers in time proportional to log2n.

All the boolean functions which can be constructed from comparator 

modules are frontal functions, i.e., they do not require the operation of 

complementation for their construction. One might think that there would be 

no advantage to be gained from introducing the operation of complementation 

if one wishes to construct a frontal function. However, this does not 

appear to be the case. Let R(n) be the minimum number of levels required to 

compute the frontal symmetric boolean function S(fn/2*] ) , assuming not only
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two-input AND and OR operations are available but also the NOT operation.

Then we shall prove that

["log2nl £ R(n) £ 6 flog2 (n+l)"| . (2)

That [~log2nj is a lower bound to R(n) may be easily seen from the fact that 

S(|“n/2l ) is a nontrivial function of all n variables. It remains to be 

shown that 6 [~log2 (n+l)"j is an upper bound. This is accomplished by design 

of a network for S(|"n/2"|) requiring no more than 6 pLog2 (n+l)"j levels.

3. Let x^,...,x be a configuration of 0's and l's. We first 

design a parallel counter which has as its inputs x^,...,x and as its out ­

put the binary representation of the number of l's in the configuration 

x^,...,xn . That such a counter can be designed with a number of levels 

proportional to log2n is known [5]; to obtain the constant of proportionality 

6 , we use the following simple inductive argument.

The inputs x^,x2 ,.„.,x^ are conventionally assumed to be at level 0. 

When n^™-!, for some given m, assume inductively that a counter can be designed 

with outputs a ....... a», where an is the least and a . the most significant

digit and where each digit a^ is formed at a level no greater than 4mf2 i+l,

In the trivial cases when n=l and 2 the result may be easily checked. The

inductive step is illustrated in Figure 1. Assume next that n lies in the range 

in w> j i
2 £n^2 -1. Let the configurations x, ,...,x m and x ,...,x , be fed

1 2 - 1  2m n - 1

into two such counters giving outputs a a_, and b , - ,...,b_ re­
in- 1 0 m - 1 0

spectively. We take the second input configuration to be empty in case
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2 -n. The number m' of digits in the second output configuration is 

riog2 (n+l-2m)1 . Figure 1 illustrates the case in which m ,=m. Now, using 

two-inputs AND-gates and OR-gates, a full adder stage may be easily designed 

giving both digit-out d^ and carry-out c^ at level no greater than 4 if it is 

assumed that digits-in a^ and b^ are at level 0 and carry-in c.  ̂ is at 

level 2. In fact,

d. = (a .b .Va .b ,)c . , V (a .b .Va .b. ) c . .
1 1 1 1 L l-l v 1 1 1 iy 1-1

c .
l

(a.Vb.)c
v l l7 i- 1

V a .b . .
l l

(3)

The NOT elements required in these equations are not regarded as adding a 

level because we may initially invert all the inputs and use a double line 

system in the remainder of the network, thereby only adding a single level

Figure 1. Illustration of the parallel counter.
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to the entire counter. We construct in' such adder stages followed by m-m'

simplified stages, called half-adders, in which the digit is replaced by 0 .

The configurations a a_ and b , - ,... ,b are fed into this circuit,
m- l u m - i U 7

while the least significant carry-in c , is chosen to be x . Since a. and
- 1 n l

b^ are at level no greater than 4nrf2i+l and assuming inductively that c. ^

is at level no greater than 4m+2i+3, we obtain d^ and c^ at level no greater

than 4m+2(i+l)+3=4(m+l)+2i+l, for i=0,...,m-l. Also, take d =c ., thus extend-
m m - 1

ing the result to i=m. Since m+l=|~log2 (n+l)~j , the inductive step is complete.

To construct the symmetric boolean functions S (1),S(2),...,S(n) from 

d^,... ,d.Q, t let qm > • • • ,qQ “be the binary representation of some integer q in the 

range. i , , n .  Letting S (q^^dg if qg=l and S (q^) = 1 if q^=0, we define induc­

tively for i=l,2 ,...,m:

d ^ s  (qi_1* • • q0)

di

if q .=0 

if q .=1

(4)

Clearly S(q^...qg) can be constructed at level no greater than 4(nri-l)+2i+2. 

Since S(qm ...qQ) is the symmetric boolean function S(q), each S(q) and, in 

particular, S(fn/2]) is obtained at level no greater than 6 (m+l)=6{"log2 (n+l)~] .

4. It is interesting to calculate the amount of equipment required 

by the parallel counter designed here. Since each adder stage has three 

inputs and two outputs it decreases the number of lines by one, while each 

half-adder has two inputs and two outputs and hence does not change the 

number of lines. The total number of input lines to the circuit is n and 

the total number of output lines is nri-1, so the number of adder stages is
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n-(nH-l)=n-flog2 (n+l)~] . Half-adders are inserted at m-m' digit positions in 

the inductive step described. By induction, we see that the number of half- 

adders is just equal to the number of 0's in the binary representation of n. 

At most m half adders are thus required.

As regards adder stages, the above argument is general in the sense 

that it shows that any circuit for parallel counting constructed from adder 

and half-adder stages requires the stated number of adder stages. Other 

circuits, however, may use more half-adders than the one designed here, but 

they cannot use fewer because of the following argument.

Each adder or half-adder stage in such a circuit is used to add 

digits of a given weight. The final output digits dm ,...,dg have weights 

2 ,...,2U respectively. The total number of input lines into any given 

weight position 21 is just the integer part of n/21. This number is even 

or odd depending on whether the i-th digit in the binary representation of n 

is 0 or 1. At each weight position an adder stage has three inputs and one 

output so it does not change the parity of the number of lines of that 

weight. A half-adder, however, has two inputs and one output of the same 

weight, so it does change the parity of the number of lines having the given 

weight. There is exactly one output line from the circuit at each weight 

position and hence the parity of the number of lines at the output is odd, 

so if the i-th digit in the binary representation of n is 0 , it is necessary 

to have a half-adder at that weight position in order to change the parity 

from even to odd. This means that at least as many half-adders must be 

included in the circuit as there are 0 's in the binary representation of n. 

Our circuit is minimal since it achieves this lower bound.
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Each adder stage may be constructed to conserve equipment using

AND-, OR- and NOT-gates. Thus the entire parallel counter can be realized

with a number of gates proportional to n.

To realize the functions S (1),...,S(n) we may use a decoder based

on the construction given at the end of section 3. From the inductive

definition (4), it is clear that S(q^=l,0,...,0)=d^, whereas S(q^,...,qQ)

for q^...qQ^2 1 adds one more gate to the network which realizes S(q^ ^,...,q )

Denoting by the number of gates required to generate the set of functions

f S (q^j • • * »<1q )} for all q in the range l,..„,n, we have the equation =

G. , + (2* ^-2). Thus the number of gates is bounded above by G , which is 
i-- r m

easily shown to be proportional to n.

5. The network just described allows a simple calculation of the

length of an expression of the function S([~n/2]), using the connectives V

and A and literals in both forms (uncomplemented and complemented). The

length of an expression of a function f is defined as the number of literals

in the expression, and the minimum length of an expression for f is denoted

nri"l
by L(f) . We assume for simplicity that n=2 -1, i.e., S(fn/2]) = d^; the

extension to the general case is immediate. Note that L(d ) is the number
v nr

of inputs to a tree network which realizes d , that is, a network whose gates
m °

£
have no fan-out. Thus a trivial upper bound to L(dm) is (n+1) , since we 

have shown that the network realizing d^ has at most bflog^Cn+l)] levels.

In our case, Plog2 (n+l)~] = log^Cn+l), so a binary tree network with 

6 Ic^Cn+l) levels has at most 2 ^2^n ^  = (n+1)^ inputs. A sharper

upper-bound, of order (n+1)^ is provided by the following argument, whose 

explanation is aided by Figure 2.
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d
m

F igure 2, The final string of adder stages in the parallel counter.

By an inductive process we construct a multiple output tree network which 

realizes the functions d ^ d ^  ^»...jd^, with several output lines possibly 

representing any given function. Define v(d^) to be the number of lines 

representing the function d^ and let v(ai), vCb^), and v(ci) be the multi­

plicities of the input lines necessary to construct the functions d^ with 

the assumed multiplicities. From the adder's equations (3) we obtain the 

inequalities v(ai) ^ 4v (d^ + 2v(ci), v C b p  £ 4v(di) + 2v(ci), and 

v(ci_i) ^ 2v(d^) + v(c ). These are inequalities rather than equations, 

because not all input lines need be used in the actual construction. These 

inequalities as well as the boundary condition ^(cm = v(d^) are satisfied 

by letting v(d.) = 2m"1, v(Ci) = 2m+1+ 1-3, and \>(a±) = v(b..) = 2m+3"L =

2 ,̂ 2 m̂ ^  This is equivalent to replicating 16 times each of two net­

works which realize anc* respectively. We recognize

that each of these two networks obeys the same rule for the multiplicities

of the output lines as the original network. Therefore letting F -
m

m

E v(d.)L(d.) we have 
i=0 1 1
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F <: 32F - + v(c .) £ 32F + 2m "2-3
m m - 1 - 1 m

in a ^ ^
It follows that F ^ K32m - — 2 + ~ ,  for some constant K. The boundary

m 15 31

condition F, = 25 can be used to determine K —  0.796. Since L(d ) < F we 
1 v nr m

log 32 c
conclude that L(d ) < 0.796X32 a  0.025(n+1) 2 = 0.025(n+1) . A.R. Meyer,

M.J. Fischer, and B. Vilfan proved the polynomial growth of L(S(fn/f])) in n 

[6] based on a redundant representation of configurations of binary digits 

interpreted as numbers. We see from the above argument that a polynomial 

growth can be proved without resorting to such redundant number representa­

tion, although it does seem to require the use of literals in complemented 

as well as uncomplemented form. In fact, we conjecture that there is no 

fixed power of n which is an upper bound to L(S(fn/f] )) for sufficiently 

large n, when only uncomplemented literals are used.

6 . Using the results obtained in the first five sections for the 

upper bounds to the various measures of complexity we obtain the following 

theorems.

Theorem It Either there is a frontal function which can be 

computed in less time if inverters are used than if inverters 

are not used, or sorting can be accomplished using a network of 

comparators in time proportional to log^n.

Theorem 2: Either there is a frontal function whose network

requires less equipment if inverters are used than if inverters 

are not used, or the median of a set of numbers can be found

using a network of comparators whose size is proportional to n.
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Theorem 3: Either there is a formula which can be represented

without complemented variables but which requires fewer literals 

if complemented variables are used, or there is a formula without 

complemented variables for S(fn/2"|) having length bounded by some 

fixed power of n.

The evidence seems to indicate that the frontal function S([~n/2]) 

cannot be computed as rapidly or as economically if inverters are not used 

because this would imply the existence of a faster and cheaper method of 

sorting using comparators than is now known.

Each of these theorems poses an open question and the answers to 

these questions are not entirely independent. For example, if one could show 

that sorting is possible with comparators in time proportional to log^n, then 

one could conclude that there is a formula without complemented variables for 

S(|*n/2~j) having length bounded by some fixed power of n.

7. It is worth pointing out a basic difference between two types 

of networks which compute the unate symmetric functions of n boolean variables. 

The first type constructed exclusively from AND-gates and OR-gates and having 

uncomplemented literals at its inputs is a sorting network. This property 

requires that each oriented cutset of this network contain at least n lines, 

to be traversed by the n numbers being sorted. By contrast, the second type 

of network, consisting of a parallel counter followed by a decoder, may be 

constructed so that it has an oriented cutset with no more than flog^(n+l)"| 

lines. This gives intuitive content to the fact that this network, which 

computes the cardinality of a set, is unable to sort. Obviously, the c e l e ­

brated zero-one theorem [3] applies only to the first kind of network.
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Despite its inability to sort, the parallel counter described 

earlier may be used in the design of a network which sorts n numbers in time 

proportional to log2n. This network, which we now describe (Figure 3), 

consists of basic comparison elements with binary output, 2-input AND-gates 

and OR-gates and single-pole double-throw switches.

Figure 3. Diagram of a sorting network not constructed from comparator 
modules.

Let n numbers a,,a0 ,...,a 
1 2 *  n

compared with every other number a.,

be given. At first each number a. is
l

thereby obtaining the binary digit c..

as follows:
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c . . =

0 otherwise

if
if

a .^a
ai>aJ

for i>j 
for i<j

V

This is done in constant time or, if fan-out is restricted, in time pro­

portional to log^n. Then, for each set { c£]_»c£2 » * * * ,Cin̂  of n binary

digits, we compute the binary representation d. ,d. d._ of S c.. by
lm i,m-l * lO j 1J

means of the parallel counter described above. This operation also requires

a time of order log0n. Finally, we use the configuration d. ,d. d.*
2 J ° lm i,m-1 * lO

to drive a binary tree consisting of (m+1) = |~log2 (n+l)] levels of single-pole

double-throw switches. Specifically, the settings of all the switches of the i-th

tree at the j-th level from the root are congruent and are controlled by the 

binary variable d. , .. It is clear that if we feed a. at the root of its

corresponding tree and k of the digits f c ^ , . . . ,cin3 are equal to 1, a^ will 

emerge at the (k+l)-st terminal of the tree. Since no other number emerges 

at the (k+l)-st terminal of its corresponding tree, we may simply connect 

together the homologous terminals of the n trees, and sorting is completed 

in time proportional to log^n.

It is interesting that although the delay of the sorting networks 

just described has a slower rate of growth than the best known networks con­

sisting of comparator modules, the latter are better from the point of view 

of equipment complexity. In fact we note the following:

(i) the computation of the digits {c } requires n(n-l) comparison 

elements;

(ii) each of the n networks computing id. ,...,d.-} requires a
i,m i0 n

number of elements proportional to n;



14

(iii) each of the n switch trees contains (n-1) switches.

We conclude that the network requires a number of elements proportional 

to n^.
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