
 Open access Journal Article DOI:10.1145/321879.321882

Bounds to Complexities of Networks for Sorting and for Switching — Source link

David E. Muller, Franco P. Preparata

Institutions: University of Illinois at Urbana–Champaign

Published on: 01 Apr 1975 - Journal of the ACM (ACM)

Topics: Sorting network, Sorting, Base (topology), sort and Boolean function

Related papers:

 Sorting networks and their applications

 New Parallel-Sorting Schemes

 Sorting on a mesh-connected parallel computer

 Bitonic Sort on a Mesh-Connected Parallel Computer

 Parallel Processing with the Perfect Shuffle

Share this paper:

View more about this paper here: https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-
2b4iaoq7zb

https://typeset.io/
https://www.doi.org/10.1145/321879.321882
https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
https://typeset.io/authors/david-e-muller-1qtoo0v13k
https://typeset.io/authors/franco-p-preparata-4u2j51m9ts
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/journals/journal-of-the-acm-buyoi0af
https://typeset.io/topics/sorting-network-6cpbr4ia
https://typeset.io/topics/sorting-pc6su59o
https://typeset.io/topics/base-topology-w2a2m64k
https://typeset.io/topics/sort-5ob2rckz
https://typeset.io/topics/boolean-function-1eelulrq
https://typeset.io/papers/sorting-networks-and-their-applications-1rtii9aveu
https://typeset.io/papers/new-parallel-sorting-schemes-10mxifgo8i
https://typeset.io/papers/sorting-on-a-mesh-connected-parallel-computer-1rf35x2gwp
https://typeset.io/papers/bitonic-sort-on-a-mesh-connected-parallel-computer-4iaf5e1anv
https://typeset.io/papers/parallel-processing-with-the-perfect-shuffle-3rlu1nle48
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
https://twitter.com/intent/tweet?text=Bounds%20to%20Complexities%20of%20Networks%20for%20Sorting%20and%20for%20Switching&url=https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb

UI LU-ENG 72-2227REPORT R-566 MAY, 1972

COORDINATED SCIENCE LABORATORY

BOUNDS TO COMPLEXITIES
OF NETWORKS FOR SORTING
AND FOR SWITCHING

DAVID E. MULLER

FRANCO R PREPARATA

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

"t his document has been appr oved for publ ic r el ease and sa l e; it s dist r ibut ion is unl imit ed.”

UILU-ENG 72-2227

BOUNDS TO COMPLEXITIES OF NETWORKS FOR SORTING AND FOR SWITCHING

by

David E. Muller and Franco P. Preparata

This work was supported in p^rt by the Joint Services Electronics

Program (U. S. Army, U. S. Navy and U. S. Air Force) under Contract

DAAB-07-67-C-0199, and in part by the National Science Foundation under

Grant GP-23707.

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

This document has been approved for public release and sale;

its distribution is unlimited.

BOUNDS TO COMPLEXITIES OF NETWORKS FOR SORTING AND FOR SWITCHING*

David E. Muller and Franco P. Preparata
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Abstract

A network which sorts n numbers, when used to sort numbers of

only two sizes, 0 and 1, can be regarded as forming the n frontal (unate)

symmetric boolean functions of n arguments. When sorting networks are con­

structed from comparator modules they appear to require: (1) delay time or

number of levels of order (log^n) , (2) size or number of elements of order

n(l°g2n) > and (3) formula length or number of literals of order n^°^2n . .

If one permits the use of negations in constructing the corresponding boolean

functions, these three measures of complexity can be reduced to the orders of

1°§2n > n > anc ̂ respectively. The latter network however is incapable of

sorting numbers and may be thought of as merely counting the number of

inputs which are 1. One may incorporate this network, however, in a larger

network which does sort and in time proportional to only log^u.

This work was supported in part by the Joint Services Electronics Program

(U.S. Army, U.S. Navy, and U.S. Air Force) under contract DAAB-07-67-C-0199,
and by NSF grant GP-23707.

2

BOUNDS TO COMPLEXITIES OF NETWORKS FOR SORTING AND FOR SWITCHING

1. It has been noted that boolean expressions are useful in the

analysis of sorting networks [l,3]. Two basic operations often used in

sorting networks are the formation of the maximum and the minimum of a pair

of numbers. These operations are usually performed at the same time by a

two-input, two-output device called a comparator module which may be regarded

as being composed of two more basic elements. The first is a comparison

element with binary output indicating which of the two inputs is larger and

the second is a crossover switch which is set by the output of the first

element so as to place the larger number on one line and the smaller on

the other.

Using boolean notation, we write aVb and ab for the maximum and

minimum respectively of the two numbers a and b. A network of comparator

modules sorts n numbers if and only if it realizes the n frontal (unate)

symmetric boolean functions of n variables [3], This fact is easily seen,

since a sorting network can be used with numbers which are of just two sizes,

0 and 1. Conversely, if all input configurations of 0's and l's are properly

sorted, the output functions are uniquely defined as the frontal symmetric

functions. These functions are also the ones which,when applied to arbi­

trary numbers appearing at the inputs, uniquely describe the properly sorted

numbers at the outputs.

In this paper we consider networks constructed exclusively from

comparator modules and equivalent networks constructed using other basic elements

as well. We shall compare the two classes of networks from the viewpoints

of three criteria of complexity. These criteria are: 1) delay, or number

3

of levels; 2) equipment, or number of elements; and 3) length of formula, or

number of literals in the corresponding boolean expressions.

2. To determine the minimum number D(n) of levels of comparator

modules required to sort, assuming fan-out is allowed, we need only consider

the minimum time required to compute the frontal symmetric boolean function

S([n/2]) of deg ree r«/2i , assuming just two-input AND and OR operations are

available and that these take equal time. It has been shown [2,3] that

_ _ ri°g2n| (1+flog n“l)
(l°g2n| £ D(n) £ -------------------- (1)

The value of D(n) is known exactly for small n and has been found to lie

closer to the upper bound than the lower. We conjecture that D(n) approaches

riog2nl (l+riog2nl)
------------------ — asymptotically as n becomes large. This conjecture has

been expressed by other workers [4] for the case in which comparator modules

are used without fan-out. We prove later in this paper that by using the

more basic elements described earlier, a sorting network can be designed

which sorts n numbers in time proportional to log2n.

All the boolean functions which can be constructed from comparator

modules are frontal functions, i.e., they do not require the operation of

complementation for their construction. One might think that there would be

no advantage to be gained from introducing the operation of complementation

if one wishes to construct a frontal function. However, this does not

appear to be the case. Let R(n) be the minimum number of levels required to

compute the frontal symmetric boolean function S(fn/2*]) , assuming not only

4

two-input AND and OR operations are available but also the NOT operation.

Then we shall prove that

["log2nl £ R(n) £ 6 flog2 (n+l)"| . (2)

That [~log2nj is a lower bound to R(n) may be easily seen from the fact that

S(|“n/2l) is a nontrivial function of all n variables. It remains to be

shown that 6 [~log2 (n+l)"j is an upper bound. This is accomplished by design

of a network for S(|"n/2"|) requiring no more than 6 pLog2 (n+l)"j levels.

3. Let x^,...,x be a configuration of 0's and l's. We first

design a parallel counter which has as its inputs x^,...,x and as its out ­

put the binary representation of the number of l's in the configuration

x^,...,xn . That such a counter can be designed with a number of levels

proportional to log2n is known [5]; to obtain the constant of proportionality

6 , we use the following simple inductive argument.

The inputs x^,x2 ,.„.,x^ are conventionally assumed to be at level 0.

When n^™-!, for some given m, assume inductively that a counter can be designed

with outputs a a», where an is the least and a . the most significant

digit and where each digit a^ is formed at a level no greater than 4mf2 i+l,

In the trivial cases when n=l and 2 the result may be easily checked. The

inductive step is illustrated in Figure 1. Assume next that n lies in the range

in w> j i
2 £n^2 -1. Let the configurations x, ,...,x m and x ,...,x , be fed

1 2 - 1 2m n - 1

into two such counters giving outputs a a_, and b , - ,...,b_ re­
in- 1 0 m - 1 0

spectively. We take the second input configuration to be empty in case

5

2 -n. The number m' of digits in the second output configuration is

riog2 (n+l-2m)1 . Figure 1 illustrates the case in which m ,=m. Now, using

two-inputs AND-gates and OR-gates, a full adder stage may be easily designed

giving both digit-out d^ and carry-out c^ at level no greater than 4 if it is

assumed that digits-in a^ and b^ are at level 0 and carry-in c. ̂ is at

level 2. In fact,

d. = (a .b .Va .b ,)c . , V (a .b .Va .b.) c . .
1 1 1 1 L l-l v 1 1 1 iy 1-1

c .
l

(a.Vb.)c
v l l7 i- 1

V a .b . .
l l

(3)

The NOT elements required in these equations are not regarded as adding a

level because we may initially invert all the inputs and use a double line

system in the remainder of the network, thereby only adding a single level

Figure 1. Illustration of the parallel counter.

6

to the entire counter. We construct in' such adder stages followed by m-m'

simplified stages, called half-adders, in which the digit is replaced by 0 .

The configurations a a_ and b , - ,... ,b are fed into this circuit,
m- l u m - i U 7

while the least significant carry-in c , is chosen to be x . Since a. and
- 1 n l

b^ are at level no greater than 4nrf2i+l and assuming inductively that c. ^

is at level no greater than 4m+2i+3, we obtain d^ and c^ at level no greater

than 4m+2(i+l)+3=4(m+l)+2i+l, for i=0,...,m-l. Also, take d =c ., thus extend-
m m - 1

ing the result to i=m. Since m+l=|~log2 (n+l)~j , the inductive step is complete.

To construct the symmetric boolean functions S (1),S(2),...,S(n) from

d^,... ,d.Q, t let qm > • • • ,qQ “be the binary representation of some integer q in the

range. i , , n . Letting S (q^^dg if qg=l and S (q^) = 1 if q^=0, we define induc­

tively for i=l,2 ,...,m:

d ^ s (qi_1* • • q0)

di

if q .=0

if q .=1

(4)

Clearly S(q^...qg) can be constructed at level no greater than 4(nri-l)+2i+2.

Since S(qm ...qQ) is the symmetric boolean function S(q), each S(q) and, in

particular, S(fn/2]) is obtained at level no greater than 6 (m+l)=6{"log2 (n+l)~] .

4. It is interesting to calculate the amount of equipment required

by the parallel counter designed here. Since each adder stage has three

inputs and two outputs it decreases the number of lines by one, while each

half-adder has two inputs and two outputs and hence does not change the

number of lines. The total number of input lines to the circuit is n and

the total number of output lines is nri-1, so the number of adder stages is

7

n-(nH-l)=n-flog2 (n+l)~] . Half-adders are inserted at m-m' digit positions in

the inductive step described. By induction, we see that the number of half-

adders is just equal to the number of 0's in the binary representation of n.

At most m half adders are thus required.

As regards adder stages, the above argument is general in the sense

that it shows that any circuit for parallel counting constructed from adder

and half-adder stages requires the stated number of adder stages. Other

circuits, however, may use more half-adders than the one designed here, but

they cannot use fewer because of the following argument.

Each adder or half-adder stage in such a circuit is used to add

digits of a given weight. The final output digits dm ,...,dg have weights

2 ,...,2U respectively. The total number of input lines into any given

weight position 21 is just the integer part of n/21. This number is even

or odd depending on whether the i-th digit in the binary representation of n

is 0 or 1. At each weight position an adder stage has three inputs and one

output so it does not change the parity of the number of lines of that

weight. A half-adder, however, has two inputs and one output of the same

weight, so it does change the parity of the number of lines having the given

weight. There is exactly one output line from the circuit at each weight

position and hence the parity of the number of lines at the output is odd,

so if the i-th digit in the binary representation of n is 0 , it is necessary

to have a half-adder at that weight position in order to change the parity

from even to odd. This means that at least as many half-adders must be

included in the circuit as there are 0 's in the binary representation of n.

Our circuit is minimal since it achieves this lower bound.

8

Each adder stage may be constructed to conserve equipment using

AND-, OR- and NOT-gates. Thus the entire parallel counter can be realized

with a number of gates proportional to n.

To realize the functions S (1),...,S(n) we may use a decoder based

on the construction given at the end of section 3. From the inductive

definition (4), it is clear that S(q^=l,0,...,0)=d^, whereas S(q^,...,qQ)

for q^...qQ^2 1 adds one more gate to the network which realizes S(q^ ^,...,q)

Denoting by the number of gates required to generate the set of functions

f S (q^j • • * »<1q)} for all q in the range l,..„,n, we have the equation =

G. , + (2* ^-2). Thus the number of gates is bounded above by G , which is
i-- r m

easily shown to be proportional to n.

5. The network just described allows a simple calculation of the

length of an expression of the function S([~n/2]), using the connectives V

and A and literals in both forms (uncomplemented and complemented). The

length of an expression of a function f is defined as the number of literals

in the expression, and the minimum length of an expression for f is denoted

nri"l
by L(f) . We assume for simplicity that n=2 -1, i.e., S(fn/2]) = d^; the

extension to the general case is immediate. Note that L(d) is the number
v nr

of inputs to a tree network which realizes d , that is, a network whose gates
m °

£
have no fan-out. Thus a trivial upper bound to L(dm) is (n+1) , since we

have shown that the network realizing d^ has at most bflog^Cn+l)] levels.

In our case, Plog2 (n+l)~] = log^Cn+l), so a binary tree network with

6 Ic^Cn+l) levels has at most 2 ^2^n ^ = (n+1)^ inputs. A sharper

upper-bound, of order (n+1)^ is provided by the following argument, whose

explanation is aided by Figure 2.

9

d
m

F igure 2, The final string of adder stages in the parallel counter.

By an inductive process we construct a multiple output tree network which

realizes the functions d ^ d ^ ^»...jd^, with several output lines possibly

representing any given function. Define v(d^) to be the number of lines

representing the function d^ and let v(ai), vCb^), and v(ci) be the multi­

plicities of the input lines necessary to construct the functions d^ with

the assumed multiplicities. From the adder's equations (3) we obtain the

inequalities v(ai) ^ 4v (d^ + 2v(ci), v C b p £ 4v(di) + 2v(ci), and

v(ci_i) ^ 2v(d^) + v(c). These are inequalities rather than equations,

because not all input lines need be used in the actual construction. These

inequalities as well as the boundary condition ^(cm = v(d^) are satisfied

by letting v(d.) = 2m"1, v(Ci) = 2m+1+ 1-3, and \>(a±) = v(b..) = 2m+3"L =

2 ,̂ 2 m̂ ^ This is equivalent to replicating 16 times each of two net­

works which realize anc* respectively. We recognize

that each of these two networks obeys the same rule for the multiplicities

of the output lines as the original network. Therefore letting F -
m

m

E v(d.)L(d.) we have
i=0 1 1

10

F <: 32F - + v(c .) £ 32F + 2m "2-3
m m - 1 - 1 m

in a ^ ^
It follows that F ^ K32m - — 2 + ~ , for some constant K. The boundary

m 15 31

condition F, = 25 can be used to determine K — 0.796. Since L(d) < F we
1 v nr m

log 32 c
conclude that L(d) < 0.796X32 a 0.025(n+1) 2 = 0.025(n+1) . A.R. Meyer,

M.J. Fischer, and B. Vilfan proved the polynomial growth of L(S(fn/f])) in n

[6] based on a redundant representation of configurations of binary digits

interpreted as numbers. We see from the above argument that a polynomial

growth can be proved without resorting to such redundant number representa­

tion, although it does seem to require the use of literals in complemented

as well as uncomplemented form. In fact, we conjecture that there is no

fixed power of n which is an upper bound to L(S(fn/f])) for sufficiently

large n, when only uncomplemented literals are used.

6 . Using the results obtained in the first five sections for the

upper bounds to the various measures of complexity we obtain the following

theorems.

Theorem It Either there is a frontal function which can be

computed in less time if inverters are used than if inverters

are not used, or sorting can be accomplished using a network of

comparators in time proportional to log^n.

Theorem 2: Either there is a frontal function whose network

requires less equipment if inverters are used than if inverters

are not used, or the median of a set of numbers can be found

using a network of comparators whose size is proportional to n.

11

Theorem 3: Either there is a formula which can be represented

without complemented variables but which requires fewer literals

if complemented variables are used, or there is a formula without

complemented variables for S(fn/2"|) having length bounded by some

fixed power of n.

The evidence seems to indicate that the frontal function S([~n/2])

cannot be computed as rapidly or as economically if inverters are not used

because this would imply the existence of a faster and cheaper method of

sorting using comparators than is now known.

Each of these theorems poses an open question and the answers to

these questions are not entirely independent. For example, if one could show

that sorting is possible with comparators in time proportional to log^n, then

one could conclude that there is a formula without complemented variables for

S(|*n/2~j) having length bounded by some fixed power of n.

7. It is worth pointing out a basic difference between two types

of networks which compute the unate symmetric functions of n boolean variables.

The first type constructed exclusively from AND-gates and OR-gates and having

uncomplemented literals at its inputs is a sorting network. This property

requires that each oriented cutset of this network contain at least n lines,

to be traversed by the n numbers being sorted. By contrast, the second type

of network, consisting of a parallel counter followed by a decoder, may be

constructed so that it has an oriented cutset with no more than flog^(n+l)"|

lines. This gives intuitive content to the fact that this network, which

computes the cardinality of a set, is unable to sort. Obviously, the c e l e ­

brated zero-one theorem [3] applies only to the first kind of network.

12

Despite its inability to sort, the parallel counter described

earlier may be used in the design of a network which sorts n numbers in time

proportional to log2n. This network, which we now describe (Figure 3),

consists of basic comparison elements with binary output, 2-input AND-gates

and OR-gates and single-pole double-throw switches.

Figure 3. Diagram of a sorting network not constructed from comparator
modules.

Let n numbers a,,a0 ,...,a
1 2 * n

compared with every other number a.,

be given. At first each number a. is
l

thereby obtaining the binary digit c..

as follows:

13

c . . =

0 otherwise

if
if

a .^a
ai>aJ

for i>j
for i<j

V

This is done in constant time or, if fan-out is restricted, in time pro­

portional to log^n. Then, for each set { c£]_»c£2 » * * * ,Cin̂ of n binary

digits, we compute the binary representation d. ,d. d._ of S c.. by
lm i,m-l * lO j 1J

means of the parallel counter described above. This operation also requires

a time of order log0n. Finally, we use the configuration d. ,d. d.*
2 J ° lm i,m-1 * lO

to drive a binary tree consisting of (m+1) = |~log2 (n+l)] levels of single-pole

double-throw switches. Specifically, the settings of all the switches of the i-th

tree at the j-th level from the root are congruent and are controlled by the

binary variable d. , .. It is clear that if we feed a. at the root of its

corresponding tree and k of the digits f c ^ , . . . ,cin3 are equal to 1, a^ will

emerge at the (k+l)-st terminal of the tree. Since no other number emerges

at the (k+l)-st terminal of its corresponding tree, we may simply connect

together the homologous terminals of the n trees, and sorting is completed

in time proportional to log^n.

It is interesting that although the delay of the sorting networks

just described has a slower rate of growth than the best known networks con­

sisting of comparator modules, the latter are better from the point of view

of equipment complexity. In fact we note the following:

(i) the computation of the digits {c } requires n(n-l) comparison

elements;

(ii) each of the n networks computing id. ,...,d.-} requires a
i,m i0 n

number of elements proportional to n;

14

(iii) each of the n switch trees contains (n-1) switches.

We conclude that the network requires a number of elements proportional

to n^.

References

[1] S. Y. Levy and M. C. Pauli, "An Algebra with Application to Sorting
Algorithms," Proc. 3rd Princeton Conf. Info. Sei. Syst.,
pp. 286-291, March 1969.

[2] K. E. Batcher, "Sorting Networks and Their Applications," Proc. SJCC,
1968; pp. 307-313.

[3] D. E. Knuth, The Art of Computer Programming. Vol. Ill, Chapter 5,
Addison-Wesley (in press).

[4] M. W. Green, "Some Improvements in Nonadaptive Sorting Algorithms,"
Proc. 6th Princeton Conf. Info. Sei. Syst., March 1972.

[5] C. C. Foster and F. D. Stockton, "Counting Responders in an

Associative Memory," IEEE Trans, on Computers, C-20, No. 12,
pp. 1580-1583, 1971.

[6] B. Vilfan, "The Length of Formula Representations of Boolean Functions,"
unpublished manuscript, Dept, of Elec. Eng., M.I.T., 1971.

Security C lassif icatio n

DOCUMENT CONTROL DATA - R & D

(Se cur i ty c l a s s i l i c a t io n o f t i t le , body oT a b s tra c t a n d in d ex in g an n o ta t io n must be en te re d w hen the o v e ra l l report is c l a s s i f i e d)

1 o r i g i n a t i n g A C T I V I T Y (C orpora te au thor) 2 a . R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

Coordinated Science Laboratory UNCLASSIFIED
University of Illinois 2 b . G R O U P

Urbana, Illinois, 61801
3. R E P O R T T I T L E

BOUNDS TO COMPLEXITIES OF NETWORKS FOR SORTING AND FOR SWITCHING

4. D E S C R I P T I V E N O T E S (T y p e o f report a nd in c lu s i v e da tes)

5. A U T H O R (S) (F i r s t name, m id d le i n i t i a l , l a s t nam e)

David E. Muller and Franco P. Preparata

6. R E P O R T D A T E 7a. T O T A L N O . O F P A G E S 7 b . N O . O F R E F S

iay, 1972 14 6
8 a . C O N T R A C T O R G R A N T N O . 9 a . O R I G I N A T O R ’ S R E P O R T N U M B E R (S)

DAAB-07-67-C-0199;
slâFpfoûæafe .ÆP-23707 R-566

c . 9 b . O T H E R R E P O R T N O (S > (A n y o ther numbers that may be a s s ig n e d
th is report)

d. UILU-ENG 72-2227
1 0 . D I S T R I B U T I O N S T A T E M E N T

This document has been approved for public release and sale; its distribution
Ls unlimited.

1 1 . S U P P L E M E N T A R Y N O T E S 1 2 . S P O N S O R I N G M I L I T A R Y A C T I V I T Y

13. A B S T R A C T

J
u
Mo:

oint Services Electronics Program through
S. Army Electronics Command, Fort

nmouth, New Jersey, 07703_________________

 ̂network which sorts n numbers, when used to sort numbers of only two sizes, 0 and 1 ,
'an be regarded as forming the n frontal (unate) symmetric boolean functions of n
irguments. When sorting networks are constructed from comparator modules they appear
:o require: (1) delay time oj number of levels of order (log n)2 , (2) size or number

elements orc êr n (l°§2n) > anc ̂ (3) formula length or number of literals of order
l °§2 . If one permits the use of negations in constructing the corresponding boolean
■unctions, these three measures of complexity can be reduced to the orders of log n,
i, and n respectively. The latter network however is incapable of sorting numbers
md may be thought of as merely counting the number of inputs which are 1. One may
.ncorporate this network, however, in a larger network which does sort and in time
>roportional to only log^n.

DD ,F°oR“„1473
Security C lassif icatio n

Security C lassif icatio n

1 4
KEY WO R D S LINK A LINK B LINK C

ROLE .w T ROLE W T ROLE W T

Computational complexity

Sorting

Counting

Symmetric Boolean functions

Computation time

Length of formula

Security C lassif icatio n

