SCISPACE

formerly Typeset

@ Open access « Journal Article « DOI:10.1145/321879.321882
Bounds to Complexities of Networks for Sorting and for Switching — Source link (£

David E. Muller, Franco P. Preparata

Institutions: University of lllinois at Urbana—Champaign

Published on: 01 Apr 1975 - Journal of the ACM (ACM)

Topics: Sorting network, Sorting, Base (topology), sort and Boolean function

Related papers:

» Sorting networks and their applications

« New Parallel-Sorting Schemes

« Sorting on a mesh-connected parallel computer

« Bitonic Sort on a Mesh-Connected Parallel Computer

« Parallel Processing with the Perfect Shuffle

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-
2bdiaoq7zb


https://typeset.io/
https://www.doi.org/10.1145/321879.321882
https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
https://typeset.io/authors/david-e-muller-1qtoo0v13k
https://typeset.io/authors/franco-p-preparata-4u2j51m9ts
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/journals/journal-of-the-acm-buyoi0af
https://typeset.io/topics/sorting-network-6cpbr4ia
https://typeset.io/topics/sorting-pc6su59o
https://typeset.io/topics/base-topology-w2a2m64k
https://typeset.io/topics/sort-5ob2rckz
https://typeset.io/topics/boolean-function-1eelulrq
https://typeset.io/papers/sorting-networks-and-their-applications-1rtii9aveu
https://typeset.io/papers/new-parallel-sorting-schemes-10mxifgo8i
https://typeset.io/papers/sorting-on-a-mesh-connected-parallel-computer-1rf35x2gwp
https://typeset.io/papers/bitonic-sort-on-a-mesh-connected-parallel-computer-4iaf5e1anv
https://typeset.io/papers/parallel-processing-with-the-perfect-shuffle-3rlu1nle48
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
https://twitter.com/intent/tweet?text=Bounds%20to%20Complexities%20of%20Networks%20for%20Sorting%20and%20for%20Switching&url=https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb
https://typeset.io/papers/bounds-to-complexities-of-networks-for-sorting-and-for-2b4iaoq7zb

REPORT R-566 MAY, 1972 UILU-ENG 72-2227

(==TWCOORDINATED SCIENCE LABORATORY

BOUNDS TO COMPLEXITIES
OF NETWORKS FOR SORTING
AND FOR SWITCHING

DAVID E. MULLER
FRANCO P PREPARATA

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

" THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED."




UILU-ENG 72-2227

BOUNDS TO COMPLEXITIES OF NETWORKS FOR SORTING AND FOR SWITCHING

by

David E. Muller and Franco P. Preparata

This work was supported in part by the Joint Services Electronics
Program (U. S. Army, U. S. Navy and U. S. Air Force) under Contract
DAAB-07-67-C-0199, and in part by the National Science Foundation under

Grant GP-23707.

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

This document has been approved for public release and sale;

its distribution is unlimited.



BOUNDS TO COMPLEXITIES OF NETWORKS FOR SORTING AND FOR SWITCHING®
David E. Muller and Franco P. Preparata

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

Abstract

A network which sorts n numbers, when used to sort numbers of
only two sizes, 0 and 1, can be regarded as forming the n frontal (unate)
symmetric boolean functions of n arguments. When sorting networks are con-
structed from comparator modules they appear to require: (1) delay time or
number of levels of order (logzn)z, (2) size or number of elements of order
n(logzn)z, and (3) formula length or number of literals of order nloan.

If one permits the use of negations in constructing the corresponding boolean
functions, these three measures of complexity can be reduced to the orders of
logzn, n, and n5 respectively. The latter network however is incapable of
sorting numbers and may be thought of as merely counting the number of

inputs which are 1. One may incorporate this network, however, in a larger

network which does sort and in time proportional to only logzn.

*
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BOUNDS TO COMPLEXITIES OF NETWORKS FOR SORTING AND FOR SWITCHING

1. It has been noted that boolean expressions are useful in the
analysis of sorting networks [1,3]. Two basic operations often used in
sorting networks are the formation of the maximum and the minimum of a pair
of numbers. These operations are usually performed at the same time by a
two-input, two-output device called a comparator module which may be regarded
as being composed of two more basic elements. The first is a comparison
element with binary output indicating which of the two inputs is larger and
the second is a crossover switch which is set by the output of the first
element so as to place the larger number on one line and the smaller on
the other.

Using boolean notation, we write aVb and ab for the maximum and
minimum respectively of the two numbers a and b. A network of comparator
modules sorts n numbers if and only if it realizes the n frontal (unate)
symmetric boolean functions of n variables [3]. This fact is easily seen,
since a sorting network can be used with numbers which are of just two sizes,
0 and 1. Conversely, if all input configurations of 0's and l's are properly
sorted, the output functions are uniquely defined as the frontal symmetric
functions. These functions are also the ones which,when applied to arbi-
trary numbers appearing at the inputs, uniquely describe the properly sorted
numbers at the outputs.

In this paper we consider networks constructed exclusively from
comparator modules and equivalent networks constructed using other basic eléments
as well. We shall compare the two classes of networks from the viewpoints

of three criteria of complexity. These criteria are: 1) delay, or number




of levels; 2) equipment, or number of elements; and 3) length of formula, or

number of literals in the corresponding boolean expressions.

2. To determine the minimum number D(n) of levels of comparator
modules required to sort, assuming fan-out is allowed, we need only consider
the minimum time required to compute the frontal symmetric boolean function
S(rn/i]) of degree rh/i], assuming just two-input AND and OR operations are
available and that these take equal time. It has been shown [2,3] that

rlog ﬁ](l+rlog ﬁ])
rlogzﬂ] < D(n) < - 3 2 (1)

The value of D(n) is known exactly for small n and has been found to lie

closer to the upper bound than the lower. We conjecture that D(n) approaches

[10g,n| (1+[10g,n] )
> asymptotically as n becomes large. This conjecture has

been expressed by other workers [4] for the case in which comparator modules
are used without fan-out. We prove later in this paper that by using the
more basic elements described earlier, a sorting network can be designed
which sorts n numbers in time proportional to logzn.

All the boolean functions which can be constructed from comparator
modules are frontal functions, i.e., they do not require the operation of
complementation for their construction. One might think that there would be
no advantage to be gained from introducing the operation of complementation
if one wishes to construct a frontal function. However, this does not
appear to be the case. Let R(n) be the minimum number of levels required to

compute the frontal symmetric boolean function S(rn/f]), assuming not only
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two-input AND and OR operations are available but also the NOT operation.
Then we shall prove that

riogzﬁ] < R(n) £ 6 flogz(n+1f]. (2)

That riogzﬁ] is a lower bound to R(n) may be easily seen from the fact that
S(rh/f]) is a nontrivial function of all n variables. It remains to be
shown that 6riog2(n+15] is an upper bound. This is accomplished by design

of a network for S(Fh/f]) requiring no more than 6riog2(n+1f] levels.

3. Let XpsenesX be a configuration of 0's and 1's. We first

design a parallel counter which has as its inputs x cesX and as its out-

1"
put the binary representation of the number of 1l's in the configuration
KyseoosX o That such a counter can be designed with a number of levels
proportional to logzn is known [5]; to obtain the constant of proportionality
6, we use the following simple inductive argument.

The inputs X sXpse0e,X are conventionally assumed to be at level 0,
When n$2m-l, for some given m, assume inductively that a counter can be designed
with outputs a cqre

digit and where each digit a; is formed at a level no greater than 4mt2i+l.

Ty where a, is the least and a the most significant

m-1
In the trivial cases when n=l1 and 2 the result may be easily checked. The
inductive step is illustrated in Figure 1. Assume next that n lies in the range
2m5n$2m+1—l. Let the configurations XyseeesX and x
2o 2
.,ao, and b ’bO re-

spectively. We take the second input configuration to be empty in case

m? o ¥n be fed

into two such counters giving outputs a

g m'-1%"""



2™=n. The number m'of digits in the second output configuration is
riogz(n+l-2mf]. Figure 1 illustrates the case in which m'=m. Now, using
two-inputs AND-gates and OR-gates, a full adder stage may be easily designed
giving both digit-out di and carry-out cy at level no greater than 4 if it is
assumed that digits-in a; and bi are at level 0 and carry-in c is at

i-1
level 2. 1In fact,

o
]

(a;bva;bye, ;v (apvabe, o

3)

0
I

(a]._\/bi)ci_1 \ aibi'
The NOT elements required in these equations are not regarded as adding a
level because we may initially invert all the inputs and use a double line

system in the remainder of the network, thereby only adding a single level

dm d
MR
k{J e
LY d
“m-1 w_ A 9 bp-1
‘ am—Z \ } l %—\ b

#1

X n-1
gy

Figure 1. TIllustration of the parallel counter.



to the entire counter. We construct m' such adder stages followed by m-m'
simplified stages, called half-adders, in which the digit bi is replaced by 0.

The configurations a Sty

0 -1’ 0

while the least significant carry-in 0y is chosen to be X - Since a; and

and bm’ ...,b, are fed into this circuit,

m-12

bi are at level no greater than 4mt2i+l and assuming inductively that ci1
is at level no greater than 4mt+2i+3, we obtain di and s at level no greater
than 4mt+2(i+1)+3=4(m+1)+2i+1l, for i=0,...,m-1. Also, take dm=cm-1’ thus extend-
ing the result to i=m. Since m+1=riogz(n+15], the inductive step is complete.
To construct the symmetric boolean functions S(1),S(2),...,S(n) from

dm,...,do,,let qm,...,qo.be the binary representation of some integer q in the
range.l,...,n. Lettirg S(q0)=d0 if_qo=1 and s(q0)=1 if q0=0, we define induc-
tively for i=1,2,...,m:

diVS(qi_l...qo) if qi=0

S(qiqi—l"'qo) = (4)
di S(qi_l...qo) if qi=1

Clearly S(qi...qo) can be constructed at level no greater than 4(mt+l)+2i+2,
Since S(qm...qo) is the symmetric boolean function S(q), each S(q) and, in

particular, S(rn/i]) is obtained at level no greater than 6(m+1)=6r10g2(n+lf].

4. It is interesting to calculate the amount of equipment required
by the parallel counter designed here, Since each adder stage has three
inputs and two outputs it decreases the number of lines by one, while each
half-adder has two inputs and two outputs and hence does not change the
number of lines. The total number of input lines to the circuit is n and

the total number of output lines is mtl, so the number of adder stages is



n-(m+l)=n-riog2(n+lf]. Half-adders are inserted at m-m' digit positions in
the inductive step described. By induction, we see that the number of half-
adders is just equal to the number of 0's in the binary representation of n.
At most m half adders are thus required.

As regards adder stages, the above argument is general in the sense
that it shows that any circuit for parallel counting constructed from adder
and half-adder stages requires the stated number of adder stages. Other
circuits, however, may use more half-adders than the one designed here, but
they cannot use fewer because of the following argument.

Each adder or half-adder stage in such a circuit is used to add
digits of a given weight. The final output digits dm,...,d0 have weights
Zm,...,20 respectively. The total number of input lines into any given
weight position 2i is just the integer part of n/Zi. This number is even
or odd depending on whether the i-th digit in the binary representation of n
is 0 or 1. At each weight position an adder stage has three inputs and one
output so it does not change the parity of the number of lines of that
weight. A half-adder,however,has two inputs and one output of the same
weight, so it does change the parity of the number of lines having the given
weight. There is exactly one output line from the circuit at each weight
position and hence the parity of the number of lines at the output is odd,
so if the i-th digit in the binary representation of n is 0, it is necessary
to have a half-adder at that weight position in order to change the parity
from even to odd. This means that at least as many half-adders must be

included in the circuit as there are 0's in the binary representation of n.

Our circuit is minimal since it achieves this lower bound.



.

Each adder stage may be constructed to conserve equipment using

AND-, OR- and NOT-gates. Thus the entire parallel counter can be realized
with a number of gates proportional to n.

To realize the functions S(l),...,S(n) we may use a decoder based
on the construction given at the end of section 3. From the inductive
definition (4), it is clear that S(qi=1’0""’o)=di’ whereas s(qi,...,qo)
for qi...qo%Zi adds one more gate to the network which realizes S(qi_l,...,qo).
Denoting by Gi the number of gates required to generate the set of functions
{S(qi,...,qo)};fbr all q in the range 1,...,n, we héQé the equation Gi =
G 1 2 (Zi+1-2). Thus the number of gates is bounded above by G which is
easily shown to be proportional to n.

5. The network just described allows a simple calculation of the
length of an expression of the function S(rh/i]), using the connectives V
and A and literals in both forms (uncomplemented and complemented). The
length of an expression of a function f is defined as the number of literals
in the expression, and the minimum length of an expression for f is denoted

by L(f). We assume for simplicity that n=2m+1

-1, i.e., 8([n/2]) = d_; the
extension to the general case is immediate. Note that L(dm) is the number
of inputs to a tree network which realizes dm’ that is, a network whose gates
have no fan-out. Thus a trivial upper bound to L(dm) is (n+1)6, since we
have shown that the network realizing dm has at most 6riog2(n+lf] levels.

In our case, riogz(n+1f] = logz(n+1), so a binary tree network with

6log2(n+l) = (n+l)6 inputs. A sharper

6 1og2(n+l) levels has at most 2
upper-bound, of order (n+1)5 is provided by the following argument, whose

explanation is aided by Figure 2.
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Figure 2. The final string of adder stages in the parallel counter.

By an inductive process we construct a multiple output tree network which
realizes the functions dm’dm-l""’do’ with several output lines possibly
representing any given function. Define v(di) to be the number of lines
representing the function di and let v(ai), v(bi), and v(ci) be the multi-
plicities of the input lines necessary to ceonstruct the functions di with
the assumed multiplicities, From the adder's equations (3) we obtain the
inequalities v(ai) 2 év(di) + 2v(ci), v(bi) 2 4v(di) + 2v(ci), and
v(ci_l) = 2v(di) + v(ci). Thése are inequalities rather than equations,
bécause not all input lines need be used in the actual construction. These
inequalities as well as the boundary condition v(cm_l) = v(dm) are satisfied

by letting v(d,) = 2", v(e,) = 2™ w3-i

24.2(m-1)-i

3, and v(ai) = v(bi) = 2
. This is equivalent to replicating 16 times each of two net-
works which realize a _12°°°23 and bm-l""’bO’ respectively. We recqgnize
that each of these two networks obeys the same rule for the multiplicities
of the output lines as the original network. Therefore letting s

m

2 v(d,)L(d,) we have
oG R
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Foog 328 ke ) £ 3%+ 2™ %
m m -1 m

~1

m 3

ﬁ—2 +-§T, for some constant K. The boundary

15
condition F, = 25 can be used to determine K= 0.796. Since L(dm) < F ve

1
o log 32 5
conclude that L(dm) < 0.796X32" = 0.025(ntl) 2 =0.025(n+l)". A.R, Meyer,

It follows that F_ = k39" .

M.J. Fischer, and B. Vilfan proved the polynomial growth of L(S(rh/i])) in n
[6] based on a redundant representation of configurations of binary digits
interpreted as numbers. We see from the above argument that a polynomial
growth can be proved without resorting to such redundant number representa-
tion, although it does seem to require the use of literals in complemented
as well as uncomplemented form. In fact, we conjecture that there is no
fixed power of n which is an upper bound to L(S(rn/é])) for sufficiently

large n, when only uncomplemented literals are used.

6. Using the results obtained in the first five sections for the
upper bounds to the various measures of complexity we obtain the following
theorems.

Theorem l; Either there is a frontal function which can be

computed in less time if inverters are used than if inverters

are not used, or sorting can be accomplished using a network of

comparators in time proportional to logzn.

Theorem 2: Either there is a frontal function whose network

requires less equipment if inverters are used than if inverters

are not used, or the median of a set of numbers can be found

using a network of comparators whose size is proportional to n.
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Theorem 3: Either there is a formula which can be represented

without complemented variables but which requires fewer literals

if complemented variables are used, or there is a formula without

complemented variables for S(rh/f]) having length bounded by some

fixed power of n.

The evidence seems to indicate that the frontal function S(rh/fl)
cannot be computed as rapidly or as economically if inverters are not used
because this would imply the existence of a faster and cheaper method of
sorting using comparators than is now known.

Each of these theorems poses an open question and the answers to
these questions are not’entirely independent. For examplé, if one could show
that sorting is possible with comparators in time proportional to logzn, then
one could conclude that there is a formula without complemented variables for

S(rh/i]) having length bounded by some fixed power of n.

7. It is worth pointing out a basic difference between two types
of networks which compute the unate symmetric functions of n boolean variables.
The first type constructed exclusively from AND-gates and OR-gates and having
uncomplemented literals at its inputs is a sorting network. This property
requires that each oriented cutset of this network contain at least n lines,
to be traversed by the n numbers being sorted. By contrast, the second type
of network, consisting of a parallel counter followed by a decoder, may be
constructed so that it has an oriented cutset with no more than riogz(n+1§]
lines. This gives intuitive content to the fact that this network, which
computes the cardinality of a set, is unable to sort. Obviously, the cele-

brated zero-one theorem [3] applies only to the first kind of network.
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Despite its inability to sort, the parallel counter described
earlier may be used in the design of a network which sorts n numbers in time
proportional to logzn. This network, which we now describe (Figure 3),
consists of basic comparison elements with binary output, 2-input AND-gates

and OR-gates and single-pole double-throw switches.

8, ——» ———»%11
“’C
%) P 12
. P
W 2 11
. S
‘ e PARALLEL [ *
a; —% ™ .
: b COUNTER
2 Sy
° : y 'dim di,m"‘l di’o
. <G
% 5 ' | O—P
a i _O+—
B _L —’cnn o | Gy
1 |
e | O—>
' BN O
’ ‘ lo—p
»O— i i
I i i
l f o®? |
1 O |
K-y I O
L i
O |
FO—p

Figure 3. Diagram of a sorting network not constructed from comparator
modules.

Let n numbers 815895 -053 be given. At first each number a; is

compared with every other number aj, thereby obtaining the binary digit cij

as follows:




if 'a.za., for i3]
if a?a;, for i<j

0 otherwise.

This is done in constant time or, if fan-out is restricted, in time pro-

portional to 1og2n. Then, for each set {cil’ciZ""’cin] of n binary

digits, we compute the binary representation dim’di,m-l""’dio of % cij by

means of the parallel counter described above. This operation also requires

a time of order 1og2n. Finally, we use the configuration dim’di,m-l”"’dio

to drive a binary tree consisting of (mt+l) = rlogz(n+15] levels of single-pole
double-throw switches.  Specifically, the settings of all the switches of the i-th
tree at the j-th level from the root are congruent and are controlled by the

binary variable di It is clear that if we feed a, at the root of its

sm+l-3° i

corresponding tree and k of the digits {cil""’cin} are equal to 1, a; will
emerge at the (k+l)-st terminal of the tree. Since no other number emerges
at the (k+l)-st terminal of its corresponding tree, we may simply connect
together the homologous terminals of the n trees, and sorting is completed
in time proportional to logzn.

It is interesting that although the delay of the sorting networks
just described has a slower rate of growth than the best known networks con-
sisting of comparator modules, the latter are better from the point of view
of equipment complexity. In fact we note the following:

(i) the computation of the digits (Cij} requires n(n-1) comparison
elements;

each of the n networks computing {di m""’diO} requires a
2

number of elements proportional to n;



ng
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(iii) each of the n switch trees contains (n-1) switches.

We conclude that the network requires a number of elements proportional

2
ton .
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