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Abstract. Consideration is given to the influence of an un-

derwater landslide on waves at the surface of a shallow body

of fluid. The equations of motion that govern the evolution

of the barycenter of the landslide mass include various dis-

sipative effects due to bottom friction, internal energy dissi-

pation, and viscous drag. The surface waves are studied in

the Boussinesq scaling, with time-dependent bathymetry. A

numerical model for the Boussinesq equations is introduced

that is able to handle time-dependent bottom topography, and

the equations of motion for the landslide and surface waves

are solved simultaneously.

The numerical solver for the Boussinesq equations can

also be restricted to implement a shallow-water solver, and

the shallow-water and Boussinesq configurations are com-

pared. A particular bathymetry is chosen to illustrate the gen-

eral method, and it is found that the Boussinesq system pre-

dicts larger wave run-up than the shallow-water theory in the

example treated in this paper. It is also found that the finite

fluid domain has a significant impact on the behavior of the

wave run-up.

1 Introduction

Surface waves originating from sudden perturbations of the

bottom topography are often termed tsunamis. Two dis-

tinct generation mechanisms of a tsunami are underwater

earthquakes and submarine mass failures. Among the broad

class of submarine mass failures, landslides can be charac-

terized as translational failures that travel considerable dis-

tances along the bottom profile (Grilli and Watts, 2005; Prior

and Coleman, 1979). In the past, the role of landslides and

rockfalls in the excitation of tsunamis may have been un-

derestimated, as most known occurrences of tsunamis were

accredited to seismic activity. However, it is now more ac-

cepted that submarine mass failures also contribute to a large

portion of tsunamis (Tinti et al., 2001), and recent years have

seen a multitude of works devoted to the study of such un-

derwater landslides and the resulting effect on surface waves

(Bardet et al., 2003; Chubarov et al., 2011; Didenkulova et

al., 2010; Fernandez-Nieto et al., 2008; Grilli and Watts,

1999, 2005; Okal, 2003; Okal and Synolakis, 2003; Poncet

et al., 2010; Tinti et al., 2001). As suggested in Fritz et al.

(2007), it is possible for underwater landslides and earth-

quakes to act in tandem, and produce very large surface

waves

A natural question to ask is whether the effect of under-

water landslides on surface waves can be such that they may

pose a danger for civil engineering structures located near the

shore. Consequently, one important issue is the wave action

and in particular the run-up and drawdown at beaches in the

vicinity of the landslide. While the drawdown itself may not

pose a threat, one consequence of a large drawdown can be

the amplification of the run-up of the following positive wave

crest (Dutykh et al., 2011a; Tadepalli and Synolakis, 1996).

There have been many numerical and a few experimental

studies devoted to this subject, but it is generally difficult to

include many of the complex parameters and dependencies

of a realistic landslide into a physical model. Therefore, most

workers attempt to distill the problem to a model setup where

many effects such as turbulence and sedimentation are disre-

garded. For example, Grilli and Watts (2005) study tsunami

sensitivity to several landslide parameters in the case of a

landslide in a coastal area of an open ocean. In particular,

dependence on the landslide shape and the initial depth of

the landslide location are studied, and it is found that the

landslide with the smallest length produced the largest wave

height and run-up, and that the wave run-up at an adjacent
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beach is inversely proportional to the initial depth. The work

in Grilli and Watts (2005) relies on integrating the full water-

wave equations using an irrotational boundary-element code,

and using an open boundary with transmission conditions

(Grilli et al., 2001, 2010). While most works have consid-

ered a given dynamics for the landslide, the bottom motion

in Grilli and Watts (2005) is described by an ordinary differ-

ential equation similar to the one used here. Thus the motion

of the landslide is computed using a differential equation de-

rived from first principles using Newtonian mechanics. How-

ever to expedite comparison with experiments, the landslide

in Grilli and Watts (2005) is considered to have moved on a

straight inclined bottom with constant slope.

More recently, Khakimzyanov and Shokina (2010) and

Chubarov et al. (2011) have also used a differential equation

to find the bottom motion. One major novelty in their work

is that the landslide motion is computed on a bottom with an

arbitrary shape. The time-dependent bathymetry is then used

to drive a numerical solver of the shallow-water equations.

An advantage of this approach when compared to Grilli and

Watts (2005) is the reduced computation time. On the other

hand, the description of the wave motion in the shallow-water

theory is only approximate, and in particular, one important

effect of surface waves, namely the influence of frequency

dispersion is neglected.

The main aim of the current work is to study the dispersive

wave generation in a closed basin (Beisel et al., 2012) using a

more realistic landslide model (Chubarov et al., 2005) while

keeping the simplicity of the shallow-water approach. To this

end, we use the so-called Peregrine system, which is a partic-

ular case of a general class of model systems that arise in the

Boussinesq scaling (Boussinesq, 1871). A common feature

of all Boussinesq-type systems is that they allow a simplified

study of surface waves in which both nonlinear and disper-

sive effects are taken into account. In the present case, we

need to use a Boussinesq system that can handle complex

and time-dependent bottom topography. Such a system was

derived by Wu (1987), and can be used in connection with

the dynamic bathymetry. An example of the type of situation

considered here is shown in Fig. 1, which shows how the

bathymetry is given by the combination of a solid bottom,

and a landslide profile sliding along the fixed bottom.

We conduct two main experiments. First, a comparison

with the shallow-water theory is carried out. Second, the de-

pendence of the tsunami characteristics on the initial depth

of the landslide is investigated. The main findings of the

present work are that the predictions of the shallow-water

and Boussinesq theory are divergent for the cases treated in

this paper, and that the effect of a finite fluid domain, such as

a river, lake or fjord (Poncet et al., 2010), can lead to signif-

icantly different behavior when compared to tsunamis on an

open ocean (see also Beisel et al., 2012).

The Boussinesq model in this paper is based on the as-

sumption of an inviscid fluid, and irrotational flow. These

are standard assumptions in the study of surface waves, and
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Fig. 1. The fixed bathymetry z = h0(x) and the position of the land-

slide after 50 s. The position of the barycenter is indicated by a black

dot.

generally give good results, unless there are strong back-

ground currents in the fluid. Another effect that is not taken

account of here is the wave resistance on the landslide due

to waves created by the motion of the landslide. However,

as observed in Harbitz et al. (2006), this effect is negligible

for most realistic cases of underwater landslides. Viscosity

is included in the dynamic model for the landslide as will

be shown in the next section. In order to capture the effect of

slide deformation during the evolution, a damping term in the

equation of motion is included to model the internal friction

in the landslide mass.

The paper is organized in the following way. In Sect. 2, the

equation of motion for the landslide is developed. Then in

Sect. 3, the Boussinesq model is recalled. In Sect. 4, solitary-

wave solutions of the Peregrine system are found numeri-

cally. In Sect. 5, the numerical scheme for the Boussinesq

system is explained and the numerical method is tested using

the exact solutions of Sect. 4. Section 6 contains results of nu-

merical runs for a few specific cases of bottom bathymetry,

a parameter study of wave run-up in relation to the initial

depth of the landslide, and a comparison with the shallow-

water theory.

2 The landslide model

In this section we briefly present a mathematical model of un-

derwater landslide motion. This process has to be addressed

carefully since it determines the subsequent formation of wa-

ter waves at the free surface. In the present study, we will

assume the movable mass to be a solid body with a pre-

scribed shape and known physical properties. Since the land-

slide mass and volume is preserved during the evolution,

it is sufficient to determine the position of the barycenter

x = xc(t) as a proxy for the motion of the whole body. As

observed in the introduction, most studies of wave generation

due to underwater landslides are based on prescribed bottom

motion, or on solving the equation of motion on a uniform

slope while taking account of different types of friction and
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viscous terms. Examples of such works include the follow-

ing: DiRisio et al. (2009); Pelinovsky and Poplavsky (1996);

Watts et al. (2000). A more general approach was recently

pioneered by Khakimzyanov and Shokina (2010), where cur-

vature effects of the bottom topography were taken into ac-

count. Since this model is applicable to a wider range of

cases, we follow the approach of Khakimzyanov and Shok-

ina (2010). However, in addition to the effects included by

Khakimzyanov and Shokina, our model also incorporates the

effect of internal friction in the slide material (given by the

dissipative force Fi) and the action of bottom friction, given

by Fb.

The static bathymetry is prescribed by a sufficiently

smooth single-valued function z = −h0(x), and the land-

slide shape is initially prescribed by a localized function

z = ζ0(x). To be specific, in this study we choose the fol-

lowing shape function for the landslide mass:

ζ0(x) = A

{

1
2

(

1 + cos( 2π(x−x0)
ℓ

)
)

, |x − x0| ≤ ℓ
2

0, |x − x0| > ℓ
2
.

(1)

In this formula, A is the maximum height, ℓ the length of

the slide and x0 the initial position of its barycenter. It is clear

that the model description given below and the method of nu-

merical integration used in the present work is applicable to

any other smooth profile, as long as it is sufficiently localized

and fully submerged.

Since the landslide motion is translational, its shape at time

t is given by the function z = ζ(x, t) = ζ0(x − xc(t)). Recall

that the landslide center is located at a point with abscissa

x = xc(t). Then, the impermeable bottom for the water wave

problem can be easily determined at any time by simply su-

perposing the static and dynamic components. Thus the bot-

tom boundary conditions for the fluid are to be imposed at

z = −h(x, t) = −h0(x) + ζ(x, t).

To simplify the subsequent presentation, we introduce the

classical arc-length parameterization, where the parameter

s = s(x) is given by the formula

s = L(x) =
x

∫

x0

√

1 + (h′
0(ξ))2 dξ. (2)

The function L(x) is monotone and can be efficiently in-

verted to yield the original Cartesian abscissa x = L−1(s).

Within the parameterization in Eq. (2), the center of the land-

slide is initially located at a point with the curvilinear coor-

dinate s = 0. The local tangential direction is denoted by τ

and the normal direction by n.

A straightforward application of Newton’s second law re-

veals that the landslide motion is governed by the differential

equation

m
d2s

dt2
= Fτ (t),

where m is the landslide mass and Fτ (t) is the tangential

component of the sum of forces acting on the moving sub-

merged body. In order to project the forces onto the axes of

the local coordinate system, the angle θ(x) between τ and

Ox is needed. This angle is determined by

θ(x) = −arctan
(

h′
0(x)

)

.

Let us denote by ρw and ρℓ the densities of the water and

landslide material correspondingly. If V is the volume of the

slide, then the total mass m is given by the expression

m =
(

ρℓ + cwρw

)

V, (3)

where cw is the added mass coefficient. As explained in

Batchelor (2000), a portion of the water mass has to be added

to the mass of the landslide since it is entrained by the under-

water body motion. For a cylinder, the coefficient cw is equal

exactly to one, but in the present case, the coefficient has to

be estimated. The volume of the sliding material is given by

V = W · S, where W is the landslide width in the transverse

direction, and S can be computed by

S =
∫

R

ζ0(x)dx.

The last integral can be computed exactly for the particular

choice in Eq. (1) of the landslide shape to give

V = 1

2
ℓAW.

The total projected force acting on the landslide can be

conventionally represented as a sum of the force Fg repre-

senting the joint action of gravity and buoyancy, and the total

contribution of various dissipative forces.

The gravity and buoyancy forces act in opposite directions,

and their horizontal projection Fg can be easily computed by

Fg(t) = (ρℓ − ρw)Wg

∫

R

ζ(x, t)sin
(

θ(x)
)

dx.

Now, let us specify the dissipative forces. The water resis-

tance to the motion of the landslide Fr due to viscous dis-

sipation is proportional to the maximal transverse section of

the moving body and to the square of its velocity. In addition,

the coefficient sign
(

ds
dt

)

is needed to dissipate the landslide

kinetic energy independently of its direction of motion. Thus

the force Fr takes the form

Fr = −sign

(

ds

dt

)

1

2
cdρwAW

(ds

dt

)2
,

where cd is the resistance coefficient of the water. The fric-

tion force Ff is proportional to the normal force exerted on

the body due to the weight:

Ff = −cf sign

(

ds

dt

)

N(x, t).
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The normal force N(x, t) is composed not only of the normal

components of gravity and buoyancy forces, but also of the

centripetal force due to the variation of the bottom slope:

N(x, t) =(ρℓ − ρw)gW

∫

R

ζ(x, t)cos
(

θ(x)
)

dx

+ρℓW

∫

R

ζ(x, t)κ(x)
(ds

dt

)2
dx.

Here κ(x) is the signed curvature of the bottom, which can

be computed using the formula

κ(x) =
h′′

0(x)

(

1 + (h′
0(x))2

)
3
2

.

We note that the last term vanishes for a plane bottom since

κ(x) ≡ 0 in this particular case. Energy loss inside the sliding

material due to internal friction is modeled by

Fi = −cvρℓWS
ds

dt
,

where cv is an internal friction coefficient. Finally, dissipa-

tion in the boundary layer between the landslide and the solid

bottom is taken account of by the term

Fb = −cbρwWℓ
ds

dt

∣

∣

∣

∣

ds

dt

∣

∣

∣

∣

,

where cb is the Chézy coefficient.

Finally, if we sum up the contributions of all the forces de-

scribed above, we obtain the second-order differential equa-

tion

(γ + cw)S
d2s

dt2
=(γ − 1)g

(

I1(t) − cfσ(t)I2(t)
)

− σ(t)
(

cfγI3(t) + 1

2
cdA

)(ds

dt

)2

− cvγ S
ds

dt
− cbℓ

ds

dt

∣

∣

∣

∣

ds

dt

∣

∣

∣

∣

, (4)

where γ = ρℓ

ρw
> 1 is the ratio of densities, σ(t) = sign

(

ds
dt

)

and the integrals I1,2,3(t) are defined by

I1(t) =
∫

R

ζ(x, t)sin
(

θ(x)
)

dx,

I2(t) =
∫

R

ζ(x, t)cos
(

θ(x)
)

dx,

I3(t) =
∫

R

ζ(x, t)κ(x)dx.

In order to obtain a well-posed initial value problem,

Eq. (4) has to be supplemented with initial conditions for
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Fig. 2. Position and velocity of the barycenter of the landslide as

functions of dimensional time for three different values of the fric-

tion coefficient cf.

s(0) and s′(0). In the remainder we always take homoge-

neous initial conditions, and consider the motion driven only

by the gravitational acceleration of the landslide. However,

different boundary conditions might also be reasonable from

a modeling point of view.

In order to approximate solutions of Eq. (4), we employ

the Bogacki–Shampine third-order Runge–Kutta scheme.

The integrals I1,2,3(t) are computed using the trapezoidal

rule, and once the landslide trajectory s = s(t) is found, we

use Eq. (2) to find its motion x = xc(t) in the initial Cartesian

coordinate system. This yields the bottom motion that drives

the fluid solver.

For illustrative purposes we show a few examples of land-

slide trajectories over the bottom profile depicted in Fig. 1.

The other parameters used in the simulations are given in

Sect. 6 and also in Table 2. We performed a series of sim-

ulations in order to study the effect of various dissipative

terms on the landslide trajectory. The dependence on the fric-

tion coefficient cf is shown in Fig. 2 where the landslide

barycenter position xc(t) and its velocity vc(t) are shown

as functions of time for cf = tan(1◦), tan(2◦) and tan(3◦).
In the case of the weak friction cf = tan(1◦), the landslide

reaches a sufficient speed to escape from the basin depicted

in Fig. 1. For the latter case (cf = tan(3◦)), we show also si-

multaneously the landslide speed vc(t) = dxc

dt
and its acceler-

ation ac(t) = dvc
dt

= d2xc

dt2 in Fig. 3. In particular, one can see

that the acceleration is a discontinuous function whose jumps

correspond exactly to moments of time where the speed vc

changes its sign, in accordance with the employed model in

Eq. (4). However, in our model there are also two new dissi-

pative terms Fi and Fb whose importance has to be studied

also. We fix the value of cf = tan(3◦) for all subsequent ex-

periments, and we will vary only the two other coefficients

Nonlin. Processes Geophys., 20, 267–285, 2013 www.nonlin-processes-geophys.net/20/267/2013/
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Fig. 3. Velocity and acceleration of the barycenter of the land-

slide as a function of dimensional time. The friction coefficient is

cf = tan(3◦). The discontinuities in the acceleration are due to the

coefficient sign
(

ds
dt

)

in the definition of the friction force.
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Fig. 4. Position and velocity of the barycenter of the landslide as

functions of dimensional time for three different values of the fric-

tion coefficient cv.

cv and cb for other fixed parameters given in Table 2. These

numerical results are presented in Figs. 4 and 5. One can see

that the influence of these parameters on the landslide tra-

jectory is weaker. However, we choose to keep them in the

model in order to have more latitude for fine-tuning the slide

trajectory if need be.

3 The Boussinesq model

Once the motion of the landslide is determined, and there-

fore the time-dependent bathymetry h(x, t) = h0(x)−ζ(x, t)
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Fig. 5. Position and velocity of the barycenter of the landslide as

functions of dimensional time for three different values of the fric-

tion coefficient cb.

is given, the next step is to consider the coupling between

the bathymetry variations and the evolution of surface waves.

The main assumptions on the fluid are that it is inviscid and

incompressible, and that the flow is irrotational. Under these

assumptions, the potential-flow free surface problem governs

the motion of the fluid. However, in the present case, the

fluid is shallow, and the waves at the surface are of small

amplitude when compared to the depth of the fluid. In that

case, the potential-flow problem may be simplified, and the

model used in this paper is a variant of the so-called classical

Boussinesq system derived by Boussinesq (1871).

Let us first consider the case of an even bottom, and a con-

stant fluid depth d0. Denote a typical wave amplitude by a,

and a typical wavelength by λ. The parameter α = a
d0

then

describes the relative amplitude of the waves, and the param-

eter β = d2
0

λ2 measures the “shallowness” of the fluid in com-

parison to the wavelength. In the case when both α and β are

small and approximately of the same order of magnitude, the

system

ηt + d0ux + (ηu)x = 0,

ut + gηx + uux −
d2

0

3
uxxt = 0

(5)

may be used as an approximate model for the description

of the evolution of the surface waves and the fluid flow. In

Eq. (5), η denotes the deflection of the free surface from its

rest position, and u denotes the horizontal fluid velocity at a

height z = d0(−1 +
√

1/3) in the fluid column if z is mea-

sured from the rest position of the free surface. The same

equation appears if the velocity is taken to be the average of

the horizontal velocity over the flow depth.

www.nonlin-processes-geophys.net/20/267/2013/ Nonlin. Processes Geophys., 20, 267–285, 2013
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The system in Eq. (5) was first derived by Peregrin (1967),

and falls into a general class of Boussinesq systems, as shown

in the systematic studies (Bona et al., 2002; Nwogu, 1993).

As opposed to the shallow-water approximation, the pressure

is not assumed to be hydrostatic, and the horizontal velocity

varies with depth. In fact, the horizontal velocity profile is

a quadratic function of z (Whitham, 1974). Non-hydrostatic

effects lead to the appearance of linear dispersive terms in

the governing equations. The problem of landslide-generated

waves has been addressed in the fully nonlinear shallow wa-

ter framework (Watts et al., 2003; Chubarov et al., 2005; Yu

et al., 2007; Beisel et al., 2010). Nevertheless, several authors

have recently obtained interesting results even in the linear

(Sammarco and Renzi, 2008; Seo and Liu, 2013) or nonlin-

ear (Fernandez-Nieto et al., 2008; Didenkulova et al., 2010;

Beisel et al., 2012) hydrostatic models.

The derivation of Eq. (5) given in Peregrin (1967) also

featured an extension to non-constant but time-independent

bathymetry. However, the present case of a dynamic bot-

tom profile calls for a system that allows for time-dependent

bathymetry, and such a system was derived in Wu (1987).

Given a bottom topography described by z = −h(x, t), the

system takes the form

ηt +
(

(h + η)u
)

x
+ ht = 0,

ut + gηx + uux = 1

2
h
(

ht + (hu)x
)

xt
− h2

6
uxxt .

(6)

In order for this system to be asymptotically valid, we need

α ∼ β as before. Moreover, concerning the unsteady bottom

profile, we make the assumptions that hx ≤ O(αβ1/2), and

ht ≤ O(αβ1/2).

In comparison to the shallow-water equations with a time-

dependent bottom topography, the system in Eq. (6) has ad-

ditional terms on the right-hand side of the second equation.

The effect of these terms is to incorporate frequency disper-

sion into the model. One practical aspect of this modifica-

tion is that wave breaking can be completely avoided as long

as the amplitude of the waves is small enough. Wave break-

ing is also possible in evolution systems of Boussinesq type

(Bjørkavåg and Kalisch, 2011; Briganti et al., 2004), but the

amplitudes occurring in the present problem are far from the

breaking limit. The phase speed of a small-amplitude linear

wave of wavelength 2π/k in Eq. (6) with a stationary even

bottom has the form c2 = gd0

1+ d2
0
3 k2

, while the phase speed is

given by c2 = gd0
tanh(kd0)

kd0
in the linearized full water wave

problem. Thus one might argue that the dispersion in Eq. (6)

is too strong in comparison with dispersion in realistic wa-

ter waves. However, as discussed in Bjørkavåg and Kalisch

(2011), the linear dispersion relation of Eq. (6) is still closer

to the dispersion relation of the original water-wave problem

than most other standard Boussinesq equations that feature

even faster decay of the phase speed with increasing k.

4 Solitary waves

Before the numerical method for approximating solutions

of Eq. (6) is presented, we digress for a moment, and ex-

plain how to find numerically exact solutions of the system

in Eq. (5). These solutions will later be used to test the imple-

mentation of the numerical procedure. Assuming the special

form

η(x, t) = η(ξ), u(x, t) = u(ξ), ξ = x − cs t,

and substituting this representation into the governing

Eq. (5), the following appears:

−csη
′ +

(

(d + η)u
)′ = 0,

−csu
′ + 1

2
(u2)′ + gη′ + cs

d2

3
u′′′ = 0.

Assuming decay of both η and u to zero as |x| → ∞, the

integration of the mass conservation equation from −∞ to ξ

gives the following relation between η and u:

u = csη

d + η
, η = d · u

cs − u
. (7)

The momentum balance equation can now be integrated to

yield

−cs

(

u − d2

3
u′′

)

+ 1

2
u2 + gη = 0. (8)

Finally, in order to obtain a closed form equation in terms

of the velocity u, we substitute the expression in Eq. (7)

for η into Eq. (8). The resulting differential equation can be

written in operator notation as

Lu = N (u),

where the linear operator L and the nonlinear operator N are

defined respectively by

Lu = cs

(

u − d2

3
u′′

)

and N (u) = 1

2
u2 + gdu

cs − u
.

While nothing formal appears to be known about existence

of localized solutions of Eqs. (7) and (8), it is straightforward

to compute approximations of solitary waves numerically. In

particular, one may use the well-known Petviashvili iteration

method, which takes the form

un+1 = L
−1·N (un)·

(

(un,N (un))

(un,Lun)

)−q

. (9)

The exponent q is usually defined as a function of the de-

gree p of the nonlinearity, with the rule of thumb that the

expression q = p
p−1

generally works well. In our case, the

nonlinearities are quadratic, so that we choose p = 2, and

hence q = 1.
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Fig. 6. Comparison of the numerical approximation of solitary wave solutions of Eq. (5) to Grimshaw’s third-order asymptotic approximation

of solitary waves using the Euler equations for the full water wave problem. The upper panel shows the surface elevation, and the lower panel

shows the horizontal velocity at z = d0(−1 +
√

1/3).

The Petviashvili method was analyzed in Stepanyants and

Pelinovsky (2004), and can be very efficiently implemented

using the fast Fourier transform (FFT) (Frigo and Johnson,

2005). The iteration can be started for instance with the third-

order asymptotic solution of Grimshaw (1971). The iterative

procedure is continued until the L∞ norm between two suc-

cessive iteration is on the order of machine precision. Fig-

ure 6 shows approximate solitary-wave solutions of Eq. (5)

with various wave speeds, and compares them to the third-

order asymptotic approximation of solitary-wave solutions of

the full water-wave problem obtained by Grimshaw (1971).

The left panel shows comparisons of the free-surface ex-

cursion, while the right panel shows a comparison of the

horizontal component of the velocity field, evaluated at the

non-dimensional height z̃ given by z̃ = −1+
√

1/3. Figure 7

shows a comparison of the wave-speed–amplitude relation

between the solitary-wave approximation of Eq. (5) and the

ninth-order asymptotic approximation to the full water-wave

problem obtained by Fenton (1972).

5 The numerical scheme

For the numerical discretization, a finite-volume discretiza-

tion procedure similar to the one used in Barth (1994) and

Barth and Ohlberger (2004) is employed. Let us take as a

unit of length the undisturbed depth d0 of the fluid above the

barycenter of the landslide, and as a unit of time the ratio
√

d0
g

. Then the Peregrine system in Eq. (6) is rewritten in

terms of the total water depth H as

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.02
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Amplitude − Wave speed diagram

a
0
/d

c
s
/(

g
d
)1

/2

 

 

Fenton solution

Classical Peregrine

Fig. 7. Amplitude–speed relation of solitary wave solutions of

Eq. (5) and of Fenton’s ninth-order asymptotic approximation of

solitary waves using the Euler equations for the full water wave

problem.

Ht + [Hu]x = 0, (10)

ut +
[

1
2
u2 + (H − h)

]

x
= 1

2
hhxtt + 1

2
h(hu)xxt

− 1

6
h2uxxt . (11)

The system in Eqs. (10) and (11) can be formally rewritten

in the form

Vt + [F(V) ]x = Sb + M(V), (12)
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where the density V and the advective flux F(V) are de-

fined by

V ≡
(

H

u

)

, F(V) ≡
(

H u
1
2
u2 + (H − h)

)

.

The source term is defined by

Sb ≡
(

0
1
2
hhxtt

)

,

and the dispersive term is defined by

M(V) ≡
(

0
1
2
h(hu)xxt − 1

6
h2uxxt

)

.

We begin our presentation with a discretization of the hy-

perbolic part of Eqs. (10) and (11), which is the classical non-

linear shallow-water system, and then discuss the treatment

of dispersive terms. The Jacobian of the advective flux F(V)

is easily computed to be

A(V) = ∂ F(V)

∂V
=

(

u H

1 u

)

,

and it is clear that A(V) has the two distinct eigenvalues

λ± = u ± cs, cs ≡
√

H.

The corresponding right and left eigenvectors are the

columns of the matrices

R =
(

H −H

cs cs

)

, L = R−1 = 1

2

(

H−1 c−1
s

−H−1 c−1
s

)

.

We consider a partition of the real line R into cells

(or finite volumes) Ci = [x
i− 1

2
,x

i+ 1
2
] with cell centers xi =

1
2
(x

i− 1
2
+x

i+ 1
2
) (i ∈ Z). Let 1xi denote the length of the cell

Ci. In the following we will consider only uniform partitions

with 1xi = 1x, ∀i ∈ Z. We would like to approximate the

solution V(x, t) by discrete values. In order to do so, we in-

troduce the cell average of V on the cell Ci (denoted with an

overbar):

V̄i(t) ≡
(

H̄i(t) , ūi(t)
)

= 1

1x

∫

Ci

V(x, t)dx.

A simple integration of Eq. (12) over the cell Ci leads to

the exact relation

dV̄

dt
+ 1

1x

[

F(V(x
i+ 1

2
, t)) − F(V(x

i− 1
2
, t))

]

= 1

1x

∫

Ci

Sb(V)dx ≡ S̄i.

Since the discrete solution is discontinuous at cell inter-

faces x
i+ 1

2
(i ∈ Z), we replace the flux at the cell faces by the

so-called numerical flux function

F(V(x
i± 1

2
, t)) ≈ F

i± 1
2
(V̄L

i± 1
2

, V̄R

i± 1
2

),

where V̄
L,R

i± 1
2

denotes the reconstructions of the conservative

variables V̄ from left and right sides of each cell interface (the

reconstruction procedure employed in the present study will

be described below). Consequently, the semi-discrete scheme

takes the form

dV̄i

dt
+ 1

1x

[

F
i+ 1

2
− F

i− 1
2

]

= S̄i. (13)

In order to discretize the advective flux F(V), we follow

the method of Ghidaglia et al. (1996, 2001) and use the fol-

lowing finite volume characteristic flux (FVCF) scheme:

F(V,W) = F(V) + F(W)

2
− U(V,W)·F(W) − F(V)

2
.

The first part of the numerical flux is centered, while the

second part is the upwinding introduced through the Jacobian

sign-matrix U(V,W) defined by

U(V,W) = sign
[

A( 1
2
(V + W))

]

,

sign(A) = R·diag(s+, s−)·L,

where s± ≡ sign(λ±). After some simple algebraic compu-

tations, one can find

U = 1

2

(

s+ + s− (H/cs)(s
+ − s−)

(cs/H)(s+ − s−) s+ + s−

)

,

the sign-matrix U being evaluated at the average state of left

and right values.

Finally, the source term Sb(x, t) = (0, 1
2
hhxtt ), which is

due to the moving bottom, is discretized by evaluating the

bathymetry function and its derivatives at cell centers:

1

1x

∫

Ci

Sb(x, t)dx ≈
(

0, 1
2
h(xi, t)hxtt (xi, t)

)

.

Recall that the bathymetry is composed of the static part

and of the landslide subject to a translational motion:

h(x, t) = h0(x) − ζ(x, t) = h0(x) − ζ0

(

x − xc(t)
)

.

The derivative hxtt can be readily obtained from the for-

mula

hxtt (x, t) = d2xc

dt2

d2ζ0

dx2
(x −xc(t))−

(dxc

dt

)2 d3ζ0

dx3
(x −xc(t)).
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5.1 High-order reconstruction

In order to obtain a higher order scheme in space, we need

to replace the piecewise constant data by a piecewise poly-

nomial representation. This goal is achieved by various so-

called reconstruction procedures such as MUSCL TVD (Kol-

gan, 1975; van Leer, 1979, 2006), UNO (Harten and Osher,

1987), ENO (Harten, 1989), WENO (Xing and Shu, 2005)

and many others. In recent studies on unidirectional wave

models (Dutykh et al., 2013a) and on Boussinesq-type equa-

tions (Dutykh et al., 2011b), the UNO2 scheme showed a

good performance with small dissipation in realistic propa-

gation and run-up simulations. Consequently, we retain this

scheme for the discretization of the advective flux of the

Peregrine system in Eqs. (10) and (11).

The main idea of the UNO2 scheme is to construct a non-

oscillatory piecewise-parabolic interpolant Q(x) to a piece-

wise smooth function V(x) (see Harten and Osher, 1987, for

more details). On each segment containing the face x
i+ 1

2
∈

[xi,xi+1], the function Q(x) = q
i+ 1

2
(x) is locally a quadratic

polynomial and wherever v(x) is smooth we have

Q(x) − V(x) = 0 + O(1x3),

dQ

dx
(x ± 0) − dV

dx
= 0 + O(1x2).

Also, Q(x) should be non-oscillatory in the sense that the

number of its local extrema does not exceed that of V(x).

Since q
i+ 1

2
(xi) = V̄i and q

i+ 1
2
(xi+1) = V̄i+1, it can be writ-

ten in the form

q
i+ 1

2
(x) = V̄i +

d
i+ 1

2
{V} × x − xi

1x
+ 1

2
D

i+ 1
2
{V} × (x − xi)(x − xi+1)

1x2
,

where d
i+ 1

2
{V} ≡ V̄i+1 − V̄i and D

i+ 1
2
V is closely related

to the second derivative of the interpolant since D
i+ 1

2
{V} =

1x2 q′′
i+ 1

2

(x). The polynomial q
i+ 1

2
(x) is chosen to be

the least oscillatory between two candidates interpolat-

ing V(x) at (xi−1,xi,xi+1) and (xi,xi+1,xi+2). This re-

quirement leads to the following choice of D
i+ 1

2
{V} ≡

minmod
(

Di{V},Di+1{V}
)

with

Di{V} = V̄i+1 − 2 V̄i + V̄i−1,

Di+1{V} = V̄i+2 − 2 V̄i+1 + V̄i,

and where minmod (x,y) is the usual minmod function de-

fined as

minmod(x,y) ≡ 1
2
[sign(x) + sign(y) ] × min(|x|, |y|).

To achieve the second order O(1x2) accuracy, it is suf-

ficient to consider piecewise linear reconstructions in each

cell. Let L(x) denote this approximately reconstructed func-

tion, which can be written in the form

L(x) = V̄i + Si ·
x − xi

1x
, x ∈ [x

i− 1
2
,x

i+ 1
2
].

In order for L(x) to be a non-oscillatory approximation,

we use the parabolic interpolation Q(x) constructed below

to estimate the slopes Si within each cell:

Si = 1x × minmod
(dQ

dx
(xi − 0),

dQ

dx
(xi + 0)

)

.

In other words, the solution is reconstructed on the cells

while the solution gradient is estimated on the dual mesh as

it is often performed in more modern schemes (Barth, 1994;

Barth and Ohlberger, 2004). A brief summary of the UNO2

reconstruction can be also found in Dutykh et al. (2011b,

2013a).

5.2 Treatment of the dispersive terms

In this section, we explain how to treat the relevant disper-

sive terms in the second Eq. (11) of the Peregrine system nu-

merically. We propose the following approximation for the

second component of M(V̄) of M(V̄):

Mi(V̄) = 1

2
h̄i

h̄i+1(ūt )i+1 − 2h̄i(ūt )i + h̄i−1(ūt )i−1

1x2

−1

6
h̄2

i

(ūt )i+1 − 2(ūt )i + (ūt )i−1

1x2

= h̄i

21x2

(

h̄i−1 − 1

3
h̄i

)

(ūt )i−1

− 2

31x2
h̄2

i (ūt )i + h̄i

21x2

(

h̄i+1 − 1

3
h̄i

)

(ūt )i+1.

Note that this spatial discretization is of the second order

O(1x2) so as to be consistent with the UNO2 advective flux

discretization presented above. If we denote by I the identity

matrix, we can now rewrite the semi-discrete scheme in the

form

dH̄

dt
+ 1

1x

[

F
(1)
+ (V̄) − F

(1)
− (V̄)

]

= 0,

(I − M) · dū

dt
+ 1

1x

[

F
(2)
+ (V̄) − F

(2)
− (V̄)

]

= S
(2)
b ,

where F
(1,2)
± (V̄) are the two components of the advective nu-

merical flux vector F at the right (+) and left (−) faces corre-

spondingly, and S
(2)
b denotes the discretization of the second

component of Sb.

In order to advance the numerical solution forward in time,

one has to invert the matrix (I − M) at every time step. This

is no problem in practice, since the matrix appears to be well

conditioned in all cases we have considered. In fact, the in-

vertibility of the matrix (I − M) can be rigorously shown to

hold for small enough 1x since the matrix is then diago-

nally dominant. The criterion for diagonal dominance in the
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present case is seen to be

1 + 2

31x2
h̄2

i >

∣

∣

∣

∣

∣

−1

6

h̄2
i

1x2
+ h̄i

21x2
h̄i−1

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

−1

6

h̄2
i

1x2
+ h̄i

21x2
h̄i+1

∣

∣

∣

∣

∣

.

Using a Taylor expansion to express the terms h̄i−1 and

h̄i+1 as h̄i−1 = h̄i − 1xh̄′(xi) +O(1x2) and h̄i+1 = h̄i +
1xh̄′(xi) +O(1x2) , respectively, the criterion reduces to

1 + 1
31x2 h̄2

i >
h̄ih̄

′
i

1x
+O(1), and this is guaranteed to hold for

small enough 1x.

5.3 Time stepping

We assume that the linear system of equations is already in-

verted, and we have the following system of ordinary differ-

ential equations:

Vt = N (V, t), V(0) = V0.

In order to solve numerically the last system of equations,

we apply the Bogacki–Shampine method proposed by Prze-

myslaw Bogacki and Lawrence F. Shampine in 1989 (Bo-

gacki and Shampine, 1989). It is a Runge–Kutta scheme of

the third order with four stages. It has an embedded second-

order method that is used to estimate the local error and thus,

to adapt the time step size. Moreover, the Bogacki–Shampine

method enjoys the first same as last (FSAL) property so that

it needs approximately three function evaluations per step.

This method is also implemented in the ode23 function in

MATLAB (Shampine and Reichelt, 1997). The one step of

the Bogacki–Shampine method is given by

k1 = N (V(n), tn),

k2 = N (V(n) + 1
2
1tnk1, tn + 1

2
1t),

k3 = N (V(n)) + 3
4
1tnk2, tn + 3

4
1t),

V(n+1) = V(n) + 1tn
(

2
9
k1 + 1

3
k2 + 4

9
k3

)

,

k4 = N (V(n+1), tn + 1tn),

V
(n+1)
2 = V(n) + 1tn

(

4
24

k1 + 1
4
k2 + 1

3
k3 + 1

8
k4

)

.

Here V(n) ≈ V(tn), 1t is the time step and V
(n+1)
2 is a

second-order approximation to the solution V(tn+1), so the

difference between V(n+1) and V
(n+1)
2 gives an estimation of

the local error. The FSAL property consists in the fact that k4

is equal to k1 in the next time step, thus saving one function

evaluation.

If the new time step 1tn+1 is given by 1tn+1 =
ρn1tn, then, according to the H211b digital filter approach

(Söderlind, 2003; Söderlind and Wang, 2006), the propor-

tionality factor ρn is given by

ρn =
( δ

ǫn

)β1
( δ

ǫn−1

)β2

ρ−α
n−1, (14)

where ǫn is a local error estimation at time step tn, and the

constants β1, β2 and α are defined by

α = 1

4
, β1 = 1

4p
, β2 = 1

4p
.

The parameter p gives the order of the scheme, and p = 3 in

our case.

The adaptive strategy in Eq. (14) can be further improved

if we smooth the factor ρn before computing the next time

step 1tn+1:

1tn+1 = ρ̂n1tn, ρ̂n = ω(ρn).

The function ω(ρ) is called the time step limiter and

should be smooth, monotonically increasing and should sat-

isfy the following conditions:

ω(0) < 1, ω(+∞) > 1, ω(1) = 1,ω′(1) = 1.

One possible choice was suggested in Söderlind and Wang

(2006):

ω(ρ) = 1 + κ arctan
(ρ − 1

κ

)

.

In our computations the parameter κ is set to 1.

5.4 Validation

The scheme described in this section is implemented in MAT-

LAB, and runs on a workstation. To check whether the imple-

mentation is correct, we use the approximate solitary waves

of Eq. (5), computed in the last section. These are used as

initial data in the fully discrete scheme, and integrated for-

ward in time. The computed solutions are then compared to

the same solitary waves, but shifted forward in space by ct0,

where c is the wave speed, and t0 is the final time. This proce-

dure is repeated a number of times with different spatial grid

sizes. As a result, it is possible to find the spatial convergence

rate of the scheme. As is visible in Fig. 8, the convergence

achieved by the practical implementation of the discretiza-

tion is very close to the theoretical convergence rate. Since

the temporal discretization is adaptive, we do not present a

convergence study in terms of the timestep 1t .

5.4.1 Wave generation by moving bottom

We have just shown the convergence of our scheme under the

mesh refinement. Even if the solution we used in validation

is fully nonlinear, it only exists on the flat bottom. Since in

the present study we are mainly interested in the wave gen-

eration by bottom motion, the next validation test will be en-

tirely devoted to this question. Namely, we are going to use

an analytical solution to the linearized full Euler equations

also known as the Cauchy–Poisson problem. The use of this

solution in tsunami generation problems was first proposed

by Hammack (1973).
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Fig. 8. Convergence rate of the finite-volume scheme in the L∞-norm (left panel) and the L2-norm (right panel). The numerical integration

of a solitary wave as shown in Fig. 6 is compared to a translated profile. It appears that the second-order convergence is achieved.

We consider the linearized water wave problem for a fluid

layer of uniform depth z = −d0 = const. However, a por-

tion of the bottom can move vertically, and the bottom de-

formation is given by a smooth function ζ(x, t), such that

ζ(x,0) = 0. At any given time t , the bottom profile is given

by z = −d0 + ζ(x, t). Moreover, we will make a special as-

sumption about the structure of the bottom deformation:

ζ(x, t) = T (t)ζ0(x), T (t) = 1 − e−αt , α > 0, t ≥ 0.

Obviously, we have to assume that ||ζ0|| ≪ 1 so that the

linear approximation be valid. Then, the free surface eleva-

tion at any time is given by the following formula (Hammack,

1973; Dutykh et al., 2006):

η(x, t) = − α2

2π

∫

R

ζ̂0(k)

cosh(kd0)
×

e−αt − cos(ωt)− ω
α

sin(ωt)

α2 + ω2
· e−ikx dk, (15)

where ζ̂0(k) is the Fourier transform of ζ0(x) and ω =√
gk tanh(kd0) is the wave frequency corresponding to the

wavenumber k. The above integral can be easily computed

using the FFT algorithm. To fix the ideas for numerical com-

putations, we will take the following localized oscillatory

bottom deformation:

ζ0(x) = a cos(k0x)e−λ0x
2
, λ0 > 0.

The values of all parameters used in numerical simula-

tion are given in Table 1. The nonlinearity parameter a/d0

is chosen to be 0.05, which is far above the nonlinearity

of the earthquake-generated tsunamis. However, we think

that this value corresponds better to the scope of the present

Table 1. Values of various parameters used to simulate the wave

generation by moving bottom.

Gravity acceleration: g 1.0

Gravity acceleration: g 1.0

Undisturbed water depth: d0 1.0

Bottom displacement amplitude: a 0.05

Bottom oscillation inverse length: k0
π
40

Bottom localization parameter: λ0 0.7 × 10−3

Vertical uplift speed: α 1.0 and 2.0

study. In order to simulate this setup using the Peregrine sys-

tem, we consider a symmetric 1-D computational domain

[−220,220] discretized into N = 2000 equal control vol-

umes. The time stepping tolerance parameter was set far be-

low the spatial discretization error (∼ O(1x2)). First, we

will take a moderately fast bottom uplift corresponding to

the parameter α = 1.0. Computational results are presented

in Fig. 9a–e. One can see that the overall agreement is

fairly good even if some small differences can be noticed

in Fig. 9c–d. However, the resulting wave form predicted by

the Peregrine system follows closely the linearized full Euler

solution in Eq. (15). Now, we will double the bottom uplift

speed (α = 2.0). This result is presented in Fig. 10a–e. One

can see more substantial differences during the generation

phase (see panels b–d). However, here again the resulting

wave is surprisingly well represented by the Boussinesq-type

equations. The observed discrepancies during the generation

phase are essentially due to the simplified structure of the

vertical speed in Boussinesq-type equations (Dutykh et al.,

2013b).
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Fig. 9. Free surface waves generated by a moderately fast bottom

motion. The blue dashed line corresponds to the analytical Cauchy–

Poisson solution, while the solid black line is our numerical solution

to the Peregrine system. The time snapshots are taken at t = 1.5,

t = 4, t = 8, t = 20, and t = 80, from top to bottom.
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Fig. 10. Free surface waves generated by a fast bottom motion. The

blue dashed line corresponds to the analytical Cauchy–Poisson so-

lution, while the solid black line is our numerical solution to the

Peregrine system. The time snapshots are taken at t = 2.5, t = 8,

t = 15, t = 25, and t = 70, from top to bottom.
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Fig. 11. The physical setup of the problem. The riverbed is indi-

cated in dark grey. The computational fluid domain is shaded light

grey, and the landslide is visible in black. Note the difference in hor-

izontal and vertical scales in the left panel. The upper panel shows

a close-up of the left beach and part of the landslide in a one-to-one

aspect ratio.

6 Numerical results

Let us consider a one-dimensional computational domain

I = [a,b] = [0,220] composed of two regions: the genera-

tion region and a sloping beach on the right. More specif-

ically, the static bathymetry function h0(x) is given by a

smoothed out profile generated from the expression

h0(x) =
{

d0 + tanδ(x − a) + p(x), a ≤ x ≤ m,

d0 + tanδ(m − a) − tanδ(x − m), x > m,

where the function p(x) is defined as

p(x) = A1sech(k1(x − x1)) + A2sech(k2(x − x2)).

In essence, this function represents a perturbation of the

sloping bottom by two underwater bumps. We made this

nontrivial choice in order to illustrate the advantages of our

landslide model, which was designed to handle general non-

flat bathymetries. The parameters can be chosen in order to

fit a given bathymetry, but the particular values used here

are A1 = 4.75, A2 = 8.85, k1 = 0.06, k2 = 0.13, x1 = 45,

x2 = 80, and m = 120. The bottom profile for these parame-

ters is depicted in Fig. 11. Of course, in general, if the bot-

tom topography is known, then a numerical bathymetry map

could also be used.

We now present some results of the solution of the sur-

face wave problem using the model in Sect. 3 integrated

numerically with the method of Sect. 5. A landslide is in-

troduced on the left side of the bathymetry, and using the

method of Sect. 2, its path along the bottom is determined

by following the barycenter. Simultaneously, the system in

Eq. (6) is solved with the time-dependent bottom topography

given from the solution of the landslide problem. The prob-

lem is integrated up to a final time T . Figure 12 shows wave

records at six virtual wave gauges for both the dispersive

system in Eq. (6) and the shallow-water system. It appears

from this figure that the shallow-water system underpredicts

the development of free-surface oscillations. In particular, the

wave gauges located at x = 40 and x = 60 show similar wave

heights for both the shallow-water and the dispersive system,

but a qualitative divergence, as small oscillations are already

developing that are not captured by the shallow-water sys-

tem. Once the waves have propagated to the wave gauges

located at x = 80, the dispersive oscillations have amplified,

so that the wave height is larger by a factor of 2 to 3 than the

wave height predicted by the shallow-water system. Going

further to the wave gauges located at x = 100 and x = 120,

the now rising bottom starts to have a damping effect on the

waves.

The maximum and minimum free surface elevation over

the whole domain are shown in Fig. 13. On the lower panel

of the same Fig. 13, we show the maximal unsigned horizon-

tal velocity. One can see that for short times the hydrostatic

and dispersive models give very close extreme values. Later

the differences start to appear due to the accumulation of dis-

persive effects.

Figure 14 shows the development of the kinetic energy

of the landslide mass and simultaneously the total (kinetic

plus potential) energy contained in the body of the fluid

and the surface waves. Energy development is an impor-

tant question in the study of tsunamis, and there have been

studies exclusively devoted to this question (Tinti and Bor-

tolucci, 2000). Energy issues connected to water wave mod-

els of Boussinesq-type have also been studied before (Ali and

Kalisch, 2010, 2012; Dutykh and Dias, 2009). While these

models contained a source of energy, in the case at hand, the

work done by friction as the landslide slides down the bottom

acts as a drain of energy, and after the landslide has come to

rest, all energy has been transferred to the fluid. However,

not all energy can be considered as residing in the wave mo-

tion, because a significant amount of energy is needed to lift

the water from the final position of the landslide to the initial

position of the landslide. This results in a large increase in

potential energy of the fluid, and only a fraction of the poten-

tial energy of the landslide is transferred to the wave motion.

This fact has also been explained in previous works (Harbitz

et al., 2006).

In order to compute the wave energy in the fluid, we use

the integral

Ew =
b

∫

a

{g

2
η2 + 1

2
(h0 + η)u2

}

dx, (16)

which arises from the shallow-water theory. The kinetic en-

ergy of the landslide is given by

Esl = 1
2
mv2, (17)

with the generalized mass m given by Eq. (3), and v = ds
dt

as

defined in Sect. 2. Figure 14 shows the development of the

wave energy and kinetic energy of the landslide. The upper

panel shows the energy according to the shallow-water and

www.nonlin-processes-geophys.net/20/267/2013/ Nonlin. Processes Geophys., 20, 267–285, 2013



280 D. Dutykh and H. Kalisch: Boussinesq modeling of underwater landslides

Table 2. Values of various parameters used in numerical computations.

Symbol Parameter Units Values

g gravitational acceleration m s−2 9.81

d0 water depth at x = a m 1.0–2.0

tan(δ) bottom slope 0.1

A landslide amplitude m 0.55

l landslide length m 52.4

cw added mass coefficient 1.0

cd water drag coefficient 1.0

cf friction coefficient tan(3◦)
γ density ratio water/landslide 1.8

cb friction coefficient with bottom 7.63 × 10−4

cv viscous friction coefficient 1.27 × 10−3
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Fig. 12. Time series of the surface elevation at wave gauges located at x = 40, x = 60, x = 80, x = 100 and x = 120. The solid (blue)

curve depicts the wave elevation computed with the dispersive system ni Eq. (6), and the dashed curve represents results obtained from the

shallow-water system. All variables are non-dimensional.
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Fig. 13. Maximum and minimum of the surface excursion, and the horizontal velocity as a function of (non-dimensional) time.
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Fig. 14. Development of the wave energy, and the kinetic energy of

the landslide as a function of (non-dimensional) time. Note that the

kinetic energy of the landslide starts from 0 (all energy is potential)

and also ends at 0 (all energy has been dissipated or transferred to

the fluid).

dispersive model. The lower panel shows the kinetic energy

of the landslide.

We have also computed the Froude number Fr = v√
gh(xc)

during the evolution. Here v is the x component of the veloc-

ity of the barycenter of the landslide, xc the position of the

barycenter, and h(xc) the corresponding local water depth.

This number was always found to be much less than 1 in all
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Fig. 15. Run-up on the left and right beach using Eq. (19), computed

with the dispersive system (solid curve) and the nonlinear shallow-

water system (dashed curve) as a function of (non-dimensional)

time.

numerical experiments. The maximum value was generally

about 0.5.

To compute the wave run-up and drawdown, we use exact

representations given by Choi et al. (2011) (a similar formula

was also derived in Didenkulova and Pelinovsky, 2008). On

the right beach, the undisturbed water depth at the edge of

the computational domain is h = 3, and the distance from the

computational domain to the shore line is L = 30. Using the

shallow-water wave speed, the travel time of a wave from the
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edge of the computational domain to the shore is computed

as

T = 2L√
gh

= 2

√

L

gα
. (18)

Then the formula for the wave run-up R at the shore reads

R =
t−T
∫

0

t − τ

(t − τ)2 − T 2
· dη

dτ
(x,τ )dτ (19)

with x = 220. At the left beach, the undisturbed water depth

is h = 1.642, and the distance to the beach is L = 11.2814.

A similar formula can then be computed for x = 0.

Figure 15 shows the run-up on the left and right beaches

both in the Boussinesq scaling and in the shallow-water the-

ory. While the agreement is fair on the left beach, it appears

immediately that the Boussinesq theory predicts a wave run-

up on the right beach that is much larger (roughly by a fac-

tor of two) than the wave run-up according to the shallow-

water theory. A possible explanation for this divergence is the

nature of the numerical solver when applied to the shallow-

water system. In this case, there is continuous numerical dis-

sipation through the handling of hyperbolic wave breaking.

Since the waves do not break in the Boussinesq scaling, the

dissipation is not present, or at least much smaller. The dif-

ference can also be read off from the comparison of the wave

energy in the Boussinesq and shallow-water system provided

in Fig. 14. It can be seen there that the wave energy in the

shallow-water model starts to diverge from the Boussinesq

model at non-dimensional time t = 50. The difference be-

tween the two increases continuously until, at the final time,

the Boussinesq energy is about 50 % larger than the shallow-

water energy. Note that significant run-up in Fig. 15 does not

happen until non-dimensional time t = 75, at which time the

energy in the Boussinesq system is already much larger than

in the shallow-water system.

In Fig. 16, we have plotted the maximum wave amplitude,

the minimum wave amplitude, and the maximum wave run-

up on the left and right beaches. In comparison to previous

studies, such as Grilli and Watts (2005), where an open do-

main was used, it appears that, in our case, the maximal am-

plitude, and the run-up have a minimum at d0 between 1 and

1.5. In Grilli and Watts (2005), it was found that maximum

wave amplitude and run-up (on the left beach) were strictly

decreasing functions of d0. The phenomenon of rising am-

plitude and run-up may be accredited to resonant effects that

are absent on an open domain (such as an ocean beach), but

cannot be neglected for tsunamis generated by landslides in

rivers and lakes.

7 Conclusions

The influence of an underwater landslide on surface waves

in a closed basin has been studied. The key features of the
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Fig. 16. Maximal and minimal wave amplitude, and the maximum

run-up on the left and right beaches as a function of the initial depth

of the center of the landslide d0.

study have been that the motion of the underwater landslide is

determined by integrating a second-order ordinary differen-

tial equation derived from first principles of Newtonian me-

chanics, and that the wave motion is studied in the Boussi-

nesq scaling, which allows for both nonlinear and disper-

sive effects. The dynamics of the motion of the bottom have

been developed following recent work in Khakimzyanov and

Shokina (2010). The Boussinesq model that has been utilized

here allows for a dynamic bathymetry, and was derived in Wu

(1987). The numerical method used in this paper is an exten-

sion of the method put forward in Barth (1994) and Barth and

Ohlberger (2004).

The results presented in Sect. 6 clearly show that disper-

sion may have a strong effect on the run-up and drawdown at

the beaches, but it is not clear which of the two models (the

shallow-water or the Boussinesq model) paints a more real-

istic picture of the actual wave conditions. We have no way

of quantifying the energy dissipation in the shallow-water

solver other than comparing the total wave energy with that

of the Boussinesq model. As the difference is rather large, we

expect a significant amount of numerical dissipation in the

shallow-water simulation. While the shallow-water model

simulation might be closer to physical reality where actual

damping occurs because of molecular viscosity and fluid-

structure interactions, it is likely that the Boussinesq model

exhibits a closer resemblance to the Euler equations, which

are taken as the basic governing equations in this work.

Of course, this difference could be more or less pro-

nounced depending on the particular case under study. For

example, the divergence between the shallow-water theory

and the dispersive model is stronger at the right beach than

at the left beach. The results also show that a finite domain

exhibits different behavior than a half-open domain (such as
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used in Grilli and Watts, 2005) with respect to the depen-

dence of the wave run-up on the initial depth of the landslide.

While the run-up is a strictly decreasing function of the initial

depth in an open domain, a closed domain appears to exhibit

resonant effects, which make the dependence more complex.
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