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Introduction

Obesity is one of the greatest health care chal-
lenges of our time. Currently there are estimated 
to be 2 billion adults who are overweight world-
wide (body mass index 25-30 kg/m2) and a further 
500 million are obese (BMI greater than 30 kg/m2). 
Being overweight or obese carries an increased 
risk type 2 diabetes, ischaemic heart disease, 
stroke and cancer, and carries an increased risk of 
both all cause, and cause-specific mortality (1,2). 
This has prompted a concerted effort to identify 
effective novel treatments for obesity. The role of 
peripheral hormones and the gut/brain axis in the 
regulation of appetite has become a hot topic in 
recent years, owing to the growing global obesity 
crisis. Of particular interest has been the potential 
of these peripheral signals to provide novel tar-
gets for developing anti-obesity therapies. The fo-
cus of this review is to provide a synopsis of the 
gut-brain cross talk involved in the regulation of 
food intake. 

Neuroendocrine control of appetite 

The hypothalamus and the brainstem are the 
main central nervous system regions responsible 
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for the regulation of energy homeostasis. Al-
though it is important to remember these regions 
are not solely responsible. Both the hypothalamus 
and the brainstem receive peripheral neural and 
hormonal signals that relay information regarding 
energy availability, both acutely i.e. nutritional 
state and long term availability i.e. adiposity (3). 
Neural afferents and hormonal signals from the 
periphery are integrated with higher brain centre 
signals (e.g. relaying reward drive and mood) to 
regulate appetite and control energy expenditure 
(4) (Figure 1).

The arcuate nucleus (ARC) of the hypothalamus is 
believed to play a crucial role in the regulation of 
food intake and energy homeostasis. The ARC 
contains two populations of neurons with oppos-
ing effects on food intake (5). Orexigenic neurons 
(i.e. those stimulating appetite) express neuropep-
tide Y (NPY) and Agouti-related protein (AgRP) (6-
8). Whilst anorexigenic neurons (i.e. those inhibit-
ing appetite) in the ARC express alpha-melano-
cyte-stimulating hormone (alpha-MSH) derived 
from pro-opiomelanocortin (POMC), and cocaine- 
and amphetamine-regulated transcript (CART) (9). 

The ARC is adjacent to the median eminence, a 
‘circumventricular organ’ with fenestrated capil-
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These signal are then fed forward Neuronal from 
the NTS to the hypothalamus. Circulating factors 
such as gut hormones are also thought to act at 
the NTS, which like the ARC is adjacent to a circum-
ventricular organ, the ‘area postrema’ (AP). For ex-
ample, ablation of both the AP and another cir-
cumventricular organ, the subfornical organ (SFO), 
has been shown to delay the anorectic action of 
the gut hormone peptide tyrosine tyrosine (PYY) 
(12). Gut hormones also alter the activity of the as-
cending vagal pathways from the gut to the brain-
stem (13). 

Hence, the hypothalamic ARC orexigenic and an-
orexigenic neurons are influenced by numerous 
neural and hormonal inputs. These ARC neurons 
in turn project to a number of extra-hypothalamic 
and intra-hypothalamic regions, including in par-
ticular the hypothalamic paraventricular nucleus 
(PVN), where some of the important efferent 
pathways regulating energy expenditure arise.

laries and hence an incomplete blood-brain bar-
rier (10). Circulating hormones are able to pass 
across the median eminence and influence the 
activity of the ARC neurons directly. Gut hor-
mones are released from the gastrointestinal 
tract on a meal to meal basis and signal short 
term nutrient availability to the ARC. Other circu-
lating factors such as insulin and leptin (a circu-
lating peptide released from adipose tissue) re-
lay information about long-term energy stores 
and adiposity (11). Thus the ARC has been de-
scribed as a conduit through which the body can 
balance its energy requirements to maintain 
weight.

Additionally short term availability of nutrients is 
signalled by gastrointestinal vagal afferents. Fol-
lowing a meal the vagus is activated by both 
mechanoreceptors and chemoreceptors. The re-
sultant neural signals converge in the nucleus of 
the tractus solitarius (NTS) within the brainstem. 

Figure 1. Gut-brain axis: regulation of food intake. 
Nutrients created by the digestion of food are proposed to activate G-protein coupled receptors on the luminal side of enetroen-
docrine cells e.g. the L-cell. This stimulates the release of gut hormones which may influence food intake at three sites: the vagus 
nerve, brainstem and hypothalamus. Within the arcuate nucleus of the hypothalamus two neuronal populations are thought to be 
critical conduits through which peripheral signals are integrated to alter the drive to eat, the orexigenic NPY/AgRP neurons and the 
anorexigenic POMC neurons. Further connections between hypothalamic nuclei and higher brain centres may exist which control 
the hedonic aspects of food ingestion. 
ARC - arcuate nucleus; AgRP - agouti related peptide; GLP-1 - glucagon like peptide-1; NPY - neuropeptide Y; POMC – propiomelano-
cortin; PVN - paraventricular nucleus; PYY - peptide YY. 
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Enteroendocrine cells of the 
gastrointestinal tract 

There are at least 15 different types of enteroen-
docrine cells diffusely distributed throughout the 
gastrointestinal epithelium (14). These cells pro-
duce and release a variety of hormones and sig-
nalling molecules, which together constitute the 
largest endocrine organ in the body (14,15). Che-
mosensing of gut luminal contents by the enter-
oendocrine GI cells plays a critical role in the con-
trol of functions such as digestion, pancreatic se-
cretion, food intake, and metabolic regulation. 
Evidence that endocrine cells can directly sense 
luminal contents has been demonstrated in PYY 
and glucagon like peptide -1 (GLP-1) expressing L 
cells. Both human and rodent L cells express re-
ceptors previously identified in the oral epitheli-
um for detecting sweet (T1R2 and T1R3) and bit-
ter sensation (T2R), as well as amino acids (T1R1 
and T1R3) (16,17). Additionally, the gustducin G 
protein which is associated with these taste re-
ceptors has been identified in L cells (16,17). Acti-
vation of these receptors is thought to lead to in-
creased intracellular calcium and release of gas-
trointestinal peptides from enteroendocrine cells 
(17). The presence of the sweet taste receptor 
subunit T1R3 and gustducin may also underlie a 
luminal glucose sensing mechanism, since acti-
vation of these receptors mediates the postpran-
dial release of GLP-1 from intestinal L cells (16). 

Fatty acids derived from digestion of dietary fats 
appear to be sensed via separate mechanisms. 
The short-chain fatty acid receptors GPR43 and 
GPR41 are expressed in PYY-containing enteroen-
docrine L cells (18,19). Short chain fatty acids have 
been shown to increase both PYY and GLP-1 secre-
tion in rats when delivered directly into the colon 
(20,21). GPR119 is another G protein coupled re-
ceptor found in intestinal endocrine cells as well as 
pancreatic beta cells (22). Administration of oleoy-
lethanolamide (OEA), an endogenous long chain 
fatty acid derivative, and other GPR119 agonists in-
creases GLP-1 secretion, both in vitro and in vivo in 
rodents (22,23).

The enteroendocrine L cells therefore have the ca-
pacity to integrate complex nutrient sensing in the 

gut and to respond appropriately by releasing gut 
hormones. In addition to chemical stimulation, the 
endocrine cells of the gut also respond to neural 
and physical stimulation of the cell by releasing 
peptide containing granules at the basolateral 
side of the cell. These peptides can have an endo-
crine role, a local paracrine role, and/or activate re-
ceptors present on nerves innervating the GI mu-
cosa (24). 

Gut hormones regulating food intake

The gastrointestinal tract releases more than 20 
different regulatory peptide hormones that influ-
ence a number of physiological processes (25). The 
release of gut hormones such as PYY, GLP-1, and 
oxyntomodulin (OXM) is stimulated by distension 
of the stomach, production of nutrients from the 
digestion of food, and by neuronal signals (26,27). 

Gut hormones are believed to contribute to the 
short-term feelings of satiety and hunger (28). 
These peptides are thought to reduce food intake 
by decreasing hypothalamic orexigenic signalling 
and increasing anorectic signalling (13,29). These 
peptides also mediate inhibitory feedback mech-
anisms on intestinal transit, contributing to pro-
longed gastric distension, and increased satiety 
between meals (30,31). These combined CNS ef-
fects and ‘intestinal brake’ mechanisms facilitate 
the control of food intake and postprandial transit 
through the gastrointestinal tract and thereby the 
immediate availability of energy. Below the focus 
of the review will concentrate on 5 of the most 
studied gut hormones which have been shown to 
control food intake and body weight and which 
are being actively pursued as anti-obesity targets.

Peptide tyrosine tyrosine (PYY)

PYY belongs to the ‘PP-fold’ family of proteins like 
NPY and pancreatic polypeptide (PP). These pep-
tides are 36 amino acids in length and share a 
common tertiary structural motif known as the PP-
fold. C-terminal amidation of these proteins is a 
necessary requirement for biological activity. PYY 
exists endogenously in two forms: PYY1-36 and 
PYY3-36 (32). The enzymatic cleavage of secreted 
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PYY1-36 at the amino terminal by the cell surface en-
zyme dipeptidyl peptidase IV (DPP-IV) gives rise to 
PYY3-36 (33), which is the predominant form of cir-
culating PYY immunoreactivity. PYY1-36 and PYY3-36 

exert their effects through the neuropeptide Y 
family of receptors (34). PYY1-36 binds with similar 
affinity to all of the Y receptors, however PYY3-36 is 
a selective high affinity agonist at the Y2 receptor 
subtype (Y2R) (35). The Y2R is thought to be the re-
ceptor responsible for mediating the reduction of 
food intake by PYY. It is an auto-inhibitory pre-syn-
aptic receptor found on NPY neurons within the 
ARC (36), and deficiency of the Y2R abolishes the 
anorectic effects of PYY (29). Furthermore, the an-
orectic effects of PYY3–36 are attenuated by Y2R an-
tagonists (37). PYY3–36 is therefore thought to re-
duce food intake through activation of the Y2R. 

Low levels of PYY are detected in enteroendocrine 
cells in the stomach, and levels increase distally 
along the small and large intestine, reaching their 
highest levels in cells in the colon and rectum (26). 
Endogenous circulating concentrations of PYY are 
lowest in the fasting state, and rise post-prandially 
in proportion to caloric intake (26). Plasma levels of 
PYY rise within 30 minutes of a meal, and in hu-
mans, circulating levels plateau at 1-2 hours post-
prandially, remaining elevated for up to 6 hours 
(38). Protein rich meals cause the greatest increase 
in PYY levels compared to other macronutrients 
(39,40). Peripheral administration of PYY3-36 reduc-
es food intake and weight gain in rodents (29,41-
43). Intravenous administration of PYY inhibits 
food intake in humans and unlike leptin is equally 
effective in normal and obese subjects (44). 

The anorectic effects of PYY3-36 appear to be medi-
ated centrally via the ARC, as peripheral adminis-
tration of PYY3–36 increases c-fos expression in this 
hypothalamic nucleus (29). Peripheral administra-
tion has been reported to decrease expression 
and release of NPY whilst activating POMC neu-
rons (29). However, others have reported PYY3–36 
inhibits POMC neurons via postsynaptic Y2R (45). 
Moreover, POMC knockout mice maintain their 
acute anorectic response to peripherally adminis-
tered PYY3–36, suggesting that POMC is not critical 
to the inhibitory effects of PYY3–36 on feeding (46). 

A vagal brainstem mediated pathway may also be 
involved since PYY is expressed by the neurones of 
the myenteric plexus and the Y2R receptor is ex-
pressed by the vagus nerve (47). Furthermore the 
anorectic effect of PYY3–36 on both food intake 
(47,48), and ARC activation of feeding neurons, are 
abolished following bilateral sub-diaphragmatic to-
tal truncal vagotomy or following transection of the 
brainstem–hypothalamic pathway in rodents (48).

Interestingly, it has recently been shown that acute 
effects of gastrointestinal bypass surgery on body 
weight are lost in PyyKO mice (49), and that wild-
type mice losing weight after gastrointestinal by-
pass surgery exhibit increased colonic Pyy expres-
sion and circulating fasting PYY levels (49). Sug-
gesting PYY plays a key role in mediating the early 
weight loss that occurs following gastrointestinal 
bypass surgery. 

The effects of PYY3-36 on satiety and central control 
of appetite are clear. Most are mediated via ano-
rectic neuronal populations in the ARC, but vagal/
brainstem-mediated pathways and peripheral ef-
fects of PYY on gastric emptying and intestinal 
motility may also play a part. High plasma concen-
trations of PYY result in nausea, but the impor-
tance of PYY3-36 at physiological levels in the regu-
lation of energy intake make it a prime focus for 
new obesity therapies, targeted either at PYY it-
self, or against the Y2 receptor. 

Glucagon-like peptide-1 (GLP-1)

GLP-1 is a 30 amino acid peptide produced from 
the cleavage of preproglucagon (50). The two bio-
active forms of GLP-1, GLP-17-37 and GLP-17-36 amide, 
are released into the circulation from L cells of the 
gastrointestinal tract in response to an oral glucose 
load (51). Physiologically, GLP-1 is an important in-
cretin, augmenting glucose-dependent insulin re-
lease (52). In addition, GLP-1 inhibits the secretion 
of glucagon, thereby inhibiting endogenous glu-
cose production (53). The net effect is to reduce 
blood glucose following a meal. GLP-1 also delays 
gastric emptying (54), and increases satiety (55,56). 

Like PYY, GLP-1 has been shown to act centrally at 
hypothalamic nuclei known to be implicated in 
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the control of appetite including the ARC, PVN and 
supraoptic nucleus (57). Both acute peripheral and 
central administration of GLP-1 reduce food intake 
in rats (58,59) and chronic administration of GLP-1 
reduces weight gain (55). The intravenous admin-
istration of GLP-1 to normal and obese humans 
decreases food intake in a dose dependent man-
ner (60) as well as reducing gastric emptying 
(61,62). These effects are thought to be mediated 
through vagal and brainstem pathways since pe-
ripheral administration of GLP-1 activates neurons 
within the brainstem in rats (63). Furthermore, this 
increase in neuronal activity, and the anorectic ef-
fects of GLP-1, are abolished following vagotomy 
in rodents (48,63). More recently, functional mag-
netic resonance imaging (fMRI) has confirmed the 
activation of the VMH and PVN following periph-
eral administration of GLP-1 (64). 

GLP-1 is rapidly degraded in the circulation by 
DPP-IV, making native GLP-1 unsuitable for thera-
peutic use. Longer acting GLP-1 mimetics have 
been developed (65). Exendin-4 is a naturally oc-
curring GLP-1 mimetic isolated from the venom of 
Heloderma suspectum, a lizard native to several 
southwestern American states (66). A truncated 
form of this peptide, exendin 9–39, acts as a com-
petitive antagonist at the GLP-1 receptor. Acute in-
tracerebroventricular administration of exendin 
9–39 increases food intake and chronic administra-
tion increases body weight in rats (55,59). Suggest-
ing endogenous peripheral GLP-1 may physiologi-
cally reduce appetite and food intake. However, 
GLP-1 receptor knockout mice do not have altered 
food intake or body weight (67). This may be be-
cause developmental changes compensate for the 
lack of GLP-1 signalling, or may reflect that GLP-1 
has a more important physiological role in control-
ling blood glucose than in regulating food intake. 

The discovery of exendin-4 has led to the devel-
opment of a synthetic version, exenatide. Exena-
tide has a much longer in vivo half-life than native 
GLP-1, stimulates insulin release, suppresses gluca-
gon and lowers blood glucose. It is the first incre-
tin mimetic approved for the treatment of type 2 
diabetes (68). Exenatide has also been shown to 
reduce body weight in treated diabetics in phase 
III clinical trials (69-71). The weight loss associated 

with exenatide is considered a significant advan-
tage as many anti-diabetic treatments are com-
monly associated with weight gain. Nausea is a 
relatively common side effect of Exenatide treat-
ment. However, it does not seem to be intrinsical-
ly linked to the effects on appetite (3). Whilst GLP-
1 has been developed as a treatment for diabetes 
due to its incretin properties, the observed effects 
of GLP-1 on satiety and weight loss are a valuable 
secondary effect. Indeed recent data suggests 
liraglutide may be useful for the treatment of obe-
sity, causing sustained weight loss over 2 years 
but with a 50% rate of nausea and vomiting in the 
3.0 mg/day group in the first year (72). The newest 
long acting analogues of GLP-1, exenatide-LAR 
(Amylin Pharmaceuticals, FDA approved January 
2012), taspoglutide (Ipsen and Roche) and Albiglu-
tide (GlaxoSmithKline), have been shown to effec-
tively control glucose and to reduce weight. These 
agents allow for less-frequent dosing schedules, 
improved glycemic control throughout the day, 
and improved treatment satisfaction compared to 
some available agents (73). It remains to be seen 
whether these drugs perform well enough in spe-
cific weight loss paradigms such that they could 
be used as anti-obesity agents. 

Oxyntomodulin (OXM)

OXM, like GLP-1, is also a product of the prepro-
glucagon precursor molecule. It is a 37 amino acid 
peptide released post-prandially from L cells in 
proportion to caloric intake (27). OXM delays gas-
tric emptying and reduces gastric acid secretion 
(74), and has been shown acutely to decrease food 
intake and in the longer term to decrease weight 
gain in rodents (75,76). In addition, chronic admin-
istration of OXM produces greater weight loss 
compared to pair-fed controls, suggesting an in-
crease in energy expenditure may also help to re-
duce body weight (77). OXM has been shown to re-
duce food intake in normal weight human volun-
teers when administered intravenously or subcuta-
neously (78). Given preprandially to obese subjects 
it reduces both food intake and body weight (79). 
As in rats, there is evidence that OXM may also in-
crease energy expenditure in humans (80). 
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Although OXM has some agonist activity at the 
glucagon receptor, there is evidence that its ano-
rectic effect is predominantly mediated via the 
GLP-1 receptor (75,81). The anorectic effects of 
OXM are abolished in GLP-1 receptor knockout 
mice (81) and in the presence of the GLP-1 recep-
tor antagonist exendin 9-39 (76). OXM has a 50-
fold lower affinity for the GLP-1 receptor than GLP-
1 itself, but despite this, it reduces food intake with 
similar potency (75). Furthermore, although the 
administration of exendin 9-39 directly into the 
ARC blocks the anorectic effects of OXM, it does 
not block those of GLP-1 (76). Therefore, it is possi-
ble that OXM may act via an as yet unidentified re-
ceptor. Studies using manganese-enhanced mag-
netic resonance imaging MRI (MEMRI) has shown 
that intraperitoneal administration of OXM pro-
duces a distinct pattern of neuronal activation 
compared to GLP-1 (82), implying that these two 
hormones act via different hypothalamic path-
ways.

Glucagon

Glucagon is a 29 amino acid peptide secreted from 
the α-cells of the pancreatic islets of Langerhans. It 
is a further product of preproglucagon cleavage 
alongside OXM and GLP-1. Glucagon is released 
into the portal vein in fasted states and also in re-
sponse to exercise, and acts on the liver to pro-
mote hepatic glycogenolysis and gluconeogenesis 
and maintain glycaemic balance (83-86). 

Glucagon mediates its effects via the glucagon re-
ceptor, a 7-transmembrane G-protein coupled re-
ceptor which has a wide tissue distribution. It is ex-
pressed in the gut, adrenal glands, brain, heart, 
pancreas, spleen and in adipocytes, but is pre-
dominantly found in the liver and kidney (87). 

As a potential treatment for obesity, glucagon has 
been shown to increase energy expenditure in 
rats, and also in humans during insulin deficiency 
(88). It also significantly reduces food intake, with a 
subjective reduction of appetite in man (89). Infu-
sion of glucagon into the portal vein but not the 
inferior vena cava causes a reduction in meal size 
in rats (90). 

Glucagon presents an interesting prospect in the 
treatment of obesity due to its effect on increasing 
energy expenditure, and increasing satiety. It has 
been demonstrated that the potentially unfavour-
able effect on glucose tolerance due to glucagon’s 
actions on hepatic glycogenolysis and gluconeo-
genesis is effectively counteracted by dual ago-
nism at the glucagon and GLP-1 receptors (91,92). 
The data from these studies demonstrated highly 
effective weight loss in diet-induced obese mice 
whilst avoiding the hyperglycaemia that might be 
expected from agonism at the glucagon receptor. 

Ghrelin

Ghrelin is a 28-amino acid acylated peptide secret-
ed from the stomach. It was originally identified as 
an endogenous ligand for the ‘growth hormone 
secretagogue’ receptor (GHS-R) and is a growth-
hormone-releasing peptide (93). 

Ghrelin is the only orexigenic gut hormone (94), 
causing an increase in food intake and weight gain 
in rodents following both peripheral and central 
administration (95-97). Intravenous administration 
of ghrelin has also been shown to stimulate gastric 
acid secretion and motility in rats (98). In normal 
subjects, ghrelin levels are highest in the fasted 
state (99), and levels are chronically higher in peo-
ple with weight loss due to anorexia nervosa or di-
etary reduction (100-102). In contrast to other gut 
hormones, plasma ghrelin levels decrease after 
meals (100,103) and are low in obese subjects (102). 
Ghrelin concentrations are also reduced after gas-
tric bypass surgery, and this may contribute to 
weight loss in such patients (101). 

Ghrelin receptors are found in the ARC of the hy-
pothalamus suggesting a central mode of action. 
Consistent with this c-fos expression is increased in 
the ARC after peripheral administration of ghrelin 
(104) and ablation of the ARC blocks ghrelin in-
duced food intake (105). When given centrally, 
ghrelin also stimulates c-fos expression in other 
nuclei known to be involved in appetite control in-
cluding the PVN, dorsomedial nucleus, and lateral 
hypothalamus as well as in the AP and NTS in the 
brainstem (95). Ghrelin and its receptor are both 
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expressed in vagal afferents in mice (106), and 
blockade of the gastric vagal afferent has been 
shown to abolish ghrelin-induced feeding, growth 
hormone secretion, and activation of NPY-produc-
ing and growth hormone-releasing hormone pro-
ducing neurons in rats suggesting an additional 
mode of action (107). 

Diet induced obesity is associated with a blunting of 
ghrelin’s orexigenic effect. There has therefore been 
recent interest in the interaction between the ghre-
lin system and macronutrients. High fat feeding has 
been shown to render NPY/AgRP neurones relative-
ly ghrelin resistant (108), and diets high in fat have 
been shown to directly inhibit the hyperphagic ef-
fect of ghrelin (109,110). These data have significant 
implications for developing anti-obesity treatments 
targeting the ghrelin system and suggest success of 
these approaches could depend on the fat content 
of the diet the patient consumes. More recently, 
ghrelin has been shown to engage neurons in the 
ventral tegmental area of the brain and may pro-
vide a link between the gut and neuronal control of 
stress-induced eating of ‘comfort foods’ (111).

Other gut peptides

A number of other gut-derived peptides have 
been shown to reduce food intake. However, the 
physiological role of these peptides in the regula-
tion of food intake and energy homeostasis re-
mains unclear. 

CCK is released post-prandially from the small intes-
tine (3), and has also been shown to co-localise with 
PYY in L cells (112) Two types of CCK receptor have 
been identified in the CNS and peripheral tissues 
CCK1 and 2 (113). CCK is released post-prandially in 
response to saturated fat, long-chain fatty acids, 
amino acids and small peptides that would normal-
ly result from protein digestion (114,115). CCK release 
and signalling via the CCK-1 receptors in response 
to these long chain fatty acids mediates stimulation 
of PYY release and inhibition of ghrelin (an orexi-
genic gut hormone) in human subjects (116). 

The effects of CCK on appetite are well document-
ed. Peripheral administration of CCK in rodents re-
sults in a dose dependant reduction in food intake, 

decreasing both meal size and duration (117). CCK 
administration is also associated with an increase 
in postprandial satiety behaviours such as in-
creased grooming and decreased locomotor activ-
ity (117). In humans, intravenous administration of 
physiological doses of CCK reduces food intake 
and increases the perception of fullness (118). Un-
fortunately, the therapeutic potential of CCK as a 
treatment for obesity is limited by nausea and 
tachyphylaxis of the anorectic effects associated 
with chronic administration (119).

PP is an amidated 36-amino acid peptide and be-
longs to the ‘PP fold’ family of peptides. It is re-
leased post-prandially under vagal control by 
pancreatic islet PP cells (120-122). PP binds to all 
the members of the Y receptor family, but has the 
highest affinity for the Y4 receptor subtype (123). 
The effects of PP are likely to be mediated by both 
the hypothalamus and brainstem (124). PP is com-
parable to other anorectic intestinal peptides such 
as PYY, being secreted in proportion to caloric in-
take. Circulating levels rise after meals and remain 
elevated for up to 6 hours post-prandially (120). In-
traperitoneal injection of PP acutely reduces food 
intake in fasted mice (124), an effect that remains 
apparent for 24 hours after injection. Further-
more, chronic administration of PP over 6 days in 
ob/ob mice significantly reduces body weight gain 
and improves glucose profile (124). Intravenous in-
fusion of PP at doses that achieve normal post-
prandial plasma concentrations reduces appetite 
in lean humans and inhibition of food intake per-
sists for 24 hours after infusion (125). PP has also 
been shown to reduce food intake at lower infu-
sion rates (126). Furthermore, pancreatic polypep-
tide has been shown to reduce food intake in pa-
tients with obesity secondary to Prader-Willi syn-
drome (127). Additionally, PP has also been impli-
cated in energy homeostasis, with exogenous ad-
ministration of PP causing an increase in oxygen 
consumption (124), thus implying that part of the 
effect of PP on body weight may be due to in-
creased energy expenditure. It has also been 
shown to increase spontaneous locomotor activi-
ty in mice (128). These data have lead to a concert-
ed effort to develop long acting PP analogues, 
which have completed Phase I trials (129).
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NT was first isolated from hypothalamic tissue, but 
is widely distributed throughout the central nerv-
ous system. However, the majority of NT is found 
within enteroendocrine cells of the GI tract (130). 
NT regulates a number of digestive processes, in-
cluding gastrointestinal motility, and pancreatic 
and biliary secretion (131). It also has trophic ef-
fects on the pancreas and small intestine (132,133). 
Plasma levels of NT increase after a meal, with in-
traluminal fat being the most potent stimulus 
(134). Peripheral administration of neurotensin de-
creases food intake and grooming behaviour in 
rats only at large doses (135). Therefore at physio-
logical levels, neurotensin is unlikely to play a ma-
jor role in appetite regulation. Although neuroten-
sin acutely reduces food intake when administered 
centrally in rats or peripherally in mice, chronic ad-
ministration to mice has no significant effect on 
food intake or body weight (136). The lack of 
chronic effects on body weight suggests that NT is 
unlikely to be useful as a treatment for obesity.

Intracerebroventricular injection of glucagon-like 
peptide-2 (GLP-2) into rats inhibits food intake. In 
contrast, GLP-2 administered peripherally does not 
inhibit food intake in rodents or humans (137,138). 
GLP-2 appears to play a more important physio-
logical role as an intestinal growth factor (138).

Amylin is a peptide co-secreted with insulin by 
pancreatic beta cells. Injection of amylin or amylin 
agonist has been shown to reduce food intake in a 
number of species, including humans (139-143). 
The amylin receptor agonist pramlintide has been 
shown to cause weight loss in diabetic humans 
(141,143).

Vasoactive intestinal polypeptide (VIP) has been 
shown to reduce appetite, in addition to its well-
characterized effects on the cardiovascular system 
and gastrointestinal motility and secretion. Intrac-
erebroventricular administration of VIP has been 
shown to cause a potent short-lived decrease in 
food intake and an increase in activity and energy 
expenditure in rats. Treatment of hypothalamic 
explants with VIP stimulated the release of the an-
orexigenic peptide α-MSH (144). These studies 
suggest a possible endogenous role for VIP in the 
hypothalamic control of energy homeostasis.

Gut hormones and the treatment of 
obesity

Lifestyle and dietary modification alone are inade-
quate for the successful treatment of the majority 
of obese individuals. However, despite an increas-
ingly high demand for intervention, the field of 
obesity therapeutics has limited options to offer 
these patients. The history of obesity pharmaco-
therapy is littered with examples of drugs with-
drawn from the market due to adverse effects out-
weighing the beneficial effects of weight loss. Re-
cent examples include Sibutramine, a norepineph-
rine and serotonin reuptake inhibitor, and Rimona-
bant, which is a cannabinoid-1 receptor blocker. 
Sibutramine was withdrawn after it was found to 
increase heart rate and blood pressure in some 
subjects, and was associated with an increased risk 
of stroke and non-fatal myocardial infarction in pa-
tients with pre-existing cardiovascular conditions 
(145), whilst Rimonabant was withdrawn amidst 
concerns regarding adverse psychiatric events 
(146). The only currently licensed product in the 
UK is Orlistat, a pancreatic lipase inhibitor which 
prevents fat absorption and confers a modest 
weight loss of 2.9 kg more than placebo over the 
course of a year (147).

The only obesity treatment that has been shown 
to confer long-term, sustained weight loss and a 
decrease in overall mortality is bariatric surgical in-
tervention (148,149). Several surgical procedures 
are available to achieve weight loss. Gastric band-
ing restricts the amount of food that can be com-
fortably ingested and increases the satiating effect 
of food (150). A more efficient reduction in appe-
tite and weight loss is seen with surgical proce-
dures that involve gastrointestinal bypass, such as 
Roux-en-Y Gastric bypass (RYGB) (148,149,151). 
Weight loss is normally associated with reduced 
plasma levels of the adipocyte-derived anorectic 
hormone leptin, causing increased hunger (152). 
However, following RYGB, despite significant re-
ductions in body weight and leptin levels, appetite 
is markedly reduced (151). It has now been demon-
strated that RYGB is more effective than either 
standard or intensive medical therapy in achieving 
glycaemic control and remission in patients with 
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Type 2 diabetes (T2DM) (153,154). These seminal 
studies raise the question as to whether bariatric 
surgery could become a more important treat-
ment for T2DM than medical therapy. Indeed, in a 
recent positional paper the International Diabetes 
Federation supported the selective use of various 
bariatric procedures for obese individuals with 
medically resistant T2DM (155). However, signifi-
cant questions remain, not least is how long do 
these effects last? But also include when is the 
best time for surgical intervention? Does bariatric 
surgery work for everyone? What are the surgical/
risk benefits in moderately obese patients? This list 
is by no means exhaustive. Given RYGB requires 
major surgery, which has inherent risk and is ex-
pensive, there is considerable effort aimed at de-
termining how RYGB and other surgeries induce 
sustained weight loss and resolution of T2DM. 

Of particular interest has been the suggestion that 
RYGB ameliorates coexistent type 2 diabetes mel-
litus before substantial weight loss has occurred 
and more rapidly than gastric banding. The differ-
ences between gastric banding and RYGB may be 
due to alterations in the anorectic and incretin gut 
hormone profile that is seen following RYGB, but 
not following gastric banding (156,157). Experi-
mental evidence suggests that these anorectic gut 
hormones may mediate the effects of RYGB on ap-
petite and body weight (157,158). Post-prandial 
PYY and GLP-1 levels begin to rise as early as 2 
days following gastric bypass in humans (158), and 
secretory products of enteroendocrine L-cells, in-
cluding PYY and GLP-1 remain elevated two years 
after bypass surgery (159). Inhibiting gut hormone 
release with somatostatin analogue octreotide in-
creases the food intake after gastric bypass sur-
gery but not following gastric banding (158), fur-
ther suggesting that these hormones play a critical 
role. In rodent models of bariatric surgery increas-
es in circulating GLP-1 (160) and PYY and a reduc-
tion in ghrelin (49), have been implicated in medi-
ating the beneficial effects of these surgeries. De-
termining the mechanisms behind the sustained 
reduction in appetite may identify pathways that 
can be targeted by anti-obesity agents. To this end 
there has been recent concerted effort to mimic 
the rise in gut hormones following gut bypass by 

either the development of peptide based ana-
logues or by the design of small molecule drugs 
which target nutrient sensing receptors on the en-
teroendocrine L-cell. 

Long acting versions of PYY and OXM are being 
actively pursued by the pharmaceutical industry, 
such as Pfizer’s OAP-189, we await the dissemina-
tion of data from ongoing trials. In addition Given 
that gut hormones are co-released one logical ap-
proach would be the development of combina-
tion therapies. Indeed data suggests that co-ad-
ministration of gut hormones can have additive ef-
fects on food intake inhibition, for example PYY + 
GLP-1 (161) or PYY + OXM (162). Such combination 
approaches may prove more effective than indi-
vidual administration. Very recently the develop-
ment of chimeric agonists has emerged as a novel 
form of combination therapy (91,92). GLP-1/gluca-
gon co-agonists combine the appetite suppressive 
effects of GLP-1 and glucagon with the energy ex-
penditure promoting effects of glucagon. Whilst 
at the same time GLP-1’s insulinotropic effects in-
hibit the detrimental hyperglycaemic effects of 
glucagon. Marcadia Ltd., now a subsidiary of 
Roche, first reported the beneficial effects of this 
approach and their compound is now undergoing 
clinical trials. In addition, Zealand Pharma is also 
developing a similar compound, ZP-2929, in part-
nership with Boehringer Mannheim. Time will tell 
if the promising pre-clinical data translates in to 
clinical benefit (163). 

Considerable energy has also been directed to-
ward the development of gut hormone secreta-
gogues. The most well characterised class being 
agonists of GPR119. These compounds have been 
shown to release both GLP-1 and PYY (22). Their 
anti-diabetic effects are well defined; stimulation 
of GLP-1 and a direct insulinotropic action (22,164). 
It is less clear if these compounds will be effective 
as anti-obesity agents, but some agonists have 
been shown to significantly reduce food intake, 
for example PSN632408 (165). GPR119 is currently 
the only target for which synthetic modulators 
stimulate both incretin and insulin release. This 
highly beneficial profile has generated great in-
dustry interest with at least 9 companies actively 
working in this area. Initial clinical trials have been 
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successful with respect to the anti-diabetic indica-
tion (166,167). 

Conclusion

Obesity has emerged as a major global healthcare 
challenge. The significant mortality and morbidity 
associated with obesity has inspired a vast amount 
of research directed towards developing safe and 
efficacious weight-loss agents. The beneficial ef-
fects of centrally acting weight-loss agents have 
been negated by their potentially hazardous ef-
fects on mood, reward, dependence and auto-
nomic tone. Gut hormones, as outlined in this arti-
cle, play an important role in the homeostatic con-
trol of food intake and offer an alternative to cen-
trally acting drugs. We believe that in time these 

approaches will develop clinically useful com-
pounds which will offer a real answer to the ever 
growing burden of obesity.
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