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BOWMAN-BRADLEY TYPE THEOREM

FOR FINITE MULTIPLE ZETA VALUES
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Abstract. The multiple zeta values are multivariate generalizations of the values of

the Riemann zeta function at positive integers. The Bowman-Bradley theorem asserts that

the multiple zeta values at the sequences obtained by inserting a fixed number of twos between

3, 1, . . . , 3, 1 add up to a rational multiple of a power of π . We show that an analogous theorem

holds in a very strong sense for finite multiple zeta values, which have been investigated by

Hoffman and Zhao among others and recently recast by Zagier.

1. Introduction.

1.1. Finite multiple zeta values. The multiple zeta values and multiple zeta-star val-

ues are real numbers defined by

ζ(k1, . . . , kn) =
∑

m1>···>mn≥1

1

m
k1

1 · · · m
kn
n

,

ζ ⋆(k1, . . . , kn) =
∑

m1≥···≥mn≥1

1

m
k1

1 · · · m
kn
n

for positive integers k1, . . . , kn with k1 ≥ 2. They are generalizations of the values of the Rie-

mann zeta function at positive integers and are known to be related to number theory, algebraic

geometry, combinatorics, knot theory, and quantum field theory among others. Research on

these numbers has mainly been focused on their numerous linear and algebraic relations; see

for example [3, 12] and the references therein for an introduction.

Hoffman [4] and Zhao [11] among others developed a theory of modulo p values, for

primes p, of the finite truncations of the above-mentioned infinite sums, where the indices of

summation are all restricted to be less than p. Following an idea of Zagier [7], we look at

the truncations in the ring A = (
∏

p Z/pZ)/(
⊕

p Z/pZ), where p runs over all primes; the

elements of A are of the form (ap)p, where ap ∈ Z/pZ, and two elements (ap) and (bp) are

identified if and only if ap = bp for all but finitely many primes p. Note that A is a Q-algebra.

We shall simply write ap for (ap) since no confusion is likely.
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DEFINITION 1.1. For positive integers k1, . . . , kn, we define

ζA(k1, . . . , kn) =
∑

p>m1>···>mn≥1

1

m
k1

1 · · · m
kn
n

∈ A ,

ζ ⋆
A

(k1, . . . , kn) =
∑

p>m1≥···≥mn≥1

1

m
k1

1 · · ·m
kn
n

∈ A ,

and call them finite multiple zeta(-star) values in this paper.

The finite multiple zeta(-star) values are similar to multiple zeta(-star) values in many

respects as we shall see in this paper. They do, however, have some differences, of which one

of the most striking is the following:

PROPOSITION 1.2 ([4, Theorem 4.3]). We have ζA(k) = ζ ⋆
A

(k) = 0 for all positive

integers k.

PROOF. Let p be an arbitrary prime larger than k + 1. Taking a primitive root a modulo

p, we have
p−1∑

m=1

1

mk
≡

p−2∑

i=0

1

aik
≡

1 − a−k(p−1)

1 − a−k
≡ 0 (mod p) .

Since we have proved that
∑p−1

m=1 m−k ≡ 0 (mod p) for all but finitely many primes p, it

follows that ζA(k) = ζ ⋆
A

(k) = 0 in A. ✷

1.2. Bowman-Bradley theorem. Bowman and Bradley [1] proved that the multiple

zeta values at the sequences obtained by inserting a fixed number of twos between 3,1,. . . ,3,1

add up to a rational multiple of a power of π ; Kondo, Tanaka, and the first author [9] obtained

the same result for multiple zeta-star values. Let {a1, . . . , al}
m denote the m times repetition

of the sequence a1, . . . , al :

{a1, . . . , al}
m = a1, . . . , al, . . . , a1, . . . , al︸ ︷︷ ︸

lm

.

For the empty sequence ∅, we conventionally set ζ(∅) = ζ ⋆(∅) = 1.

THEOREM 1.3 ([1, 9]). For all nonnegative integers m and n, we have
∑

∑2m
i=0 ni=n

n0,...,n2m≥0

ζ({2}n0, 3, {2}n1, 1, {2}n2, . . . , 3, {2}n2m−1, 1, {2}n2m) ∈ Qπ4m+2n ,

∑
∑2m

i=0 ni=n
n0,...,n2m≥0

ζ ⋆({2}n0, 3, {2}n1, 1, {2}n2, . . . , 3, {2}n2m−1, 1, {2}n2m) ∈ Qπ4m+2n .

The theorem is a common generalization of the previously known results that

ζ({3, 1}m), ζ ⋆({3, 1}m) ∈ Qπ4m, ζ({2}n), ζ ⋆({2}n) ∈ Qπ2n

for all nonnegative integers m and n.
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For finite multiple zeta(-star) values, Hoffman [4, Equation (15)] proved that

ζA({c}n) = ζ ⋆
A

({c}n) = 0

for all positive integers c and n, and Zhao [11, Theorem 3.18] proved that

ζA({a, b}m) = ζ ⋆
A

({a, b}m) = 0

for all odd positive integers a and b and for all positive integers m, of which the special case

a = 3 and b = 1 was conjectured by Kaneko [6]. Our aim in this paper is to generalise

Zhao’s result by giving the following Bowman-Bradley type theorem, which is a corollary of

our main theorem:

THEOREM 1.4. If a and b are odd positive integers and c is an even positive integer,

then for all nonnegative integers m and n with (m, n) �= (0, 0), we have
∑

∑2m
i=0 ni=n

n0,...,n2m≥0

ζA({c}n0, a, {c}n1, b, {c}n2, . . . , a, {c}n2m−1, b, {c}n2m)

=
∑

∑2m
i=0 ni=n

n0,...,n2m≥0

ζ ⋆
A

({c}n0, a, {c}n1, b, {c}n2, . . . , a, {c}n2m−1, b, {c}n2m)

= 0 .

Setting n = 0 in Theorem 1.4 gives Zhao’s result.

1.3. Statement of the main theorem. To state our main theorem, we find it con-

venient to use an algebraic setup, due to Hoffman [2] in the case of ζ and ζ ⋆. Let H1 =

Q〈z1, z2, . . . 〉 denote the noncommutative polynomial algebra in countably many variables.

The product x̃ on H1, due to Muneta [10], is the Q-bilinear map x̃ : H1 × H1 → H1 defined

inductively by

1 x̃ w = w x̃ 1 = w , zkw x̃ zk′w′ = zk(w x̃ zk′w′) + zk′(zkw x̃ w′)

for w,w′ ∈ H1 and k, k′ ∈ Z≥1.

EXAMPLE 1.5. We have

zk x̃ zl = zkzl + zlzk , zk x̃ zlzl′ = zkzlzl′ + zlzkzl′ + zlzl′zk

for k, l, l′ ∈ Z≥1.

Define Q-linear maps ZA, Z̄A : H1 → A by setting

ZA(1) = Z̄A(1) = 1 ,

ZA(zk1
· · · zkl ) = ζA(k1, . . . , kl) , Z̄A(zk1

· · · zkl ) = ζ ⋆
A

(k1, . . . , kl) .

For (m, n) ∈ Z2
≥0 \ {(0, 0)}, let Im,n denote the set of all sequences

a = (a1, . . . , am; b1, . . . , bm; c1, . . . , cn)
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where a1, . . . , am and b1, . . . , bm are odd positive integers and c1, . . . , cn are even positive

integers. For a = (a1, . . . , am; b1, . . . , bm; c1, . . . , cn) ∈ Im,n, set

za =
∑

σ,τ∈Sm
ρ∈Sn

zaσ(1)
zbτ (1)

· · · zaσ(m)
zbτ (m)

x̃ zcρ(1)
· · · zcρ(n)

=
∑

σ,τ∈Sm

zaσ(1)
zbτ (1)

· · · zaσ(m)
zbτ (m)

x̃ zc1
x̃ . . . x̃ zcn ∈ H1 ,

where Sl is the symmetric group of degree l.

THEOREM 1.6 (Main theorem). For all (m, n) ∈ Z2
≥0 \{(0, 0)} and a ∈ Im,n, we have

ZA(za) = Z̄A(za) = 0.

PROOF THAT THEOREM 1.6 IMPLIES THEOREM 1.4. Put a = (a, . . . , a; b, . . . , b; c,

. . . , c) ∈ Im,n. Then since

za =
∑

σ,τ∈Sm
ρ∈Sn

zazb · · · zazb x̃ zc · · · zc = m!2n!(zazb)
m
x̃ zn

c ,

Theorem 1.6 shows that ZA

(
(zazb)

m
x̃ zn

c

)
= Z̄A

(
(zazb)

m
x̃ zn

c

)
= 0, which is equivalent to

Theorem 1.4. ✷

2. Proof of the main theorem.

2.1. Outline of the proof. For (m, n) ∈ Z2
≥0 \ {(0, 0)}, write Pm,n for the statement

that ZA(za) = Z̄A(za) = 0 for all a ∈ Im,n. Then the main theorem says that Pm,n is true for

all (m, n) ∈ Z2
≥0 \ {(0, 0)}. Our proof consists of the following four lemmas:

LEMMA 2.1. The statement P0,n is true for all positive integers n.

LEMMA 2.2. Suppose that m is a positive integer such that Pm,0 is true. Then Pm,n is

true for all nonnegative integers n.

LEMMA 2.3. Suppose that m is a positive integer such that Pm′,n is true whenever m′

is a positive integer less than m and n is a nonnegative integer. Then ZA(za) + Z̄A(za) = 0

for all a ∈ Im,0.

LEMMA 2.4. Suppose that m is a positive integer such that Pm′,n is true whenever m′

is a positive integer less than m and n is a nonnegative integer. Then ZA(za) = Z̄A(za) for

all a ∈ Im,0.

It is easy to see that the lemmas imply the main theorem. Indeed, P1,0 follows from

Lemmas 2.3 and 2.4 because m = 1 vacuously satisfies the assumption; Lemma 2.2 then

shows that P1,n is true for all nonnegative integers n; it follows that m = 2 satisfies the

assumption of Lemmas 2.3 and 2.4, and so P2,0 is true; induction proceeds in this manner.

2.2. Proof of Lemma 2.1. Although Lemma 2.1 is a direct consequence of [4, The-

orem 4.4], we give a rather detailed proof of the lemma for the convenience of the reader,
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partly because our notation differs from that of [4] and partly because some of the concepts

introduced will also be necessary afterwards.

DEFINITION 2.5. The harmonic products ∗ and ∗̄ on H1 are the Q-bilinear maps

∗, ∗̄ : H1 × H1 → H1 defined inductively by

1 ∗ w = w ∗ 1 = w , zkw ∗ zk′w′ = zk(w ∗ zk′w′) + zk′(zkw ∗ w′) + zk+k′(w ∗ w′) ,

1 ∗̄ w = w ∗̄ 1 = w , zkw ∗̄ zk′w′ = zk(w ∗̄ zk′w′) + zk′(zkw ∗̄ w′) − zk+k′(w ∗̄ w′)

for w,w′ ∈ H1 and k, k′ ∈ Z≥1.

EXAMPLE 2.6. We have

zk ∗ zl = zkzl + zlzk + zk+l , zk ∗̄ zl = zkzl + zlzk − zk+l

for k, l ∈ Z≥1.

We remark that H1 is a commutative Q-algebra with either ∗ or ∗̄ as its product.

As illustrated by

ZA(zk)ZA(zl) = ζA(k)ζA(l) =

( ∑

p>m≥1

1

mk

)( ∑

p>n≥1

1

nl

)

=

( ∑

p>m>n≥1

+
∑

p>n>m≥1

+
∑

p>m=n≥1

)
1

mknl

= ζA(k, l) + ζA(l, k) + ζA(k + l) = ZA(zkzl + zlzk + zk+l)

= ZA(zk ∗ zl) ,

the harmonic products have been defined so that ZA and Z̄A are respectively a ∗- and ∗̄-

homomorphism:

PROPOSITION 2.7. The maps ZA, Z̄A : H1 → A are respectively a ∗- and ∗̄-homo-

morphism, i.e. ZA(w ∗ w′) = ZA(w)ZA(w′) and Z̄A(w ∗̄ w′) = Z̄A(w)Z̄A(w′) for all

w,w′ ∈ H1.

Recall that a partition of a set X is a family of pairwise disjoint nonempty subsets of X

with union X.

PROPOSITION 2.8 ([4, Theorem 4.4]). Let k1, . . . , kn be positive integers. Then

ZA(zk1
x̃ · · · x̃ zkn) = Z̄A(zk1

x̃ · · · x̃ zkn) = 0 .

PROOF. Observe that

zk1
∗ · · · ∗ zkn =

∑

Π is a partition of {1, . . . , n}

x̃
A∈Π

z∑
i∈A ki

;

apply ZA and use Propositions 1.2 and 2.7 to obtain

∑

Π is a partition of {1, . . . , n}

ZA

(
x̃
A∈Π

z∑
i∈A ki

)
= 0 .
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This shows by induction on n that ZA(zk1
x̃ · · · x̃ zkn) = 0 whenever k1, . . . , kn are positive

integers. The other equation Z̄A(zk1
x̃ · · · x̃ zkn) = 0 can be proved in a similar fashion by

using ∗̄ instead of ∗. ✷

PROOF OF LEMMA 2.1. Immediate from Proposition 2.8. ✷

2.3. Proof of Lemma 2.2. Before presenting a proof for general m, we look at the

simple case of m = 1. We prove by induction on n that ZA(zazb x̃ zc1
x̃ · · · x̃ zcn) = 0 for

all (a; b; c1, . . . , cn) ∈ I1,n, assuming the base case n = 0. Let n ≥ 1 and suppose that the

claim is true if n is smaller. Let (a; b; c1, . . . , cn) ∈ I1,n. Apply ZA to the identity

zazb ∗ (zc1
x̃ · · · x̃ zcn) = zazb x̃ zc1

x̃ · · · x̃ zcn

+

n∑

j=1

(
za+cj zb x̃x̃

k �=j

zck

)
+

n∑

j=1

(
zazb+cj x̃x̃

k �=j

zck

)

+
∑

i �=j

(
za+ci zb+cj x̃x̃

k �=i,j

zck

)

and use the inductive hypothesis to obtain

0 = ZA(zazb)ZA(zc1
x̃ · · · x̃ zcn) = ZA(zazb x̃ zc1

x̃ · · · x̃ zcn);

here the inductive hypothesis applies because adding an even integer does not change parity.

The key to the proof for general m given below is to find a generalization of the above identity

for m ≥ 2.

PROOF OF LEMMA 2.2. We prove Pm,n by induction on n, assuming the base case n =

0. Let n ≥ 1 and assume Pm,n′ for all integers n′ with 0 ≤ n′ < n. We only prove that

ZA(za) = 0 for all a = (a1, . . . , am; b1, . . . , bm; c1, . . . , cn) ∈ Im,n, because Z̄A(za) = 0

can be proved in a similar fashion.

Let G be a spanning subgraph, with all degrees at most 1, of the complete bipartite graph

on the vertex set {a1, b1, . . . , am, bm} ∪ {c1, . . . , cn}; the 2m + n vertices are regarded as

distinct even if some of them are equal as integers. Define a′
i = ai if the vertex ai is isolated;

a′
i = ai + ck if the vertices ai and ck are adjacent. Define b′

j in a similar manner. Write

c′
1, . . . , c

′
l for the isolated vertices among c1, . . . , cn. Then we have

za1
zb1

· · · zamzbm ∗ (zc1
x̃ · · · x̃ zcn) =

∑

G

(za′
1
zb′

1
· · · za′

m
zb′

m
x̃ zc′

1
x̃ · · · x̃ zc′

l
) ,

where G runs over all such subgraphs.

Replacing ai with aσ(i) and bj with bτ (j), and summing over all σ, τ ∈ Sm, we obtain

z(a1,...,am;b1,...,bm;∅) ∗ (zc1
x̃ · · · x̃ zcn) =

∑

G

z(a′
1,...,a

′
m;b′

1,...,b
′
m;c′

1,...,c
′
l )

.

Let us see what happens when we apply ZA to this equation. The left-hand side is

obviously 0. In the right-hand side, the graph G with no edge yields ZA(za) and all the other
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terms vanish by the inductive hypothesis because (a′
1, . . . , a

′
m; b′

1, . . . , b
′
m; c′

1, . . . , c
′
l) ∈ Im,l

with l < n when G has at least one edge. Hence we conclude that ZA(za) = 0. ✷

2.4. Proof of Lemma 2.3.

PROPOSITION 2.9 ([4, Theorem 4.5]). Let k1, . . . , kn be positive integers. Then

ζA(kn, . . . , k1) = (−1)k1+···+knζA(k1, . . . , kn) ,

ζ ⋆
A

(kn, . . . , k1) = (−1)k1+···+knζ ⋆
A

(k1, . . . , kn) .

PROOF. We have

ζA(kn, . . . , k1) =
∑

p>mn>···>m1≥1

1

m
kn
n · · · m

k1

1

=
∑

p>m̃1>···>m̃n≥1

1

(p − m̃n)kn · · · (p − m̃1)k1

= (−1)k1+···+kn
∑

p>m̃1>···>m̃n≥1

1

m̃
k1

1 · · · m̃
kn
n

= (−1)k1+···+knζA(k1, . . . , kn) .

The other equation can be proved in the same manner. ✷

DEFINITION 2.10. Define a Q-linear transformation d : H1 → H1 by setting d(1) = 1

and

d(zk1
· · · zkn) =

n∑

m=1

∑

0=i0<i1<···<im=n

zki0+1+···+ki1
· · · zkim−1+1+···+kim

for positive integers k1, . . . , kn.

EXAMPLE 2.11. We have d(zk) = zk and d(zkzl) = zkzl + zk+l .

As illustrated by

Z̄A(zkzl) = ζ ⋆
A

(k, l) =
∑

p>m≥n≥1

1

mknl
=

( ∑

p>m>n≥1

+
∑

p>m=n≥1

)
1

mknl

= ζA(k, l) + ζA(k + l) = ZA(zkzl + zk+l) = ZA

(
d(zkzl)

)
,

the transformation d has been defined so that Z̄A = ZA ◦ d:

PROPOSITION 2.12. We have Z̄A = ZA ◦d , i.e. Z̄A(w) = ZA

(
d(w)

)
for all w ∈ H1.

LEMMA 2.13. Let k1, . . . , kl be positive integers, where l ≥ 1. Then

l∑

j=0

(−1)jd(zkj · · · zk1
) ∗ zkj+1

· · · zkl = 0 .

PROOF. The lemma is proved in [8, Proposition 7.1]; it also follows from [5, Proposi-

tion 6], where our d is denoted by S and the coefficient (−1)j is missing. ✷
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REMARK 2.14. When l = 0, the left-hand side of the equation in Lemma 2.13 should

naturally be interpreted as 1 rather than 0, hence the odd-looking assumption that l ≥ 1.

For k ∈ Z≥0, we write [k] = {i ∈ Z | 1 ≤ i ≤ k}. For sets X and Y of the same

cardinality, we write Bij(X, Y ) for the set of all bijections from X to Y .

PROOF OF LEMMA 2.3. Let a = (a1, . . . , am; b1, . . . , bm; ∅) ∈ Im,0. Then for each

(σ, τ ) ∈ S2
m, applying Lemma 2.13 to l = 2m and (k1, . . . , kl) = (aσ(1), bτ (1), . . . , aσ(m),

bτ (m)) gives

m∑

i=0

d(zbτ (i)
zaσ(i)

· · · zbτ (1)
zaσ(1)

) ∗ zaσ(i+1)
zbτ (i+1)

· · · zaσ(m)
zbτ (m)

−

m∑

i=1

d(zaσ(i)
zbτ (i−1)

zaσ(i−1)
· · · zbτ (1)

zaσ(1)
) ∗ zbτ (i)

zaσ(i+1)
zbτ (i+1)

· · · zaσ(m)
zbτ (m)

= 0 .

By summing over all (σ, τ ) ∈ S2
m and applying ZA, we obtain

m∑

i=0

∑

σ,τ∈Sm

ζ ⋆
A

(bτ (i), aσ(i), . . . , bτ (1), aσ(1))ζA(aσ(i+1), bτ (i+1), . . . , aσ(m), bτ (m))

−

m∑

i=1

∑

σ,τ∈Sm

ζ ⋆
A

(aσ(i), bτ (i−1), aσ(i−1), . . . , bτ (1), aσ(1))

× ζA(bτ (i), aσ(i+1), bτ (i+1), . . . , aσ(m), bτ (m))

= 0 .

For simplicity, we write the left-hand side as
∑m

i=0 Pi −
∑m

i=1 Qi . Since P0 = ZA(za) and

Pm = Z̄A(za) by Proposition 2.9, it suffices to show that Pi = 0 for i = 1, . . . ,m − 1 and

Qi = 0 for i = 1, . . . ,m.

For i = 1, . . . ,m − 1, we have

Pi =
∑

σ,τ∈Sm

ζ ⋆
A

(bτ (i), aσ(i), . . . , bτ (1), aσ(1))ζA(aσ(i+1), bτ (i+1), . . . , aσ(m), bτ (m))

=
∑

A,B⊂[m]
#A=#B=i

( ∑

σ ′∈Bij([i],A)

τ ′∈Bij([i],B)

ζ ⋆
A

(bτ ′(i), aσ ′(i), . . . , bτ ′(1), aσ ′(1))

)

×

( ∑

σ ′′∈Bij([m−i],[m]\A)

τ ′′∈Bij([m−i],[m]\B)

ζA(aσ ′′(1), bτ ′′(1), . . . , aσ ′′(m−i), bτ ′′(m−i))

)

= 0

by the hypothesis. In a similar fashion, for i = 1, . . . ,m, we have
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Qi =
∑

σ,τ∈Sm

ζ ⋆
A

(aσ(i), bτ (i−1), aσ(i−1), . . . , bτ (1), aσ(1))ζA(bτ (i), aσ(i+1), bτ (i+1), . . . , aσ(m), bτ (m))

=
∑

A,B⊂[m]
#A=i

#B=i−1

( ∑

σ ′∈Bij([i],A)

τ ′∈Bij([i−1],B)

ζ ⋆
A

(aσ ′(i), bτ ′(i−1), aσ ′(i−1), . . . , bτ ′(1), aσ ′(1))

)

×

( ∑

σ ′′∈Bij([m−i],[m]\A)

τ ′′∈Bij([m−i+1],[m]\B)

ζA(bτ ′′(1), aσ ′′(1), bτ ′′(2), . . . , aσ ′′(m−i), bτ ′′(m−i+1))

)

= 0

because of Proposition 2.9 and the assumption that a1, . . . , am, b1, . . . , bm are all odd, and

the proof is complete. ✷

2.5. Proof of Lemma 2.4. Let a1, . . . , am and b1, . . . , bm be positive integers, and

write X for the multiset consisting of the 2m positive integers. For P ⊂ X, denote by s(P ) the

sum of the elements of P ; denote by µa(P ) and µb(P ) the numbers of a’s and b’s contained

in P respectively; define |P | = µa(P )!µb(P )!.

Write P for the set of all partitions Π of X such that |µa(P ) − µb(P )| ≤ 1 for every

P ∈ Π . For Π ∈ P , write Π = {A1, . . . , Ak, B1, . . . , Bk, C1, . . . , Cl} where µa(Ai) −

µb(Ai) = 1, µa(Bi) − µb(Bi) = −1, and µa(Cj ) = µb(Cj ), and define

zΠ =

( ∏

P∈Π

|P |

) ∑

σ,τ∈Sk

zs(Aσ(1))zs(Bτ (1)) · · · zs(Aσ(k))zs(Bτ (k)) x̃ zs(C1) x̃ · · · x̃ zs(Cl) .

EXAMPLE 2.15. If m = 1, then P consists of the following two elements:

• Π1 consisting of C1 = {a1, b1}, for which zΠ1
= za1+b1

;

• Π2 consisting of A1 = {a1} and B1 = {b1}, for which zΠ2
= za1

zb1
.

We thus have ∑

Π∈P

zΠ = za1
zb1

+ za1+b1
= d(za1

zb1
) .

If m = 2, then P consists of the following 12 elements:

• Π1 consisting of C1 = {a1, b1, a2, b2}, for which zΠ1
= 4za1+b1+a2+b2

;

• Π2 consisting of A1 = {a1, b1, a2} and B1 = {b2}, for which zΠ2
= 2za1+b1+a2

zb2
;

• Π3 consisting of A1 = {a1, b2, a2} and B1 = {b1}, for which zΠ3
= 2za1+b2+a2

zb1
;

• Π4 consisting of A1 = {a1} and B1 = {b1, a2, b2}, for which zΠ4
= 2za1

zb1+a2+b2
;

• Π5 consisting of A1 = {a2} and B1 = {b1, a1, b2}, for which zΠ5
= 2za2

zb1+a1+b2
;

• Π6 consisting of C1 = {a1, b1} and C2 = {a2, b2}, for which zΠ6
= za1+b1

x̃ za2+b2
;

• Π7 consisting of C1 = {a1, b2} and C2 = {a2, b1}, for which zΠ7 = za1+b2
x̃ za2+b1

;

• Π8 consisting of A1 = {a1}, B1 = {b1}, and C1 = {a2, b2}, for which zΠ8
=

za1
zb1

x̃ za2+b2
;

• Π9 consisting of A1 = {a1}, B1 = {b2}, and C1 = {a2, b1}, for which zΠ9
=

za1
zb2

x̃ za2+b1
;
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• Π10 consisting of A1 = {a2}, B1 = {b1}, and C1 = {a1, b2}, for which zΠ10
=

za2
zb1

x̃ za1+b2
;

• Π11 consisting of A1 = {a2}, B1 = {b2}, and C1 = {a1, b1}, for which zΠ11
=

za2
zb2

x̃ za1+b1
;

• Π12 consisting of A1 = {a1}, A2 = {a2}, B1 = {b1}, and B2 = {b2}, for which

zΠ12
= za1

zb1
za2

zb2
+ za1

zb2
za2

zb1
+ za2

zb1
za1

zb2
+ za2

zb2
za1

zb1
.

We thus have

zΠ1
=

∑

σ,τ∈S2

zaσ(1)+bτ (1)+aσ(2)+bτ (2)
,

zΠ2
+ zΠ3

=
∑

σ,τ∈S2

zaσ(1)+bτ (1)+aσ(2)
zbτ (2)

,

zΠ4
+ zΠ5

=
∑

σ,τ∈S2

zaσ(1)
zbτ (1)+aσ(2)+bτ (2)

,

zΠ6
+ zΠ7 =

∑

σ,τ∈S2

zaσ(1)+bτ (1)
zaσ(2)+bτ (2)

,

zΠ8
+ · · · + zΠ11

=
∑

σ,τ∈S2

(zaσ(1)+bτ (1)
zaσ(2)

zbτ (2)
+ zaσ(1)

zbτ (1)+aσ(2)
zbτ (2)

+ zaσ(1)
zbτ (1)

zaσ(2)+bτ (2)
) ,

zΠ12
=

∑

σ,τ∈S2

zaσ(1)
zbτ (1)

zaσ(2)
zbτ (2)

and so
∑

Π∈P

zΠ =
∑

σ,τ∈S2

d(zaσ(1)
zbτ (1)

zaσ(2)
zbτ (2)

) .

LEMMA 2.16. We have

∑

Π∈P

zΠ =
∑

σ,τ∈Sm

d(zaσ(1)
zbτ (1)

· · · zaσ(m)
zbτ (m)

) .

PROOF. Succinctly speaking, the left-hand side is the expansion of the right-hand side.

To be more precise, for each Π ∈ P , each monomial w that appears in the expansion of

zΠ appears in the right-hand side exactly as many times as there are pairs (σ, τ ) ∈ S2
m for

which d(zaσ(1)
zbτ (1)

· · · zaσ(m)
zbτ (m)

) gives rise to the monomial w; the number of such σ is∏
P∈Π µa(P )! and the number of such τ is

∏
P∈Π µb(P )!, from which it follows that the

number of such pairs (σ, τ ) is

∏

P∈Π

µa(P )! ·
∏

P∈Π

µb(P )! =
∏

P∈Π

|P | .

This proves the lemma. ✷



BOWMAN-BRADLEY TYPE THEOREM FOR FINITE MULTIPLE ZETA VALUES 251

PROOF OF LEMMA 2.4. Let a = (a1, . . . , am; b1, . . . , bm; ∅)∈Im,0. Then Lemma 2.16

shows that

Z̄A(za) = ZA

(
d(za)

)
=

∑

Π∈P

ZA(zΠ ) .

If Π =
{
{a1}, . . . , {am}, {b1}, . . . , {bm}

}
, then zΠ = za ; otherwise, zΠ is an integer multiple

of zb for some b ∈
⋃

1≤m′<m

⋃
n≥0 Im′,n, and so ZA(zΠ ) = 0 by the hypothesis. It follows

that Z̄A(za) = ZA(za). ✷
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