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Abstract Sub-10-nm gaps in noble metal bowtie structures
may enable strong enhancement of the near field at the gap.
However, it is challenging to define such small gaps using
electron beam lithography (EBL) due to the proximity effect.
Here, we circumvented this problem by carrying out EBL on a
thin membrane that is transparent to incident electrons and
thus free from the proximity effect. Nanogaps down to 6 nm
were obtained and employed for sensing application based on
surface-enhanced Raman scattering (SERS). We achieved a
high sensitivity at low concentration of the target molecule
with a SERS enhancement factor of 107.
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Introduction

Surface-enhanced Raman scattering (SERS) [1, 2] is an ultra-
sensitive chemical-sensing technique capable of single-
molecule detection [3–9]. The enormous enhancement is
mainly due to the localized surface plasmon resonance
(LSPR) of noble metal nanoparticles (NPs) onto which the
target molecules adsorb. Since the enhancement is proportion-
al to |E/E0|

4, where E and E0 are the excited and original
electric near fields, strong SERS enhancement occurs at the
“hotspots” with maximum electric field [9–11], such as the

sharp tips of the NPs [12–16], the tiny gaps between adjacent
NPs [5, 17–19], or inside one NP (e.g., nanocrescent) [20, 21].
An artificial antenna such as a bowtie (two triangles facing
each other) array with a nanogap is one of the most promising
candidates for large enhancement since it provides simulta-
neously both sharp tips and tiny gaps [22–24]. Moreover, the
bowtie structure fabricated using nanolithography is more
reproducible and tuneable by controlling its dimension than
randomly aggregated NPs or island film [3, 5, 25–27].

The near field at the gap for the bowtie structure is inverse-
ly proportional to the gap [28], and both experiment and
numerical study show that a large enhancement factor occurs
only for small gaps of several nanometers [29, 30]. So far,
focused ion beam lithography (FIBL) is most widely utilized
for the fabrication of sub-10-nm gaps due to its simple process
steps [31–33]. However, this method is time-consuming for
large area patterning because a tiny gap necessitates a low ion
beam current of only a few pA. In addition, Ga contamination
could be a serious issue [34]. Though electron beam lithogra-
phy (EBL) is faster than FIBL and free from ion contamina-
tion, it is challenging to fabricate a sub-10-nm gap due to the
proximity effect originated from backscattered electrons
[35–37].

To a certain degree, the proximity effect can be “diluted” by
using a high-energy electron beam such as 100 keV [37, 38].
However, high energy is accompanied with proportionally
reduced resist sensitivity, and the “dilution” effect is insignif-
icant when a dense bowtie array over a large surface area
(larger than the range of backscattered electrons that is in the
order of 50μm for 100 keV) is needed. A substrate with lower
density and atomic number could also slightly reduce, respec-
tively, the range and intensity of the proximity effect [39, 40].
Lastly, the proximity effect can be compensated to a certain
extent by optimizing the spatial distribution of the exposure
dose using numerical computation of the electron trajectory
and energy loss in the resist and substrate [41–43]. A bowtie
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with a 3-nm gap has been fabricated using such a proximity
effect correction method, yet it is for an isolated bowtie
structure for which the proximity effect is much smaller than
a bowtie array that offers higher SERS enhancement propor-
tional to the number of bowties within the laser beam spot.

In this work, we demonstrate the fabrication of a bowtie
with a gap down to 3 nm by performing EBL on a thin
membrane that is transparent to incident electrons and thus
effectively eliminated the proximity effect. SERS study of the
fabricated bowtie array was carried out using 1,2-di(4-
pyridyl)ethylene (BPE) as the target molecule. As expected,
the enhancement was greatly dependent on the gap size of the
bowtie structure.

Experiment

The bowtie structure on a thin Si3N4membranewas fabricated
according to the process steps shown in Fig. 1. The nitride
membrane was first fabricated using wet chemical etching
with hot KOH solution that etches silicon anisotropically at
a rate of ∼1 μm/min with negligible etching rate of the nitride
film. Next, the top surface of themembrane was cleaned byO2

plasma, and a 170-nm polymethyl methacrylate (PMMA)
layer as the resist and 10 nm Cr as the conductive charge
dissipation layer were coated by spin coating and electron
beam evaporation, respectively. EBL was carried out using
Raith 150TWO system at 20 kV acceleration voltage and
0.33 nA beam current. The conductive layer was removed
after exposure, and the pattern was developed using methyl
isobutyl ketone (MIBK)/2-propanol (IPA) (1:3) and rinsed by
fresh IPA. Finally, 1 nm Cr as the adhesive layer and 25 nm
Auwere deposited by electron beam evaporation and lifted off
by anisole. A metal film with 25-nm thickness was selected

since a thicker metal film is more difficult to lift off especially
when ultrasonic agitation cannot be used because of the brittle
membrane. The Au film was deposited at a slow rate of 0.2 Å/
s to reduce surface roughness.

Figure 2a shows the SEM image of bowtie patterns with a
6-nm gap exposed by EBL on the bulk substrate. The gaps in
the bowties are fully exposed that resulted in connected
bowties. In contrast, Fig. 2b shows that the bowtie nanoan-
tenna fabricated on the Si3N4 membrane with varied gap sizes
in the range of 3 to 24 nm can be achieved. Considering the
beam size of about 5 nm, the proximity effect was eliminated
completely. The narrowest gap obtained was as low as 3 nm,
though the gap size was not uniform and many connected
gaps were seen in the fabricated structures. It was found that
fabrication of a bowtie nanoantenna with a gap size of 6 nm
and up is more uniform and reproducible.

The Raman spectrum was recorded by using a Bruker
Senterra Raman spectrometer equipped with confocal micro-
scope and a nitrogen-cooledmultichannel CCD detector. A He-
Ne laser with a wavelength of 632.8 nm and a diode laser with a
wavelength of 785 nm were used as the excitation sources. The
laser source was focused on the sample using a ×100 objective
lens to obtain a spot size of ∼2μmdiameter, and the acquisition
time was set as 100 s for the laser wavelength of 785 nm. For
632.8 nm, the acquisition time was 10 s to minimize the high
background fluorescence for the 632.8 nm excitation. The laser
power was chosen as low as 1mW to avoid burning and surface
carbonization of the adsorbed organic molecules. 1,2-di(4-
Pyridyl)ethylene (BPE) (Sigma-Aldrich) was selected as the
target molecule to be detected. ABPE solution in ethanol with a
concentration of 100 mM was diluted to a series of different
concentrations in the range of 10−1 to 10−6 mM. The diluted
solution was dropped on the bowtie nanoantenna samples and
dried at room temperature before each experiment. A clean

Fig. 1 Schematic of the fabrication process of bowtie nanoantenna on
Si3N4 membrane: a photolithography on backside Si3N4 and CF4 reactive
ion etching to remove the unmasked Si3N4, bwet etch in KOH solution to
form Si3N4 membrane, c spin-coat 170 nm PMMA layer and deposit

10 nm Cr, d E-beam lithography and development, e evaporate 1 nm Cr
and 25 nmAu, f liftoff in anisole and rinse the surface, g illustration of the
final bowtie structure on Si3N4 membrane and SEM image of fabricated
Au bowtie structure with gap size of 8 nm as an example
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wafer coated with 10−1 mM BPE was selected as the reference
sample. It was found that brief O2 plasma cleaning of gold
bowtie nanoantenna structures led to a more reproducible
Raman measurement. Hence, the gold bowtie structure was
cleaned by O2 plasma right before BPE application.

Numerical Simulation

The near-field profile in the gold bowtie nanoantenna was
simulated using the 3D full wave vector finite difference time
domain (FDTD) method, which is a reliable technique in
solving Maxwell’s equations in dispersive media. Each media
was specified by a relative permittivity ε(ω). For the substrate
layer, permittivity was assumed as n2, and for the gold layer,
the Lorentz-Drude model was utilized to describe its permit-
tivity [44, 45]. The FDTDwas carried out using the Lumerical
FDTD (Lumerical Solutions, Inc). The plane wave source,
bowtie structure, and monitors were co-planar with boundary
conditions that made them effectively infinite. In this study, a
plane wave of linearly polarized light along the Y-axis (λcenter
=680 nm, time offset of 0.8×10−14 s and half width of 0.1×
10−14 s) which propagates along the Z-axis was used. The
simulation background was taken as air (n=1.0). The gap in
the bowtie structure was varied in the range of 6 to 24 nm. A
metal film with a 25-nm thickness was selected corresponding
to the fabricated device. The simulation cell was considered as
550×550×400 nm3, and the periodic boundary condition
(PBC) was used in the X- and Y-directions. An anisotropic
perfect matching layer (APML) was used in the Z-direction as
absorbing boundary condition. The calculation grid resolution
(grid point-to-point distance) was as high as 1 to 5 nm (at
different structures with different gap sizes) in the simulation
cell. The calculation time was set as 100 fs, with a calculation
step size of 0.00834 fs for a total of about 12,000 time steps
per simulation. The transmission spectra were calculated
using an X-Y monitor at 150 nm away from the bowtie
nanoantenna surface.

Results and Discussion

Numerical Analysis

For a metallic gap with an ultranarrow gap size, FDTD sim-
ulation may not be accurate because both plasmonic coupling
and quantum tunnelling may happen. In our work, FDTD
simulation is still considered since the electron interaction is
within classical regime (gap size >1 nm) [46, 47]. FDTD in
Fig. 3a shows the FDTD calculated electric field profile, |E|2,
of the gold bowtie with a gap size of 6 nm at an excitation
wavelength of 785 nm. As can be seen from this figure, the
electric field was highly confined in the gap area. It was also
found that on changing the excitation wavelength from 785 to
632.8 nm, the electric field confinement in the gap area was
eliminated and more electric field propagation was observed
on the triangle sides of the bowtie structures as it is clear from
Fig. 3b. This indicates that 785 nm is close to the surface
plasmon resonance wavelength of the bowtie. Corresponding-
ly, the following Raman measurement in Fig. 4a–d shows the
different enhancement using the excitation wavelengths of
785 and 632.8 nm. Also, a longer wavelength is preferred to
reduce the background fluorescence effects during irradiation
of organic molecules.

Surface-Enhanced Raman Spectroscopy

Noble metals such as gold and silver are usually employed in
SERS applications because of their inert activity, adsorbility to
the amino/thiol group, high surface plasmon resonance am-
plitude, and low loss [48]. It is more interesting to use gold
since its surface is more stable than silver in atmospheric
conditions.

A series of bowtie nanoantenna structures with different
periods in the range of 550 to 1000 nm with step of 150 nm
were fabricated to study the effect of bowtie density on the
SERS signal enhancement. The effects of varying structural
periodicity on the Raman signal intensity of the gold bowtie
nanoantenna of gap size of 6 nm is shown in Fig. 4a, b. As

Fig. 2 a SEM image of bowtie
array exposed on bulk wafer, b
SEM image of bowtie array
exposed on Si3N4 membrane
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it is clear on reducing the periodicity from 1000 to 550 nm,
the recoded Raman intensities at the wavenumber of
1610 cm−1 (C=N bond) were increased nearly linearly with
the increasing bowtie density and a bowtie array of 1000 nm
period and 6 nm gap could still support a detectable Raman
signal.

The effects of varying the gap size and excitation wave-
length on the recorded SERS signal are compared in Fig. 4c–
d. For an excitation wavelength of 785 nm, the Raman inten-
sity of BPE molecules was increased by nearly two orders of
magnitude on reducing the gap size from 24 to 6 nm. How-
ever, in case of using the excitation wavelength of 632.8 nm,
there was no significant change in the Raman intensity of BPE
molecules in the bowtie nanoantenna structures with different
gap sizes, which is mainly due to the absence of a hotspot at
this excitation wavelength.

The enhancement factor (EF) is one of the most important
parameters in SERS application, and it is given by

EF ¼ ISERS=NSERS

IRe f=NRe f
ð1Þ

where ISERS and IRef are the measured Raman intensities of the
SERS and the reference samples, and NSERS and NRef are the
numbers of molecules on the surface of the bowtie and the
reference sample. The ratio of NSERS/NRef can be estimated as

NSERS

NRe f
≈
MSERS⋅Volume of liquid on SERS

MRe f ⋅Volume of liquid on reference

¼ MSERS⋅ABowtie⋅h
MRe f ⋅ARe f ⋅h

¼ MSERS⋅ABowtie

MRe f ⋅ARe f
ð2Þ

Fig. 3 FDTD calculated electric field intensity, |E|2, on gold bowtie structure with 6 nm gap illuminated by excitation wavelength of a 785 nm and b
632.8 nm
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Fig. 4 a SERS spectrum of
0.1 mM BPE from bowtie array
having 6 nm gap and different
periods in the range of 550 to
1000 nm, with laser excitation
wavelength of 785 nm. The
spectrum was acquired with an
integration time of 100 s. b The
relationship between Raman
intensity at 1610 cm−1 (C=N
bond) and the bowtie density,
derived from a. c, d Raman
spectrum for bowtie structure
having period of 550 nm and
different gap sizes, with laser
excitation wavelength of 785 and
632.8 nm, respectively. Both
spectrum were acquired with an
integration time of 10 s
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whereMSERS andMRef are the molecular concentrations of the
SERS and reference samples, ABowtie is the area of the
bowties, and ARef is the exposure area of the laser beam on
the reference sample, which is equal to the beam area. Impor-
tantly, since in the bowtie nanoantenna the hotspot only exists
within the gap area, the actual effective area is much smaller
than the whole bowtie area and hence the corresponding EF at
the gap is much larger than the calculated one.

Figure 5a, b shows the Raman spectra of the bowtie nano-
antenna with gap sizes of 6 and 24 nm at different BPE
concentrations in the range of 10−1 to 10−6 mM based on the
excitation wavelength of 785 nm. It was found that the bowtie
nanoantenna with a gap size of 6 nm achieved an EF of 107 at
a BPE concentration of 10−5 mM. Whereas on using a nano-
antenna with a gap size of 24 nm, the highest sensitivity was
recorded at a BPE concentration of 10−3 mM with an EF of
105 as shown in Fig. 5b. This confirms that the hotspot existed
only at the nanogap between facing tips of the bowtie structure
and the amplitude of the local electric field was significantly
increased by reducing the gap size, which is in good agree-
ment with numerical results.

Conclusion

Here, we demonstrated electron beam lithography with a
negligible proximity effect by exposure on top of a thin

Si3N4 membrane that is transparent to incident electrons. We
obtained a bowtie array structure with a gap size down to
3 nm. The dependence of the excitation wavelength and
structural parameters including gap size and array periodicity
on the SERS performance was studied experimentally and
numerically. The Raman intensity showed a strong depen-
dence on the size of the gap where exists the “hotspot” at
resonance. On using an excitation wavelength of 785 nm, the
hotspot was localized at the gap area leading to a strong SERS
enhancement. However, for an excitation wavelength of
632.8 nm, the spots with a relatively high near field were
located along the triangle edges (rather than within the gap)
with an intensity far lower than that at the gap for the case of
785-nm excitation, which resulted in a low Raman
enhancement.
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