
ESAIM: PROCEEDINGS AND SURVEYS, August 2021, Vol. 71, p. 101-113

Didier Auroux, Jean-Baptiste Caillau, Régis Duvigneau, Abderrahmane Habbal, Olivier Pantz, Luc Pronzato, Ludovic Rifford

BOX-CONSTRAINED OPTIMIZATION FOR MINIMAX SUPERVISED

LEARNING ∗, ∗∗

Cyprien Gilet1, Susana Barbosa2 and Lionel Fillatre3

Abstract. In this paper, we present the optimization procedure for computing the discrete box-
constrained minimax classifier introduced in [1, 2]. Our approach processes discrete or beforehand
discretized features. A box-constrained region defines some bounds for each class proportion indepen-
dently. The box-constrained minimax classifier is obtained from the computation of the least favorable
prior which maximizes the minimum empirical risk of error over the box-constrained region. After
studying the discrete empirical Bayes risk over the probabilistic simplex, we consider a projected sub-
gradient algorithm which computes the prior maximizing this concave multivariate piecewise affine
function over a polyhedral domain. The convergence of our algorithm is established.

Résumé. Nous présentons dans cet article le problème d’optimisation lié au calcul d’un classifieur
minimax à contrainte de boîte, ainsi que l’algorithme permettant de calibrer ce classifieur, que nous
avons introduit dans [1, 2]. Notre approche considère des variables descriptives discrètes ou préalable-
ment discrétisées. Les contraintes de boîte définissent des bornes sur chaque proporition par classe. Le
classifieur est calibré en calculant la distribution a priori qui maximise le risque d’erreur minimum sur
le simplexe contraint par boîte. Après avoir montré que ce risque d’erreur minimum est une fonction
concave affine par morceaux avec un nombre fini de faces sur le simplexe, nous considérons un algo-
rithme de sous-gradient projeté pour calculer la distribution a priori qui maximise ce risque de Bayes
discret sur un domaine polyhédral. La convergence de l’algorithme est démontrée.

1. Introduction

Supervised classification is becoming essential in several real applications such as medical diagnosis, condition
monitoring, or fraud detection. However, in such applications, we often have to face the following difficulties:
imbalanced class proportions, prior probability shifts, presence of both numeric and categorical features (mixed
attributes), and dependencies between some features.

Context and notation. Given K ≥ 2 classes and a set S = {(Yi, Xi) , i ∈ I} of m labeled training samples,
the objective in fitting a supervised classifier [3, 4] is to learn a decision rule δ : X → Y := {1, . . . ,K} which
assigns each sample i ∈ I to a class δ(Xi) ∈ Y from its feature vector Xi := [Xi1, . . . , Xid] ∈ X composed of d
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observed attributes, and such that δ minimizes the empirical risk of classification errors

r̂(δ) =
1

m

∑

i∈I

L(Yi, δ(Xi)), (1)

where L : Y × Ŷ → [0,+∞) is the loss function such that, for all (k, l) ∈ Y × Ŷ with Ŷ = {1, . . . ,K} the set
of predicted labels, L(k, l) := Lkl corresponds to the loss, or the cost, of predicting the class l whereas the real

class is k. Let ∆ := {δ : X → Ŷ} be the set of all possible classifiers.

Dealing with imbalanced datasets. The risk of classification errors (1) can be written as (see [5])

r̂ (δ) =
∑

k∈Y

π̂kR̂k (δ) , (2)

where π̂ := [π̂1, . . . , π̂K ] corresponds to the class proportions of the training set, such that for all k ∈ Y,

π̂k := 1
m

∑

i∈I 1{Yi=k}, and where R̂k (δ) corresponds to the empirical class-conditional risk associated with
class k, defined by

R̂k (δ) :=
∑

l∈Ŷ

Lkl P̂S(δ(Xi) = l | Yi = k). (3)

In (3), P̂S(δ(Xi) = l | Yi = k) corresponds to the empirical probability for the decision rule δ to predict the
class l given that the true class is k on the set S of samples. When the class proportions π̂ are imbalanced
(that is when the classes are not equally represented), and as a consequence of (2), most classifiers essentially
focus on the dominating classes containing the largest number of training samples, and underestimate the least
represented ones [6–9]. Hence, the task of well classifying the instances from the smallest classes is difficult,
which leads the minority classes to have a large conditional risk (3).

Dealing with prior probability shifts. Prior probability shift [10, 11] characterizes an evolution in the
distribution of the priors between the training set and the test samples. We will use the notation δπ for
precising that the classifier δ was fitted with the prior distribution π in the K-dimensional probabilistic simplex

S := {π ∈ [0, 1]K :
∑K

k=1 πk = 1}. Let S ′ = {(Y ′
i , X

′
i) , i ∈ I

′} be a test dataset containing m′ test instances
and for which the class proportions π′ = [π′

1, . . . , π
′
K ] are unknown. The classifier δπ̂ fitted on the training set

S is then used to predict the classes Y ′
i of the test samples i ∈ I ′ from their associated attributes X ′

i ∈ X . To

simplify our explanation, we assume that P̂S′ coincides with P̂S , i.e., there is no probability shift between the
training set and the test set. Hence, our attention is focused on the prior shift, i.e., π′ is different from π̂. As
explained in [5], the risk of classification errors, with respect to the fitted classifier δπ̂, as a function of π′, is

r̂ (π′, δπ̂) =
∑

k∈Y

π′
kR̂k (δπ̂) . (4)

Since the R̂k (δπ̂)’s do not depend on π′, the risk (4) is clearly a linear function with respect to π′. Hence,
when the distribution of the priors is uncertain and changes in time, the risk of classification errors is expected
to evolve linearly. This is an important issue since we generally do not know when and why prior probability
shifts may occur. Note that we have r̂ (δπ̂) = r̂ (π̂, δπ̂). The maximum value of r̂ (π′, δπ̂) that can be reached

is M(δπ̂) := maxk∈Y R̂k (δπ̂). This issue is therefore especially highlighted when the class-conditional risks are
imbalanced. An illustration of this issue is given in Figure 2 in Appendix A. The task of learning a robust
classifier with respect to uncertain prior distributions is therefore necessary. This task is in the field of Bayesian
Robustness [12] for Machine Learning.
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Reminder on the minimax criterion. Training with imbalanced datasets and dealing with prior probability
shifts share a common trait, namely the sensitivity to imbalanced class-conditional risks. In order to address
this issue, a legitimate solution is to learn a minimax classifier [5, 12–14]. Instead of minimizing the global

risk of classification errors (1), the objective of this approach is to minimize maxk∈Y R̂k (δπ̂). In other words,
the minimax criterion tends to balance as more as possible the class-conditional risks (3), and according to
equation (4), the resulted decision rule becomes robust when π′ differs from π̂. As explained in [5], learning a
minimax classifier δM is equivalent to solve the following problem:

δM = argmin
δ∈∆

max
π∈S

r̂(π, δ). (5)

Introduction of the box-constrained minimax classifier. Although the minimax classifier is adequate for
addressing the issues regarding the class proportions, such a decision rule can appear sometimes too pessimistic
as discussed in [12, 15]. This drawback essentially occurs when prior probability shifts can append only over
a subset of the simplex S and the global risk of classification errors associated with δM becomes too high. In
order to alleviate this drawback, a solution is to shrink the priors constraint. In the literature, this task is called
Γ-minimax classification [12], where Γ corresponds to a set containing only the acceptable prior distributions.

In this paper, we consider Γ to be a box-constraint B defined by

B := {π ∈ R
K : ∀k ∈ Y, 0 ≤ ak ≤ πk ≤ bk ≤ 1}, (6)

which allows to bound each class proportion πk independently in the interval [ak, bk] for all k ∈ Y. The main
asset of considering such a box-constraint stems from the fact that the experts of the application domain can
easily and rationally build it, by providing some independent bounds [ak, bk] on each class proportion1.

When considering the new constraint (6) on the priors, we therefore set up the box-constrained simplex

U := S ∩ B. (7)

Hence, to compute the box-constrained minimax classifier δC with respect to U, the problem (5) becomes

δC = argmin
δ∈∆

max
π∈U

r̂(π, δ). (8)

Let us note that the minimax classifier (5) is a particular case of the box-constrained minimax classifier (8).
Indeed, the minimax classifier is still accessible when considering B = [0, 1]K , so that U = S.

Dealing with both numeric and categorical features. The task of dealing with both numeric and categor-
ical attributes is difficult for reaching optimal results. To compute a minimax classifier, we need a good estimate
of the joint distribution of the input features in each class. However, in the presence of mixed attributes, and
due to the curse of dimensionality (as noted in [13, 16]), this estimation is quite difficult. In such a case, a
relevant solution is to discretize the numeric attributes in order to model the joint distribution of features with
a probability mass function. Hence, since the number of values taken by the joint distribution is finite, we
can estimate their probabilities of occurrence without making any assumptions of independence between the
attributes. Many works have shown that the discretization of the numeric features generally leads to accurate
results [17–21], with favorable statistical properties. For example, the true error rate of the histogram rule which
minimizes the risk of error on a discrete training set can be calculated exactly as in [22–24]. In the following,
we consider that all the features are discrete or beforehand discretized with a finite number of values.

1For example, in medical field, it may be reasonable to bound the maximum frequency of a given disease.
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Contributions. In this paper, we provide a new algorithm to compute the box-constrained minimax classifier
(8) in the context of discrete or beforehand discretized features. In section 2, we develop the procedure for
solving the minimax optimization problem (8). This procedure is based on a projected subgradient algorithm,
which computes the least favorable prior over the polyhedral constraint (7). The convergence of this algorithm
is established. In section 3, we illustrate on a real public database the performance of the box-constrained
minimax classifier with respect to the box-constraint bounds. Finally, section 4 concludes the paper.

2. Computation of the Discrete Box-Constrained Minimax Classifier

In the following, we consider that all the features are discrete or beforehand discretized. In this section, given
a box-constraint B, we present the optimization procedure for solving the minimax optimization problem (8).

2.1. Reasoning to compute our discrete Box-constrained minimax classifier

Dealing only with discrete or beforehand discretized features, it follows that each each attribute Xij can take
on a finite number of values tj . Hence, the feature vector Xi := [Xi1, . . . , Xid] takes on a finite number of values

in the finite set X = {x1, . . . , xT } where T =
∏d

j=1 tj . Each vector xt can be interpreted as a “profile vector”

which characterizes the samples. Let T = {1, . . . , T} be the set of indices.

Since |X | = T is finite, it follows that |∆| = |Ŷ||X | = KT is finite. When the set of classifiers ∆ is finite, the
famous Minimax Theorem [25] establishes that

min
δ∈∆

max
π∈U

r̂(π, δ) = max
π∈U

min
δ∈∆

r̂(π, δ). (9)

Let us define δBπ the optimal Bayes classifier associated with the given priors π ∈ S, such that

δBπ := argmin
δ∈∆

r̂(π, δ). (10)

Let V (π) = r̂(π, δBπ ) denote the Bayes risk for a given π: it is the minimum risk for a given π. Hence, according
to (9), and provided that we can calculate δBπ and its minimum Bayes risk V (π) for any prior π ∈ U, the
optimization problem (8) is equivalent to compute the least favorable priors

π⋆ := argmax
π∈U

V (π), (11)

so that the solution δC of (8) is the Bayes classifier given by (10) with the priors (11). The least favorable priors
are generally difficult to compute as underlined in [12,26–28].

Subsection 2.2 is devoted to the calculation of the minimum Bayes risk V (π) over the simplex. Subsection 2.3
is devoted to compute the least favorable priors π⋆ solution of (11).

2.2. Calculation of the minimum empirical risk over the simplex

Dealing only with discrete or beforehand discretized features, we can estimate from the labeled learning
instances S = {(Yi, Xi) , i ∈ I} the probabilities p̂kt of observing the feature profile xt ∈ X given that the class
label is k, for all t ∈ T and for all k ∈ Y, such that

p̂kt :=
1

mk

∑

i∈Ik

1{Xi=xt} (12)

In (12), for all k ∈ Y, Ik = {i ∈ I : Yi = k} denotes the set of learning samples from the class k, and
mk = |Ik| corresponds to the number of instances in Ik. Since we can only consider the instances from the
training set, the probabilities p̂kt defined in (12) are assumed to be estimated once for all. Indeed, the statistical
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estimation theory [29] has established that the estimates p̂kt correspond to the maximum likelihood estimates
of the true probabilities pkt for all couples (k, t) ∈ Y × T . By estimating these probabilities with the full
training set, we get the best unbiased estimate with the smallest variance. This paper assumes that these class-
conditional probabilities are representative of the test set, i.e., that the test samples follow the same theoretical
class-conditional probabilities as the training samples.

The following theorem provides the analytic formula of the discrete Bayes classifier (10) associated with the
training class proportions π, and its associated risk.

Theorem 1. The empirical Bayes classifier δBπ , which minimizes the empirical risk (10) over ∆, is given by

δBπ : Xi 7→ argmin
l∈Ŷ

∑

t∈T

∑

k∈Y

Lkl πk p̂kt 1{xt=Xi}. (13)

Its associated empirical risk is

V (π) = r̂
(

π, δBπ
)

=
∑

k∈Y

πkR̂k

(

δBπ
)

, (14)

where, for all k ∈ Y,

R̂k

(

δBπ
)

=
∑

t∈T

∑

l∈Ŷ

Lkl p̂kt 1{λlt=min
q∈Ŷ

λqt}, (15)

with, for all l ∈ Ŷ and all t ∈ T , λlt =
∑

k∈Y Lkl πk p̂kt.

Proof. The proof is established in Theorem 1 in [1]. �

In other words, the function V : π ∈ S 7→ V (π) gives the minimum value of the empirical risk when the
class proportions are π and the class-conditional probabilities p̂kt remain unchanged. The following proposition
studies the function V over S.

Proposition 1. The empirical Bayes risk V : π 7→ V (π) is a concave multivariate piecewise affine function
over the simplex S with a finite number of pieces. Moreover, if the following condition

∃ (π, π′, k) ∈ S× S× Y : R̂k

(

δBπ
)

6= R̂k

(

δBπ′

)

(16)

is satisfied, then V is non-differentiable over the simplex S.

Proof. The proof is established in Proposition 1, Proposition 2 and Corollary 1 in [1]. �

Note that the condition (16) is almost always satisfied. Otherwise, it would mean that each class conditional

risk R̂k

(

δBπ
)

would remain equal whatever the prior π ∈ S, even at the vertices of the simplex. The empirical
Bayes risk V would be an affine function over S.

2.3. Maximization of the minimum empirical risk V over U

In order to compute our box-constrained minimax classifier, according to (11) and when considering (14),
our objective is to solve the following optimization problem

π⋆ = argmax
π∈U

V (π). (17)

Since V : π 7→ V (π) is in general non-differentiable provided that the condition (16) is satisfied, it is necessary
to develop an optimization algorithm adapted to both the non-differentiability of V and the domain U. To this
aim, we propose to use a projected subgradient algorithm based on [30] that follows the scheme

π(n+1) = PU

(

π(n) +
γn
ηn

g(n)
)

. (18)
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In (18), at each iteration n ≥ 1, g(n) denotes a subgradient of V at the point π(n), γn denotes the subgradient
step, ηn = max{1, ‖g(n)‖2}, and PU denotes the exact projection onto the box-constrained simplex U. Let us
note that this algorithm remains applicable in the particular case where the condition (16) is not satisfied, i.e.
when the function V is affine over U. The following lemma gives a subgradient of the target function V .

Lemma 1. Given π ∈ U, the vector composed of all the class-conditional risks R̂
(

δBπ
)

:=
[

R̂1

(

δBπ
)

, . . . , R̂K

(

δBπ
)

]

is a subgradient of V at the point π.

Proof. Let us remind that, for a concave function f : RK → R, g is a subgradient of f at point u ∈ R
K if g

satisfies f(v) ≤ f(u)+ 〈v − u, g〉 for all v ∈ R
K . In our case, given π ∈ U, let consider π′ ∈ U. Denoting R̂

(

δBπ
)

the vector R̂
(

δBπ
)

:=
[

R̂1

(

δBπ
)

, . . . , R̂K

(

δBπ
)

]

of all class-conditional risks, we get:

V (π) +
〈

π′ − π, R̂
(

δBπ
)

〉

=
∑

k∈Y

πk R̂k

(

δBπ
)

+
∑

k∈Y

(π′
k − πk) R̂k

(

δBπ
)

=
∑

k∈Y

π′
kR̂k

(

δBπ
)

≥ r̂
(

π′, δBπ′

)

= V (π′).

This inequality holds for any π′ ∈ U, hence the result. �

In the following, we choose g(n) = R̂
(

δB
π(n)

)

at each iteration n ≥ 1 in (18). The following theorem establishes
the convergence of the iterates (18) to π⋆.

Theorem 2. When considering g(n) = R̂
(

δB
π(n)

)

and any sequence of steps (γn)n≥1 satisfying

inf
n≥1

γn > 0,

+∞
∑

n=1

γ2n < +∞,

+∞
∑

n=1

γn = +∞, (19)

the sequence of iterates (18) converges strongly to a solution π⋆ of (17), whatever the initialization π(1) ∈ S.

Proof. The proof is a consequence of Theorem 1 in [30]. Here we have the strong convergence since π(n) belongs
to a finite dimensional space. �

Remark 1. In the general case where the empirical Bayes risk V is not constantly equal to zero over S, the
subgradient R̂

(

δBπ⋆

)

at the box-constrained minimax optimum is not null. Otherwise, the associated risk V (π⋆)
would vanish due to (14). This would contradict the fact that π⋆ is solution of (17).

According to Remark 1, in the general case where the empirical Bayes risk V is not constantly equal to zero
over S, the sequence of iterates (18) is infinite, and we need to consider a stopping criterion. To this aim, we
propose to follow the reasoning in [31] which leads to the following corollary.

Corollary 1. At iteration N ≥ 1,

∣

∣

∣

∣

max
n≤N

{

V
(

π(n)
)}

− V (π⋆)

∣

∣

∣

∣

≤ max











1,

√

√

√

√

K
∑

k=1

[

K
∑

l=1

Lkl

]2










ρ2 +
∑N

n=1 γ
2
n

2
∑N

n=1 γn
(20)

where ρ is a constant satisfying ‖π(1) − π⋆‖2 ≤ ρ.

Proof. The proof is detailed in Appendix B. �

In practice we can choose ρ2 = K since all the proportions belong to the probabilistic simplex. Since (20)
converges to 0 as N →∞, we can choose a small tolerance ε > 0 as a stopping criterion: we fix ε and, then, we
compute N = Nε such that the bound in (20) is smaller than ε.
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2.4. Exact projection onto the box constrained region

When considering the sequence of iterates (18), we need to compute the exact projection onto the box-
constrained probabilistic simplex U at each iteration n. Let us remind that U = S ∩ B, where B := {π ∈ R

K :
∀k = 1, . . . ,K, 0 ≤ ak ≤ πk ≤ bk ≤ 1}. Let us define for all i ∈ {1, . . . , 2K + 2}

Ui :=



















{

π ∈ R
K : 〈π, ei〉 ≤ bi

}

if i ∈ {1, . . . ,K}
{

π ∈ R
K :

〈

π,−e(i−K)

〉

≤ −ai
}

if i ∈ {K + 1, . . . , 2K}
{

π ∈ R
K : 〈π,1K〉 ≤ 1

}

if i = 2K + 1
{

π ∈ R
K : 〈π,−1K〉 ≤ −1

}

if i = 2K + 2

where, for all k ∈ {1, . . . ,K}, ek ∈ R
K is the indicator vector with 1 in coordinate k, and 1K ∈ R

K is the vector
fully composed of ones. We therefore can write U as

U =

2K+2
⋂

i=1

Ui. (21)

In other words, our box-constrained simplex U is a polyhedral set. Thus, in order to compute the exact projection
onto U, we propose to use the algorithm provided in [32] which computes the exact projection onto polyhedral
sets in Hilbert spaces. Let us note that in the case where we are interested in computing the minimax classifier
(5), we have U = S, and we can perform the projection onto S using the algorithm provided in [33] for which
the complexity is lower.

2.5. Box-constrained minimax classifier Algorithm

The procedure for computing the box-constrained minimax classifier δBπ⋆ is summarized in Algorithm 1. In
practice, we choose the sequence of steps (γn)n≥1 = 1/n which satisfies (19).

Algorithm 1 Box-constrained Minimax Classifier

1: Input: (Yi, Xi)i∈I , K, N .
2: Compute π(1) = π̂
3: Compute the p̂kt’s as described in (12).
4: r⋆ ← 0, π⋆ ← π(1)

5: for n = 1 to N do

6: for k = 1 to K do

7: g
(n)
k ← R̂k

(

δB
π(n)

)

see (15)
8: end for

9: r(n) =
∑K

k=1 π
(n)
k g

(n)
k see (14)

10: if r(n) > r⋆ then

11: r⋆ ← r(n), π⋆ ← π(n)

12: end if

13: γn ← 1/n, ηn ← max{1, ‖g(n)‖2}, π(n+1) ← PU

(

π(n) + γn g
(n)/ηn

)

14: end for

15: Output: r⋆, π⋆ and δBπ⋆ provided by (13) with π = π⋆.

3. Numerical experiments

Database description. For illustrating the interest of our box-constrained minimax classifier, we applied our
algorithm on the real public Framingham database [34]. The objective of the Framingham study is to predict
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the development of a Coronary Heart Disease (CHD) within 10 years based on d = 15 clinical and biological
features (7 categorical and 8 numeric). In this paper, we do not study the effects of the discretization of con-
tinuous features, and we consider the discretized attributes as built in [1, 2]. This database contains K = 2
classes, with class 2 corresponding to individuals who have developed a CHD, and class 1 corresponding to the
others. For this database, 3,658 patients have been followed for 10 years. Among these patients, 85% did not
developped a CHD, while 15% developped a CHD within 10 years. In other words, the dataset is imbalanced:
π̂ = [0.85, 0.15], which complicates the task of well predicting a CHD based on the labeled learning observations.
For this experiment, let us consider the L0-1 loss function, such that L11 = L22 = 0, and L12 = L21 = 1.

Procedure of the experiment and results. In the following, let π̄ := argmaxπ∈S V (π) be the least favorable
priors over the simplex S, and thus let δBπ̄ be the minimax classifier δM solution of (5). The box-constrained
minimax classifier δBπ⋆ solution of (8) aims to find a trade-off between achieving an acceptable global risk and
balancing the class-conditional risks with respect to the box-constraint (6). In other words, the box-constrained
minimax classifier δBπ⋆ is designed to find a trade-off between the discrete Bayes classifier δBπ̂ (13) associated
with the class proportions of the training set π̂, and the minimax classifier δBπ̄ . These results depend on the
box-constraint bounds. In practice, the box-constraint can be established by the experts of the application
field by bounding some or all the prior probabilities independently. If the results are not enough satisfying, the
experts can easily tighten or spread the box-constraint bounds in order to find an acceptable trade-off between
balancing the class-conditional risks and achieving an acceptable global risk of error.

For this experiment, in order to illustrate this property, we compared δBπ̂ , δBπ̄ and δBπ⋆ for different box-
constraint bounds. To this aim, we consider the box-constraints Bβ centered in π̂, and such that, given β ∈ [0, 1],

Bβ =
{

π ∈ R
K : ∀k ∈ Y, π̂k − ρβ ≤ πk ≤ π̂k + ρβ

}

, (22)

with ρβ := β ‖π̂−π̄‖∞ = β maxk∈Y |π̂k−π̄k|. Our box-constrained probabilistic simplex is therefore Uβ = S∩Bβ .
Thus, when β = 0, B0 = {π̂}, hence U0 = {π̂} and π⋆ = π̂. When β = 1, π̄ ∈ B1, hence π̄ ∈ U1 and π⋆ = π̄.
Note that the minimax classifier δBπ̄ was trained using our Algorithm 1 when considering U = S, and for this
particular case the projection onto the simplex S was performed using the algorithm provided in [33].

The procedure of our experiment is the following: we performed a 10-fold cross-validation, that is we randomly
split the main dataset such that 90% of the instances composed training set and the 10% staying instances belong
to the test set. We repeated ten times this splitting, and at each repetition of this cross-validation, we ranged
β from 0 to 1 so that we increased the box-constraint radius, and we measured V (π⋆) and ψ

(

δBπ⋆

)

, where
ψ : ∆→ R

+ such that, for all δ ∈ ∆,

ψ(δ) := max
k∈Y

R̂k(δ)−min
k∈Y

R̂k(δ), (23)

In other words, the criterion ψ aims to measure how a given classifier δ ∈ ∆ performs for balancing the
class-conditional risks.

The results of the experiment are presented in Figure 1. We can observe that as β increases, and thus as the
radius ρβ increases, then the better δBπ⋆ performs for balancing the class-conditional risks, and thus the better
δBπ⋆ performs for well predicting the patients who tend to develop a CHD. However, as β increases, and thus as
the radius ρβ increases, the more pessimistic δBπ⋆ becomes since V (π⋆) converges to V (π̄) which is the maximum
value of V . Concerning the computing time, at each iteration of the cross-validation procedure, the time to
train our Discrete Box-constrained Minimax Classifier δBπ⋆ was around 0.67s for each parameter β, against 0.01s
for the Discrete Bayes Classifier δBπ̂ (13). Note that the computing time associated with the Discrete Minimax
Classifier δBπ̄ was around 0.35s using the algorithm provided in [33] to project onto the simplex S, which is faster
than the training time associated with δBπ⋆ .
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Figure 1. Impact of the box-constraint radius on δBπ⋆ when β increases from 0 to 1 in (22),
after a 10-fold cross-validation procedure. The results are presented as [mean± std].

4. Conclusion

This paper presents the optimization procedure for computing a box-constrained minimax classifier in the
context of discrete or discretized features with multiple classes, a positive loss function, and some dependencies
between the features. This minimax classifier aims to address the issues of imbalanced datasets and prior
probability shifts. Our method is in the field of Γ-minimaxity and Bayesian Robustness for Machine Learning.
Our approach is designed for considering independent bounds on the class proportions, which can be easily and
rationally provided by the experts from the application domain, and which allow us to find a trade-off between
minimizing the maximum of the class conditional risks, and achieving an acceptable global risk of errors, based
on the interest or the knowledge of the experts.

The computation of the box-constrained minimax classifier results from the computation of the least favorable
prior which maximizes the minimum empirical risk of classification errors over the box-constrained probabilistic
simplex, using a projected subgradient algorithm. The convergence of our algorithm is established.

An important work would be to improve the computation time of the exact projection onto the box-
constrained simplex, which would be essential for dealing with databases containing a large number of classes.

References

[1] C. Gilet, S. Barbosa, and L. Fillatre, “Discrete box-constrained minimax classifier for uncertain and imbalanced class propor-
tions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2020.

[2] C. Gilet, S. Barbosa, and L. Fillatre, “Minimax classifier with box constraint on the priors,” in Machine Learning for Health
(ML4H) at NeurIPS 2019. Proceedings of Machine Learning Research, 2019.

[3] V. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on Neural Networks, vol. 10 5, pp. 988–99, 1999.
[4] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 2nd ed. Springer-Verlag New York, 2009.
[5] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed. Springer-Verlag New York, 1994.
[6] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowledge and Data Engineering, pp.

1263–1284, 2009.
[7] N. Japkowicz and S. Stephen, “The class imbalance problem: A systematic study,” Intelligent Data Analysis, pp. 429–449,

2002.
[8] C. Elkan, “The foundations of cost-sensitive learning,” in Proceedings of the 17th International Joint Conference on Artificial

Intelligence - Volume 2, 2001, pp. 973–978.
[9] Q. Dong, S. Gong, and X. Zhu, “Imbalanced deep learning by minority class incremental rectification,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2019.
[10] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla, and F. Herrera, “A unifying view on dataset shift in

classification,” Pattern Recognition, 2012.
[11] J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, Dataset Shift in Machine Learning. MIT Press,

2008.
[12] J. O. Berger, Statistical decision theory and Bayesian analysis; 2nd ed., ser. Springer Series in Statistics. New York: Springer,

1985.
[13] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. John Wiley and Sons, 2000.



110 ESAIM: PROCEEDINGS AND SURVEYS

[14] A. Guerrero-Curieses, R. Alaiz-Rodriguez, and J. Cid-Sueiro, “A fixed-point algorithm to minimax learning with neural net-
works,” IEEE Transactions on Systems, Man and Cybernetics, Part C, Applications and Reviews, vol. 34, no. 4, pp. 383–392,
Nov 2004.

[15] R. Alaiz-Rodríguez, A. Guerrero-Curieses, and J. Cid-Sueiro, “Minimax regret classifier for imprecise class distributions,”
Journal of Machine Learning Research, vol. 8, pp. 103–130, Jan 2007.

[16] G. V. Trunk, “A problem of dimensionality: A simple example,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1979.

[17] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsupervised discretization of continuous features,” International
Conference on Machine Learning, 1995.

[18] L. Peng, W. Qing, and G. Yujia, “Study on comparison of discretization methods,” IEEE, International Conference on Artificial
Intelligence and Computational Intelligence, pp. 380–384, 2009.

[19] Y. Yang and G. I. Webb, “Discretization for naive-Bayes learning: managing discretization bias and variance,” Machine

Learning, vol. 74, no. 1, pp. 39–74, Jan 2009.
[20] S. García, J. Luengo, and F. Herrera, “Tutorial on practical tips of the most influential data preprocessing algorithms in data

mining,” Knowledge-Based Systems, vol. 98, pp. 1–29, 2016.
[21] J. L. Lustgarten, V. Gopalakrishnan, H. Grover, and S. Visweswaran, “Improving classification performance with discretization

on biomedical datsets,” AMIA 2008 Symposium Proceedings, pp. 445–449, 2008.
[22] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, 2nd ed. Springer-Verlag New York,

1996.
[23] U. Braga-Neto and E. R. Dougherty, “Exact performance of error estimators for discrete classifiers,” Elsevier Pattern Recog-

nition, vol. 38, no. 11, pp. 1799–1814, 2005.
[24] L. A. Dalton and E. R. Dougherty, “Bayesian minimum mean-square error estimation for classification error - part i: Definition

and the Bayesian MMSE error estimator for discrete classification,” IEEE Transactions on Signal Processing, vol. 59, pp.
115–129, 2011.

[25] T. Ferguson, Mathematical Statistics : A Decision Theoretic Approach. Academic Press, 1967.
[26] L. Fillatre, “Constrained epsilon-minimax test for simultaneous detection and classification,” IEEE Transactions on Informa-

tion Theory, vol. 57, no. 12, pp. 8055–8071, 2011.
[27] L. Fillatre and I. Nikiforov, “Asymptotically uniformly minimax detection and isolation in network monitoring,” IEEE Trans-

actions on Signal Processing, vol. 60, no. 7, pp. 3357–3371, 2012.
[28] L. Fillatre, “Constructive minimax classification of discrete observations with arbitrary loss function,” Signal Processing, vol.

141, pp. 322–330, 2017.
[29] C. R. Rao, Linear Statistical Inference and its Applications. Wiley, 1973.
[30] Y. I. Alber, A. N. Iusem, and M. V. Solodov, “On the projected subgradient method for nonsmooth convex optimization in a

Hilbert space,” Mathematical Programming, vol. 81, pp. 23–35, 1998.
[31] S. Boyd, L. Xiao, and A. Mutapcic, “Lecture notes: Subgradient methods, Stanford university,” 2003, URL: http://web.mit.

edu/6.976/www/notes/subgrad_method.pdf.
[32] K. E. Rutkowski, “Closed-form expressions for projectors onto polyhedral sets in Hilbert spaces,” SIAM Journal on Optimiza-

tion, vol. 27, pp. 1758–1771, 2017.
[33] L. Condat, “Fast projection onto the simplex and the ℓ1 ball,” Mathematical Programming, vol. 158, no. 1, pp. 575–585, 2016.
[34] A. J. Wawrzyniak, Framingham Heart Study. New York, NY: Springer New York, 2013, pp. 811–814.
[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,

J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

http://web.mit.edu/6.976/www/notes/subgrad_method.pdf
http://web.mit.edu/6.976/www/notes/subgrad_method.pdf


ESAIM: PROCEEDINGS AND SURVEYS 111

A. Illustration of prior probability shifts issue

Figure 2. For this experiment we generated a training dataset (Up-Left) containingm = 5, 000
instances described by d = 2 features and clustered into K = 2 classes which satisfies the class
proportions π̂ = [0.90, 0.10]. We then trained the Logistic Regression δLR

π̂ on this training
set and we applied it on 5 different test sets containing m′ = 1, 000 instances. Each dataset
was generated using the make_blobs function provided by Scikit-Learn [35] from the same
features distributions in each class, but the test sets differ according to the class proportions
π′ ranging over the simplex S. The last subfigure describes the global risk associated with each
dataset. Since we have K = 2 classes, the global risk (4) associated with δLR

π̂ can be written

as r̂
(

π′, δLR
π̂

)

= π′
1[R̂1

(

δLR
π̂

)

− R̂2

(

δLR
π̂

)

] + R̂2

(

δLR
π̂

)

.
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B. Proof of Corollary 1

Let n ≥ 1 and let z(n+1) := π(n) + γn

ηn
g(n). We have

∥

∥

∥
z(n+1) − π⋆

∥

∥

∥

2

2
=

∥

∥

∥

∥

π(n) +
γn
ηn

g(n) − π⋆

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

π(n) − π⋆ +
γn
ηn

g(n)
∥

∥

∥

∥

2

2

=
∥

∥

∥
π(n) − π⋆

∥

∥

∥

2

2
+ 2

γn
ηn

〈

g(n), π(n) − π⋆
〉

+
γ2n
η2n

∥

∥

∥
g(n)

∥

∥

∥

2

2
.

Since g(n) is a subgradient of V at the point π(n), it follows that

〈

g(n), π⋆ − π(n)
〉

+ V
(

π(n)
)

≥ V (π⋆) ⇔
〈

g(n), π(n) − π⋆
〉

≤ V
(

π(n)
)

− V (π⋆) .

Thus,

∥

∥

∥
z(n+1) − π⋆

∥

∥

∥

2

2
≤

∥

∥

∥
π(n) − π⋆

∥

∥

∥

2

2
+ 2

γn
ηn

(

V
(

π(n)
)

− V (π⋆)
)

+
γ2n
η2n

∥

∥

∥
g(n)

∥

∥

∥

2

2
.

As explained in [31],

∥

∥

∥
π(n+1) − π⋆

∥

∥

∥

2

2
=

∥

∥

∥
PU

(

z(n+1)
)

− π⋆
∥

∥

∥

2

2
≤

∥

∥

∥
z(n+1) − π⋆

∥

∥

∥

2

2
.

Thus,

∥

∥

∥
π(n+1) − π⋆

∥

∥

∥

2

2
≤

∥

∥

∥
π(n) − π⋆

∥

∥

∥

2

2
+ 2

γn
ηn

(

V
(

π(n)
)

− V (π⋆)
)

+
γ2n
η2n

∥

∥

∥
g(n)

∥

∥

∥

2

2
.

Applying the last inequality recursively, it follows that

∥

∥

∥
π(n+1) − π⋆

∥

∥

∥

2

2
≤

∥

∥

∥
π(1) − π⋆

∥

∥

∥

2

2
+ 2

n
∑

i=1

γi
ηi

(

V
(

π(i)
)

− V (π⋆)
)

+

n
∑

i=1

γ2i
η2i

∥

∥

∥
g(i)

∥

∥

∥

2

2
.

Since
∥

∥π(n+1) − π⋆
∥

∥

2

2
≥ 0,

0 ≤
∥

∥

∥
π(1) − π⋆

∥

∥

∥

2

2
+ 2

n
∑

i=1

γi
ηi

(

V
(

π(i)
)

− V (π⋆)
)

+

n
∑

i=1

γ2i
η2i

∥

∥

∥
g(i)

∥

∥

∥

2

2

⇔ 2

n
∑

i=1

γi
ηi

(

V (π⋆)− V
(

π(i)
))

≤
∥

∥

∥
π(1) − π⋆

∥

∥

∥

2

2
+

n
∑

i=1

γ2i
η2i

∥

∥

∥
g(i)

∥

∥

∥

2

2
.

By definition of π⋆, V (π⋆) ≥ maxi=1...,n V
(

π(i)
)

, thus

2

n
∑

i=1

γi
ηi

(

V (π⋆)− V
(

π(i)
))

≥ 2
n
∑

i=1

γi
ηi

(

V (π⋆)−max
i≤n

{

V
(

π(i)
)}

)

.

It follows that,

V (π⋆)−max
i≤n

{

V
(

π(i)
)}

≤

∥

∥π(1) − π⋆
∥

∥

2

2
+

∑n
i=1

γ2
i

η2
i

∥

∥g(i)
∥

∥

2

2

2
∑n

i=1
γi

ηi

. (24)

Let us remind that for all i ∈ {1, . . . , n}, ηi = max
{

1,
∥

∥g(i)
∥

∥

2

}

. We can therefore distinguish two cases :
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• Case 1. If it exists i ∈ {1, . . . , n} such that
∥

∥g(i)
∥

∥

2
< 1, then η2i = 1, and

γ2i
η2i

∥

∥

∥
g(i)

∥

∥

∥

2

2
= γ2i

∥

∥

∥
g(i)

∥

∥

∥

2

2
≤ γ2i .

• Case 2. If i ∈ {1, . . . , n} such that
∥

∥g(i)
∥

∥

2
≥ 1, then η2i =

∥

∥g(i)
∥

∥

2

2
, and

γ2i
η2i

∥

∥

∥
g(i)

∥

∥

∥

2

2
= γ2i .

Hence,

n
∑

i=1

γ2i
η2i

∥

∥

∥
g(i)

∥

∥

∥

2

2
≤

n
∑

i=1

γ2i .

Applying the last inequality in (24), it follows that

V (π⋆)−max
i≤n

{

V
(

π(i)
)}

≤

∥

∥π(1) − π⋆
∥

∥

2

2
+
∑n

i=1 γ
2
i

2
∑n

i=1
γi

ηi

. (25)

Furthermore, since for all i ∈ {1, . . . , n}, ηi = max
{

1,
∥

∥g(i)
∥

∥

2

}

, and since we consider the subgradient

g(i) = R̂
(

δBπ(i)

)

:=
[

R̂1

(

δBπ(i)

)

, . . . , R̂K

(

δBπ(i)

)

]

,

where for all k ∈ Y
R̂k

(

δBπ(i)

)

=
∑

l∈Ŷ

Lkl P̂S

(

δBπ(i)(Xs) = l | Ys = k
)

,

it follows that, for all i ∈ {1, . . . , n},

∥

∥

∥
g(i)

∥

∥

∥

2
=

√

√

√

√

K
∑

k=1

[

R̂k

(

δB
π(i)

)

]2

=

√

√

√

√

K
∑

k=1

[

K
∑

l=1

Lkl P̂S

(

δB
π(i)(Xs) = l | Ys = k

)

]2

≤

√

√

√

√

K
∑

k=1

[

K
∑

l=1

Lkl

]2

.

Let us define h(L) :=

√

∑K
k=1

[

∑K
l=1 Lkl

]2

. Thus, for all i ∈ {1, . . . , n}, ηi ≤ max {1, h(L)}, and then

∀i ∈ {1, . . . , n},
γi
ηi
≥

γi
max {1, h(L)}

⇒

n
∑

i=1

γi
ηi
≥

1

max {1, h(L)}

n
∑

i=1

γi

⇒
1

∑n
i=1

γi

ηi

≤
1

1
max{1,h(L)}

∑n
i=1 γi

.

Finally, coming back to equation (25), and since
∥

∥π(1) − π⋆
∥

∥

2

2
≤ K, it follows that

V (π⋆)−max
i≤n

{

V
(

π(i)
)}

≤ max {1, h(L)}
K +

∑n
i=1 γ

2
i

2
∑n

i=1 γi
.
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