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Abstract: We determine the higher codimension fibers of elliptically fibered Calabi-Yau

fourfolds with section by studying the three-dimensional N = 2 supersymmetric gauge the-

ory with matter which describes the low energy effective theory of M-theory compactified

on the associated Weierstrass model, a singular model of the fourfold. Each phase of the

Coulomb branch of this theory corresponds to a particular resolution of the Weierstrass

model, and we show that these have a concise description in terms of decorated box graphs

based on the representation graph of the matter multiplets, or alternatively by a class of

convex paths on said graph. Transitions between phases have a simple interpretation as

“flopping” of the path, and in the geometry correspond to actual flop transitions. This de-

scription of the phases enables us to enumerate and determine the entire network between

them, with various matter representations for all reductive Lie groups. Furthermore, we

observe that each network of phases carries the structure of a (quasi-)minuscule represen-

tation of a specific Lie algebra. Interpreted from a geometric point of view, this analysis

determines the generators of the cone of effective curves as well as the network of flop

transitions between crepant resolutions of singular elliptic Calabi-Yau fourfolds. From the

box graphs we determine all fiber types in codimensions two and three, and we find new,

non-Kodaira, fiber types for E6, E7 and E8.
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1 Introduction and overview

The Kodaira-Néron classification of fibers in nonsingular elliptic surfaces associates to each

singular fiber a decorated affine Dynkin diagram corresponding to a simple Lie algebra g,

where the decoration indicates the multiplicities of the irreducible fiber components [1–3].

When the nonsingular elliptic surface is the resolution of a (singular) Weierstrass model, the

Dynkin diagram can be associated with the singularity. For higher-dimensional elliptically

fibered geometries the analysis of fibers in codimension one is very similar but a natural

question arises: is the Kodaira-Néron classification still applicable to fibers in higher codi-

mension? In this paper we answer this question for elliptically fibered Calabi-Yau varieties

and show that the fibers in codimensions two and three have a classification in terms of dec-

orated representation graphs, so-called decorated box graphs, associated to a representation

R of the Lie algebra g. These box graphs contain the information about the higher-

codimension fiber type, which in general goes beyond the Kodaira-Néron classification. In

particular they specify the extremal rays of the cone of effective curves of the resolved

geometry, and thereby the network of possible flop transitions among different resolutions.
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The correspondence between decorated box graphs and singular fibrations is inspired by

M-theory/F-theory duality, which implies a characterization of crepant resolutions of an el-

liptically fibered Calabi-Yau variety in terms of the Coulomb phases of a three-dimensional

N = 2 supersymmetric gauge theory, which describes the low energy effective theory of

M-theory compactified on the fourfold [4–14]. If the Calabi-Yau variety has an elliptic

fibration with a section, then we can also take the F-theory limit by shrinking the size

of the elliptic fiber [15–18]. Compactification on the resolved Calabi-Yau fourfold with

fiber type G in codimension one realizes the Coulomb branch with gauge group broken

to U(1)r, where r is the rank of G; inclusion of matter introduces a substructure in the

Coulomb branch [19, 20]. A crepant resolution of the Calabi-Yau variety then corresponds

to a Coulomb phase of the three-dimensional theory. The study of this correspondence

was initiated in [10, 12] in the case of Calabi-Yau threefolds, and further pursued in the

case of Calabi-Yau fourfolds in [13, 21–23]. More concretely, any crepant resolution will

resolve the codimension-one Kodaira fibers and the corresponding exceptional curves can

be labeled by the simple roots of g, intersecting according to the (affine) Dynkin diagram

of g. Along codimension-two loci, some of these curves become reducible, corresponding

to roots splitting into weights of R, as observed in [24, 25], and in codimension three these

further split into each other in a way compatible with the Yukawa couplings.

The main idea of this paper is to use the correspondence between crepant resolutions of

elliptic Calabi-Yau varieties and the Coulomb phases of the gauge theory to find a purely

representation theoretic description of the fibers in codimensions two and three, as well

as their network of flop transitions. To this effect, we first analyze the structure of the

Coulomb phases of a three-dimensional N = 2 supersymmetric gauge theory obtained by

compactification of M-theory on a Calabi-Yau fourfold (or likewise the five-dimensional

analog for Calabi-Yau threefolds) and prove the correspondence between Coulomb phases

and decorated box graphs. More precisely, consider a gauge theory with gauge group G

specified by the Kodaira fiber type in codimension one of the elliptic fibration. In addition

consider matter in a representation R of the gauge group G. This is modeled in the Calabi-

Yau by codimension-two loci in the base of the elliptic fibration, in particular, the Kodaira

fiber type in codimension one can degenerate further in higher codimension [24, 26]. The

type of degeneration depends on the representation, but also on the precise embedding of

the cone of effective curves in codimension one into that in codimension two. In terms of

the Coulomb phases of the three-dimensional gauge theory this corresponds to choosing a

cone inside the Weyl chamber of the gauge group G. We show that this choice is character-

ized in terms of a coloring of the representation graph of R, which we refer to as decorated

box graph.

Returning to the geometry, we then show that the decorated box graphs fully char-

acterize the fibers in higher codimension and can be used to (re)construct the fibers: the

box graphs contain the information about the extremal generators (or rays) of the cone of

effective curves, as well as their intersection data, and thereby the analog of the Kodaira-

Néron intersection graph for the fiber. The box graphs furthermore contain the information

about flop transitions, which map topologically distinct small resolutions into each other.
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Schematically the correspondence we use is as follows

Decorated

Box Graphs

րւ ցտ
Coulomb Phases of

d = 3, N = 2

supersymmetric

gauge theories

M-theory compactification←−−−−−−−−−−−−−−−−−−→

Crepant resolutions

of elliptically

fibered Calabi-Yau

fourfolds

(1.1)

With this correspondence in place we find the following implications for the fibers in

higher codimension. The fiber types generically are not of Kodaira type, and the descrip-

tion in terms of box graphs gives a full classification of the types of fibers that can arise. In

particular for the case of rank one enhancements we show that the different fiber types are

obtained by deleting nodes in the Kodaira fiber. This is in accord with known examples of

crepant resolutions of elliptic Calabi-Yau varieties, where it has been known that the fibers

in higher codimension need not belong to Kodaira’s list [25, 27–29] (for earlier examples il-

lustrating a related issue, see [30]). Detailed studies of such resolutions for Calabi-Yau four-

folds, mostly focusing on an SU(5) gauge group, i.e., I5 Kodaira fiber in codimension one,

appeared in [25, 28, 29] using algebraic methods, and in [21, 31–34] using toric resolutions.

The network of small resolutions connected by flop transitions follows directly from

the decorated box diagrams, by flops of the extremal generators of the cone of curves. The

intriguing correspondence that we find from the identification with box graphs is that in

many cases, the network of flops is given in terms of representation graphs of so-called

(quasi-)minuscule representations of a Lie algebra g̃ ⊃ g, where g is the Lie algebra asso-

ciated to the gauge group G.

The box graphs allow in addition the analysis of multiple matter representations, which

we exemplify for G = SU(5) with matter in the fundamental and anti-symmetric represen-

tations. The complete network of small resolutions for SU(5) was determined in [23], where

it was observed that neither toric nor standard algebraic resolutions are sufficient to map

out all topologically inequivalent resolutions, and some of these can be reached only by

flop transitions along fiber components, that exist only in codimension two (above “matter

loci”). The present method using the decorated representation graph gives a systematic

characterization of these networks, and in particular reproduces the flop network for SU(5).

There are various equivalent descriptions of the decorated box graphs or the Coulomb

phases of the three-dimensional gauge theory. To be more precise, the general situation we

consider is a Lie subalgebra g ⊂ g̃ with trivial center, and commutant g⊥ of g in g̃. The

adjoint representation of g̃ decomposes as

g̃ → g⊕ g⊥

Adj(g̃) → Adj(g)⊕Adj(g⊥)⊕R⊕R ,
(1.2)
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with R ⊕R the analogue of a bifundamental representation. In the case that g⊥ = u(1),

for instance, we show the equivalence between each of the following points

• Coulomb phases of d = 3 N = 2 g⊕ u(1) gauge theory with matter in R⊕R

• Elements of the Weyl group quotient Wg̃/Wg (with so-called Bruhat ordering)

• Codimension-two fibers of elliptic Calabi-Yau varieties, with codimension-one Ko-

daira fiber type corresponding to g with an additional section realizing u(1)

• Decorated box graphs constructed from the representation graph ofR with decoration

by signs (colorings), obeying so-called flow rules

• (Anti-)Dyck paths1 on the representation graph: paths on the representation graph

(which for the case of simple gauge group, such as su(N), have to cross the diagonal,

thus the Anti -Dyck).

From this list of equivalent descriptions, the decorated box graphs or anti-Dyck paths are

particularly simple and elegant ways to describe the phases, and allow the determination

of the entire network of phases by simple, combinatorial rules. Transitions between phases

are described in terms of sign changes or “flops” of corners of the paths. We prove and

exemplify this method in a large class of matter representations for su(N), so(N), sp(N),

and the exceptional Lie algebras. Furthermore we draw a connection between the network

of flop transitions and (quasi-)minuscule representations of g̃.

Geometrically the situation described above is less generic as it requires an additional

rational section. We therefore also discuss the decorated box graphs and corresponding

paths in the case when the gauge algebra is just g, in which case further restrictions have to

be imposed on the allowed colorings. For instance for g = su(n), the tracelessness condition

implies that the box graphs have to satisfy an additional diagonal condition, which in terms

of paths on the representation graph corresponds to restricting to anti-Dyck paths.

The fibers in higher codimension are of particular interest when g⊥ = su(2), which

allows additional monodromy, for instance, su(6)⊕su(2) ⊂ e6. In this case additional mon-

odromy is possible, which is characterized by phases which are invariant under the action

of the Weyl group of g⊥. Reconstructing the fibers from the decorated box graphs in codi-

mensions two and three, it follows that for non-trivial monodromy these are not of Kodaira

type. In general, they have fewer components than a Kodaira type fiber and we refer to

these fibers as being monodromy-reduced. For example for g̃ = e6 both in codimension

two (from su(6)) or codimension three (from su(5)) we will determine all the fiber types

and show that there are a few new non-Kodaira fibers that can occur, which go beyond

the ones obtained by Esole-Yau in [28]. The possible fibers are summarized in figures 28

and 31. In fact we show that all monodromy-reduced fibers are obtained by deleting one

of the non-affine nodes of the Kodaira fiber. For E7 and E8 this is shown in appendix D.

1Dyck paths are staircase paths on a (representation) graph, which are not allowed to cross the

diagonal [35].
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Finally, we should point out a few nice conclusions and a somewhat curious observa-

tion regarding the networks of flop transitions. First, we should highlight the fact that

in many cases, the network of phases or, equivalently, small resolutions form a so-called

minuscule representation of g̃, where the representation structure is exactly given by the

flop transitions. I.e. not only is the structure of the fibers determined in terms of represen-

tation data, but also the network of flop transitions has a representation structure under

the higher rank Lie algebra g̃. We shall discuss this correspondence in detail in section 2.5.

Whenever the commutant g⊥ = su(2), we further show that the flop diagram forms the

(non-affine) Dynkin diagram of the Lie algebra g̃. The case of somewhat more peculiar

nature is when g⊥ = u(1). The phases of the gauge theory with gauge algebra g⊕u(1) form

a minuscule representation of g̃. However, the phases of the theory without the additional

abelian factor seem to form pairs of Dynkin diagrams of the Lie algebra g̃, glued together

as for instance shown in figure 1 for su(5) with 10 matter, figure 11 for su(5) with 10 and

5 matter,2 and e6 with 27 matter in figure 41. These are certainly curious observations

that require further investigation.

In the mathematics literature, considerations of Weyl group actions as flops in the

context of the Minimal Model program have appeared in Matsuki [36]. The main differ-

ence with the present work is in that we do not restrict our attention to normal crossing

singularities and address global issues of the resolution. Furthermore, our main object of

study is the structure of fibers in higher codimension.

The paper is organized as follows. We begin with a lightning review of the Coulomb

branch of d = 3, N = 2 supersymmetric gauge theories with matter. The subsequent

parts of sections 2 determine the equivalence of the characterization of these phases in

terms of Weyl group quotient, Bruhat order, and box graphs. Furthermore we show that

in many cases the networks of flop transitions correspond to the representation graphs of

certain (quasi-)minuscule representations. In section 3 we introduce the correspondence to

anti-Dyck paths for the discussion of phases of su(n) gauge theories with matter3 in the

fundamental, in the anti-symmetric and in both representations. In particular, we show

how this offers confirmation of the results obtained from geometry in [23] in the case of

SU(5) with 5 and 10 matter. Important properties such as extremal generators, flops and

codimension-three behavior are discussed in section 4. In section 5 we count the phases for

su(n) with various matter representations. Other groups and the case of monodromy are

discussed in section 6.

Finally in section 7 we draw the relation to the geometry and discuss the detailed map

between phases and resolutions, in particular determining explicitly the effective curves,

extremal rays, and flops in the geometry from the decorated box graphs or anti-Dyck

paths. We determine from the box graphs the fibers in codimensions two and three in

section 8 and exemplify this by determining all the E6 fiber types that arise in SU(6) in

codimension two, and SU(5) in codimension three, including the flop transitions among

2In this case there are three ways to cut the flop diagram resulting in pairs of E6, D6 and A6 Dynkin

diagrams, respectively.
3After this work appeared, the phases and geometric resolutions for su(n) for n = 2, 3, 4 were discussed

in [37].
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them. Likewise we determine the monodromy-reduced E7 fibers from SO(12). Global

issues related to the existence of flops into phases of U(n) versus SU(n) gauge theories and

the relation to the existence of additional rational sections are explained and exemplified

in section 9. Details of the representation theory of Lie groups and our conventions are

summarized in appendix A. Two useful tables with the set of effective curves for the phases

of the U(5) gauge theory with fundamental and with anti-symmetric representation are

given in appendix B, and the phases of SO(2n) with fundamental matter are discussed in

appendix C. Finally, in appendix D the phases of E-type gauge group are discussed and

the fiber types of E8 are determined from E7 in codimension one with monodromy.

2 Phases from Weyl group quotients and box graphs

In this section we start by briefly reviewing the classical Coulomb phase of d = 3 N = 2

gauge theories with matter. We then give three equivalent descriptions of it in terms of

either Weyl group quotient, Bruhat order, or decorated box graphs. Furthermore, we show

that in many cases, the phases form a so-called quasi-minuscule representation. These

provide the framework for all subsequent sections discussing the phase structure of these

gauge theories.

2.1 Phases of d = 3 N = 2 gauge theories

Let us first review the classical phase structure of three-dimensional N = 2 supersymmetric

gauge theories [19, 20]. We consider vector multiplets V whose components are in the

adjoint representation of a gauge group G. The scalar components of V are a three-

dimensional vector potential A and a real scalar φ. In addition, we haveNf chiral multiplets

Qf whose components are in a representation Rf of the gauge group G. We assume that

there are no classical real mass terms nor classical complex mass terms for the chiral

multiplet. Since we also do not introduce a classical Chern-Simons term, we consider an

appropriate set of chiral multiplets which does not break the parity anomaly.

When the adjoint scalar φ gets a vacuum expectation value (vev) in the Cartan sub-

algebra of G, the gauge group G breaks into U(1)r where r = rank(G). Then, the vev of φ

takes value in a Weyl chamber C∗ = R
r/WG, where WG is the Weyl group of G.

The presence of a chiral multiplet Qf adds an additional structure to the Coulomb

branch. The vev of the adjoint scalar gives rise to a real mass term for the chiral multiplet.

However, the mass becomes zero along a real codimension-one subspace inside the Weyl

chamber, characterized by

〈φ, λ〉 = 0 , (2.1)

where the massless chiral multiplet transforms in the representation Rf of G with weight

λ. Hence, the Weyl chamber is further divided by the real codimension-one walls (2.1) for

all the weights. A phase of the three-dimensional gauge theory corresponds to one of these

subwedges of the Weyl chamber.

In the bulk of the Coulomb branch, the real scalar φ may be complexified by using a

scalar γ which is dual to a photon coming from U(1)r. The scalar γ is subject to a shift

– 6 –
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symmetry, and the charge quantization restricts it to be compact. Hence, γ lives on an

r-dimensional torus.4 The classical Coulomb branch then becomes the total space of the

r-dimensional torus fibration over a subwedge of the Weyl chamber. However, the radius

of the torus vanishes along (2.1) due to quantum corrections [19, 20]. Therefore, (2.1)

becomes a complex codimension-one wall. The structure of the quantum Coulomb branch

may be further altered depending on Nf .

Since we will relate the phase structure to a resolution of a singular geometry, the only

information that is relevant for this purpose is the classical moduli space parametrized by

the vev of φ. Hence, we focus on determining the subwedges of the Weyl chamber where

the boundary is given by (2.1) for all the weights in the representation Rf .

2.2 Phases from Weyl group quotients

In the following we give various representation theoretic characterizations of the Coulomb

phases. The first correspondence we explicate is between phases and the Weyl group

quotient Wg̃/Wg with g the Lie algebra of the gauge group G, and g̃ as in (1.2).

Let g be a (simple) Lie algebra, and h its Cartan subalgebra. We set out our notation

and conventions as well as some useful properties of Lie algebras and representations in

appendix A. Denote by h∗ the dual of the Cartan subalgebra, which can be identified with

the root space of g. Furthermore, let Φ be the set of roots of g, and an ordering of the roots

is determined by a linear functional µ on the root space, which determines Φ = Φ+
µ ∪ Φ−

µ ,

where Φ+
µ = {α ∈ Φ; µ(α) > 0}. The elements in Φ+

µ are called positive roots and linear

combinations of the elements in Φ+
µ with non-negative coefficients forms a simplicial cone

Cµ. The generators of the cone are called simple roots.

A Weyl chamber is determined by the ordering µ

C∗µ =
{
φ ∈ h , 〈φ, α〉 > 0 , for all α ∈ Φ+

µ

}
. (2.2)

Note that C∗ is a subset of h, which is identified with the coroot space in the conventions

of appendix A.

The Weyl group acts simply transitively, with trivial stabilizers, on the set of orderings

Φ+ and on the set of Weyl chambers. The number of Weyl chambers is thus equal to the

order of the Weyl group.

Let λI , I = 1, · · · , r be the weight vectors of a given representation R of dimension r.

Then a phase is defined as a non-empty subwedge in a Weyl chamber of g such that the

inner product with any weight of the representation has a definite fixed sign

signφ :
R → Z2

λI 7→ sign(〈φ, λI〉) .
(2.3)

A phase is then labelled by a fixed vector ǫ1 · · · ǫr of signs ǫI = ±1

Φµ
ǫ1···ǫr =

{
φ ∈ C∗µ : sign(〈φ, λI〉) = ǫI , I = 1, · · · , r

}
. (2.4)

4Due to this construction, the chiral multiplet obtained by dualizing the vector potential into the scalar

γ always has a U(1)J symmetry which shifts γ.
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This clearly depends on the choice of the Weyl chamber, and an arbitrary choice of the

signs is not allowed. We will fix the Weyl chamber for the phases to be that given by the

ordering with respect to the Weyl vector µ = ρ.

To state our claim, consider a simple Lie algebra g̃, of one rank higher5 than g, with

g̃ ⊃ g⊕ u(1) , (2.5)

whose adjoint has a decomposition as a representation of g⊕ u(1)

adj(g̃) −→ adj(g)⊕ adj(u(1))⊕R+ ⊕R− . (2.6)

Let Φ̃ be the roots of g̃. The isomorphism (2.6) gives an embedding of the roots Φ of g

and the weights λI of R into Φ̃.

Each ordering µ̃ of the roots Φ̃ gives an ordering on adj(g) and (R⊕R) from the decom-

position (2.6). An ordering on (R⊕R) is equivalent to a choice of signs on R, consistent

with the ordering on adj(g). The phases are defined with respect to one particular Weyl

chamber, which we choose above to be that coming from the ordering µ = ρ. Let us fix the

functional µ̃ such that it reduces to ρ when considered on adj(g). Then there is a one-to-one

map between the phases for fixed ordering µ = ρ and orderings (linear functionals) on Φ̃, i.e.

Φρ
ǫ1···ǫr ↔ µ̃ . (2.7)

The Weyl group acts transitively on the set of orderings, Wg acts thus on the orderings

of adj(g), and fixing that ordering to ρ involves quotienting Wg̃ by this action. In summary,

we find that the number of distinct phases of the g⊕ u(1) to be given by the order of the

Weyl group quotient

#Φρ
ǫ1···ǫr =

|Wg̃|
|Wg|

, (2.8)

where |Wg| denotes the order of the Weyl group of g. By the simple transitivity of the action

of the Weyl group on the orderings and Weyl chambers we have the following one-to-one

maps

Φρ
ǫ1···ǫr ↔ Φ̃+

µ̃ ↔ C̃∗µ̃ ↔ [wµ̃] , (2.9)

where [wµ̃] represents an element of the quotiented Weyl group Wg̃/Wg.

Considering the (Cartan-Weyl) ordering with respect to ρ̃, the Weyl vector of g̃, one

finds that

C̃∗ρ̃ ↔ Φρ
++···+ . (2.10)

Since the simple roots are the extremal rays of the simplicial cone, the Weyl reflections

with respect to them map C̃∗ρ̃ to adjoining Weyl chambers.

The Weyl group acts simply transitively on sets of simple roots, so one can start with

ρ̃ and perform Weyl reflections by simple roots that preserve adj(g) to generate the phases

that share a real codimension-one wall, and repeat to generate all the phases. Using the

same procedure one associates to each phase an element of the quotiented Weyl group, the

combination of Weyl reflections taking Φρ
++···+ to that phase, as expected from (2.9).

To show how this works explicitly, we provide two examples in appendix B for u(5)

with matter in the fundamental 5 and antisymmetric representation 10.

5In some instances we will also consider decompositions with su(2) or higher rank enhancements.
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2.3 Network of phases and Bruhat order

The Coulomb phases or, equivalently, the Weyl group quotients have a natural ordering,

known as the Bruhat order. The entirety of the phases with this ordering will correspond,

in terms of the geometry, to the network of flop transitions and so characterizes them

in terms of representation-theoretic data. We shall now provide a short summary of the

Bruhat order.

The element of the Weyl group which corresponds to the phase Φρ
ǫ1···ǫr of the theory

with g⊕u(1) has a nice mathematical characterization. Let S be the set of Weyl reflections

with respect to the simple roots of g̃, and W be the whole Weyl group of g̃. From S, we

take a subset J ⊂ S which are the Weyl reflections with respect to the roots corresponding

to the simple roots of g. Then, let WJ be the subgroup of W generated by the elements in

J , which is in fact a parabolic subgroup. Furthermore, define

W J := {w ∈W | l(sw) > l(w) for all s ∈ J}, (2.11)

where l(w) is the length of w. Decomposing an element w ∈W by in terms of the generators

si as w = s1 · · · sr, the length l(w) is the smallest such r, and the corresponding decomposi-

tions with the smallest r is called reduced. The length of the identity is defined to be zero.

In fact, the elements which correspond to the phase Φρ
ǫ1···ǫr are precisely characterized

by the elements in W J . In order to see that, we use the following two claims. First, if

wα ∈ S, then wα(Φ̃
+ \ {α}) = Φ̃+ \ {α}, and α becomes the negative root −α after the

Weyl reflection wα. Second, if one fixes a positive root system, then the number of positive

roots sent to negative roots by w is equal to l(w). From the algorithm to associate an

element w of the Weyl group W to the phases Φρ
ǫ1···ǫr , the roots correspond to the simple

roots of g are still positive with respect to the positivity of Φ̃+
ρ̃ after the Weyl action w to

the positive root system Φ̃+
ρ̃ . Therefore, any element w corresponding to the phases Φρ

ǫ1···ǫr

satisfies l(sw) = l(w) + 1 for all the elements s ∈ J , which means that w exactly satisfies

the definition of W J . We still need to prove that w indeed exhausts all the elements of

W J . Note that, if there is a reduced expression of w ∈ W J , then sw should not be inside

W J for all the elements s ∈ WJ . Therefore, the maximum number of |W J | is |W |
|WJ |

. Since

the algorithm gives |W |
|WJ |

number of w, it exhausts all the elements in W J .

Given this setup, we can now define the (left) Bruhat order, in which we are interested

in.6 For u,w ∈W , Bruhat order u ≤ w means that there exist wi ∈W such that

u = w0 → w1 → · · · → wk−1 → wk = w. (2.12)

The arrow wi → wi+1 means that wi+1 = twi and l(w) < l(wi+1) where t is a reflection

element of T defined as

T := {wsw−1 : w ∈W, s ∈ S}. (2.13)

Then, from the construction of w corresponding to the phase Φρ
ǫ1···ǫr , it obeys the Bruhat

order. Namely, starting from the identity which corresponds to the phase Φρ
+···+, the length

of the element w increases by one when one performs a Weyl reflection with respect to a

root corresponding to the weights of R.

6See for example [38] for some more details on Bruhat order and related matters.
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Figure 1. Example for Bruhat ordering of the phases or equivalently Weyl group quotients, for the

u(5) theory with antisymmetric 10 representation, where each edge represents a Weyl reflection.

The nodes 4, 6, 7, 8, 9, 10, 11, 13 correspond to the phases of SU(5) with 10 matter, shown in blue.

Note that as explained in section 2.5, the phase diagram for the U(5) theory corresponds exactly

to the representation graph of the 16 representation of SO(10).

Based on the Bruhat order for W J we define a diagram. The nodes correspond to

the elements in W J . The lines between the nodes means that the elements are ordered

by Bruhat order and the difference between their lengths is one. From the properties of

the Bruhat order and the quotient W J , this diagram matches with the phase diagram of

Φρ
ǫ1···ǫr of the theory with g⊕ u(1). Figure 1 exemplifies this for U(5) with antisymmetric

10 representation. Furthermore the reader will find the graphs for various Weyl group

quotients throughout the paper in figures 20 and 41.

2.4 Box graphs and flow rules

The most elegant and compact description of the phases is in terms of what we refer to as

decorated box graphs. The box graphs are based on the representation graph and contain

all the relevant information about the phases, or equivalently the geometry.
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...L 1 L 6L 5L 4L 3L 2 L n-1 L n

Figure 2. The representation n for su(n). Each box represents a weight, Li and the walls separating

the boxes represent the action of the negative (positive) simple roots on the weights.

...

...

...

...

...

...

...

(1,2)

(2,3)

(1,3) (1,4) (1,5) (1,6) (1,7)

(5,6)

(4,5)

(3,4)

(6,7)

(1,n)

(6,7)

(n-1,n)

L2-L3 L3-L4 L6-L7L5-L6L4-L5 Ln-1-Ln

L2-L3

L3-L4

L4-L5

L5-L6

Ln-2-Ln-1

L1-L2

.
.
.

...

Figure 3. The representation Λ2n for su(n). Each box represents a weight, Li + Lj of the

representations labeled by (i, j), the walls separating the boxes represent the action of the negative

(positive) simple roots on the weights.

Let us consider the algebra su(n) ⊕ u(1). The positive roots can be written in terms

of Li, i = 1, · · · , n as explained in the appendix A,

Φ+ = {Li − Lj |i = 1, · · · , n; j > i} . (2.14)

The weights of the fundamental representation of dimension n are

V = {Li |i = 1, · · · , n} . (2.15)

and the weights of the anti-symmetric representation of dimension n(n− 1)/2 are

Λ2V = {Li + Lj |i = 1, · · · , n; j > i} . (2.16)

These correspond to roots and weights of su(n) subject to the condition

n∑

i=1

Li = 0 , (2.17)

which we often refer to as the tracelessness condition. If this is not satisfied, the generator∑
i Li corresponds to an additional u(1) generator.

One can present the fundamental (resp. antisymmetric) representation by the box

graph given in figure 2 (resp. 3). Each box can be decorated by a sign (or equivalently

by a coloring). We can then ask which such decorated box graphs correspond to a phase,
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Φρ
ǫ1···ǫr , where the ǫi are the signs decorating the box corresponding to the ith weight of

the representation.

We show the existence of the following flow rules governing the placement of signs

which are a necessary condition for any decorated box graph to correspond to a consistent

phase (or a non-empty subwedge of the Weyl chamber). The flow rules are

Fundamental:

+ ← +

− → −

Antisymmetric:

+ ← +

↑

+

− → −

↓

−

(2.18)

The arrows indicate that if the sign is specified at the nock (the end of the arrow opposite

the arrowhead) then the sign flows through the diagram in the direction of the arrow.

An alternative description to the representation graph decorated with signs that follow

the flow rules is to consider the path that separates the + and− sign boxes. These paths will

play a particularly important role for the case of su(n), and will allow a simple description

of flop transitions and the counting of the phases.

These rules are proved separately for each representation. Consider the fundamen-

tal representation, and assume that the flow rules given above are violated. Then one

has Li > 0 and −Lj > 0 with j < i. By taking positive linear combinations we get

Li + (−Lj) + (Lj − Li) = 0. Thus the subwedge of the Weyl chamber with respect to this

sign assignment is empty.

Again for the antisymmetric representation assume that the flow rules are violated.

We shall consider here only the vertical arrows, a similar argument holds for the horizontal

arrows. The violation tells us that (Li + Lk) > 0 and −(Lj + Lk) > 0 with j < i. Using

positive linear combinations one generates (Li + Lk) + −(Lj + Lk) + (Lj − Li) = 0. The

subwedge of the Weyl chamber C∗µ with respect to this sign assignment is again empty.

Combinatorics allows us to count the decorated box graphs obeying the flows rules, in

terms of monotonous staircase paths in the representation graph, starting at the point S

and ending at one of the green nodes along the diagonal in figure 6. For the ith node we

count the number of paths in an i×(n−1−i) rectangular grid, which is given by
(
n
i

)
. Thus

the total number of paths is
∑n−1

i=0

(
n−1
i

)
= 2n−1, which equals |Wso(2n)|/|Wsu(n)|. More

generally the number of phases agrees with the cardinality of the Weyl group quotients of

g̃ and g, as described in section 2.2.
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g̃ su(n) so(2n) e6 e7 e8

Minuscule ̟g ̟1, ̟n−1 ̟1, ̟n−1, ̟n ̟1, ̟5 ̟6 −
Dim of V̟g n, n 2n , 2n−1, 2n−1 27, 27 56 −

g su(n−1), su(n−1) so(2n− 2), su(n), su(n) so(10), so(10) e6 −

Table 1. Simply-laced Lie algebras g̃ and their minuscule representations V̟g
, relevant for the

rank one embeddings. We first list the highest weight ̟g of the minuscule representation of g̃ (in

terms of the fundamental weights ̟i) and then the dimension of the corresponding representation

V̟g
. In the last row we list the Lie algebras g which have a rank one embedding into g̃ such that

the Weyl group quotient Wg̃/Wg is the corresponding minuscule representation. The labeling of the

highest weights is done in a standard way, as discussed in appendix A. For su(n), every fundamental

weight is a minuscule weight, but we only include the ones relevant for rank one embeddings.

This, combined with the above argument, shows the sufficiency and necessity of the

flow rules in the determination of the phases.

2.5 Minuscule representations and Weyl group quotients

We have seen that the Weyl group quotient identifies the phase Φ̃+
µ̃ with the corresponding

Weyl chamber C̃∗µ̃. Furthermore, a transition to adjacent phases corresponds to a Weyl

reflection with respect to simple roots that preserves the fundamental Weyl chamber of g.

In fact, this point of view reveals an intriguing relation between the network of phases and

a representation graph of g̃. For example, let us consider the phases of the U(5) gauge

theory with matter in the antisymmetric representation 10. The phase network is depicted

in figure 1, and corresponds to the Weyl group quotient Wso(10)/Wsu(5), as explained in the

previous section. We observe that this phase diagram is in fact identical to the represen-

tation graph of the 16 spinor representation of so(10). This is not a coincidence but the

relation will hold for so-called minuscule representations of simply laced Lie algebras.

Let us consider embeddings satisfying rank(g̃) = rank(g)+1 and summarize the corre-

spondences that we find in this case. A minuscule representation of a Lie algebra is defined

as an irreducible representation with the property that the Weyl group acts transitively on

all weights occurring in the representation [39]. For all the simply-laced Lie algebras these

are listed in table 1, where the ̟i are the fundamental weights

〈α∨
i , ωj〉 = δij . (2.19)

Furthermore, a quasi-minuscule representation is one such that the Weyl group acts tran-

sitively on the nonzero weights (see for instance [40]). In fact there is a unique quasi-

minuscule representation for the simply-laced Lie algebras, which has as highest weight

the unique dominant root. The zero weights of this representation are one-to-one with

the simple roots. In particular for all the ADE type Lie algebras, the quasi-minuscule

representations are given by the adjoint representations.

For simply-laced Lie algebras the minuscule representations listed in table 1 can be

obtained in terms of the Weyl group quotientWg̃/Wg for g as given in the last row in table 1,
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and the phase structure is precisely reproduced by the g̃ representation structure on these

minuscule representations. Let R be the representation appearing in the decomposition of

the adjoint

g̃→ g⊕ u(1) . (2.20)

We show the following equivalences between phases, Weyl group quotients and the minus-

cule representations

Phases of g⊕ u(1) with matter in the representation R

l

Wg̃/Wg

l

Minuscule representation Vωg of g̃

(2.21)

Example diagrams of this type are shown for triplets (g̃, g, Vωg) for (so(10), su(5),16) in

figure 1, (e7, e6,56) in figure 41.

A similar correspondence holds for the quasi-minuscule representations, which for the

ADE Lie algebras (including e8) are simply the adjoint representations. In this case the

decompositions are of the type

g̃ → g⊕ su(2) . (2.22)

The quasi-minuscule representations arise in terms of Weyl group quotients, with the sub-

tlety that the zero-weights are not realized in the quotient. The simple Lie algebras for

which this occurs are

e6 → su(6)⊕ su(2)

e7 → so(12)⊕ su(2)

e8 → e7 ⊕ su(2) .

(2.23)

The Weyl group Z2 of the non-abelian rank one commutant of g can act on the represen-

tation, and we show that the invariant phases are precisely given in terms of the simple

roots of the quasi-minuscule representation. Furthermore, their phase diagram is exactly

the Dynkin diagram of the simple Lie algebra g̃. In summary we show for representation
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R appearing in the decomposition (2.22)

Phases of g⊕ su(2)

with matter in the representation R

l

Wg̃/Wg

l

Quasi-minuscule (adjoint) representation

except zero weights of g̃

Z2-invariant phases of g⊕ su(2)

with matter in the representation R

l

Dynkin diagram of g̃

l

Simple roots of the quasi-minuscule

representation (adjoint) of g̃

(2.24)

We analyze the case of e6, e7 and e8 in (2.23) in detail in section 6.2 and appendix D.2.

The phase diagrams for these theories are in figures 20 and 43, and the subdiagram from

the invariant phases, given by the Dynkin diagrams is discussed in figures 28, 33 and 44,

respectively.

We now prove these correspondences. In order to see the relation (2.21), let us first

show an equality about Dynkin labels li of a weight ω of a representation R

li = 〈α0
i , ω〉 = 〈αi, ω

0〉. (2.25)

Since we focus on simply-laced Lie algebras, we will not distinguish a coroot from a root.

The α0
i s are the canonical simple roots of g, and hence the first equality is equivalent to

the definition of the Dynkin label. On the other side of the equality, ω0 is the highest

weight of the representation R, and the αi are a set of simple roots after performing an

appropriate number of Weyl reflections on the set of the canonical simple roots. Since we

will associate a subtraction of a canonical simple root from a weight in the construction of

the representation R with a Weyl reflection, the number is related to the number of the

canonical simple roots we subtract from the highest weight ω0 to get the weight ω (up to

some subtlety which arises when the Dynkin label is greater than one, which we will discuss

later). The proof of the second equality in (2.25) can be done by induction. When ω = ω0,

then the second equality trivially holds. So, let us assume that it holds for some weight ω.

If lj > 0, then a descendant weight ω′ can be obtained by ω′ = ω− ljα
0
j . Correspondingly,

we consider a new set of simple roots α′
i by performing a Weyl reflection with respect to

αj on the set of the simple roots αi

α′
i = αi − 〈αj , αi〉αj . (2.26)

We then need to show, assuming (2.25), that

〈α0
i , ω

′〉 = 〈α′
i, ω

0〉 . (2.27)
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The left-hand side of (2.27) becomes

〈α0
i , ω

′〉 = 〈α0
i , ω − ljα

0
j 〉

= 〈αi, ω
0〉 − Cijlj , (2.28)

where Cij = 〈α0
i , α

0
j 〉 is the Cartan matrix. On the other hand, by using the new set of the

simple roots (2.26), the right-hand side of (2.27) becomes

〈α′
i, ω

0〉 = 〈αi, ω
0〉 − 〈αj , αi〉〈αj , ω

0〉
= 〈αi, ω

0〉 − Cjilj , (2.29)

where we used 〈αj , αi〉 = 〈α0
j , α

0
i 〉. Eq. (2.28)–(2.29) implies that (2.27) holds, which

completes the proof of (2.25).

From the relation (2.25), we can associate a Weyl reflection with respect to a simple

root that preserves the fundamental Weyl chamber of g on the Weyl group quotient side

to a subtraction of a canonical simple root on the representation side if the Dynkin label

satisfies li ≤ 1. In order to achieve such a correspondence, we first need to associate l0i = 0

to α0
i which is a canonical simple root of g, and also associate l0i = 1 to α̃0 which we define

as a simple root of g̃ but not a simple root of g. Here l0 denotes the Dynkin label of

the highest weight. Once we determine the correspondence between l0 = [0, · · · , 0, 1] and
{α0

1, · · · , α0
n−1α̃

0}, then the same correspondence holds in all the subsequent steps due to

the relation (2.25). At some step corresponding to a weight ω, we have a set of simple

roots {α1, · · · , αn}, which can be obtained by performing Weyl reflections on the canonical

simple roots {α0
1, · · · , α0

n−1, α̃}. If a simple root αi ∈ {α1, · · · , αn} is a simple root of g,

then li = 〈α0
i , ω〉 = 〈αi, ω

0〉 = 0. If a simple root αj ∈ {α1, · · · , αn} is a root of g̃ but not

a root of g, then

li = 〈α0
j , ω〉 = 〈αj , ω

0〉 = 〈α̃0 +
∑

k

akα
0
k, ω

0〉 = 1 . (2.30)

For the second last equality, we assume that we have only one kind of representation from

the decomposition as in (2.6). This is in fact true for the cases we consider. From this

construction, we can determine which representation appears, namely its highest weight

by considering an embedding of the canonical simple roots of g inside the canonical simple

roots of g̃.

In this correspondence, it is important to assume that the Dynkin label is less than two.

From the proof of the relation (2.25), a Weyl reflection with respect to αi corresponds to

subtracting li times the canonical simple root α0
i in one go. Although the li weights obtained

by the subtraction of the canonical simple root α0
i one by one appears as the weights of the

representationR, the Weyl reflection cannot see the intermediate states since it corresponds

to the subtraction of li×α0
i at one time. Therefore, the dimension of a representation does

not match with |Wg̃|/|Wg| when the representation has a weight whose Dynkin label is

greater than one. The condition of li ≤ 1 can be translated into 〈αi, ω
0〉 ≤ 1 for the roots

αi of g̃ due to the relation (2.25). If a fundamental weight ω satisfies 2 〈β,ω〉
〈β,β〉 ≤ 1 for all

the positive roots β of g̃, then ω is called minuscule, which is equivalent to the definition
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we gave earlier [39]. The list of the minuscule fundamental weights of simply-laced Lie

algebras, which appear from rank one embeddings is depicted in table 1. Therefore, for a

representation specified by a highest weight listed in table 1, the representation graph is

identical to the network of phases from the corresponding Weyl group quotient.

The relation may be extended to a quasi-minuscule representation whose nonzero

weights correspond to elements of the Weyl group quotient, as summarized in (2.24). The

quasi-minuscule representations of simply laced Lie algebras, which come from a rank one

embedding are the adjoint representations of e6, e7 and e8 arising from the embedding

su(6) ⊕ su(2) ⊂ e6, so(12) ⊕ su(2) ⊂ e7, e7 ⊕ su(2) ⊂ e8, respectively. In the adjoint rep-

resentation, the weights corresponding to the canonical simple roots have Dynkin label 2,

and the intermediate state arising from the subtraction of one canonical simple root from

the weights is a zero weight. Therefore, the dimension of the relevant quasi-minuscule

representation of the simply-laced Lie algebras e6, e7, e8 satisfies a relation

dim adj− rank(g̃) =
|Wg̃|
|Wg|

. (2.31)

In the cases of the quasi-minuscule representations, we can consider the phases which are

invariant under the Weyl group action of su(2) in the decompositions. Those Z2 invariant

phases also have a characterization in terms of the weights in the representation graph. For

such Z2 invariant phases, a root of su(2) appears as a generator of the Weyl chamber C̃µ̃.
Since the highest weight of the adjoint representation of e6, e7, e8 corresponds to the simple

root of su(2), such Weyl chambers correspond to the weights, whose Dynkin label has a

component of ±2, namely the canonical simple roots of the Lie algebras or the negative of

them. Whether the phase corresponds to the canonical simple root or its negative is related

to the sign of the simple root of su(2) in the embedding. Its sign is not relevant for the phase

of the gauge theory with the Lie algebra g, hence the number of the Z2 invariant phases is

# distinct Z2 invariant phases = rank g̃. (2.32)

In fact, we can also determine the network of these phases. Note that if the simple root

of su(2) appears as a generator of the Weyl chamber of C̃µ̃, this means that we have two

roots which are related by the Z2 action as generators of the Weyl chamber at the previous

step. Suppose we have a weight whose Dynkin label is [· · · , 2, · · · ,−1, · · · ]. If we perform a

Weyl reflection with respect to a root corresponding to the Dynkin label−1, then the weight

becomes [· · · , 1, · · · , 1, · · · ]. The roots corresponding to the two 1’s in the Dynkin label are

related by the Z2 action of su(2). Performing a Weyl reflection with respect to the root

corresponding to the first 1 in the Dynkin label, the weight becomes [· · · ,−1, · · · , 2, · · · ].
These two Weyl reflections relate the two adjacent phases of the Z2 invariant phases.

Therefore, the network of phases is the same as the intersection graph of the canonical

simple roots of g̃, i.e. the network of Z2 invariant phases from the decomposition of the

adjoint representation of e6, e7, e8 are nothing but the Dynkin diagrams of the Lie algebra

e6, e7, e8, respectively, thus proving the right hand side of (2.24).

– 17 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
8

3 Phases of the SU(n) theory with matter

The phases of the SU(n) theories with matter are described in terms of one of the three

equivalent characterizations that we have given so far (Weyl group quotient, Bruhat order

and decorated box graph). The flow rules are determined to characterize the su(n)⊕ u(1)

phases. There will be additional constraints on the phases once we impose in addition the

tracelessness condition7
n∑

i=1

Li = 0 , (3.1)

which reduces the gauge algebra to su(n). We first explain how this is implemented and

then discuss all phases for su(n) with fundamental, anti-symmetric, as well as the com-

bined representations. A similar but much simpler discussion for SO(2n) can be found in

appendix C, whereas some of the exceptional cases are covered in appendix D.

3.1 Reduction to SU(n) phases

The additional constraint compared to the u(n) theory is (3.1) We now show how to impose

this tracelessness condition on the phases.

From the point of view of the Weyl chamber description, the reduction of the extra u(1)

can be done by restricting the Weyl chamber (2.3) to a hypersurface Σ in the space of φ.

If the subcone of the Weyl chamber (2.3) still has a non-empty region after the restriction

on Σ, then it corresponds to the phase of the theory with g, without the extra u(1). In the

dual weight space language, the condition can be understood as whether a vector perpen-

dicular to the hypersurface Σ is inside a cone or not. More precisely, if the subcone shares

a non-empty region with the hypersurface Σ, then the vector v, which is perpendicular to

Σ, should neither be inside C̃µ̃ nor C̃−µ̃ (which is the span of the negative roots). Suppose

the vector v is inside C̃µ̃, then the hypersurface is defined as 〈φ, v〉 = 0. On the other hand,

the subcone of the Weyl chamber is defined as a region in h such that 〈φ, α〉 > 0 for all the

vectors α in C̃µ̃. Therefore, the hypersurface does not intersect with C̃∗µ̃. Moreover, the hy-

persurface does not intersect with C̃∗µ̃ only if v is inside C̃µ̃ or C̃−µ̃ . Hence v should be outside

both C̃µ̃ and C̃−µ̃ for the phase of the theory with g after the reduction of the extra u(1).

In the following sections we will give a description of the phases of the su(n) the-

ory in terms of the flow rules and provide a combinatorial enumeration of them for the

fundamental, anti-symmetric and combined representation case.

3.2 Fundamental representation

For the fundamental representation, we label the weights by Li, i = 1 · · ·n, and we have

shown that the u(n) theory has phases given by the signs

(+ · · ·+) , (+ · · ·+−) , · · · , (+− · · · −) , (− · · · −) . (3.2)

Recall that a sign ǫi = + means that Li > 0 is positive, and ǫi = − means that Li < 0.

There are precisely n + 1 phases for the u(n) theory, which can be counted by the Weyl

7Our conventions are those of [41].
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I

II

III

IV

Figure 4. Phases of the su(5) theory with fundamental representation 5 matter. The blue/yellow

boxes correspond to decorating with ±. The green lines and red dots will play a role later on in

understanding the flops between these phases: red dots correspond to extremal points that can

be flopped, whereas white dots correspond to flops that would map out of the su(5) phases to the

u(5) phases.

group quotient
|Wsu(n+1)|
|Wsu(n)|

= n+ 1 . (3.3)

These are shown for u(5) in table 3 in appendix B.

However, it is clear that due to (3.1), the two phases (+ · · ·+) and (− · · · −) mean that∑n
i=1 Li > 0 and < 0 respectively, and therefore do not respect the tracelessness condition.

The su(5) phases are shown in figure 4.

All remaining phases are consistent su(n) phases: for this it is enough to show that

positive linear combinations of the elements in the cone do not give rise to L1+ · · ·+Ln > 0

or < 0. Indeed, any phase that is not (+ · · ·+) or (− · · · −) will have at least one element

Li < 0. First recall that the flow rules are

(3.4)

Let i be the smallest entry with Li < 0, it follows that Lj < 0 for all j > i. Then

−∑n
l=i Ll > 0. However, it is not possible to linear combine using only positive roots and

−Ll the terms −(L1+ · · ·+Li−1). Likewise, one can get
∑i−1

l=1 Ll > 0, however, then there

is no combination that gives rise to Li + · · · + Ln > 0. Thus, a phase in (3.2) that is not

(+ · · ·+) or (− · · · −) will correspond to an su(n) phase.

The number of phases for the su(n) theory with fundamental representation is therefore

SU(n) , with n : #Phases = n− 1 . (3.5)

3.3 Antisymmetric representation

Next we consider the phases of a u(n) gauge theory with the antisymmetric representation

Λ2n. As we showed in the last section these are characterized in terms of the Weyl group
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quotient
Wso(2n)

Wsu(n)
←→

{
Φ
u(n)
ǫ1···ǫd

}
, (3.6)

where d = n(n− 1)/2 is the dimension of the representation. The number of such phases is

|Wso(2n)|

|Wsu(n)|
= 2n−1 . (3.7)

The weights of the antisymmetric representation are labeled by Li + Lj with i < j and

i, j = 1 · · ·n. In figure 3 we depict the weights of the representation, ordered in terms of

the ith row corresponds to Li + Lj , j = i + 1 · · ·n. The weights are arranged such that

each separating line corresponds to the action of a negative simple root Li+1 − Li.

Each phase corresponds to a sign assignment for this weight diagram, and we label the

signs as

sign(Li + Lj) ≡ ǫij . (3.8)

For n = 2k even, the phases of the su(n) theory are characterized by the subset of phases

of the u(n) theory, which satisfy in addition

SU(2k) :
E2k 6= (+ , · · · , +)

E2k 6= (− , · · · ,−)
(3.9)

where

E2k ≡ (ǫ1 2k, ǫ2 2k−1, · · · , ǫk k+1) . (3.10)

Likewise, for n = 2k + 1 odd, the condition is

SU(2k + 1) :
E2k+1 6= (+ , · · · , +)

E2k+1 6= (− , · · · ,−)
(3.11)

with the diagonal defined as

E2k+1 ≡ (ǫ1 2k+1, ǫ2 2k, · · · , ǫk−1 k+3, ǫk k+1, ǫk+1,k+2) . (3.12)

These conditions are depicted in terms of red boxes in figure 5. Note that the signs “flow” as

explained in (2.18), i.e. a consistent phase sign assignment will always respect the following

sign implications (flow rules),

(3.13)

A phase for su(n) with the antisymmetric representation is characterized by a repre-

sentation diagram as in figure 6, i.e., a sign assignment which is consistent with the flow

rules (3.13) and respects the sign conditions (3.9), (3.11). An entirely equivalent way to

characterize this setup is in terms of

Phases of su(n) with Λ2n
1:1←→ Anti-Dyck Paths , (3.14)
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Figure 5. Weight diagrams for n even (l.h.s.) and odd (r.h.s.). The weights marked in red are the

ones appearing in the sign constraints (3.9) and (3.11), which determine the su(n) phases. The ex-

amples drawn here are su(14) and su(13). The nodes represent the weights as explained in figure 3.

S

Figure 6. Example phase diagram, where blue are + and yellow −. This is a consistent phase,

as the entries En, indicated by the bold-face boxes, are not all of the same sign. On the right the

same phase is characterized in terms of a convex path (green) starting at S and ending at one of

the green nodes and crossing the NE to SW diagonal at least once, i.e., an anti-Dyck path.

where we define an anti-Dyck path as a monotonous path in the representation graph,

starting at the top NE corner (denoted by S in figure 6), and ending at one of the points

along the NW to SE diagonal (shown in green in the figure) and crossing the diagonal

defined by En at least once. An example anti-Dyck path is shown on the right of figure 6. For

su(5) all phases satisfying the flow rules and the diagonal condition are shown in figure 7.

To prove that these conditions are necessary and sufficient, consider first n = 2k even.

First we show necessity of the sign condition, (3.9), i.e., if it is violated, then this implies

a u(n) phase, that is not an su(n) phase. This can be easily seen noting that the sum∑
ij∈E Li + Lj = (L1 + Ln) + (L2 + Ln−1) + · · ·+ (Ln

2
+ Ln

2
+1) > 0 or < 0 due to (3.9).

On the other hand, to show that it is a sufficient condition, we show that if the sign

condition holds, then the phase is an SU(2k) phase. For this it is enough to show that

positive linear combinations of the weights in the cone (i.e., the weights with the sign as
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68

9

7
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Figure 7. Phases of SU(5) with anti-symmetric representation, with ± corresponding to

blue/yellow boxes, including the corresponding anti-Dyck paths (green lines) and extremal points

(red nodes), which will be discussed in the section on flops. All phases satisfy the anti-Dyck property

with respect to the diagonal defined by E5 in (3.11). The numbering is as in figure 1.

prescribed for this specific cone) do not give rise to L1 + · · · + Ln > 0 or < 0.8 As the

sign condition (3.9) holds by assumption, at least one of the entries ǫij in E2k is negative

(and at least one ǫlm is positive). Denote this by Li + Lj < 0. By the “flow” rules this

implies that Lk + Lm < 0 for all k ≥ i and m ≥ j. In the representation graph, these are

all the weights below and to the right of Li +Lj . However, then it is not possible to linear

combine L1 + · · ·+ Ln > 0 as any linear combination of positive weights will require that

some Lm appears at least twice for some m = 1, · · · i− 1 or there is no positive root of the

form Ll + Lm where l = 1, . . .m − 1, for fixed m such that j ≤ m ≤ n. Similarly we can

argue for the case L1 + · · ·+ Ln < 0, since at least one entry ǫlm in E2k is positive.

For n = 2k+1, a similar argument applies. First note that the sign of Lk+Lk+2 is deter-

mined once the signs for the entries E2k+1 are fixed (and is the same as theirs) . Without loss

of generality consider the case when E2k+1 = (+ · · ·+). Then it is clear that L1 +L2k+1 =

−∑2k
i=2 Li > 0 and adding the some of the remaining entries in E2k+1 as well as Lk +Lk+2

which are all positive, it follows that −Lk+1 > 0. Note that Lk+1 + Lk+2 > 0, and thus

Lk+2 > 0. However, this implies that adding this to the simple root Lk+1−Lk+2 > 0, that

we can linear combine 0 as a positive linear combination, and thus the sign choice E2k+1 =

(+ · · ·+) does not give rise to a cone, and thus to an su(n) phase. Similarly, reversing the

signs, it is straight forward to show that E2k+1 = (− · · · −) also does not give rise to su(n)

phases. The argument that this is also a sufficient condition is identical to the n even case.

8This requirement follows by noting that in su(n) the tracelessness condition implies L1 + · · ·Ln = 0,

and this element would not be in the cone, however, in a u(n) phase, that is not an su(n) phase, this element

would have a definite sign.
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(1,1) (1,2) (1,7)(1,6)(1,5)(1,4)(1,3)

Figure 8. Setup for phases for antisymmetric and fundamental representation. The black boxes

denote the antisymmetric representation for SU(2k+1), the blue boxes depict how the fundamental

is attached to this diagram. The resulting diagram is a consistent phase of SU(2k + 1) as long

as the sign constraint holds for the diagram viewed as an SU(2k + 2) diagram. The red boxes

correspond precisely to E2k+2.

3.4 Antisymmetric and fundamental representations

The phases for the gauge theory with chiral multiplets in both antisymmetric and fun-

damental representation can be characterized by decorated box graphs as well.9 One

procedure to do this is as follows: first we consider the representation diagrams for the

antisymmetric representation for su(2k+1). To this diagram we attach the weights of the

fundamental embedded as Li+Li, i = 1, · · · , n along the diagonal, as depicted in figure 8.10

It is clear, first of all, that unless the phases of the antisymmetric and the fundamental are

separately consistent phases, the resulting combined phase will not be a consistent su(n)

phase. However, not all combinations are consistent.

The consistency condition is that the combined diagram is consistent with

(i) Flow rules of signs in (3.13)

(ii) The resulting diagram, interpreted as an su(2k + 2) antisymmetric representation

satisfies the sign constraints (3.9), i.e., the diagonal is not all + or all − signs.

To exemplify the method, we show the phases for su(5) with fundamental and anti-

symmetric representation in figure 9, where we also discuss the flops among these phases.

To prove that these are consistent su(2k+1) phases, we need to again show sufficiency

of these conditions. We show that if the sign condition (ii) holds then the phase is an

SU(2k+1) phase, i.e., the element L1+· · ·+L2k+1 > 0 or < 0 is not satisfied, and is thereby

not in the cone. However, this we have shown to be true for su(n) with n even in section 3.3.

9This is setup is of particular interest for recent developments in constructing realistic F-theory com-

pactifications based in SU(5) grand unified theories.
10This is nothing but the weight diagram of the symmetric representation of su(2k + 1). It is clear

from the gauge theory analysis that the phase structure of an su(n) gauge theory with the antisymmetric

representation and the fundamental representation is the same as the phase structure of an su(n) gauge

theory with the symmetric representation.

– 23 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
8

II

III III

II

10 13

74

6

I

6

II

III

8

II

8

II

9

III

9

11

III

11

IV

Figure 9. Phases of SU(5) with anti-symmetric (dark blue and yellow boxes) as in figure 7 and

fundamental representation (light blue and yellow boxes) as in figure 4, including the corresponding

anti-Dyck paths (green lines) and extremal points (red nodes). Note that the flops need to retain

the anti-Dyck property with respect to the diagonal defined by E6 in (3.9), which would be violated

if the white nodes would be flopped. The numbering is as in figures 4 and 7, and following the flops

along the red nodes of the anti-Dyck path, we reproduce the phase diagram 11.

4 Structure of phases from decorated box graphs

Decorated box graphs are an extremely efficient way to characterize phases of d = 3 N = 2

gauge theories with matter and thereby the geometry of singular elliptic fibrations. They

contain however much more information than a simple book-keeping device. As we will

see, the box graphs contain all the relevant information about the network of phases, tran-

sitions (flops) between the phases, and codimension-three loci, each of which will have a

geometric counterpart.

4.1 Extremal generators

Recall from section 3.3 that a phase for su(n) with the antisymmetric representation is char-

acterized by a decorated box graph, i.e., the representation graph with a sign assignment

which is consistent with the flow rules (3.13) and respects the sign conditions (3.9), (3.11).
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Figure 10. A flop is the transition between these two decorated box graphs (which are details of a

representation graph) and correspond to single-box sign changes (blue and yellow boxes), or flopping

the corner along the anti-Dyck paths (green). The red dots are the extremal points on the path.

Alternatively we can characterize them by anti-Dyck paths, which are monotonous path

in the representation graph, ending at the top NE corner (denoted by S in figure 6), and

crossing the diagonals En.
From the diagram we can read off the extremal generators of the cones. They are

either weights, or simple roots determined as follows:

• Weights that can be sign changed while retaining the anti-Dyck property of the path

(we will refer to the corner along which the sign changes happens as an extremal

point). These are indicated by the red dots in the phase diagrams.

• A simple root is part of the extremal set, if adding it to any weight does not cross the

anti-Dyck path. In fact, any other simple root, which crosses the anti-Dyck path is

reducible, and can be written in terms of the two weights that are on either side of the

anti-Dyck path. For instance in phase 9, figure 7 the simple root α3 crosses the anti-

Dyck path, −(L2 +L3)→ L2 +L4 and is therefore not an extremal generator, but is

obtained as the linear combination of these two weights, which are in the extremal set.

Note that in figure 7 the red dots indicate the extremal points, however the white

dots are extremal points only of the u(5) phase, not of the su(5), i.e., sign changes that

would violate the diagonal condition/anti-Dyck property of the monotonous path. Note

that except for phases 8 and 9 in figure 7 all phases have one white node, which means

that the number of generators of the cone is reduced compared to U(5), in fact in each of

these cases there are four generators.

In figure 9 all the phases of SU(5) with fundamental and anti-symmetric representation

are shown. In this case all phases contain white nodes, i.e., the extremal set has one

less element than for the corresponding U(5) phase, which is something that was already

observed in [23], where each of these phases was shown to have four generators.

4.2 Flops between phases and extremal points

We define a flop (or flop transition) as

• Decorated box graphs: a single-box sign change, that maps the representation graph

to another representation graph, i.e., it retains compatibility with the flow rules (3.13)

and the sign conditions (3.9), (3.11).
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• Anti-Dyck path: a flop of a corner of the path which maps an anti-Dyck path on

the representation graph into another one. We will refer to the corners associated to

such flops by extremal points.

The two descriptions are equivalent, and depicted in figure 10. The red node is the ex-

tremal point on the anti-Dyck path. This corner gets flopped, crossing over the box in the

representation graph which changes sign under this flop. The resulting new corner of the

anti-Dyck path carries an extremal point, which indicates the reverse flop transition.

From the anti-Dyck path we can read off the extremal rays for each C̃µ̃ corresponding

to a phase. Each extremal point is associated to a weight in the decorated box graph.

Each of these generate an extremal ray. In addition, the simple roots, which can be added

to weights in the box graph, without changing their sign, i.e., adding or subtracting them

does not cross the anti-Dyck path, are also contained within C̃µ̃. In fact, the simple roots,

which do not cross the anti-Dyck path, are the other extremal rays, whereas the simple

roots which cross the anti-Dyck path do not correspond to the extremal rays but are inside

the cone. For example, with this rule we can reproduce, from the diagrams in figure 7, the

table 4 included in appendix B, which was obtained from the Weyl group action.

Given that a flop will have to retain monotony of the paths, it is clear that extremal

points will only appear along corners of the path. For SU(5) this results in the paths and

extremal points given in figure 7. Not all corners correspond to extremal points, as the

resulting flop would violate the sign conditions (3.9), (3.11), and thus yield a non-su(n)

phase. For u(n) all corners can be flopped.

Thus a flop is characterized by either a sign change of a single box which is consistent

with the flow rules (3.13) and conditions (3.9), (3.11) or in terms of anti-Dyck paths, they

correspond to flopping a corner, which contains an extremal point, i.e., such that the path

remains an anti-Dyck path.

To exemplify this consider SU(5) with fundamental and anti-symmetric representa-

tion, where the phases were obtained in [23]. As explained in section 3.4, the phases for

the combined representation case are constructed out of the consistent phases for each rep-

resentation, glued together to obey the flow rules and the diagonal condition. The resulting

phases are shown in figure 9: the dark blue and yellow boxes are the phases of the SU(5)

with anti-symmetric representation as in figure 7. Attached to it are the phase diagrams for

the fundamental (light blue and cream-colored boxes), which are consistent with the flow

rules and diagonal condition. In some cases, the diagonal condition allows both choices

of signs such as in the case (11; III) and (11;IV). However for (4, III) the sign cannot be

changed as it would result in the violation of the diagonal condition. In total there are 12

phases, and the flops are indicated by red dots in figure 9. The phase diagram that follows

from this is exactly the one obtained by direct computation in [23], shown here in figure 11.

4.3 Compatibility and reducibility

In section 3.4 we have seen that for su(n) we can study the phases of the theory with

combined anti-symmetric and fundamental representations. This can be thought of as

embedding g into ĝ in such a way that there are several different intermediate subalgebras
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Figure 11. The phase diagram for SU(5) with fundamental and anti-symmetric matter, as derived

from flops among the decorated box graphs/anti-Dyck paths in figure 9. Identification along the

dark blue lines yields the phase diagram of the anti-symmetric representation, identification of

nodes along the light blue lines yields the phase diagram, which is a line, for the fundamental

representation. The curious observation which is drawn in terms of the green dotted lines is, that

this diagram can be cut up into pairs of Dynkin diagrams of E6, D6 and A6, respectively. The case

of the E6 flop diagram (corresponding to cutting the graph by the NE to SW diagonal) is discussed

later in terms of the E6 codimension-three fibers in section 8.4.

g ⊂ g̃j ⊂ ĝ, with rank(g) < rank(g̃j) < rank(ĝ). Each g ⊂ g̃j embedding will exhibit

the codimension-two phenomenon that we have been studying, with phases associated to a

matter representation. However, combining the phase information for two or more extended

algebras typically generates further restrictions. In fact, some extremal generators of the

phases of the intermediate enhancements to g̃j cease to be extremal in the phase of the

combined representation, and therefore become reducible. As we will see later, it also

modifies the resolution of the singular fiber, and in fact will correspond to the splitting of

codimension-two fibers that is observed along codimension-three singular loci.

For example, consider su(5) with both 5 and 10 matter, starting with phase 8 for

SU(5) with 10 and augmenting it with the 5 in the phase II, which has signs (+++−−).
In figure 12 both matter phases are shown including the extremal points, corresponding to

−(L1 + L5), L2 + L4 and −(L3 + L4) for 10 matter, and L3 and −L4 for 5.

Joining the two diagrams to give the phase of the theory with both types of matter, the

anti-Dyck paths simply join, however, the flops of −L4 and −(L1+L5) are now disallowed,

as they either correspond to flops that violate the flow rules or the diagonal condition.

In fact, these weights become “reducible” and can be expanded in terms of the extremal
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(3) (3,4)

(2,4)

(3,4)

(2,4)

(1,5)

(4)(3)

Figure 12. SU(5) with fundamental and anti-symmetric representation, by attaching a (+ + +−
−) fundamental phase (which is phase II) to phase 8 for the anti-symmetric representation. In

each diagram the red nodes corresponds to the extremal points, and we labeled the corresponding

extremal weights by (i, j) = Li + Lj and (i) = Li. By joining the diagrams, to obtain the phase of

the anti-symmetric and fundamental theory, L4 and L1 + L5 cease to be extremal and split.

generators as follows

−(L1 + L5) → −(L2 + L4)− L3

−L4 → −(L3 + L4) + L3 .
(4.1)

Let us remark in view of later discussions of the geometry that despite not using any infor-

mation about codimension-three singularities, these are exactly the splittings of the matter

along the E6 and SO(12) codimension-three singular loci, which realize in the dual four-

dimensional gauge theory obtained from an F-theory compatification the 10× 10× 5 and

5̄× 5̄× 10 couplings of matter. We will connect this to the fiber geometry in codimension

three in sections 8.3 and 8.4. In particular there we will see that the box graphs contain

all the information about the possible codimension-three fiber types, and we will uncover

several new non-Kodaira fiber types from them.

5 Counting phases of the SU(n) theory with matter

The box graphs and anti-Dyck paths also provide nice combinatorial way to count the

phases of the su(n) theories with matter. In fact, it turns out, it is easier to count the

phases which violate the anti-Dyck property, and thus correspond to Dyck paths, and take

the complement of these in the phases of the u(n) theory, that was determined from the

Weyl group quotient.

5.1 SU(n) with antisymmetric representation

We can determine the number of su(n) phases with antisymmetric representation by count-

ing the complementary phases which violate the sign conditions (3.9), (3.11). Note that the
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Figure 13. Induction step for su(n) with n = 2k even. Each box in this graph represents one of

the weights in the lower diagonal of the weight diagram of the anti-symmetric representation.

number of phases with En = (+ · · ·+) is the same as for En = (− · · · −). By following the

flow rules (3.13) the number of phases for En = (+ · · ·+), for instance, can be determined by

a simple combinatorial argument. We consider the cases where n is even and odd separately.

The total number of su(n) phases for n even is given by

SU(n = 2k) , with Λ2n : #Phases = 22k−1 − 2

(
2k − 1

k − 1

)
. (5.1)

To prove this, we consider induction in n from n to n+ 2. The induction starting point is

easily shown to be correct as there is no phase for SU(2).

We know that 2n−1 is the total number of u(n) phases as this is the order of the

quotiented Weyl group from section 2.2. We count the complement by counting the number

of phases, which do not respect the sign condition in (3.9). Without loss of generality

consider the case with the diagonal En being all + signs. For the induction step, we

proceed as follows: each phase is characterized by a path, which separates the + from the

− weights in the lower half of the triangle, as is depicted in figure 13. These are paths that

start at the point s and end at some pi. Let an,k be the number of paths from s to pk for

su(n), n even. Then for all but an+2,1 and an+2,n, we observe

an+2,k = an,k−1 + 2an,k + an,k+1 , (5.2)

which is easily seen by connecting a path to pi with a path to qi in figure 13. The two

outlier cases are

an+2,1 = 2an,1 + an,2 , an+2,n = 2an,n + an,n−1 , an+2,n+2 = an,n = 1 . (5.3)
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(0,0) (0,0)

(k,k) (k,k)

Figure 14. Example of two Dyck paths for k = 4. These are staircase paths, starting at (0, 0) and

ending at (k, k) which do not cross, but can touch, the diagonal.

In particular, the total number of paths

#paths from s to any of the pk = bn =

n∑

k=1

an,k , (5.4)

satisfies the recursion

bn+2 = 4bn − an,1 . (5.5)

This is seen by noting that every path ending in a point pk induces 4 paths that end at one

of the points qi, except for the first one, p1, which only induces 3 paths. Thus we need to

figure out the number of paths that go from s to p1. Happily this is related to the problem

of counting so-called Dyck paths, from (0, 0) to (n/2, n/2), which are staircase paths that

do not cross the diagonal, but are allowed to touch it. Two examples of Dyck paths are

shown in figure 14. These are counted by the Catalan numbers [42]

#Dyck paths from (0, 0) to (k, k) = Ck =
(2k)!

k! (k + 1)!
. (5.6)

We can now prove that

bn =

(
n− 1
n
2 − 1

)
. (5.7)

The induction starting point is b2 = 1. The induction step is

4bn − an,1 = 4

(
n− 1
n
2 − 1

)
− n!(

n
2

)
!
(
n
2 + 1

)
!
=

(n+ 1)!(
n
2

)
!
(
n
2 + 1

)
!
= bn+2 . (5.8)

Applying the same argument for the case when the diagonal is all −, and subtracting these

from the number of total u(n) phases yields (5.1).

For n odd, the number of phases is

SU(n = 2k + 1) , with Λ2n : #Phases = 22k − 2

(
2k

k − 1

)
. (5.9)

To prove this, again consider the non-su(n) phases, which violate (3.11). First consider

again the case with E2k+1 all +. The sign assignment is given in figure 15. Again we count

the paths from s to pi, i = 1, · · · , n. In this case, however, there is a subtlety: starting with

n and passing to n+2, we obtain the extension of the diagram as shown in figure 15. Most
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...
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p
k

q
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q
3

q
4

q
k-1

q
k

q
k+1

Figure 15. Induction for n = 2k + 1. The condition that E2k+1 = (+ · · ·+) is given by the black

+ and the blue +. In the induction step, indicated by the additional green boxes, the blue + is not

required by the condition E2k+3 = (+ · · ·+).

paths in the diagram for su(n) will again give rise to paths for n+ 2, however, the blue +

sign, does not have to be + in the case of SU(n + 2). Thus, we need to count the paths,

which go to the point p1 twice, as both sign choices are allowed in the SU(n+ 2) diagram.

The recursion relation for the

#paths from s to any of the pk = bn , (5.10)

is, again using the Catalan numbers (5.6),

bn+2 = 4bn −
(
C

(
n+ 1

2

)
− C

(
n− 1

2

))
+ C

(
n− 1

2

)
. (5.11)

The last term is precisely the contribution that counts the number of paths that account

for the sign choice one has in SU(n+ 2) given by the blue + in figure 15. The terms that

are subtracted correspond to the contribution an,1, which, as in (5.5), has to be subtracted.

Note that an,1 can be computed by observing that it is precisely the Dyck paths between

D1 − s′ and D2 − s′, which are given in terms of the two Catalan numbers

an,1 =

(
C

(
n+ 1

2

)
− C

(
n− 1

2

))
. (5.12)

Again, applying the same type of argument to count the number of phases with all − signs

in the constraint (3.11), which yields the same number, and subtracting these from the

total number of u(n) phases results in (5.9).

The total number of phases for the u(n) and su(n) theories for some small values of N

are collected in table 2.
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n Phases of u(n) with Λ2n Phases of su(n) with Λ2n

5 16 8

6 32 12

7 64 34

8 128 58

9 256 144

10 512 260

11 1024 604

12 2048 1124

13 4096 2512

14 8192 4760

15 16384 10378

Table 2. The number of phases for small values of n for u(n) and su(n).

5.2 SU(n) with antisymmetric and fundamental representation

For the phases of the su(n) with fundamental and antisymmetric, we claim the following

counting: for n = 2k + 1 odd, the number of phases is

SU(n=2k+1) , with Λ2n and n : #Phases =2k+1 − 2

(
2k + 1

k

)

=#Phases SU(2k+2) , with Λ2(2k+ 2) .

(5.13)

From the combined diagrams in section 3.4, figure 8, we obtain the counting for phases

with both representations

SU(n = 2k + 1) , with Λ2(2k+ 1) and (2k+ 1) :

#Phases = 2
(
#Phases SU(2k + 1) with Λ2(2k+ 1)

)
− 2C(k) ,

(5.14)

where C(k) is again the Catalan number, and this expression agrees straightforwardly

with (5.13).

To prove this counting formula, note that the NW to SE diagonal Li + Li+1 for each

consistent sign assignment for the antisymmetric representation has a sign change over from

+ to −. The only consistent way to extend this with the fundamental representation is if the

sign change over is matched. There is generically the choice of two signs for the fundamental

given in terms of Li + Li to attach to the Li + Li+1 diagonal. This explains the first term

in (5.14). However, this still counts phases, which violate the sign condition (3.9). The

number of these is easily seen to be equal (via the, by now standard, map to Dyck paths)

to the paths given on the r.h.s. in figure 16, which are precisely the Catalan numbers C(k).

Likewise we need to subtract the cases where E2k+1 = (−−− · · · −−+−), ǫk,k+2 = − and

the fundamental representation is attached with ǫk+1,k+1 = −. The number of those cases

can be also counted by C(k), which explains the multiplicity 2 in front of C(k) in (5.14).

– 32 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
8

S

D

Figure 16. Counting of phases for the combined antisymmetric and fundamental representation.

The relevant box graph is shown in figure 8. Here we depict the counting of the phases, which

are consistent phases of SU(2k + 1) with anti-symmetric representation and with a fundamental

representation, however, the resulting combined diagram has E2k+2 = (+ · · ·+) and is therefore not a

consistent SU(2k+1) phase. The number of such phases is counted by the Dyck paths from S to D.

For SU(2k) with fundamental and antisymmetric representation the construction of

the consistent signs from the phases is the same as in the odd case. However, this time due

to the flow rules, any consistent diagram for SU(2k) with anti-symmetric representation

satisfying the sign constraint (3.9), joined with the fundamental representation, gives rise

to a consistent SU(2k+1) diagram that satisfies the sign condition (3.11). So we arrive at

SU(n = 2k) , with Λ2(2k) and (2k) :

#Phases = 2
(
#Phases SU(2k) with Λ2(2k)

)
.

(5.15)

6 Phases with non-trivial monodromy

Monodromies in singular elliptic fibrations occur when there is an additional discrete group,

usually some outer automorphism, that is acting on the fiber components. Likewise for

phases there exists a similar notion, which occurs when the commutant g⊥ of g in g̃ is

non-abelian. So far we considered the case when the commutant is u(1) only. This leads

to different phase structures, depending on whether the Weyl group of g⊥ acts trivially or

not. We discuss this in the case of su(6) ⊕ su(2) ⊂ e6. Another instance of monodromy

occurs when there is an outer automorphism which acts to reduce the gauge group, for

example, the outer automorphism reducing su(2n) to sp(n).

6.1 Monodromy

So far the commutant of the gauge group inside the higher rank group was assumed to

be U(1), as in (1.2). If the commutant is a non-abelian Lie group, e.g. SU(2) for SU(6)

inside E6, then there is an additional group acting on the phases, which we will refer to as
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monodromy from the action of the non-trivial Weyl group of the commutant. In general,

the decomposition of the Lie algebras is

g̃ ⊃ g⊕ g⊥ , (6.1)

where g⊥ is a rank one non-abelian Lie algebra.11 The existence of a non-abelian commu-

tant g⊥ results in two differences compared to the no monodromy cases discussed so far.

One is that we have a Weyl group associated with the root system of g⊥. Hence we need to

take into account the action of the Weyl group when we consider the phase structure of the

theory of the gauge algebra g. In fact, the phases of such a theory will need to be invariant

under the action of the Weyl group. The other is that we have singlets under g, which

are roots of g⊥. The presence of the singlets means that they are neutral massless chiral

multiplets even in the bulk of the Coulomb branch. We cannot assign a definite sign for

the singlets. This can be remedied if a u(1) ⊂ g⊥ remains unbroken. The u(1) symmetry

gives a charge to the singlets, and they have a definite sign in the bulk of the Coulomb

branch. These two differences have clear interpretations on the geometry side, which we

will see later in section 9. An example for this is discussed in the next subsection.

Another instance of monodromy occurs when the gauge group arises from a quotient

of a simply-laced Lie group, for which the phases can be obtained as invariant phases under

the quotienting. Again the presence of zero weights prevents the existence of a Coulomb

branch, as there are additional massless modes. An example of this is Sp(n) obtained as a

Z2 quotient of SU(2n), which we will discuss later in this section.

6.2 SU(6) with the Λ36 representation

We consider an exceptional example of an SU(6) gauge theory with matter fields in the

Λ36 = 20 representation. This theory arises from the embedding of SU(6) into E6. The

decomposition of the adjoint representation of E6 is as follows,

e6 → su(2)⊕ su(6)

78 → (3,1)⊕ (1,35)⊕ (2,20) .
(6.2)

The weights of the representation 20 can be written as Li + Lj + Lk with i < j < k. The

representation graph is shown in figure 17. The phases are governed again by flow rules,

which are also shown in figure 17.

In this example, g and g⊥ are su(6) and su(2) respectively. One can easily understand

this decomposition from the roots of e6. One useful way to construct the roots of e6 is

to make use of two-cycles in the del Pezzo surface dP6.
12 Let L0, L1, · · · , L6 be the bases

of a seven-dimensional vector space and we introduce a bilinear form diag(−1, 1, · · · , 1).13
Then the root space of e6 can be identified with the orthogonal complement of k = −3L0+

11Note it can be higher rank, however we will mainly consider the case of su(2).
12For further details on this construction we refer the reader to the appendix A.
13The bilinear form here is in fact the negative of the standard bilinear form on H2(dP6,R). Then the

inner product of two-cycles in H2(dP6,R) gives the same sign as the one from the pairing 〈·, ·〉 introduced

in the root space.
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(123)

(125)

(234)(134)(124)

(126)

(235)(135)

(236)(136) (356)(256)(156)

(346)(246)(146)

(345)(245)(145)

(456)

Figure 17. Representation graph for Λ36 of SU(6). The weights in each box are (ijk) = Li +

Lj +Lk, and they are aligned so that the action of the simple roots corresponds to the edges of the

diagram. The dotted lines indicate the action of the simple root L4 − L3, and the representation

graph is really three-dimensional, with the two red boxes being on top of each other. The right

hand side shows the flow rules, with + corresponding to blue and − to yellow.

L1 + · · ·+ L6. We can choose six independent bases in the orthogonal complement as

Li − Li+1 (i = 1, · · · , 5), L0 − (L1 + L2 + L3) , (6.3)

which are the canonical simple roots of e6. The roots of e6 are then

Li − Lj , ± (L0 − (Li + Lj + Lk)) , ±(2L0 − (L1 + · · ·+ L6)) , (6.4)

where 1 ≤ i 6= j 6= k ≤ 6.

The embedding of su(6) into e6 may be understood by identifying Li − Li+1, (i =

1, · · · , 5) with the simple roots of su(6). Then the simple root of the su(2) in (6.2) is

2L0 − (L1 + · · ·+ L6). The weights of the Λ36 representation are

L0 − (Li + Lj + Lk), − (L0 − (Ll + Lm + Lm)) , (6.5)

where the two Λ36’s in (6.5) transform as a doublet of the su(2) when {i, j, k, l,m, n} is a
permutation of {1, 2, 3, 4, 5, 6}.

Let us first discuss the phase of a gauge theory associated with the embedding (6.2).

In order to define a standard phase, we consider an SU(6)×U(1) gauge symmetry. Then,

the matter content of the theory is 203 + 20−3 and 16 + 1−6 where the subscript denotes

the charge of the overall u(1). The number of phases can be determined from the Weyl

group quotient
|We6 |
|Wsu(6)|

= 72. (6.6)

The 72 phases in terms of the box graphs are depicted in figure 18. The right half of

figure 18 corresponds to phases where
∑6

i=1 Li > 0 and the left half to
∑6

i=1 Li < 0.

One can clearly see a symmetry associated with the Weyl reflection from figure 18. The

Weyl reflection Z2 of the SU(2) changes the weight Li + Lj + Lk into −(Ll + Lm + Ln)

where {i, j, k, l,m, n} is a permutation of {1, 2, 3, 4, 5, 6}. There are 30 pairs of phases,

which are related by this transformation. The remaining 6 pairs, which are surrounded
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Figure 18. Phases of the SU(6) × SU(2) theory with Λ36 of SU(6) and singlets ±∑6

i=1
Li. The

boxed phases are the SU(6) phases for which
∑6

i=1
Li is not fixed from the other weights, and thus

can be either positive or negative, i.e. these diagrams appear twice in the phases. There are 72

box graphs, of which 60 are not invariant under the Z2 and are mapped into each other. This

correspond to reflection along the central axis in the above diagram.
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Figure 19. Phases of the SU(6) theory with Λ36 of SU(6), i.e., these satisfy in addition to the flow

rules that the sum of all Li vanishes. In particular these are also the diagrams which are invariant

under the Z2 automorphism. The green lines show the corresponding anti-Dyck paths.

by a red square (and are shown only once as they are invariant), are related by the Z2

transformation, but it does not change the signs of any weight Li + Lj + Lk.

The flop transitions among these are shown in figure 20. Note that the flop diagram

is exactly the quasi-minuscule representation of E6 except for the zero weights.

Let us move on to the case of the reduction to su(6). This can be achieved by con-

sidering the Z2 Weyl group action associated with the root space of su(2). Then, the u(1)

Cartan of su(2) as well as the simple root map to minus of themselves. Hence, they do

not appear in the Z2 invariant theory. Furthermore, the two Λ36’s are identified. Putting

it altogether, we consider phases of an SU(6) theory with the Λ36 representation. To de-

termine the phases for SU(6) with Λ36, in addition to the flow rules we need to impose

consistency with the tracelessness condition L1+L2+L3+L4+L5+L6 = 0. Note that the

tracelessness condition implies that the SU(6) phases should be the Z2 invariant phases. If

a phase is not Z2 invariant, then it means that we have some weights Li+Lj +Lk > 0 and

Ll + Lm + Ln > 0 in the phase where {i, j, k, l,m, n} is a permutation of {1, 2, 3, 4, 5, 6},
which contradicts the tracelessness condition. Therefore, the consistent sign assignments

for the Λ36 representations are those specified by the box graphs that are enclosed in a red

rectangle in figure 18. The number of the SU(6) phases is then

# of Z2 invariant phases

|Wsu(2)|
= 6. (6.7)

Those box graphs are depicted in figure 19, including the anti-Dyck paths that equally

define these phases, and which will be useful in determining the extremal generators of the

subwedges in the Weyl chamber.

6.3 Sp(n) with V or Λ2
V

The Lie algebra sp(n) can be realized as the quotient by the outer automorphism of su(2n).

This outer automorphism is the Z2 symmetry arising from the invariance of the Dynkin

diagram under reflection; concretely it is realized by the action of the map

Li → −Ln+1−i . (6.8)
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Figure 20. Flop diagram of the SU(6)×SU(2) theory with Λ36 of SU(6). The top part depicts the

flop diagram for the right half of figure 18 as well as the 6 phases which are labeled by 31-36, which

correspond to the invariant diagrams at the bottom of figure 18. The mirrored numbers correspond

to the left hand 36 box graphs. The Z2 automorphism acts by reflection along the horizontal axis.

Nodes which overlap are connected, and each color indicates one layer. This flop graph is exactly

the quasi-minuscule representation of E6 with the zero weights removed.
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L
1

L
2

... Ln -Ln
... -L2 -L1

Figure 21. The fundamental representation of the Sp(n) theory. The only consistent phase of the

Sp(n) theory is given by this coloring. Blue indicates that the decoration of the weight is plus, and

yellow negative.

Figure 22. The box graph of the Sp(3) theory with Λ26. Blue boxes indicate the sign of the

corresponding weight is plus, yellow indicates negative, and orange that there is no way to associate

a definite sign.

Generically, under the quotient by this map, the ΛiV representation of su(2n) becomes,

where it exists, the ΛiV representation of sp(n), however, in sp(n) the ΛiV representations

are not irreducible; we shall use the notation of [41] and refer to the relevant irreducible

subrepresentation as Γ1,0,···, Γ0,1,0,···, etc. The phases of the Sp(n) theory are then those

phases of the SU(2n) theory consistent under this quotient. Consider the fundamental

representation of sp(n) arising from the quotient of the su(2n) fundamental representation,

shown in figure 21. It is clear that the only decoration of su(2n)14 which consistently

descends to the sp(n) representation is the one marked in figure 21. There is thus exactly

one phase of the sp(n) theory with respect to the fundamental representation.

Equally we can consider sp(n) with the Λ2V representation. This theory can be under-

stood by embedding su(2n) into so(4n). As we learned from section 3.3, the decomposition

of the adjoint representation of so(4n) under su(2n) gives the Λ2V ⊕ Λ2V̄ representation

of su(2n). Hence, they further reduce to the Λ2V representation of sp(n) by the Z2 outer

automorphism of su(2n). The Z2 outer automorphism of su(2n) can be also considered as

an element of the Weyl group of so(4n). In fact, Λ2V is not an irreducible representation of

sp(n), but its subgroup Γ0,1,0,··· , is irreducible. As an example, the weights of Λ26 of sp(3)

are depicted in figure 22. It is clear from figure 6 that weights, which are mapped to each

other under reflection in the diagonal, will be identified (with a minus sign) in the quotient.

Note that there are singlets in the Λ2V representation as well as the Γ0,1,0,··· representation

of sp(n), which are depicted as the orange boxes in figure 22. We cannot assign a definite

sign to the singlets, which means that there are still massless chiral multiplets in the bulk

of the Coulomb branch of the Sp(n) gauge theory.

14See section 3.2 for details of the phases of su(n) with the fundamental representation.
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Figure 23. The phases of the Sp(3) theory with Λ36. Blue indicates the box is decorated with a

plus sign and yellow with a negative.

Finally we can ask if there exists some consistent phase structure when considering

sp(n) with both the V and Λ2V representations. This can be seen by the embedding of

su(2n+ 1) into so(4n+ 4) with an intermediate embedding by su(2n+ 2) like

so(4n+ 4) ⊃ su(2n+ 2) ⊃ su(2n+ 1). (6.9)

The outer automorphism of su(2n + 2), which is again an element of the Weyl group of

so(4n + 4) reduces su(2n + 1) to sp(n). As we have the Λ2V ⊕ Λ2V̄ representation from

the embedding so(4n+4) ⊃ su(2n+2), and the V ⊕ V̄ representation from the embedding

su(2n+2) ⊃ su(2n+1),15 the resulting theory has both the V and Λ2V representations of

sp(n). As we have no phase for the Sp(n) gauge theory with the Λ2V representation, we

also do not have a phase in this case.

The fact that there is no phase for the Sp(n) gauge theories indicates (via the corre-

spondence in section 7) that there is generically no network of small resolutions resolving

the Sp(n) singularity with Λ2V associated with a higher codimension enhanced singularity.

6.4 Sp(3) with Λ36

In section 6.2 we considered the phase of the SU(6) theory with respect to the Λ36 repre-

sentation, which we can exploit now to study the Sp(3) theory with the Γ0,0,1 irreducible

representation. The Γ0,0,1 representation is, up to multiplicity of the weights, identical to

the reducible Λ36 representation, which arises under the quotient by the outer automor-

phism of the Λ36 representation of su(6). It is here where we first observe a non-trivial

phase structure for the Sp series. The two phases of the SU(6) theory (figure 19) which

consistently descend to the Sp(3) theory are depicted in figure 23.

7 Box graphs and elliptic fibrations

7.1 The Lie group of an elliptic fibration

So far we studied the Coulomb phases of three-dimensional N = 2 gauge theories. We now

move on to the corresponding geometric analysis. The basic setup closely follows [12, 43].

The Lie group associated to an elliptic fibration π : X → B is determined via the

compactification of F-theory to M-theory. Let X be a resolution of singularities of the

total space of X with trivial canonical bundle. In the M-theory model on X, the gauge

group is abelian and the coweight lattice is the lattice of classes [D] of divisors D on X,

15The V ⊕ V̄ representation of su(2n + 1) can also arise from the decomposition of the Λ2V ⊕ Λ2V̄

representation of su(2n+ 2).
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which naturally lie in H2(X,Z): the corresponding gauge fields arise from the M-theory

3-form reduced on these cohomology classes. On the other hand, M2-branes wrapping

the curves C on X, whose classes [C] belong to the lattice H2(X,Z), determine massive

particles which are charged under the gauge fields; the charges are naturally given by the

negative of the intersection pairing

〈[D], [C]〉 = −#(D ∩ C). (7.1)

(We are changing conventions from [12, 43], and putting a minus sign here for better

harmony between algebraic geometry and Lie theory). Thus, we identify the weight lattice

in M-theory with H2(X,Z).

We have to modify these lattices slightly for F-theory: in the F-theory limit, the classes

in π∗H2(B) correspond naturally to 2-form fields in the effective action (by reducing the

type IIB self-dual 4-form field on the cohomology class). For Calabi-Yau fourfolds, these

2-forms in d = 4 can be dualized to pseudo-scalars, and hence do not correspond to the

vector fields that we are interested in (and they do not participate in the nonabelian gauge

symmetry enhancement). Thus, the only relevant classes which survive to the F-theory

limit are those with intersection number 0 with the fiber E of π. In particular, the relevant

coweight lattice in F-theory is Λ∨ = Ann([E]) ⊂ H2(X,Z)/π∗H2(B,Z), and the relevant

F-theory weight lattice is Λ = Ann(π∗H2(B,Z)) ⊂ H2(X,Z)/Z.[E].

The nonabelian data (i.e., the roots and coroots) are determined by considering which

curves C move in families that sweep out divisors D. For such a curve, by Witten’s analysis

of the quantization of wrapped branes [6] (see also [44]), the spectrum contains a massive

vector with the same gauge charges as the curve. In the limit where this curve has zero

area, the vector becomes massless and we get nonabelian gauge symmetry (unless lifted

by a superpotential, a possibility which we ignore for this discussion). Following [12], we

associate the class of the curve C to a root, and the class of the divisor D swept out by C

to the corresponding coroot. The pairing between the two satisfies

〈[D], [C]〉 = −#(D ∩ C) = 2 , (7.2)

as expected from the group theory. The geometric pairing between divisors and curves is

generally asymmetric: the way this corresponds to the group theory (and to the possibility

of gauge groups whose root systems are not simply-laced) is spelled out in detail for the

classical groups in [12] (with some further explanation in [43]), and for the exceptional

groups in [45].

7.2 Representation associated to an elliptic fibration

The representations given by other curves can be worked out as well. One thing that is

important to remember is that the total representation is given by wrapping both holomor-

phic and anti-holomorphic curves, obtaining a complex scalar for each [6, 44]. For example,

although in five-dimensional theories one often speaks of “matter in the fundamental rep-

resentation n of SU(n),” the representation actually being considered16 is the sum of that

16This must be modified for a quaternionic representation such as the fundamental representation of

Sp(r). For such representations in five-dimensional theories, one speaks of a “half-hypermultiplet in the
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representation and its complex conjugate, n⊕n. We can either first analyze the geometry

and calculate the matter representation, or we can start with a representation and learn

what the geometric properties must be which will lead to that representation. Since we are

working in M-theory with everything resolved (i.e. on the Coulomb branch of the gauge

theory) the dictionary between geometry and gauge theory will depend on which phase of

the Coulomb branch we are in.

To this end, we consider the possible Kähler classes φ ∈ H2(X,R). For any class

c ∈ H2(X,Z), the sign of 〈φ, c〉 determines whether c has a chance of being an effective

curve, since

〈φ, [C]〉 = −
∫

C
φ < 0 (7.3)

for an effective curve C (i.e., the pairing gives the negative of the area). Conversely, deep

results of Kleiman [46], Mori [47], and others tell us that on Calabi-Yau varieties of low

dimension, classes whose area is positive will be effective classes (up to a rational multiple).

We will focus on curves C which have nonzero intersection number with one of the

“coroot” divisors responsible for nonabelian gauge symmetry. The corresponding weight

is then charged under the coroot, and so must form part of a representation of the non-

abelian part of the gauge group. Turning this around, if we have a representation of the

nonabelian part we can determine the geometric properties of the curves which are involved

in the representation.

7.3 Geometry for SU(n) with fundamental representation

Consider the case of a group whose nonabelian part is SU(n). The simple roots αk = Lk−
Lk+1 which we have chosen are represented by effective curves. Define the curves associated

to the weights of the fundamental and anti-symmetric representations, associated to the

positive or negative weights, as follows

C±
i : ± Li

C±
i,j : ± (Li + Lj) .

(7.4)

The Cartan divisors Di are ruled by effective curves associated to the simple roots

Fi : αi = Li − Li+1 . (7.5)

Their inner products must satisfy 〈φ, Fk〉 < 0. Thus, we have

〈φ,C+
k 〉 < 〈φ,C+

k+1〉 (7.6)

for k = 1, . . . , n−1. This condition on φ places φ within the (co-)Weyl chamber determined

by our choice of positive roots.

Now suppose that in addition, there are curves in the fundamental representation of

su(n). We label the classes of these curves as C+
1 , . . . , C+

n and ask which ones are effective.

representation.” Geometrically, to build up such a representation requires wrapping both holomorphic and

anti-holomorphic curves. In three-dimensional theories, there is a chiral multiplet for each kind of wrapping.
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F2

C24
-

C23
+F4

C15
+

F0

Figure 24. Surfaces for SU(5). The fiber above the blue locus on the base expresses the irreducible

effective curves when including classes of curves in the fundamental representation. The red locus

indicates the irreducible effective curves when the antisymmetric representation is included, with

effective curves specified by phase 9, figure 26.

Because the inner products increase as k increases and because negative inner products

correspond to effective curves, there must be some ℓ such that C+
k is effective for k ≤ ℓ,

and C−
k is effective for k > ℓ. We can thus write the effective curves as a sequence

C+
ℓ + F1 + · · ·+ Fℓ−1

C+
ℓ + F2 + · · ·+ Fℓ−1

...

C+
ℓ + Fℓ−1

C+
ℓ

C−
ℓ+1

C−
ℓ+1 + Fℓ+1

C−
ℓ+1 + Fℓ+1 + Fℓ+2

...

C−
ℓ+1 + Fℓ+1 + · · ·+ Fn−1,

(7.7)

and note that the entire representation n⊕n is given by wrapping these holomorphic curves

and their anti-holomorphic counterparts.

Since the Fk are all classes of irreducible curves, we easily see that C+
ℓ and C−

ℓ+1 must

be classes of irreducible effective curves as well. Since C+
ℓ + C−

ℓ+1 = Fℓ, we conclude that

there must be a particular fiber of the ruling on Dℓ which splits into two curves. This is

illustrated in figure 24.

Note that there are n curves in this story C+
1 , . . . , C+

n , but only n − 1 divisors D1,

. . . , Dn−1. There are thus two possibilities: either (i) there is an additional divisor D0 (a

coweight which is linearly independent of the coroots) which enables the areas of C+
k to be
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linearly independent, or (ii) there is no such divisor so there must be a relation among the

areas, which is determined by (A.5) to be

〈φ,C+
1 〉+ · · ·+ 〈φ,C+

n 〉 = 0. (7.8)

In the second case, it is not possible for all of the quantities 〈φ,C+
k 〉 to have the same sign,

so the index ℓ above is restricted to 1 ≤ ℓ ≤ n− 1.

On the other hand, in the first case when there is an additional divisor, ℓ = 0 and ℓ = n

are both possible. Moreover, if we add D0 to our coweights and assume that 〈D0, C
+
k 〉 = 1

for some k, then it is easy to see that we now have the coweights of the larger algebra u(n)

with the weights L1, . . . , Ln corresponding to the fundamental representation of u(n). The

geometry of these two extra cases is that when ℓ = 0, the curve C+
1 sticks out of D1 without

being on another surface, while when ℓ = n, the curve C−
m sticks out of Dn−1 without being

on another surface.

Notice that if there is more than one fiber of a ruling which splits into two components

to generate a fundamental representation, then, depending on the number of coweights,

there may be a new, independent homology class for each such split fiber, i.e., for each such

Lℓ. It is even possible for the values of ℓ determining the effective curves to be different:

the differences in areas 〈φ, Lk〉 − 〈φ, Lk+1〉 and 〈φ, L̃k〉 − 〈φ, L̃k+1〉 must be the same, but

there can be an overall additive shift of the areas −〈φ, L̃k〉 relative to −〈φ, Lk〉 which can

lead to a different index value at which the sign of the area changes.

7.4 Geometry for SU(n) from decorated box graphs

The geometry described in the last subsection has a counterpart in the phase story and a

very efficient description in terms of decorated box graphs. We first draw the connection

with the box graphs for the fundamental representation, which reproduce the geometries

that we discussed in the last subsection. The box graphs also allow us to construct more

general geometries in an efficient way, for instance for the anti-symmetric representation,

which we will also discuss.

The phases of U(n) with fundamental n, are given by (3.2), corresponding to decorated

box graphs based on the representation graph in figure 2. The box graph corresponding

to the geometry in figure 24 is shown in figure 25. The central fiber can be read off by

considering the curves adjacent to the Dyck path, where the signs change between + and

−. The effective curves are

KU(n),n,phase l = {F1, · · · , Fl−1, C
+
l , C−

l+1, Fl+1, · · · , Fn−1} . (7.9)

The splitting occurs at Fl = C+
l + C−

l+1. We can read off the Dynkin labels of the curves

C± from the box graph. The intersection of a curve with a Cartan divisor Di, which are

fibered by Fi associated to the simple root αi, is obtained by determining whether adding

the simple root changes/maintains the sign of the box, in which case the intersection is

−1/+1, and if it does not give rise to a weight in a neighboring box, then the intersection
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...... Ll Ll+1
...L1 LnL2 L3

Figure 25. Box graph for U(n) with fundamental representation. The arrows indicate the direction

of the action of the simple roots, as they generate the phase. The green line is the “anti-Dyck path”

in this case, which separates the blue/yellow, i.e., positive and negative, weights. This is the phase

diagram corresponding to the effective curves in (7.7).

9

(2,3)

(1,5)

(2,4)

L2-L3 L3-L4 L4-L5 

L3-L4 

L2-L3 

Figure 26. Again, this is phase 9 of SU(5), with entries (i, j) in the boxes denoting the weights

Li + Lj . The double-headed arrows indicate where crossing from + to − (blue to yellow), the

corresponding roots, namely α1 = L1 − L2 and α3 = L3 − L4, split. The single arrows correspond

to the action of the simple roots, that remain irreducible, as they generate the representation from

the extremal weights, along the anti-Dyck path.

vanishes. From this we obtain the intersections

C+
l ·Dl−1 = +1

C+
l ·Dl = −1

C−
l+1 ·Dl = −1

C−
l+1 ·Dl+1 = +1 .

(7.10)

From this it follows that the intersections are precisely as in figure 24.

This process has a direct generalization for other representations, for instance consider

the anti-symmetric representation for SU(n). Each decorated box graph or, equivalently,

anti-Dyck path defines a codimension-two fiber corresponding to a Dn enhancement from

an An−1 singularity in codimension one. The geometry of the central fiber associated

to such a diagram is read off as follows: consider for instance phase 9 for SU(5) shown

in figure 26. The irreducible curves are located along the anti-Dyck path (in fact they

are one-to-one with the extremal points, shown in red), as well as the roots that do not

correspond to crossing the path

K = {C+
1,5 , C+

2,3 , C−
2,4 , F2 , F4} . (7.11)

The remaining curves F1 and F3 are reducible, as they correspond to crossing the anti-Dyck

path. In particular C+
2,3 + C−

2,4 = F3, C
+
1,4 + C−

2,4 = F1 and C+
1,5 + C+

2,5 = F1. The splitting
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in terms of the irreducible components is then

C+
1,4 + F4 + C−

2,4 = F1

C+
2,3 + C−

2,4 = F3 .
(7.12)

We can read off the intersections from the box graphs using the same rules as above (7.10)17

C+
1,5 ·D1 = −1

C+
1,5 ·D4 = +1

C+
2,3 ·D1 = +1

C+
2,3 ·D3 = −1

C−
2,4 ·D1 = −1

C−
2,4 ·D2 = +1

C−
2,4 ·D3 = −1

C−
2,4 ·D4 = +1 .

(7.13)

With these intersections the fiber associated to the phase 9 diagram is given by figure 24,

which also shows the multiplicity of the fiber components. Positive intersections correspond

to the curve meeting the divisor transversally, negative intersections mean it is contained

in the divisor.

Using this method we can also determine the extremal set of generators for the com-

bined phases for SU(5) with 5 and 10 representation, whose decorated box diagrams were

determined in figure 9. Given the symmetry of the problem, we only need to consider one

half of the phases, e.g. in the first two columns of figure 9. The extremal generators for

the phases with only 10 matter, with labels as in figure 9 are

K4 = {C+
2,5 , C−

3,4 , F1 , F3 , F4}
K7 = {C+

2,4 , C−
2,5 , C−

3,4 , C+
1,5 , F3}

K9 = {C+
2,3 , C−

2,4 , C+
1,5 , F2 , F4}

K11 = {C−
2,3 , C+

1,5 , F2 , F3 , F4} .

(7.14)

Likewise the relevant extremal generators for the phases of the 5 matter case with labels

as in figure 4 are
KII = {C+

3 , C−
4 , F1 , F2 , F4}

KIII = {C+
2 , C−

3 , F1 , F3 , F4}
KIV = {C+

1 , C−
2 , F2 , F3 , F4} .

(7.15)

On the other hand the phase with the combined representation has four generators in each

case, given by
K9,III = {C−

3 , C+
2,3 , C−

2,4 , F4}
K9,II = {C+

3 , C+
1,5 , F2 , F4}

K11,IV = {C−
2 , F2 , F3 , F4}

K11,III = {C+
2 , C−

2,3 , F3 , F4}
K4,III = {C+

2,5 , F1 , F3 , F4}
K7,III = {C+

1,5 , C+
2,4 , C−

2,5 , F3} .

(7.16)

17Note that these are the intersection numbers, and thus the negative of the inner product defined in (7.2).
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Note that these generators are only in the cone if, in the sense of section 4.3, all splittings

are allowed in codimension 3, i.e. both those compatible with E6 as well as SO(12). We

shall determine the fibers at the E6 codimension 3 loci in section 8.4, in which case not all

splittings are compatible with only E6, and the cone has five generators.

7.5 Flops

The possible choices of ℓ in the previous example gives a decomposition of the Weyl chamber

into smaller chambers. These are easy to interpret: they correspond to different resolutions

of X, related by flops.

This is easily seen by considering the area of various curve classes. To illustrate this,

consider the previous example where we have two irreducible effective curves in the divisor

Dℓ represented by Lℓ and −Lℓ+1. We can move φ within H2(X,R) in order to decrease

〈φ, Lℓ〉 to zero. If we continue to move in the same direction, we will make 〈φ, Lℓ〉 nega-
tive, while keeping 〈φ, Lℓ−1〉 positive. The geometric interpretation is that the irreducible

curve corresponding to Lℓ becomes smaller and smaller until it is blown down to a conifold

point. Continuing to move in the same direction causes a flop, and the conifold point is

blown up with its alternate small resolution. The new blowup creates a new curve of class

−Lℓ in the divisor Dℓ−1, and the proper transform of the old fiber in Dℓ−1 becomes an

irreducible curve in the class Lℓ−1. (In figure 25, this process flops the left-most reducible

curve towards the component to its left.)

Note that the geometric flop transition changes one of the signs of 〈φ,C〉. This is

nothing but the flop defined in the decorated box graph or the anti-Dyck path in section 4.2.

The weights associated with the extremal points correspond to the flopped curves. As we

demonstrated the phases of the SU(5) gauge theory with the anti-symmetric representation

and the fundamental representation in figure 11, each box graph corresponds to a resolution,

and a single-box sign change among the box graphs or equivalently a flop of a corner of

the anti-Dyck path corresponds to a flop transition between distinct resolutions.

8 Elliptic fibrations in codimensions two and three

8.1 Local models for fibers in codimension two

Consider an elliptic fibration18 π : X → B over a base B in Weierstrass form y2 =

x3 + fx+ g. In codimension one on the base (along components of the discriminant locus

∆ ⊂ B, as in figure 27), we find various types of singular fibers as classified by Kodaira,

and we can determine the monodromy of these singular fibers by using Tate’s algorithm.

The upshot is a determination of the nonabelian part of the (geometric19) gauge algebra

of the corresponding F-theory model.

The singularities are enhanced in codimension two, which we discuss following [24, 26]

(see also [27, 49–51]). Let Σα ⊂ B be an irreducible subvariety of codimension two along

18Recently, a generalization to genus-one fibrations has been discussed [48], but we have no need of that

generalization here.
19For F-theory models in four dimensions, part of this “geometric” gauge algebra may be lifted by a

superpotential, resulting in the actual gauge algebra being smaller.
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S

1 2

3

P

Figure 27. Discriminant in higher codimension.

which some enhancement occurs: necessarily, Σα ⊂ ∆. We make a local model for the

singularity enhancement by choosing a general point Pα of Σα, a general surface Sα ⊂ B

which is transverse to Σα at Pα, and a general function ϕα : Sα → C such that ϕα(Pα) = 0.

For each u ∈ C with |u| < ǫ, we can restrict our elliptic fibration to the curve ϕ−1
α (u) and

use the Kodaira classification to ask what type of singular fiber appears in the Weierstrass

model. This is illustrated in figure 27, where a transverse surface S at a point P retains

information about the discriminant locus components which pass through the point.

If f vanishes to order at least 4 and g vanishes to order at least 6 at Pα, then on any

Calabi-Yau variety ρ : X → X which resolves the singularities of X, the fiber of π ◦ ρ over

Pα contains a surface. When we compactify M-theory on X we find an infinite tower of

massive Kaluza-Klein states corresponding to curves in that surface, all of which become

massless in the F-theory limit, signaling a tensionless string in the F-theory model [6].

Thus, in order to avoid tensionless strings in our F-theory compactification, we insist

that the orders of vanishing of f and g at Pα do not simultaneously exceed 4 and 6. It

then follows that the elliptic fibration over ϕ−1
α (0) has a well-defined Kodaira type, which

determines the singularity in the Weierstrass model: it is one of the ADE singularities,

which are also known as “rational double points.” We can regard the family of surfaces

ϕ−1
α (u) (for u near 0 in C) as a deformation of the singularity in ϕ−1

α (0). The total space

of the family is a threefold X = π−1(Sα) which is fibered by surfaces Xt = π−1(ϕ−1
α (t)),

all of which have rational double points.

To get a good F-theory model, we assume that there is a Calabi-Yau variety X and

a map ρ : X → X which resolves the singularities of X in such a way that the induced

family π ◦ ρ : X → B is flat.20 The Kodaira fiber over the general point of any component

20This technical condition ensures the absence of tensionless strings in the associated M-theory com-

pactification by ensuring that all fibers are one-dimensional; it is well-understood for elliptic Calabi-Yau

threefolds [52] but not for elliptic Calabi-Yau fourfolds [53].
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of ∆ gets resolved by this procedure. Restricting ρ to ρ−1(X), we find a resolution X of

the threefold X which resolves each of the surfaces Xt in the family when t 6= 0, although

it may fail to resolve the limiting surface X0. This phenomenon is known as partial si-

multaneous resolution of rational double points [54, section 8] (see also [55, Theorem 1.14]

and [24]), and we now explain it in detail.

We associate to the singularity on X0 a simply-laced root system Φ̃ (the one with the

same name as the ADE type of the singularity on X0), and to the singularity on Xt for

t 6= 0 a sub-root system Φ ⊂ Φ̃ (also simply-laced, of the ADE type of the singularity on

Xt). For each subgroup Γ of the Weyl group W
Φ̃
of Φ̃ which fixes a Weyl chamber of Φ,

there is a “universal” family of surfaces X → U (depending on Φ, Φ̃, and Γ) with a partial

resolution X → X such that (possibly after shrinking ǫ and S) our given family X and its

resolution X are obtained from X and X using some embedding {|u| < ǫ} → U . Moreover,

the classes of algebraic curves on X are generated by the Γ-invariant sublattice of Φ̃.

For each curve in the central fiber, there is a divisor on X meeting this curve only once

and not meeting any of the other curves in the central fiber. We can see this by describing

X as a union of small neighborhoods of each of the curves in the central fiber. Away from

the intersections with other curves, these neighborhoods are locally a product of the curve

with a small neighborhood of the origin in C
2; choosing a point on the curve, that “small

neighborhood of the origin” gives a divisor on X meeting only this curve.

As a consequence, in a small neighborhood of Pα, there are the same number of linearly

independent classes of curves as there are linearly independent classes of divisors. As we

will see in the next section, in a global F-theory model there can be additional relations

among the divisor classes, and hence fewer linearly independent divisors. However, in a

local model, the choice of resolution X determines which curve classes are effective, and

thereby determines a phase as in section 7.

We will first consider the case that the singularities on X0 are completely resolved in

X, and later return to consider the case when the singularities are only partially resolved.

In the completely resolved case, the effective curve classes on the resolved surface X0 cor-

respond to the positive roots in the simply-laced root system Φ̃. Both effective curves and

anti-effective curves can be used for wrapping M2-branes, allowing us to identify matter

fields in the theory corresponding to both positive and negative roots in Φ̃. The possible

gauge charges on these matter fields are naturally identified with the coweight lattice of

the root system Φ̃.

The effective curves on the nearby fiber Xt form the positive roots in the sub-root

system Φ ⊂ Φ̃, and again, M2-branes can be wrapped on the curves corresponding to both

positive and negative roots. These curves move in a larger family, and the spectrum of the

wrapped M2-brane is correspondingly different, containing a (massive) vector multiplet as

well as hypermultiplets (the number of which depends on the genus of the parameter space

for the curve in question).

Since the M2-brane spectra of curves corresponding to Φ include vector multiplets, we

identify GΦ as the potential gauge group21 associated to these singularities. Because the

21We refer to this as the “potential” gauge group because although it locally reflects the correct gauge
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vector multiplets are massive when the singularities are resolved, this group is broken to its

Cartan subgroup HΦ at the generic point of the Coulomb branch. However, at the origin

of the Coulomb branch all of these curve classes will have zero area, i.e., they will be blown

back down, and the nonabelian gauge symmetry is restored.

We hasten to point out one subtlety: there may be global relations among some of the

curve classes in Φ, leading to a different nonabelian gauge group. This is because there can

be an outer automorphism of the Lie algebra gΦ under which certain roots are identified;

when such an automorphism acts geometrically, the “correct” gauge group is a subgroup

of GΦ, which typically has a non-simply-laced algebra [49, 51].

The cohomology classes of the curves in X0 corresponding to roots of the larger root

system Φ̃ may span a larger space than those from the root system Φ, and the weight

lattice can be enlarged to study these additional classes. We thus consider the larger Lie

group generated by GΦ and the weight lattice H
Φ̃
of Φ̃. This is a potential gauge group

associated to the curves on X0 as well as those on Xt, although global effects may cause

the actual gauge group to be smaller. The Lie algebra of this larger group takes the form

gΦ ⊕ u(1)rk(Φ̃)−rk(Φ) ⊂ g
Φ̃
, (8.1)

which is a subalgebra of g
Φ̃
.

To see how this works in some examples, consider first the case in which Φ̃ = An and

Φ = An−1 with Γ trivial. Then GΦ = SU(n) and it is not hard to see that H
Φ̃

and GΦ

together generate22 U(n). The simple roots of the root system An are irreducible curves

on X; however, only the roots of An−1 are roots of the gauge group of X since the others

do not sweep out divisors on X, i.e., do not have associated coroots. Geometrically, we

have a family of Kodaira fibers of type In degenerating to a fiber of type In+1, which has

various resolutions of singularities as illustrated in figure 24.

The curve classes corresponding to positive roots of An are those which one can wrap

an M2-brane with positive orientation; the negative roots are those which can be wrapped

with negative orientation [6]. These two sets are the nonzero weights in the adjoint repre-

sentation of gAn = su(n+1). To see how these classes are related to the gauge group of our

local model, we decompose the adjoint representation of G
Φ̃
= SU(n+1) under the subalge-

bra u(n), and find the adjoint representation of u(n) together with n⊕n. In the Katz-Vafa

approach [26], this corresponds to “matter in the fundamental representation of u(n).”

As another example, consider Φ̃ = Dn and Φ = An−1. We again have that H
Φ̃
and

GΦ together generate u(n). This time, when we restrict the adjoint representation of

G
Φ̃
= SO(2n) to U(n), we get the adjoint representation of U(n) together with Λ2n⊕Λ2n,

which corresponds to matter in the antisymmetric representation. As we have seen earlier,

the decorated box graphs provide the phase structure in this case for both u(n) and su(n).

The story is somewhat more complicated if Γ is nontrivial. For non-trivial Γ there are

two instances: either Γ acts on the root system Φ as a non-trivial outer automorphism,

in which case the codimension-two fibers are affected. This is one way of generating non-

simply-laced gauge groups. For instance consider G
Φ̃
= SU(2n) and GΦ = Sp(n), where

symmetry, there may be some changes in the group due to global effects, as we shall explain below.
22Note that the embedding of U(n) into SU(n+ 1) sends a matrix g to the matrix diag(g, det(g)−1).
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Γ = Z2 is the outer automorphism of the A2n−1 root system. The fibers in codimension two

are obtained as the Γ-invariant fibers, or said in terms of the phases, only the Γ-invariant

phases descend to phases of the theory with gauge group GΦ. Other examples are G
Φ̃
= E6

and GΦ = F4 as well as G
Φ̃
= SO(8) and GΦ = G2, where the quotient is by the triality

symmetry of the SO(8) Dynkin diagram. We have discussed Sp(n) in section 6.3, where a

non-trivial network of phases remains for GΦ.

Non-trivial monodromy arises also when the commutant G⊥ of GΦ inside G
Φ̃
is non-

abelian, i.e. instead of (8.1) consider more generally

gΦ ⊕ g⊥ ⊂ g
Φ̃
. (8.2)

Then the Weyl group of g⊥ can act non-trivially on the codimension-two fibers and thereby

give monodromy-reduced fibers instead of standard Kodaira fibers in higher codimension.

The interesting triplets (g
Φ̃
, gΦ, g⊥) involving the exceptional Lie algebras23 are as follows

g
Φ̃
→ gΦ ⊕ g⊥

e6 → su(6)⊕ su(2)

e6 → su(3)⊕ (su(3)⊕ su(3))

e7 → so(12)⊕ su(2)

e7 → su(6)⊕ su(3)

e8 → e7 ⊕ su(2)

e8 → e6 ⊕ su(3)

e8 → su(5)⊕ su(5) .

(8.3)

Of course these decompositions can also be read in reverse, such as gΦ = su(2) and

g⊥ = su(6), etc. We will see that unless there are extra rational sections in the elliptic

fibration, the fiber in codimension two will always be monodromy-reduced. In the following

we exemplify this for e6 → su(6) ⊕ su(2). In this case, there is a non-trivial monodromy

in Γ = Wsu(2) = Z2. We will see that this affects the codimension-two fibers, which are

not standard Kodaira IV ∗ fibers, unless the fibration allows for additional sections. Global

issues of this kind will be discussed in detail in section 9.2. Likewise the decomposition of

e8 → su(5)⊕ su(5)⊥ requires generically 4 extra sections in order to have a standard type

II∗ fiber in codimension two.

8.2 Fibers of E6 type with monodromy

An example of phases with non-trivial monodromy was discussed in section 6.2, for e6 →
su(6) ⊕ su(2) and non-trivial Γ = Z2. In this case, the fibers are not of affine E6 type,

i.e. Kodaira type IV ∗, however give rise to generalized fiber types. Using the same meth-

ods as in section 7.4, the fiber types can be determined for all diagrams in figure 19 and

are shown together with the flop transitions between them in figure 28. Note, as we ex-

plained in section 2.5, in this instance the monodromy-reduced phases have a flop diagram

23There are more examples involving non-simply-laced Lie algebras, which we will not consider here, as

well as higher rank ADE examples. See e.g. [56].
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(145)
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+ C145

-

Figure 28. Phases and Fiber types of the SU(6) theory with Λ36 of SU(6). In each box the

left most diagram is the intersection graph of the fiber with multiplicities and the white node

denoting the zero-section. The middle diagram is the fiber graph with the extremal rays, and on

the left we show the decorated box graph, where the weights (ijk) that are explicitly labeled in

the blue/yellow boxes correspond curves C±

ijk in the fibers, which together with the irreducible

Cartans Fi are the extremal rays. Note that the Z2 quotient identifies these weights pairwise,

which is shown also in the fiber diagrams in terms of the blue/yellow double lines. Black lines

connecting the various phases correspond to flops. The intersection graphs are precisely obtained

by deleting one (non-affine) node of the IV ∗ Kodaira fiber.

given by the non-affine E6 Dynkin diagram. This is consistent with the fact that all the

monodromy-reduced fibers are obtained by deleting one of the non-affine nodes of the IV ∗

Kodaira fiber, as we will now show by explicit computation.

Consider the phase at the top of figure 28. The extremal rays are

K =
{
F1, F2, F3, F4, C

−
126

}
. (8.4)

The extended node is always obtained by the linear combination F0 = −
∑

i Fi. It is clear

that F5 splits, as adding α5 crosses the anti-Dyck path (i.e. changes the sign of the weights)

F5 → C−
126 + C+

345 + F1 + 2F2 + F3 , (8.5)
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which implies multiplicities 2, 3, 2 for F1, F2, F3, respectively. Under the Z2 automorphism,

the two generators C−
126 and C+

345 are identified, and it has multiplicity 2. To determine the

intersections between the C−
126 and the remaining generators, we apply the rules derived in

section 7.4, i.e. if adding a root αi to the weight L1 + L2 + L6 changes/retains the sign of

curve, the intersection with Fi is ∓1, and thus the inner product 〈C−
126, Di〉 = ±1. From

the diagram we obtain C−
126 · D2 = +1, i.e. these intersect transversally, and has trivial

intersections with the other Fi except

C−
126 ·D5 = −1 ⇒ C−

126 · C+
345 = +1 . (8.6)

After the quotient, the fiber is as shown in figure 28.

The second fiber type has extremal rays

K =
{
F1, F3, F4, C

+
126, C

−
136

}
, (8.7)

and the following curves become reducible

F2 → C+
126 + C−

136 ≡ C+
245 + C−

345

F5 → C−
136 + C+

245 + F1 + F3 .
(8.8)

Under the Z2 quotient the curves C
+
126 and C−

345 as well as C
−
136 and C+

245 are identified. The

multiplicities are then 2, 2, 3 for each of F1, F3, C
+
136 and 1 for the remaining generators.

The intersections are obtained by noting that

C+
126 · F5 = +1 , C+

126 · F2 = −1 , C−
136 · F2 = −1 , C−

136 · F5 = −1 , C−
136 · F1 = +1 .

(8.9)

This again gives rise to a non-standard fiber, which is not an affine E6 Dynkin diagram.

The third fiber type has extremal rays

K =
{
F2, F4, C

+
145, C

+
136, C

+
235

}
(8.10)

where again we quotiented out the Z2 action, to identify C+
145 with C−

236 etc. The following

curves are reducible
F1 → C+

145 + C−
245 ≡ C+

136 + C−
236

F3 → C+
136 + C−

146 ≡ C+
235 + C−

245

F5 → C+
145 + C−

146 ≡ C+
235 + C−

236 .

(8.11)

Thus each of the Cijk appears with multiplicity 2 in the fiber, and the irreducible Fi with

multiplicity 1. Intersections are again obtained from the diagram as usual and are

C−
236 · F1 = −1 , C−

236 · F3 = +1 , C−
236 · F5 = −1

C+
136 · F1 = −1 , C+

136 · F3 = −1 , C+
136 · F5 = +1 , C+

136 · F2 = +1

C+
235 · F1 = +1 , C+

235 · F3 = −1 , C+
235 · F5 = −1 , C+

235 · F4 = +1 .

(8.12)

The resulting fiber does not correspond to a standard Dynkin diagram, but could be

described as an affine E6 without the middle node.
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The remaining fiber types on the left column in figure 28 are simple extensions of the

analysis done so far. The remaining case is the one on the right hand side. In this case the

extremal rays are

K =
{
F1, F2, F4, F5, C

−
145

}
, (8.13)

where C−
145 and C+

236 are identified under the Z2 quotient. In this case the splits are

F3 → C+
236 + C−

145 + F1 + F5 , (8.14)

so that C+
145 has multiplicity 3, and F1 and F5 each multiplicity 2. The intersections are

C−
145 · F1 = +1 , C−

145 · F3 = −1 , C−
145 · F5 = +1 . (8.15)

From these it follows that

F0 · C−
145 = −1 , (8.16)

which means that F0 (which corresponds to L6 − L1) does not intersect this extremal ray

transversally, but splits

F0 → C−
145 + C+

456 . (8.17)

The resulting additional curve, C+
456 is the component of the fiber that remains large in

the singular limit, and thus corresponds to the zero section.

In summary the new fiber types can be characterized by deleting one (non-extended)

node in the affine Dynnkin diagram of the IV ∗ Kodaira fiber.

Finally, recall that for trivial Γ = Z2 the fibers will be of Kodaira IV ∗ type. These

correspond to phases of the U(6) theory, which include a singlet given by S− = −∑6
i=1 Li.

It is a bit subtle to see this so that we will exemplify it with the all + (blue) box graph in

figure 18. The extremal rays are

K =
{
F1, F2, F3, F4, F5, C

+
456

}
. (8.18)

Intersections are C+
456 · F3 = +1 and 0 for all other Cartans Fi, so that C+

456 · F0 = −1,
which implies that F0 splits in this case

F0 → C+
456 + S− + C+

236 . (8.19)

Furthermore C+
236 can be written in terms of the extremal generators as C+

236 = F4+2F3+

F2 + C+
456, so that overall

F0 → 2C+
456 + F4 + 2F3 + F2 + S− , (8.20)

which precisely results in the correct multiplicities for a type IV ∗ fiber, and the intersec-

tions comply with this as well: S− is the extended node, and intersects C+
456, which has

multiplicity 2, and intersects F3 (multiplicity 3), as shown in figure 29.
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(456)

F5

F1

F2

F4

C456
+

S-

F3

1 2 3 2 1

2

1

Figure 29. Example phase and fiber type of the U(6) theory with Λ36, corresponding to trivial

monodromy action, with standard Kodaira IV ∗ fiber. Description of the various diagrams is as in

figure 28.

8.3 Local models for fibers in codimension three

The singularity enhancement in codimension three follows a similar pattern. Along certain

codimension-three loci Ψµ in the base, contained in the union of all the codimension-two

loci Σα, there are further increases in singularity type. For such Ψµ, this increase can be

measured by choosing a general point Pµ of Ψµ, and taking a general threefold Tµ ⊂ B which

is transverse to Ψµ at Pµ. We choose a general map ϕµ : Tµ → C
2 such that ϕµ(Pµ) = 0.

If the Weierstrass coefficients f and g have multiplicities at Pµ which exceed 4 for f

and 6 for g, then there is no desingularization of the Weierstrass model which is flat [53],

which means that there would be tensionless strings in the low-energy theory. Thus, for a

well-behaved F-theory model, those multiplicities will not be exceeded, and the Weierstrass

model over the curve ϕ−1
µ (0) will have a well-defined Kodaira type at Pµ.

There is again a partial simultaneous resolution of singularities for the two-parameter

family of surfaces ϕ−1
µ (u), u ∈ C

2, ‖u‖ < ǫ. So, although the Kodaira classification tells

us about the singularity type of the singular fiber, it does not predict the resolution (as

explicitly shown in [25, 28, 29]).

The central fiber will be associated to a root system ĝ, each codimension-two locus

which passes through our codimension-three locus will be associated to a root system

g̃j ⊂ ĝ, and the gauge algebra g of the local model will be contained in the intersection of

all of the g̃js. The analysis of the phases proceeds as we explain in section 4.3.

8.4 Fibers of E6 type in codimension three

We shall now given an explicit example for the codimension-three phenomenon explained

in the last section. The box graphs for SU(5) with 5 and 10 matter that are relevant for

determining the fibers in codimension three were discussed in section 4.3. In particular,

the combined box graphs for fundamental and anti-symmetric representation are shown in

figure 9. The codimension-three fibers that arise at the E6 enhancement loci are known to

not be Kodaira type IV ∗ fibers [25, 28, 29]. As was observed in [23], there are 12 distinct

small resolutions, of which only six correspond to the ones in [28]. It is therefore interesting

to determine all possible codimension-three fibers of E6 type using the description in terms

of decorated box graphs.

The analysis in section 4.3 shows how to determine which extremal generators of the

relative Kähler cone become non-extremal along codimension-three loci, i.e. which of these
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11

F0

C15
+

F4

F3
C23

-

F2

1 2 2 1

11

11

IV

F0

C2
-

F4

F3
C23

-

F2

2

1 2 3 2 1 1 2 2 1

11

2

F0

C15
+

F4

F3

C2
-

F2

C'2
-

11

IV

Figure 30. On the left hand side the fiber type and box graph of the SU(5) with 10 matter in

phase 11 is shown, which is a standard I∗s1 fiber corresponding to a D5 enhancement. Along the E6

locus, obtained by combining this phase with the 5 matter in phase IV as explained in section 4.3,

the curve C+
1,5 becomes reducible, and the fiber is of the type shown in the middle: note that this

fiber type has multiplicity 2 along the single-node leg. The fiber type is shown in the central line

including the components that arise from the splitting of C+
1,5. On the right hand side we show the

analogous splitting along the SO(12) locus for the same phase diagram. In this case C−

2,3 becomes

reducible, yielding a Kodaira type I∗s2 fiber.

curves become reducible and split into a combination of effective curves. There are two

group theoretic ways that this happens, either the splitting is compatible with E6 or with

SO(12), which are characterized by either having two curves carrying weights of the 10

matter24 or two of the 5 involved in the splitting, respectively. To actually determine the

fibers above the E6 codimension-three loci, we need to consider only the former type of

splitting. We consider the intersection of two codimension loci giving rise to the 10×10×5
interaction.

The fiber types for each of the resolutions corresponding to the phases in figures 11

and 9 are shown in figure 31, including the flops which are shown as connecting the boxes.

We only present half of the fibers appearing in figures 11 and 9, as the other half is ob-

tained by a simple relabeling of the roots of SU(5): (1 ↔ 4, 2 ↔ 3). The “hexagon” in

figure 11 is obtained by combining two of these E6-Dynkin diagram shaped flop diagrams

in figure 30. Note that the fibers for the phases (9, II), (9, III) and (7, III) correspond

precisely to the ones obtained by Esole and Yau in [28], however the fibers appearing in

(4, III), (11, III) and (11, IV) are previously unknown. The fiber types agree with the ones

24Note that generically they will then be identified under monodromy, however this case is distinct from

two 5 and one 10 curve intersecting in that the relevant Yukawa coupling is consistent with the E6 algebra.
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obtained from SU(6) with Λ36 in codimension two with monodromy in figure 28, however

the flop transitions connect them differently, which is not surprising from the point of view

of the Weyl group action. Note that the fibers along the SO(12) codimension-three loci

are standard Kodaira fibers.

From the analysis, which is again very similar to the one in section 8.2 we can determine

the fiber types in codimension three.

First consider the phase (11, IV) in figure 9. Phase 11 of SU(5) with only matter in the

10 representation has extremal generators K11 = {C−
2,3, C

+
1,5, F2, F3, F4} as we determined

in (7.16) and the splitting in codimension two is

F1 → C−
2,3 + C+

1,5 + F3 + F4 . (8.21)

The fiber type is shown in figure 30. Including 5 matter corresponds to considering the

combined box graphs that are consistent with the flow rules, as explained in section 4.3. For

phase 11, there are two choices of 5 matter phases: IV and III, as shown in figure 9. Con-

sider the case (11, IV). The extremal generators above the codimension-three E6 locus are
25

KE6 = {C−
2,3, C

−
2 , F2, F3, F4} . (8.22)

and C+
15 splits as follows

C+
15 → C−

23 + F2 + F3 + C−
2 . (8.23)

Intersections are determined as explained e.g. in section 7.4.

The case of phase (11, III), the new extremal set above the E6 codimension 3 locus is

KE6 = {C−
23, C

+
2 , C−

3 , F3, F4} (8.24)

and the splitting is
C+
15 → C−

23 + F3 + C−
3

F2 → C+
2 + C−

3 .
(8.25)

The intersections are determined to be

C−
3 · F3 = +1 , C+

2 · (C+
2 + C−

3 ) = C+
2 · F2 = −1 ⇒ C+

2 · C−
3 = 1 (8.26)

resulting in the intersection graph shown in figure 31.

Next consider the combinations of phase (9, III). Note that the extremal generators

are K9 = {C+
2,3, C

−
2,4, C

+
1,5, F2, F4}. Along the E6 locus in the phase (9, III) the extremal

generators of the cone of curves is

KE6 = {C+
2 , C−

3 , C+
2,3, C

−
2,4, F4} (8.27)

25Note that for the analysis of the fibers above the E6 locus, we do not allow splittings that correspond

to D6 points, e.g. a 5 curve splitting into another 5 and a 10 matter curve. The extremal points shown in

figure 9 take both splittings into account. For instances, if we take C+
3 in this case as extremal generator,

the splittings would realize the D6, not E6, point. Also, these are then different from the generators that

we discussed in (7.16).
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(10, II)

(11, III)
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(7, III)

(4, III)

(9, II)
(8, III)

F0

C2
+

F4

F3C23
-
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Figure 31. Codimension-three fiber degenerations along E6 locus of a codimension-one SU(5)

fiber, obtained from the combined decorated box graphs (i, I), where i indicates the phase with

matter in the antisymmetric representation, and I the one for the fundamental. As in figure 28 from

left to right the intersection graph, fiber (including multiplicities) and corresponding box graphs

are shown. Black boxes are connected along flop transitions. Note that this is half of the phases

appearing in the flop diagram figure 11, the other half is simply obtained by relabeling the simple

roots of SU(5) in the reverse order. Again the flop transitions are shown as lines between the black

boxes, including the flops into the other half of the flop diagram in figure 11.

with splitting
C+
1,5 → C−

2,4 + C−
3

F2 → C+
2 + C−

3 .
(8.28)

The intersections are

C−
3 · C+

2 = 1 , C−
3 · C−

2,4 = 1 , (8.29)

with the resulting fiber type as in figure 31. Starting with phase 9, we can also construct the

combined phase (9, II), which at the E6 codimenion three locus implies that the extremal
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generators

KE6 = {C+
3 , C+

2,3, C
+
1,5, F2, F4} (8.30)

with the splitting of E6 type given by

C−
2,4 → C+

3 + C+
1,5 . (8.31)

The relevant intersections are read off from the box graph as

C+
3 · F2 = 1 , C+

3 · C+
1,5 = 1 , (8.32)

resulting in the intersection and fiber type shown in figure 31.

For phase 7 with the cone generated by K7 = {C+
2,4, C

−
2,5, C

−
3,4, C

+
1,5, F3} the only con-

sistent combined phase is (7, III), which has extremal generators along the E6 locus

KE6 = {C+
2 , C−

2,5, C
+
1,5, C

+
2,4, F3} . (8.33)

The curves that split starting from the fiber of the SO(10) locus are

C−
3,4 → C+

2 + C+
1,5 , (8.34)

which results in the intersections C+
2 · C+

1,5 = 1 resulting in the fiber shown in figure 31.

Finally consider (4, III) with cone of phase 4 generated by K4 = {C+
2,5, C

−
3,4, F1, F3, F4},

then the extremal generators along the E6 locus are

KE6 = {C+
2 , C+

2,5, F1, F3, F4} . (8.35)

In this case F0 splits as well as C−
3,4

C−
3,4 → C+

2,5 + F1 + C+
2

F0 → C+
2,5 + C0 ,

(8.36)

where C0 = C−
1,2 realizes the new zero-section. The relevant intersections are C0 · C+

1,5 = 1

and C+
2 · F1 = 1, resulting in the codimension three fibers in figure 31.

In all cases, note, that we could also consider the enhancement to SO(12), and it is

not too difficult to see that all of the fibers are of standard I∗s2 type. For example for phase

(11, IV ) the extremal generators of the cone of curves along the SO(12) point are

KSO(12)
= {C−

2 , C ′−
2 , C

+
1,5, F2, F3, F4} (8.37)

and the additional splitting starting from the phase 11 of SO(10) is given by

C−
2,3 → C+

2 + C ′+
2 + F2 , (8.38)

where the two curves with weight L2 correspond to two distinct codimension two cones for

an SU(6) enhancement. The intersection is then as shown in figure 30.
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Figure 32. Representation graph for the 32 spin representation of SO(12). The red boxes are

layered on top of each other. The ith entry in boxes correspond to the signs of 1

2
Li.

8.5 Fibers of E7 type with monodromy

Similarly, we can consider the case of e7 with monodromy from the decomposition

e7 → so(12)⊕ su(2)

133 7→ (66,1)⊕ (1,3)⊕ (32,2)
(8.39)

The representation graph is shown in figure 32. The Weyl group of su(2) acts as a sign

change in the weights. Again, we can determine all the possible so(12)⊕ su(2) fibers from

the box graphs, and the number of phases is

∣∣∣∣
We7

Wso(12)

∣∣∣∣ = 133− 7 = dim(e7)− rank(e7) , (8.40)

in agreement with our general arguments in section 2.5: the phases form the quasi-

minuscule representation (minus the zero weights). In addition we can consider the phases

of the so(12) theory with 32 matter, which corresponds to imposing tracelessness. The re-

sulting fibers are shown in figure 33, and correspond to the monodromy-reduced E7 fibers,

which are characterized by deleting a single node in the standard III∗ Kodaira fiber. Note

that the flop diagram in this case is given by the Dynkin diagram of e7, as excepted from

section 2.5.

9 Comparing local and global models

9.1 Mordell-Weil group and U(n) phases

Consider now a global Weierstrass model of an elliptic fibration. For each codimension-

two enhancement of singularities, we can carry out the local analysis described in the

previous section and find a pair of root systems Φ ⊂ Φ̃ associated to the codimension-two

locus. There may be more than one such Φ̃ for a given Φ. For example, if Φ = An−1

and there are k fundamentals in the spectrum, then our local models associate k different

enhancements Φ̃1, . . . , Φ̃k, each isomorphic to An. The point is that the total local weight

and coweight lattices associated to these enhancements must be generated by all of the

Cartan subgroups Hj ⊂ G
Φ̃j
, which of course all intersect in H, the Cartan subgroup of

GΦ. Each enhancement determines a curve in a particular fiber, and the classes of these

curves may or may not be independent of each other (or of the roots in Φ).
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Figure 33. Box graphs and fiber types for Z2 monodromy-reduced E7, obtained from SO(12) with

32 representation. The fibers are obtained by deleting a single node from the Kodaira type III∗

fiber, and are connected by the flops indicated by the lines connecting the different phases. The

phase diagram is the Dynkin diagram of E7.

However, for a global F-theory model (on a good resolution of a Weierstrass model,

i.e., a smooth elliptic fibration X which is flat over its base B and has a section), we have a

global description of the lattice of divisors on X: the divisors are generated by the section,

the pullbacks of divisors on the base, the divisors formed by components of reducible fibers,

and the Mordell-Weil group of the elliptic fibration. Since the F-theory coweight lattice

does not include the section or the pullbacks of divisors on the base, the coweight lattice is

precisely the divisors formed by components of reducible fibers together with the Mordell-

Weil group. Now the divisors formed by components of reducible fibers are precisely the

coroots of the F-theory model (since each such component is a ruled variety swept out by

some rational curve whose class gives the corresponding root). Thus, any divisors on the

coweight lattice beyond the coroots must arise from elements of the Mordell-Weil group,

i.e., additional rational sections of X → B [57].

In particular, we can determine from global properties of the model whether or not

there is a u(1) factor in the gauge group, and if not, there are relations among the local
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divisors near the codimension-two locus. To illustrate this we consider SU(5) models with

an extra rational section in section 9.3, and show that phases of the U(5) theory that are

not SU(5) phases are realized in these geometries.

9.2 Higher-codimension fibers with trivial monodromy

Another global question arises in the context of the codimension-two and codimension-three

fibers with possibility of monodromy, as we have discussed in terms of phases in section 6

and geometry in section 8. In codimension two this occurs when the commutant g⊥ of the

gauge algebra in the higher rank group g̃ is non-abelian as in (8.2), and the Weyl group

of the commutant can introduce monodromy in the fibers. If the elliptic fibration does

not have extra rational sections, the fibers in codimension two are monodromy-reduced.

However, if there are extra sections, these can result in reducing the monodromy, realizing

standard Kodaira type in codimension two. The number of additional sections that are

required to construct the standard Kodaira fibers is given by the rank of the commutant g⊥.

For example, consider the codimension-two locus with E6 enhancement for an SU(6)

fibration in codimension one. As we have seen in section 8.2, there is monodromy from

the Weyl group action of the commutant, which yields non-Kodaira fibers of E6 type,

which are not standard type IV ∗ fibers. Similarly issues can arise in codimension three,

for instance for SU(5) with an E6 codimension-three locus. The resolution by [25, 28] at

the codimension-three E6 singularity point does not yield an affine E6 Dynkin diagram.

To realize a Kodaira type IV ∗ fiber in either codimension two or three, i.e. a phase

of the theory with trivial monodromy, the complex structure needs to be tuned. The

local Katz-Vafa field theory interpretation of the non-affine E6 Dynkin diagram was given

in [58]. Namely, we need to tune the complex structure of the Calabi-Yau fourfold such

that the monodromy associated with the Weyl group of SU(2), which is in the orthogonal

complement to SU(5) or SU(6) inside E6, becomes trivial.

Globally our analysis shows that a standard Kodaira type IV ∗ fiber can be obtained

in codimension 2 or 3, if the elliptic fibration has an extra rational section associated with

the Cartan U(1) of the SU(2), which in particular trivializes the Weyl group of SU(2).

In practice, starting with a singular fibration with only SU(5) gauge symmetry, in fact,

the two requirements are that the 10 matter locus factors, i.e. in the standard Tate form

b1 → b1ab1b, and furthermore that the model has an extra section, i.e. a U(1) symmetry,

under which the two 10 curves are charged differently.26 We show this explicitly in sec-

tion 9.3.3 by constructing a codimension-three fiber of type IV ∗ for a model with extra

section and factorized 10 curve.

Similarly for the SU(6) enhancement to E6 in codimension-two along the Λ36 matter

locus, in order to realize one of the phases with trivial monodromy, e.g. the one in figure 29,

the matter locus has to split and the model needs to have an extra section.

26Note that in [58] the tuning which resulted in just a factored 10 curve was not enough to result in a type

IV ∗ fiber, and they had to further tune the complex structure. This additional tuning exactly corresponds

to realizing the additional section in our discussion.
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9.3 SU(5) × U(1) models: extra flops and IV
∗ fibers

In elliptic fibrations with extra rational sections there are additional flop transitions as we

have discussed in section 9.1. Furthermore, extra rational sections are instrumental for the

realization of standard Kodaira type fibers in higher codimension, in particular in cases

with monodromy. We now give the geometric setup and an example for realizing both

of these aspects. Elliptic Calabi-Yau varieties with multiple sections were studied recently

in [59]27 We shall restrict ourselves to SU(5) models with one extra rational section. In [69]

the Tate forms for SU(5) were obtained for SU(5)×U(1) models realized in P
112, or more

precisely in the blowup Bl[0,1,0]P112[4]. The singularities along z = 0 in the base can be

characterized in terms the equation

Q(i1, i2, i3, i4, i5, i6, i7) : sy2 + b0,i5z
i5yx2 + b1,i6z

i6sywx+ b2,i7z
i7s2yw2

= c0,i1z
i1s3w4+c1,i2z

i2s2w3x+c2,i3z
i3sw2x2+c3,i4z

i4wx3 ,

(9.1)

where ij indicates the vanishing order in z of the respective terms. Unlike for the standard

Tate models in P
123 there are several models for each non-abelian gauge group, which differ

by the location of the two sections (zero section and the additional section, which is given

by s = 0 in Q) as well as the codimension two fiber structure. The possible fiber types of

I5 models are obtained from the following vanishing orders [69]

I
(01)
5 : Q(5, 3, 1, 0, 0, 0, 2)

I
(0|1)
5 : Q(4, 2, 1, 1, 0, 0, 2)
I
(0|1)
5 : Q(4, 3, 2, 1, 0, 0, 1)

I
(0||1)
5 : Q(3, 2, 2, 2, 0, 0, 1) ,

(9.2)

where I
(01)
5 , I

(0|1)
5 and I

(0||1)
5 indicates that the two sections are located on the same, next

or next-to-nearest divisors, respectively.

9.3.1 New flops from extra section

So to see a phase of U(n) corresponding to the flop which takes a curve outside the “end”

divisor on a chain (i.e., a phase of U(n) which is not visible in SU(n)), we will need an

additional section of the fibration.

For the standard Tate form the flops were studied in [23] for SU(5) with 5 and 10

matter. Restricting this to the case of fundamental matter only, there were exactly four

inequivalent resolutions, which are connected by flops, and are reproduced in table 3 in

appendix B. To see the additional two phases, which come from flops at the “end” divisor,

we need to consider models with additional sections, which can be realized in P
112.

Consider Q(4, 2, 1, 1, 0, 0, 2), which has an enhancement to SU(6) along

P0 = b0c2 − b1c3 . (9.3)

27For explicit construction of example fiber types for Calabi-Yau fourfolds with extra sections see [60–69].
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This can be resolved by
(x, y, z; ζ1)

(x, y, ζ1; ζ2)

(y, z; δ0)

(y, ζ1; δ1) ,

(9.4)

where the simple roots are associated to the divisors as follows28

(α0, α1, α2, α3, α4)↔ (z, ζ1, ζ2, δ1, δ0) . (9.5)

The notation is as in [29], i.e., (x1, x2, x3; ζ) stands for the resolution xi → xiζ and

[x1, x2, x3] are projective coordinates of the blowup P
2. This resolution realizes the phase

I in table 3 in appendix B.29 The fundamental matter is located at P0 = 0, along which

the divisor associated to the root α4 splits as

α4 = (−L5) + L4 −→ −w5 +w4 , (9.6)

where in Cartan-Weyl basis

−w5 = (0, 0, 0, 1) , w4 = (0, 0,−1, 1) . (9.7)

To reach the resolution 0, which corresponds to U(5), we need to flop the curve w5. We

follow the same procedure as in [23], and consider a patch in which this curve is realized

w = x = z = ζ1 = ζ2 = δ1 = 1. The equation for the resolved model Q(4, 2, 1, 1, 0, 0, 2) in
this patch is

P0 + b0c2
b1

+ b0y + b1sy + b2δ
2
0s

2y − c0δ
3
0s

3 − s1δ0s
2 − c2s+ δ0sy

2 = 0 . (9.8)

Introducing the coordinates

u1 = y , u3 = δ0y , u2 = s , u4 = δ0s , (9.9)

the equation can be rewritten as

P0 + b0c2
b1

+ b0u1 + b1u3 + b2u
2
4u1 − c0u

3
4 − s1u2u4 − c2u2 + u21u2 = 0 (9.10)

under the condition

u1u4 = u2u3 , (9.11)

which is precisely a conifold equation. We can now blow down the curve corresponding to

w5, which is given by c3 = u1 = u2 = u3 = u4 = 0. The flopped geometry is obtained by

resolving this in terms of [β1, β2], which in the patch β1 6= 0 can be rewritten in terms of

β = β2/β1
u1 = βu2 , u3 = βu4 . (9.12)

28Note that the weights/roots assigned to curves are associated via the inner product (7.2), which is the

negative of the actual intersection number, which is usually assigned to the curves e.g. in [29].
29Note that in P

123 this phase was obtained by flop in patches from algebraic resolutions in [23].
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The flopped curve which carries the weight w5 is given by z = 0, which means

w5 : u2 = u4 = 0 (9.13)

Note that in this flop the extra section s was instrumental, as it allowed the rewriting in

terms of the conifold equation in (9.11).

9.3.2 Example for U(5) phases

We can also directly realize the U(5) phases, that are not SU(5) phases, i.e. phases 0 and

V in table 3 in appendix B from the following model with extra section Q(5, 3, 1, 0, 0, 0, 2).
This can be resolved by

(w, x, z; ζ1)

(x, y, ζ1; ζ2)

(y, ζ1; δ1)

(y, ζ2; δ2) .

(9.14)

The fundamental matter is located at c3 = 0, along which the divisor associated to the

affine root α0 splits as

− α0 −→ −w5 +w1 , (9.15)

where

−w5 = −L5 , w1 = L1 . (9.16)

The equations are

c3 = z = 0 :
−w5 : 0 = y

w1 : 0 = δ1δ2(b0δ2x
2 + sy) + b1sx .

(9.17)

Depending on which section we choose to remain large in the singular limit, we now either

shrink −w5, and get phase with all the weights wi > 0 (this is when we keep the section

s = 0 large), or we keep the standard zero section w = 0 large, which results in the phase

with all weights being negative wi < 0. These are exactly the phases 0 and V in table 3,

which are U(5) phases, that are not SU(5).

9.3.3 Example for codimension-three affine E6 fiber

We argued in section 9.1 that the type IV ∗ fibers whose intersection graph is an affine

E6 Dynkin diagram, which corresponds to absence of monodromy in an E6 enhancement,

can be realized in codimension three starting with an SU(5) model only if the Mordell

Weil group has rank at least one and the locus of the 10 matter is factored. This can be

exemplified with the Tate forms for SU(5)×U(1) models obtained in [69]. The purpose of

this section is the elucidation of such an example.

In equation (9.2), 4 models for I5 fibers are given which come from the application of

Tate’s algorithm, however there are branches of Tate’s algorithm where the resulting model

cannot be globally shifted so as to just have as its data a set of vanishing orders Q(· · · ). To
give an example one can have an I4 model for which the discriminant enhances to O(z5)
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at some polynomial locus, and there does not exist a coordinate shift which absorbs this

polynomial into the vanishing orders. The I5 models which arise in this way, as some lower

rank model and a set of polynomial constraints, are called non-canonical models, and are

explicated in [69]. It is within these models that we find the occurrence of full affine E6

fibers above a codimension-three locus.

Consider the non-canonical SU(5) model, described in [69], which is obtained from

an I4 singularity that is described in terms of vanishing orders Q(3, 2, 1, 1, 0, 0, 1) and the

additional condition b0c2 − b1c3 = 0, which enhances this to an I5 singularity

Q(3, 2, 1, 1, 0, 0, 1)|b0c2−b1c3 = 0 . (9.18)

The extra condition is solved generally, as in [69], by

b0 → σ1σ2, c2 → σ3σ4,

b1 → σ1σ3, c3 → σ2σ4 .
(9.19)

Note that there is no shift that brings this model back into a canonical form. Also, it is clear

that the codimension-two locus that enhances to SO(10), which is given by b1 = σ1σ3 = 0,

factors, as required for obtaining the codimension-three IV ∗ fiber. This example can be

resolved by the following series of resolutions

(x, y, z; ζ1)

(y, z; δ0)

(y, ζ1; δ1)

(δ0, A = σ2δ1ζ1x+ σ3sw; δ2) ,

(9.20)

using again the notation as in [29]. In this model there is a codimension-three locus where

the vanishing order of the discriminant increases O(5) → O(8) indicating that this is

the locus containing the E6 enhancement. We consider the locus σ1 = σ3 = 0. We are

interested in the structure of the fiber above this locus, so we study to what irreducible

components the Cartan divisors degenerate.

1 : ζ0 = s = δ2A− σ2 = 0

2 : ζ0 = δ0 = δ2 − σ2ζ1 = 0

3 : ζ1 = δ0 = δ2 = 0

4 : ζ1 = δ1 + b2ζ0 = δ2 = 0

5 : ζ1 = δ1 + b2ζ0 = A = 0

6 : δ1 = δ2 = b2yδ0 − ζ1(δ0(c1 + c0δ0) + σ4A) = 0

7 : δ1 = A = b2y − ζ1(c1x+ c0) = 0

(9.21)

These can be seen to intersect as in figure 34, realizing in the fiber the full dual graph to

the affine E6 Dynkin diagram, with the correct multiplicities.
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1 2 3 2 1

2

1

1 2 3 4 5

6

7

Figure 34. The intersection diagram of the fiber above a codimension-three locus for the model

described in section 9.3.3. The blue numerals indicate fiber components from (9.21), the black

numerals the multiplicities, which are those of a type IV ∗ Kodaira fiber.
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A Group theoretic setup

A.1 Root systems

The combinatorics of a compact Lie group and its representations are captured in large

part by the notion of a root system, which we present following [70]. A reduced root system

in a real vector space V is a finite subset Φ ⊂ V such that for each α ∈ Φ there exists

α∨ ∈ V ∗ satisfying

1. 〈α∨, α〉 = 2, and 〈α∨, β〉 ∈ Z for any β ∈ Φ,

2. the map from V to V defined by

sα : x 7→ x− 〈α∨, x〉α

(called the “reflection in α”) maps Φ to Φ, and

3. if α ∈ Φ then 2α 6∈ Φ.

The real vector space spanned by Φ is called the root space, and its dimension is called

the rank of the root system. (We are making a small departure from [70] by allowing V
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to be larger than the root space.) The elements α ∈ Φ are called roots, and the associ-

ated elements α∨ ∈ V ∗ are called coroots. Note that the reflection sα fixes the hyperplane

Hα = Ker(α∨) ⊂ V .

The group of automorphisms of the root space which leave the root system invariant is

denoted by Aut(Φ). It contains a subgroup W (Φ), the Weyl group of the root system, gen-

erated by the reflections sα. (More generally, we can regard W (Φ) as a group of automor-

phisms of the larger space V .) The only reflections which appear inW (Φ) are the reflections

The dual root system of Φ is the subset Φ∨ = {α∨ | α ∈ Φ} of V ∗. The map u 7→ tu−1

gives an isomorphism between W (Φ) and W (Φ∨), and we can use it to identify the two

groups; in this way, W (Φ) acts on V ∗ as well as on V .

The connected components of the set {v ∈ V | v 6∈ Hα for any α} are called the Weyl

chambers of the root system, and are acted upon simply transitively by the Weyl group.

Picking one such chamber C determines a set of positive roots Φ+: the ones for which the

coroot α∨ takes positive values on C. (Since none of the coroots can take the value 0 on C,
every root is either positive or negative.) There is also a set of simple roots determined by

C: these are the positive roots α whose coroot α∨ is zero along a codimension-one face of

the closure C.
Equally important for us will be the Weyl chambers C∗ of the dual root system, which

are subsets of V ∗ and permuted by the Weyl group in exactly the same way. Given a Weyl

chamber in V and the corresponding set of simple roots, the associated coroots are a set

of simple roots in the dual root system, and determine a dual Weyl chamber in the coroot

space.

A.2 Compact Lie groups and their representations

Let G be a compact Lie group. It is known that finite-dimensional complex representations

of such a group are always the direct sum of irreducible representations (see [71], for

example). For simplicity, we assume that G is connected.

The complex representations of G can be analyzed by means of a Cartan subgroup

H ⊂ G, which is a maximal torus contained in G; H is itself a compact (abelian) Lie group.

Irreducible representations of H are all one-dimensional, and correspond to elements of the

weight lattice ΛH := HomZ(H,U(1)), which is a finite abelian group. Given a representation

of H on a complex vector space V and a weight α ∈ ΛH , the subspace

Vα := {v ∈ V | h · v = α(h)v ∀h ∈ H} (A.1)

(where we have used a dot to denote the action of H on V ) is called the weight space of V

with weight α. The representation can be recovered from its weight spaces: V =
⊕

α∈ΛH
Vα.

From the definition, it may appear that we should denote the group operation on ΛH

multiplicatively, but if we let h be the Lie algebra of H, the action on the tangent space

at the identity element determines a natural inclusion

ΛH ⊂ HomR(h,R) = h∗, (A.2)
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and additive notation becomes appropriate. It is common to use the description in terms

of Lie algebras when weights must be added together.30

Closely related is the coweight lattice

Λ∨
H := HomZ(U(1), H) ⊂ HomR(R, h) = h, (A.3)

which can be naturally identified with the fundamental group of H since U(1) is topologi-

cally a circle. This identification enables us to recover H = h/π1(H) = h/Λ∨
H ; we can also

recover H from ΛH via Pontryagin duality, as H = HomZ(ΛH ,U(1)). Note that there is a

natural pairing between the coweight and weight lattices

Λ∨
H × ΛH → Z (A.4)

given by composition, since HomZ(U(1),U(1)) ∼= Z.

Sometimes one speaks of the “weight lattice of G” ΛG and the “coweight lattice of G”

Λ∨
G, although strictly speaking one must choose H before these are defined. When there is

no danger of confusion, we omit the subscript G (or H).

For any complex representation G → GL(V ) we can restrict to H and decompose V

into weight spaces; the corresponding weights are called the weights of the representation.

As a particular case of this, we can consider the adjoint representation of G on its Lie

algebra g. This is a real representation, but we can complexify to get a representation

G → GL(gC). The weight space of gC with weight 0 ∈ ΛG is the complex Lie algebra

hC, and the nonzero weights of gC are called the roots of G; these exist only when G is

nonabelian. It turns out that the weight space for each root is one-dimensional. Each root

α ∈ Λ has an associated coroot α∨ ∈ Λ∨, and the set of roots of G (and associated coroots)

satisfies the conditions for a reduced root system ΦG as described in the previous subsection

(with V = h∗). In particular, there is a Weyl group W (ΦG) which is generated by reflec-

tions in the roots. The Weyl group has another interpretation as well: it is isomorphic to

N(H)/H where N(H) is the normalizer of H in G.

An irreducible representation always has a highest, or dominant weight ̟ once a set

of positive roots has been chosen. It has the property that under the induced action of the

Lie algebra g, the action of the root space gα on V̟ is trivial for every positive root α.

A.3 Root systems for the classical Lie groups

We will set up some notation for the representation theory of the classical Lie groups

SO(m), Spin(m), U(n), SU(n), and Sp(r); this could also be formulated in terms of the

corresponding Lie algebras so(m), u(n), su(n), and sp(r). (These groups act on different

kinds of spaces: R
m, Cn, and H

r, which is why different letters are being used for the

dimensions, as in [51]. In this notation, we have Sp(r) ⊂ SU(2r) and U(n) ⊂ SO(2n).)

We begin with U(n). Let z1, . . . , zn be a basis for a complex vector space of dimension

n on which U(n) acts by matrix multiplication, giving the so-called fundamental represen-

tation of complex dimension n. Using the diagonal unitary matrices as a Cartan subgroup

30In fact, our discussion of roots and weights can be formulated equally well for (complex) reductive Lie

algebras and we have used that formulation in the body of the paper.
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H ⊂ U(n), the weight spaces are the one-dimensional subspaces spanned by the individual

basis vectors vk; we let Lk : h→ R be the corresponding weight. Then L1, . . . , Ln forms a

basis for the weight lattice of u(n). There is a natural dual basis e1, . . . , en of the coweight

lattice.

A Cartan subgroup H0 of SU(n) is given by the diagonal unitary matrices of determi-

nant 1; its Lie algebra h0 consists of diagonal Hermitian matrices of trace 0. Weights of

U(n) can be restricted to SU(n), where they satisfy

(L1 + · · ·+ Ln)|h0 = 0 (A.5)

(here we indicate the Lie algebra since we are using additive notation). We will suppress

the explicit restriction to h0 and continue to use Lk to denote a weight of SU(n). In fact,

the weights of the fundamental representation of SU(n) are precisely L1, . . . , Ln.

The Weyl group of SU(n) is the permutation group Sn acting on {L1, . . . , Ln} (and

preserving (A.5)). The roots are Lk−Lℓ, k 6= ℓ, and the corresponding coroots are ek− eℓ.

One choice of simple roots for SU(n) is given by

{αk := Lk − Lk+1, 1 ≤ k ≤ n− 1}. (A.6)

The corresponding simple coroots are

α∨
k := ek − ek+1, (A.7)

and these satisfy

〈α∨
ℓ , αk〉 =





2 if k = ℓ

−1 if k = ℓ± 1

0 otherwise

. (A.8)

The root system is type An−1. When n ≥ 3, it has an automorphism of order 2 not

contained in the Weyl group, given by αk 7→ αn−k.

From the fundamental representation V we can construct other irreducible represen-

tations ΛjV as exterior powers. The highest weight of ΛjV is ̟j := L1 + · · · + Lj for

j = 1, . . . , n−1.
We next consider SO(m). Let n = [m/2], and let x1, . . . , x[(m+1)/2], y1, . . . , y[m/2] be a

basis for Rm (which is called the vector representation of SO(m)). We use H = SO(2)n ⊂
SO(m) as a Cartan subgroup, where the kth copy of SO(2) acts on the space spanned by

xk, yk by rotations. The weight spaces in the complexification C
m of Rm are then spanned

by xk + yk
√
−1 and xk − yk

√
−1 (as well as xn+1 if m is odd); we call the corresponding

weights Lk and −Lk (and note that when m is odd, the weight for xn+1 is 0). The weight

lattice of SO(m) is spanned by L1, . . . , Ln, and there is a natural dual basis e1, . . . , en
for the coweight lattice.

The adjoint representation of SO(m) is the second anti-symmetric power of the vector

representation. We can thus describe the roots as sums of distinct weights from the vector

representation, whenever the sum is nonzero. Note that Lk + (−Lk) = 0 so we get n zeros

among the weights of the adjoint representation, which agrees with the dimension of the
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Cartan subgroup (as expected). Nonzero roots are given by ±Lk ± Lℓ, k 6= ℓ; if m is

odd, we also get ±Lk (by adding the zero weight in the vector representation to the other

weights). The corresponding coroots are ±ek ± eℓ, and if m is odd, ±2ek. Thus, if m = 2n

the dimension of the group is n+2n(n−1) = 1
2m(m−1), while if m = 2n+1 the dimension

of the group is n+ 2n(n− 1) + 2n = 1
2m(m− 1).

The Weyl group of SO(m) is S[m/2] ⋊ (Z/2Z)[(m−1)/2]. The group permutes the Lk’s

and multiplies them by signs; when m is even, the number of minus signs must be even.

One choice of simple roots is given by αk = Lk − Lk+1 for 1 ≤ k ≤ n− 1, together with

αn :=

{
Ln if m = 2n+ 1

Ln−1 + Ln if m = 2n
. (A.9)

The root system is type Bn is m = 2n + 1, and type Dn if m = 2n. There are no auto-

morphisms other than the Weyl group for m odd, but for SO(8) there is an automorphism

group S3 which permutes {α1, α3, α4}, while for SO(2n), n ≥ 5, there is an automorphism

of order two exchanging αn−1 and αn while leaving the other simple roots fixed.

From the vector representation V we can construct other irreducible representations

ΛjV as exterior powers. The highest weight of ΛjV is̟j := L1+· · ·+Lj for j = 1, . . . , n−2.
The group SO(m) has a double cover Spin(m), and the Cartan subgroup of Spin(m)

is also a double cover of the Cartan subgroup of SO(m). This implies that the weight and

coweight lattice are different (although the roots and coroots do not change). The weight

lattice is enlarged to include the weights of the spinor representation(s), which are

1

2
(±L1 ± · · · ± L[m/2]). (A.10)

(If m is even, each of these weights occurs in exactly one of the two spinor representations,

depending on the parity of the number of minus signs.) The weight lattice is therefore

ΛSpin(m) = {
∑

akLk | ak ∈
1

2
Z, ak − aℓ ∈ Z}. (A.11)

It follows that the coweight lattice is

Λ∨
Spin(m) = {

∑
bℓeℓ | bℓ ∈ Z,

∑
bℓ ∈ 2Z}. (A.12)

When m is odd, the highest weight of the spinor representation is

̟(m−1)/2 =
1

2

(
L1 + · · ·+ L(m−1)/2

)
, (A.13)

while when m = 2n is even, the highest weights of the two spinor representations are

̟n−1 =
1

2
(L1 + · · ·+ Ln−1 − Ln) , (A.14)

and

̟n =
1

2
(L1 + · · ·+ Ln−1 + Ln) . (A.15)
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Finally we consider Sp(r). Using the standard quaternions i, j, and k = ij, we can

write

H = C⊕ C · j. (A.16)

We choose a basis of Hr of the form

z1 + w1 · j, z2 + w2 · j, . . . , zr + wr · j. (A.17)

We choose Sp(1) ⊂ Sp(r) by letting the ℓth copy of Sp(1) act on zℓ + wℓ · j. Since

Sp(1) = SU(2), we can choose a Cartan subgroup U(1) ⊂ SU(2) compatible with the

decomposition (A.16). Then U(1)r ⊂ Sp(r) is a maximal torus. The roots are Lℓ with

weight space spanned by zℓ, and −Lℓ with weight space spanned by wℓ. The complex

dimension of the fundamental representation is 2r.

The adjoint representation of Sp(r) is the second symmetric power of the fundamental

representation, so the roots are given by the nonzero sums of pairs of weights of the

fundamental representation, not necessarily distinct. We obtain zero as an adjoint weight

via Lℓ+(−Lℓ) = 0, ℓ = 1, . . . , r (which implies that the dimension of the Cartan subgroup

is r, as expected) but all other sums are nonzero. The roots take the form ±2Lℓ and

±Lℓ ± Lm for ℓ 6= m. The corresponding coroots are ±eℓ and ±eℓ ± em.

The Weyl group is Sr ⋊ (Z/2Z)r, which acts by permuting the Lk’s and multiplying

them by signs. One choice of simple roots is given by αℓ = Lℓ−Lℓ+1 for 1 ≤ ℓ ≤ r−1, αr =

2Lr. The root system is type Cr. There are no automorphisms other than the Weyl group.

A.4 Root systems for the simple Lie groups of type En

For reference, we will set up some similar notation for the representation theory of the

exceptional compact simple Lie groups E6, E7, and E8. We use the simply-connected form

of each of these.

For En, n = 6, 7, 8, we follow the presentation of [72]. We begin with the vector space

spanned by n+1 vectors L0, L1, . . . , Ln as well as the dual space spanned by e0, e1, . . . , en.

The root space for En will be Ker(3e0 −
∑n

j=1 ej). In particular, just as in the case of

SU(n), we can regard Lj as a root by restricting it to this space.

There are four kinds of positive roots: Lj − Lk (0 < j < k); L0 −
∑3

i=1 Lji ; 2L0 −∑6
i=1 Lji ; and 3L0 −

∑7
i=1 Lji − 2Lk, where in the last three cases, the ji are all distinct

and differ from 0 and k. A set of simple roots is given by α0 = L0 − L1 − L2 − L3 and

αj = Lj−Lj+1 for 0 < j < n, with dual expressions giving the corresponding coroots. The

Dynkin diagram, which summarizes the intersection properties between simple roots and

simple coroots, is shown in figure 35.

The number of positive roots of each type depends on n:
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1 2 3 4

0

n-2 n-1

Figure 35. Dynkin diagram for En, establishing our notation, with numbers i labeling the simple

roots αi.

n = 6 n = 7 n = 8

Lj − Lk 15 21 28

L0 −
∑3

i=1 Lji 20 35 56

2L0 −
∑6

i=1 Lji 1 7 28

3L0 −
∑7

i=1 Lji − 2Lk 0 0 8

Total 36 63 120

dimG 78 133 248

|W | 51840 2903040 696729600

The dimension of the group is twice the number of positive roots, plus n (the rank). We

have also listed the order |W | of each Weyl group.

The minimum-dimension representations for these groups can be described in terms

of another set of weights, for n = 6, 7. There are four types of weights which occur: Lj

(j > 0), L0 − Lj − Lk, 2L0 −
∑5

i=1 Lji , 3L0 −
∑6

i=1 Lji − 2Lk. (This analysis can actually

be extended to n = 8 as well, but three additional types of weights occur.) The number of

weights of each type is:

n = 6 n = 7

Lj 6 7

L0 − Lj − Lk 15 21

2L0 −
∑5

i=1 Lji 6 21

3L0 −
∑6

i=1 Lji − 2Lk 0 7

Total 27 56

The highest weight vectors for these representations can also be identified. For E6,

one of the minimum-dimension representations has highest weight

̟5 := α0 +
2

3
α1 +

4

3
α2 + 2α3 +

5

3
α4 +

4

3
α5 = −L6, (A.18)

while the other has highest weight

̟1 := α0 +
4

3
α1 +

5

3
α2 + 2α3 +

4

3
α4 +

2

3
α5 = 2L0 −

6∑

j=2

Lj . (A.19)

For E7, the minimum-dimension representation has highest weight

̟6 :=
3

2
α0 + α1 + 2α2 + 3α3 +

5

2
α4 + 2α5 +

3

2
α6 = −L7. (A.20)
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+α1 +α̂1 2 −1 0 0 0

+α2 +α̂2 −1 2 −1 0 0

+α3 +α̂3 0 −1 2 −1 0

+α4 +α̂4 0 0 −1 2 −1

+w5
5 +α̂5 0 0 0 −1 2

0
σα̂5

−−−−−→ I

+α1 +α̂1 2 −1 0 0 0

+α2 +α̂2 −1 2 −1 0 0

+α3 +α̂3 0 −1 2 −1 0

+w4
5 +α̂45 0 0 −1 1 1

−w5
5 −α̂5 0 0 0 1 −2

↓ σα̂45

+α1 +α̂1 2 −1 0 0 0

+w2
5 +α̂2345 −1 1 0 0 1

−w3
5 −α̂345 0 1 −1 0 −1

+α3 +α̂3 0 −1 2 −1 0

+α4 +α̂4 0 0 −1 2 −1

III
σα̂345

←−−−−− II

+α1 +α̂1 2 −1 0 0 0

+α2 +α̂2 −1 2 −1 0 0

+w3
5 +α̂345 0 −1 1 0 1

−w4
5 −α̂45 0 0 1 −1 −1

+α4 +α̂4 0 0 −1 2 −1

↓ σα̂2345

+w1
5 +α̂12345 1 0 0 0 1

−w2
5 −α̂2345 1 −1 0 0 −1

+α2 +α̂2 −1 2 −1 0 0

+α3 +α̂3 0 −1 2 −1 0

+α3 +α̂3 0 0 −1 2 −1

IV
σα̂12345

−−−−−→ V

−w1
5 −α̂12345 −1 0 0 0 −1

+α1 +α̂1 2 −1 0 0 0

+α2 +α̂2 −1 2 −1 0 0

+α3 +α̂3 0 −1 2 −1 0

+α4 +α̂4 0 0 −1 2 −1

Table 3. Phases/resolutions for SU(5) with fundamental representation 5 shown in blue. Phases

0 and V are the two phases for U(5), which are not SU(5) phases.

In all of these definitions, the weights Lj must be restricted to the subspace Ker(3e0 −∑n
j=1 ej).

B Phases of U(5) from the Weyl group quotient

In this appendix we give the explicit example of U(5), with the 5 and with 10 representa-

tion, respectively, for phases determined by the Weyl group quotient. Consider first U(5)

with the 5 representation. The phases are determined from the embedding of the simple

roots of SU(5) into the simple roots of SU(6), by identifying the first four simple roots with

the SU(5) ones, αi, i = 1, · · · 4. Furthermore, the simple roots of SU(6) are denoted by α̂.

The initial embedding is shown in table 3 in the box labeled 0.

We act with the Weyl group of SU(6), keeping the constraints that the image projected

back to SU(5) gives rise to positive roots of SU(5) only. Projecting back to SU(5) results

in each step in a set of positive roots and weights of the 5. Denote by αi1···in =
∑

j αij , and

define the corresponding Weyl reflection with respect to
∑

j α̂ij as σα̂i1···in
, i.e. σα(β) =

β − 〈α, β〉α. The block in the middle denotes the generators of the cone (weights/roots of

SU(5)), the last column completes these to SU(6) roots.
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...L 1 L 6L 5L 4L 3L 2 Ln-1 Ln

...-Ln -L6
-Ln-1 -L5 -L4 -L3 -L2 -L1

Figure 36. The standard representation of SO(2n).

...

...

Figure 37. The sign condition for the SO(2n) theory.

To explain the process, begin with the first phase, which is given in terms of the

standard embedding of αi = α̂i. The projection of α̂5 results in the SU(5) weight w5
5
. In

order not to introduce negative roots by acting with Weyl reflections, the only option is to

act with a Weyl reflection σα̂5
. In the next step, the SU(6) roots, projected to SU(5) give

the two weights −w5
5
and w4

5
. We cannot perform a Weyl reflection along α̂1, α̂2, α̂3, α̂4, as

these would yield negative roots, and thus would not generate consistent phases. The only

Weyl reflection which does not generate such roots is σα̂45
. This picture generalizes directly

for any fundamental representation. Likewise we can consider the 10 representation, for

which we now embed the simple roots of SU(5) into those of SO(10), as shown in table 4.

C Phases of SO(2n) with fundamental matter

In this section we consider the phases of the SO(2n) theory with respect to the vector

representation, V . We consider the decomposition

so(2n+ 2)→ so(2n)⊕ u(1) , (C.1)

such that

adj(so(2n+ 2))→ adj(so(2n))⊕ adj(u(1))⊕ V ⊕ V . (C.2)

From section 2 the phases of the SO(2n)×U(1) theory are determined by the quotiented

Weyl group
|Wso(2n+2)|
|Wso(2n)|

= 2(n+ 1) . (C.3)

As for su(n) we introduce the following representation of the positive roots for SO(2n).

Φ+ = {Li − Lj | i = 1, · · · , n , i < j} ∪ {Li + Lj | i = 1, · · · , n , i < j} . (C.4)

The weights of the vector representation are then

V = {±Li | i = 1, · · · , n} . (C.5)

In fact the weights of the representation of SO(2n)×U(1) are wi, i = 1, · · · , 2n, where the

u(1) generator is given by identifying wi with −wn+i

U(1) :

2n∑

i=1

wi − wn+i . (C.6)
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+α1 +α̂1 2 −1 0 0 0
+α2 +α̂2 −1 2 −1 0 0
+α3 +α̂3 0 −1 2 −1 −1
+α4 +α̂4 0 0 −1 2 0
+w10

10 +α̂5 0 0 −1 0 2

1 16

+α1 +α̂1 2 −1 0 0 0
+α2 +α̂2 −1 2 −1 0 0
+α3 +α̂3 0 −1 2 −1 −1
+α4 +α̂4 0 0 −1 2 0
−w1

10 −α̂1223345 0 −1 0 0 0

+α2 +α̂2 −1 2 −1 0 0
+α3 +α̂3 0 −1 2 −1 −1
+α4 +α̂4 0 0 −1 2 0
+w4

10 +α̂1235 1 0 0 −1 1
−w5

10 −α̂23345 1 0 −1 0 0

11 2

+α1 +α̂1 2 −1 0 0 0
+α2 +α̂2 −1 2 −1 0 0
+α4 +α̂4 0 0 −1 2 0
+w9

10 +α̂35 0 −1 1 −1 +1
−w10

10 −α̂5 0 0 1 0 −2

+α1 +α̂1 2 −1 0 0 0
+α3 +α̂3 0 −1 2 −1 0
+α4 +α̂4 0 0 −1 2 0
+w7

10 +α̂235 −1 1 0 −1 1
−w8

10 −α̂345 0 1 0 −1 −1

4 6

+α1 +α̂1 2 −1 0 0 0
+α2 +α̂2 −1 2 −1 0 0
+α3 +α̂3 0 −1 2 −1 −1
−w4

10 −α̂1235 −1 0 0 1 −1
+w8

10 +α̂345 0 −1 0 1 +1

+α1 +α̂1 2 −1 0 0 0
+α2 +α̂2 −1 2 −1 0 0
+α4 +α̂4 0 0 −1 2 −1
−w3

10 −α̂12345 −1 0 1 −1 −1
+w5

10 +α̂23345 −1 0 1 0 0

13 15

+α1 +α̂1 2 −1 0 0 0
+α3 +α̂3 0 −1 2 −1 −1
+α4 +α̂4 0 0 −1 2 0
−w2

10 −α̂123345 −1 1 −1 0 0
+w1

10 +α̂1223345 0 1 0 0 0

+α1 +α̂1 2 −1 0 0 0
+α3 +α̂3 0 −1 2 −1 −1
+w7

10 +α̂235 −1 1 0 −1 +1
−w9

10 −α̂35 0 1 −1 1 −1
+w8

10 +α̂345 0 −1 0 1 +1

3 5

+α2 +α̂2 −1 2 −1 0 0
+α3 +α̂3 0 −1 2 −1 0
+w4

10 +α̂1235 1 0 0 −1 +1
−w7

10 −α̂235 1 −1 0 1 −1
+w8

10 +α̂345 0 −1 0 1 +1

+α2 +α̂2 −1 2 −1 0 0
+α4 +α̂4 0 0 −1 2 0
+w4

10 +α̂1235 1 0 0 −1 +1
−w6

10 −α̂2345 1 −1 1 −1 −1
+w5

10 +α̂23345 −1 0 1 0 0

9 8

+α1 +α̂1 2 −1 0 0 0
+α3 +α̂3 0 −1 2 −1 −1
−w4

10 −α̂1235 −1 0 0 1 −1
+w6

10 +α̂2345 −1 1 −1 1 +1
−w8

10 −α̂345 0 1 0 −1 −1

+α2 +α̂2 −1 2 −1 0 0
+α3 +α̂3 0 −1 2 −1 −1
−w4

10 −α̂1235 −1 0 0 1 −1
+w3

10 +α̂12345 1 0 −1 1 +1
−w5

10 −α̂23345 1 0 −1 0 0

12 14

+α2 +α̂2 −1 2 −1 0 0
+α4 +α̂4 0 0 −1 2 0
−w3

10 −α̂12345 −1 0 1 −1 −1
+w2

10 +α̂123345 1 −1 1 0 0
−w5

10 −α̂23345 1 0 −1 0 0

+α3 +α̂3 0 −1 2 −1 0
+w4

10 +α̂1235 1 0 0 −1 +1
−w7

10 −α̂235 1 −1 0 1 −1
+w6

10 +α̂2345 −1 1 −1 1 +1
−w8

10 −α̂345 0 1 0 −1 −1

7 10

+α2 +α̂2 −1 2 −1 0 0
−w4

10 −α̂1235 −1 0 0 1 −1
+w3

10 +α̂12345 1 0 −1 1 +1
−w6

10 −α̂2345 1 −1 1 −1 −1
+w5

10 +α̂23345 −1 0 1 0 0

Table 4. Phases/resolutions for SU(5) with anti-symmetric representation 10. The blue boxes

indicate the SU(5), the remaining ones are U(5) phases, that are not SU(5) phases. The labels are

as in figure 1, which shows the flops between the phases, and the SU(5) phases in figure 7.
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...

...

...

...

Figure 38. The phases of the SO(2n) theory. Blue indicates the box is decorated with a plus sign

and yellow with a negative.

One can present the representation V as in figure 36. Similarly to section 2.4 there exist

flow rules which determine whether the decorated box graph gives a consistent phase. For

SO(2n)×U(1) these are

+ ← +

↑

+

− → −

↓

−

(C.7)

One can do some combinatorics with the flow rules and so count the number of SO(2n)×
U(1) phases, which agrees with the order of the Weyl group quotient.

The sign condition for the SO(2n) phases is that the sign decorating the boxes corre-

sponding to the Ln and −Ln must be different, as depicted in figure 37. The only phases

consistent with both the flow rules and the sign condition are shown in figure 38, therefore,

SO(2n), with 2n : #Phases = 2 . (C.8)

The two phases can be characterized by the sign of Ln, however there is a Z2 outer auto-

morphism of SO(2n) which swaps αn−1 ↔ αn. This swaps Ln ↔ −Ln. From the geometry

we would thus not expect to distinguish the two phases.

D Phases of the E-type groups

In this appendix we consider the phases of the exceptional En type theories with matter,

deriving the flow rules for the representation graphs, the decorated box graphs, as well as

the flop diagrams. The examples we consider are

e7 → e6 ⊕ u(1)

133 → 780 ⊕ 10 ⊕ 272 ⊕ 27−2

e8 → e7 ⊕ su(2)

248 → (133,1)⊕ (3,1)⊕ (56,2)

(D.1)
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Figure 39. The undecorated box graph of E6 with the 27 representation. (ij) denotes the weight

L0 − Li − Lj , and (i) the weight 2L0 −
∑5

k=1
Ljk where jk 6= i are distinct.

D.1 Phases of E6 with 27 matter

The phases of the E6 theory with 27 has the standard flow rules given in (3.13) acting on

the representation graph in figure 39. The weights of the representation shown there are in

the standard representation in terms of Li is given in appendix A.4. In addition in order

to be phases of the E6, not the E6 ×U(1) theory, we require that

EE6
= 3L0 − (L1 + L2 + L3 + L4 + L5 + L6) = 0 . (D.2)

The phases written in terms of decorated box diagrams satisfying the flow rules, without

necessarily satisfying (D.2), are shown in figure 40. From the Weyl group quotient we

indeed expect there to be ∣∣∣∣
We7

We6

∣∣∣∣ = 56 . (D.3)

The flop transitions between phases are obtained from these diagrams by considering single

sign box changes, that are compatible with the flow rules. The resulting flop diagram is

shown in figure 41. Again, the flop diagram for the theory with gauge group E6 × U(1) is

the representation graph of E7 with 56.

The phases, which satisfy (D.2) are shown in blue and are the actual phase diagrams

of E6 (not E6 ×U(1)).

D.2 Phases of E7 with 56 matter

For E7 with 56 matter the representation graph is shown in figure 42. An additional

constraint differentiating the E7 phases from the E7 × SU(2) phases is

EE7
= 3L0 − (L1 + L2 + L3 + L4 + L5 + L6 + L7) = 0 . (D.4)
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Figure 40. Phases in terms of decorated box graphs of the e6⊕ u(1) theory with matter in the 27.

Blue are +, yellow are -.

In figure 43 we show the phases of the E7×SU(2) theory with 56 matter, as well as, boxed

in red, the phases that satisfy D.4.

We shall now determine the fiber structure for the eight E8 phases, those which sat-

isfy (D.4). These will give the E8 rank one monodromy fiber types. The results of this

section are summarized in figure 44, and we notice again that the flop diagram is exactly

the E8 Dynkin diagram; each monodromy-reduced fiber corresponds to an affine E8 fiber

structure with exactly one (non-affine) node removed.

We begin by specifying the convention for the E7 data, following appendix A.4; we list
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5

6

4

3

2

1

9

7

11

8

10

14

1817

1615

1312

222120

19

2423 25

26 27 28

3031 29

34 33 32

36 3537

383940

44

414243

49

4647

45

5051

48

54

53

52

56

55

Figure 41. Phase diagram of the e6⊕ u(1) theory with matter in the 27. The flop diagram agrees

with the representation graph of the 56 of E7. The nodes colored in blue are the phases of the e6

theory. The numbering corresponds to the decorated box graphs in figure 40, by considering each

column in that diagram, read from left to right, top to bottom.
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Figure 42. The undecorated box graph for E7 with 56. (ij) denotes weight L0−Li−Lj , (ijklm)

denotes weight L0 −Li −Lj −Lk −Ll −Lm, and (i) denotes weight 3L0 −
∑5

k=1
Ljk − 2Li, where

the jk 6= i are distinct. The flow rules are as in (3.13) and between layers +, resp. −, flows in the

direction of the blue, resp. yellow, arrows.

here the intersections among the curves corresponding to roots

F1 · F2 = +1, F2 · F3 = +1, F3 · F4 = +1,

F3 · F7 = +1, F4 · F5 = +1, F5 · F6 = +1.
(D.5)

The multiplicity of each curve is #Fi = (2, 3, 4, 3, 2, 1, 2). Additionally there is the affine

root

F0 = −
7∑

i=1

niFi , (D.6)

where the ni are the multiplicities of the roots. This curve has multiplicity 1, and only

intersects the other roots through F0 · F1 = +1.

Let us consider first the phase at the top of figure 44. The splitting of the roots of the

E7 can be read off from the box graph as being just

F7 → C+
12345 + C−

67 + F4 + 2F5 + F6 . (D.7)

Under the Z2 action coming from the Weyl group of the su(2) the curves C+
12345 and C−

67

are identified. The extremal curves in this phase are then

K = {F1, F2, F3, F4, F5, F6, C
+
12345} , (D.8)

with corresponding multiplicities {2, 3, 4, 5, 6, 3, 4}. The box graph tells us the following

intersections of the curve C+
12345 with the roots

C+
12345 · F1 = 0, C+

12345 · F2 = 0, C+
12345 · F3 = 0,

C+
12345 · F4 = 0, C+

12345 · F5 = +1, C+
12345 · F6 = 0.

(D.9)

The fiber type is then seen to be that of the topmost phase in figure 44.
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Let us now consider the second top phase in figure 44, where the curves that become

reducible are
F5 → C+

12346 + C−
12345 ≡ C+

67 + C−
57

F7 → C+
12346 + C−

57 + F4 + F6 .
(D.10)

The Z2 symmetry identifies the curves C+
12346 ↔ C−

57 and C−
12345 ↔ C+

67. The extremal

curves are then

K = {F1, F2, F3, F4, F6, C
+
12346, C

+
67} , (D.11)

where the multiplicities are {2, 3, 4, 5, 3, 6, 2}. We read off of the box graph the non-trivial

intersections involving the new extremal curves

C+
12346 · F4 = +1, C+

12346 · F6 = +1, C+
67 · C+

12346 = +1. (D.12)

Using these intersections in addition to those given for the E7 roots in D.5 we produce the

intersection graph depicted in the second top box of figure 44.

Moving down figure 44 from the previously considered phase we reach the phase for

which the splitting into irreducible curves takes the form

F4 → C+
12356 + C−

12346 ≡ C+
57 + C−

47

F6 → C+
12347 + C−

12346 ≡ C+
57 + C−

56

F7 → C+
12347 + C−

47 ≡ C+
12356 + C−

56 .

(D.13)

The Z2 symmetry identifies the curves

C+
12356 ↔ C−

47

C+
57 ↔ C−

12346

C+
12347 ↔ C−

56 ,

(D.14)

leaving the set of extremal rays

K = {F1, F2, F3, F5, C
+
12347, C

+
12356, C

+
57} , (D.15)

with the associated multiplicities {2, 3, 4, 2, 3, 5, 4}. The box graph gives the following

intersection numbers involving the new irreducible curves

C+
12356 · F3 = +1, C+

57 · F5 = +1,

C+
12356 · C+

57 = +1, C+
12356 · C+

12347 = +1, C+
12347 · C+

57 = +1 .
(D.16)

It is now straightforward to read off that these irreducible curves intersect in the diagram

associated to this phase in figure 44; it takes the form of an affine E8 fiber type with the

central node excised.
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The majority of the other phases depicted in figure 44 are calculated by application

of the methods described for the previous three examples. There is, however, one phase,

corresponding to the bottom-most phase in figure 44, which is slightly more subtle, which,

for this purpose, we explain here. In this case we observe that the affine root F0 is one of

the curves that become reducible

F6 → C+
17 + C−

23456 + 2F1 + 2F2 + 2F3 + F4

F0 → C+
17 + C−

(7) .
(D.17)

The curve denoted by C−
(7) is associated to the weight represented by (7) in figure 42, and,

as it remains large in the singular limit, takes its place as the new affine curve. The Z2

identifies the curves C+
17 ↔ C−

23456, and the extremal curves are thus

K = {F1, F2, F3, F4, F5, F7, C
+
17} , (D.18)

with multiplicities {4, 5, 6, 4, 2, 3, 3} and non-trivial intersections C+
17·F1 = +1. Putting this

information together results in the fiber type shown in the bottom-most box of figure 44.

For the purposes of completeness we shall now briefly detail the pertinent data of the

remaining possible fiber structures. We begin with the phase , which has the

splitting

F3 → C+
12456 + C−

12356 ≡ C+
47 + C−

37

F6 → C+
47 + C−

12356 + F4 + F7 .
(D.19)

The Z2 symmetry identifies the curves C−
12356 ↔ C+

47 and C+
12456 ↔ C−

37, which makes the

extremal generators

K = {F1, F2, F4, F5, F7, C
+
12456, C

+
47} , (D.20)

with multiplicities {2, 3, 4, 2, 3, 4, 6}. The non-trivial intersections involving the new irre-

ducible curves are
C+
12456 · F2 = +1, C+

47 · F4 = +1,

C+
47 · F7 = +1, C+

12456 · C+
47 = +1 .

(D.21)

The phase splits as

F4 → C+
56 + C−

12347 + F6 + F7 . (D.22)

The Z2 identifies the curves C+
56 ↔ C−

12347, and the extremal rays are

K = {F1, F2, F3, F5, F6, F7, C
+
56} , (D.23)

with multiplicities {2, 3, 4, 2, 4, 5, 6}, and intersections

C+
56 · F6 = +1, C+

56 · F7 = +1 . (D.24)
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Figure 44. Monodromy-reduced fibers for E8, we shown the intersection graph including multiplic-

ities for each of the decorated box graphs. Note the the fibers correspond to type II∗ Kodaira fibers,

with one non-affine node deleted. The lines connecting black boxes correspond to flop transitions,

and form a (non-affine) E8 Dynkin diagram.

Let us now consider the phase . The curves split via

F2 → C+
13456 + C−

12456 ≡ C+
37 + C−

27

F6 → C+
37 + C−

12456 + 2F3 + F4 + F7 ,
(D.25)

where the curves C+
37 ↔ C−

12456 are identified. The extremal curves are

K = {F1, F3, F4, F5, F7, C
+
37, C

+
13456} , (D.26)
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and the multiplicities are {2, 6, 4, 2, 3, 5, 3}. The non-trivial intersections are

C+
37 · F3 = +1, C+13456 · F1 = +1, C+

37 · C+
13456 = +1 . (D.27)

The final E7 phase corresponds to the box graph . One reads off from the box

graph that the curves split into the following components

F1 → C+
23456 + C−

13456 ≡ C+
27 + C−

17

F6 → C+
27 + C−

13456 + 2F2 + 2F3 + F4 + F7 .
(D.28)

The Z2 symmetry from the Weyl group of the su(2) identifies the curves

C+
23456 ↔ C−

17

C−
13456 ↔ C+

27 .
(D.29)

The extremal rays of this phase are

K = {F2, F3, F4, F5, F7, C
+
27, C

+
23456} , (D.30)

which have respective multiplicities {5, 6, 4, 2, 3, 4, 2}. The non-trivial intersections of the

extremal curves involving the new irreducible components are

C+
27 · F2 = +1, C+

27 · C+
23456 = +1 . (D.31)

Using the intersections given above for each of these phases, and the general intersection

information given in (D.5), allows the reproduction of the remaining fibers in figure 44.
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[22] M. Cvetič, T.W. Grimm and D. Klevers, Anomaly cancellation and Abelian gauge

symmetries in F-theory, JHEP 02 (2013) 101 [arXiv:1210.6034] [INSPIRE].
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