
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

1993

Box-Structured Methods for Systems-Development with Objects Box-Structured Methods for Systems-Development with Objects

Hevner A. R

Harlan D. Mills

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
R, Hevner A. and Mills, Harlan D., "Box-Structured Methods for Systems-Development with Objects"
(1993). The Harlan D. Mills Collection.
https://trace.tennessee.edu/utk_harlan/452

This Article is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

Box-structured methods
for systems development
with objects

Box structures provide a rigorous and systematic
process for performing systems development
with objects. Box structures represent data
abstractions as objects in three system views
and combine the advantages of structured
development with the advantages of object
orientation. As data abstractions become more
complex, the box structure usage hierarchy
allows stepwise refinement of the system design
with referential transparency and verification
at every step. An integrated development
environment based on box structures supports
flexible object-based systems development
patterns. We present a classic example of object
based systems development using box
structures.

System and software development organiza
tions face difficult decisions when selecting

development methodologies. Complex develop
ment projects require formal methods for the in
tellectual control of the process and the resulting
system product. After many years of striving to
achieve the proven benefits of structured analysis
and design methods (e.g., Structured Analysis
and Structured Design, 1 Jackson System Devel
opment, 2 and Information Engineering3

), devel
opment organizations must now consider the
important advantages of object-oriented develop
ment methods.

We propose that the decision between structured
development methods and object-oriented meth
ods is not a choice of one or the other. With the
right conceptual representations and develop
ment processes, the advantages of structured de-

232 HEVNER AND MILLS

by A. R. Hevner
H. D. Mills

velopment and objects can be integrated into a
formal development methodology. In this paper,
we discuss the use of box structures as a bridge to
support the integration of structured concepts
and object-oriented concepts.

Object orientation (i.e., the object-oriented ap
proach) is receiving a great deal of attention as a
promising approach for the analysis and design of
complex information systems. For many system
applications, it is very natural to view the system
environment as a collection of identifiable objects
that collaborate to achieve a desired behavior.
Recent research and development in object ori
entation has led to a number of methods and tech
niques to support object-oriented systems devel
opment. Three principal areas have been studied:
object-oriented analysis, object-oriented design,
and object-oriented programming.

Object-oriented analysis (OOA) applies object ori
entation to the initial stages of the systems de
velopment process, specifically the analysis of
desired or existing system behavior. Prominent
works in this area include Bailin's use of objects
for requirements specification, 4 Ward's exten
sion of structured analysis to support objects, 5

Coad and Yourdon's comprehensive framework

©Copyright 1993 by International Business Machines Corpo
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

for understanding object-oriented analysis, 6 and
Shlaer and Mellor's text on data modeling in ob
jects. 7

Object-oriented design (OOD) produces a formal
specification of the desired system behavior in
terms of objects and their interactions. Various
graphical and syntactic representations have
been proposed to support an OOD system speci
fication. In addition, processes for developing
and evolving the object-oriented designs have
been defined. The best known OOD methods in
clude Booch's design method, 8 Seidewitz and
Stark's method, 9 Meyer's approach for software
construction as defined in the Eiffel programming
system, 10 and Coad and Yourdon's methods. 11

Object-oriented programming (OOP) languages,
such as Small talk, Object Pascal, C++, and CLOS
directly support the implementation of an object
oriented design. Other languages, such as Ada,
provide limited support for certain object-ori
ented features such as inheritance and are collec
tively named "object-based" languages. 12

A systematic process for object-oriented devel
opment should provide a seamless development
environment that supports the complete systems
development process. Recent research projects
have defined object-oriented system develop
ment life-cycle processes, 13 including the object
modeling technique from General Electric Co. 14

and the responsibility driven design from Tek
tronix, Inc. 15

In recent years development organizations have
made large investments in areas such as training
experience, and computer-aided software engi
neering (CASE) tools for the support of structured
development methods. The question arises as to
whether there is a way to integrate the advantages
of object orientation in this existing development
infrastructure. Several proposals have been made
to use the structured analysis results from data
flow diagrams as a basis for object-oriented de-
ign (e.g., see Reference 5). A number of prob

lems exist with these proposals.

First, there is a serious gap between data flow
·agrams and object-oriented designs. Block di

arns coalesce separate uses of system objects
· -o single nodes and coalesce the separate usage
:--"lations among the objects into single arcs be
. ·een nodes. Thus, such diagrams irreversibly

- SYSTEMS JOURNAL, VOL 32, NO 2, 1993

summarize separate transactions that need to be
identified in good object-oriented designs. 16

Second, there is no systematic means of intellec
tual control over the hierarchical growth of a com
plex system. There is little clear discipline or or
der to the discovery, design, and implementation
of objects. In particular, the discovery of embed
ded objects (i.e., objects within objects) and of
inheritance opportunities is not addressed.

Third, the approach depends on the heuristic in
vention of objects from a data flow perspective.
There is no formal, mathematical basis for eval
qating the correctness or quality of design deci
sions. Object-oriented designs are often pre
sented as faits accomplis from data flow diagrams
skipping important analytic steps. In small prob
lems, this may be possible. But in larger ones, it
becomes difficult to determine if the leap was in
spired or flawed. As complex as large problems
are, and as numerous the design alternatives, it is
risky business to accept the discontinuity be
tween data flows and object stimuli and responses
without a lot of engineering analysis.

Finally, the design and implementation of the
transformational functions that tie together ob
jects are left as exercises for the programmer
once the objects are completed. Programmers
who are not involved in the design process may
not understand the intentions of the design and
may produce an incorrect system implementa
tion.

Many of these problems arise because of the
widely held misconception that top-down func
tional decomposition found in structured meth
ods is inappropriate and even contradictory to an
object-oriented development process. Instead, it
is our premise that, with the correct representa
tions and techniques, the advantages of both sys
tem decomposition and object composition can
be combined into a rigorous systems develop
ment with object orientation.

What is needed is a comprehensive process
framework and integrated environment to sup
port systems development with objects from ini
tial requirements analysis through system imple
mentation. The objective of this paper is to
present box structures as integrating components
for object-based structured systems develop
ment. Box structures support a rigorous, yet

HEVNER AND MILLS 233

...__

practical, set of methods for the development of
systems. 16-

18 Box structure methods have been
used successfully on numerous systems develop
ment projects both internal and external to IBM.
(See Reference 19 for examples.) This paper pre
sents an overview of the box structure theory,
shows that box structures are, in fact, formal rep
resentations of objects by demonstrating that box
structures support essential features of objects,
and presents an integrated object-based systems
development environment with box structures.
Good use of box structure operations provides
the flexibility to perform needed systems devel
opment tasks. Finally, these ideas are applied, by
means of an example, to the development of a
classic Master File-Transaction File processing
system.

Box structure theory

Box-structured systems development is a step
wise refinement and verification process that pro
duces a system design. Such a system design is
defined by a hierarchy of small design steps that
permit the immediate verification of their correct
ness. Three basic principles underlie the box
structured design process: 16

1. All data to be defined and stored in the design
are hidden in data abstractions.

2. All processing is defined by sequential and con
current uses of data abstractions.

3. Each use of a data abstraction in the system
occupies a distinct place in the usage hierarchy
of the system.

Box structure methods define a single data ab
straction in three forms in order to isolate the
creative design steps involved in building the ab
straction. The black box gives an external de
scription of data abstraction behavior in terms of
a mathematical function from stimulus histories
to responses. The black box is the most abstract
description of system behavior and can be con
sidered as a requirements statement for the sys
tem or subsystem. The state box includes a de
signed state and an internal black box that
transforms the stimulus and an initial state into
the response and a new state. The state is de
signed from an analysis of the required stimulus
histories and responses for the system. Finally,
the clear box replaces the internal black box with
the designed sequential or concurrent usage of
other black boxes as subsystems. These new

234 HEVNER AND MILLS

black boxes are expanded at the next level of the
system box structure usage hierarchy into state
box and clear box forms.

Box structures have underlying mathematical
foundations that permit the analysis and design to
be applied to larger systems of arbitrary size.
These foundations are based on sets and func
tions that can be described in mathematical no
tation for small systems or subsystems or in well
structured natural language in a given context in
larger systems. In any case, a black box is defined
by a mathematical function from histories of stim
uli to the next response. Let S be the set of pos
sible stimuli, and R be the set of possible re
sponses of a system or subsystem. In illustration,
an airlines reservation system, with many thou
sands of concurrent users, will accept their stim
uli sequentially into the system in real time and
return responses accordingly. The black box
function, say f, will map historical sequences of
such stimuli, in this case S*, to responses, R ,
shown in the form

f: S* ~ R

The description of function f may be very com
plex for an airlines reservation system, but it is
still only a function. This description of the black
box assumes no data storage between stimuli,
even though such storage may be known to exist,
or be planned for development.

In a simple illustration, consider a stack object of
integers, defined by a set of commands, say
RESET, PUSH, POP, EMPTY?, and TOP?, whose
functions are easily inferred from the names . A
stimulus is a command plus data, if required. For
example, a possible sequence of stimuli might be:

RESET, EMPTY?, PUSH 17, PUSH 31, POP, TOP?,

PUSH 11, . ..

The responses for the stimulus histories returning
data are:

RESET, EMPTY? ~ yes

RESET, EMPTY?, PUSH 17, PUSH 31, POP,

TOP?~ 17

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Although a data stack can be readily imagined,
the responses can be determined by examining
only the stimulus histories, as above.

The state box of a system or subsystem expands
the black box by identifying data at this system
level to be stored between stimuli so that only a
current stimulus is required, but not previous his
tory. LetT be a set of possible data states at the
top level, and lett be the initial state of the system
or subsystem. As noted above, the state box con
tains an internal data abstraction that is defined
by another black box, say g. In this case, the
internal black box has a compound stimulus con
sisting of the external stimulus and the internal
state, and a compound response consisting of the
external response and the new internal state. That
is, g has the form

g: (S X T)* ~ (R X T)

Then, each pair (t,g) of an initial state and an
internal black box function will uniquely define
the behavior of the system. Note that the internal
data abstraction will be capable of maintaining
more deeply stored data, with the internal black
box using its compound stimulus histories.

To continue the stack illustration, consider the
state to be a list of integers, with the initial state
being the empty list. Then the commands RESET,
PUSH, POP, EMPTY?, and TOP? are functions from
the stimuli and state resulting in a response and
new state. For example, the sequence of stimuli
above will produce states as well as responses as
follows:

(RESET, ()) ~ (null, ())

(EMPTY?, ()) ~(yes, ())

(PUSH 17, ()) ~(null, (17))

(PUSH 31, (17)) ~ (null, (31, 17))

POP, (31, 17)) ~(null, (17))

TOP?, (17)) ~ (17, (17))

PUSH 11, (17)) ~(null, (11, 17))

'="urthermore, all intermediate states of this state
x can be eliminated by mathematical substitu

·on to derive a black box function, say k, in
·ch the initial state will serve as a parameter.

~ us, whenever a specified black box, say f, has

- SYSTEMS JOURNAL, VOL 32, NO 2, 1993

been designed into a state box, say (t,g), the cor
rectness of (t,g) can be verified by comparing its
behavior, say k, to the intended behavior f.

Continuing, a state box can be expanded into a
clear box by replacing the internal data abstrac
tion with a procedural structure of new data ab
stractions in either sequential or concurrent logic.
Sequential structures may involve simple se
quence, alternation, or iteration whose semantics
are well known from sequential programming.
Since sequential programs are rules for mathe
matical functions, from initial states to final states
of computation, a clear box in sequential struc
tures defines the functional behavior in terms of
the next level black boxes. Concurrent structures
require more analysis and discipline in use be
cause of their potential complexities.

Such a procedural structure of data abstractions
can also be eliminated to produce the effect of a
single internal data abstraction and the state, in
much the same way as the state was eliminated to
derive a black box. Sequence and alternation
structures are eliminated by function composition
and disjoint union directly. Iteration structures
can be reformulated as noniterative decision
structures or recursive structures. 20 Again, con
current structures require more specific treat
ment. In this way, clear box designs can be ver
ified against state box specifications, as well.

Figure 1 shows the relationships among the three
views of a single data abstraction. The creative
design steps, along the right side of the figure, are
called expansions. The design verification steps,
along the left side of the figure, are called deri
vations. A given black box can be expanded into
many correct state box designs. Conversely, a
state box will define a unique black box by der
ivation. Also, a given state box can be expanded
into many correct clear box designs, and con
versely, a clear box will define a unique state box
by derivation.

In order to gain intellectual control over the de
velopment of a complex system, it is necessary to
be able to decompose the system into smaller,
more manageable parts. A box structure usage
hierarchy represents the use of black box abstrac
tions in a higher-level clear box abstraction. A
usage hierarchy of abstractions provides referen
tial transparency among all black boxes within a

HEVNER AND MILLS 235

Figure 1 Box structure expansion and derivation

-·

BlACK BOX

STIMULUS ·I : I . RESPONSE

ELIMINATE
STATE

STATE BOX

INTRODUCE
STATE

r..!~

I

STIMULUS

ELIMINATE
PROCEDURE

~----1
I
I
I
I

'

STATE ~--~
I
I
I
I
I
I

RESPONSE

INTRODUCE
PROCEDURE

CLEAR BOX

].-----------~
I
I

~-------------~

STIMULUS----+ .. +~
1
·c ~:

1
u L-'-'--"---'-----'---'

BLACKBOX I :
I
I

RESPONSE

I• •••••••••• •I CREATIVE DESIGN STEPS (EXPANSIONS)

I . . -1 DESIGN VERIFICATION STEPS (DERIVATIONS)

STIMULUS RESPONSE FLOW

_ _ _ _ _ _ _ _ _ _ SYSTEM STATE FLOW

clear box. 21 Thus, each black box in a clear box
can be designed independently of the others.

The effective use of box structures for the devel
opment of information systems is guided by the
use of four basic box structure principles: refer
ential transparency, transaction closure, state mi
gration, and common services. We briefly define
each of these principles.

Referential transparency-Referential transpar
ency occurs when a black box abstraction is com
pletely defined within the clear box at the next

236 HEVNER AND MILLS

higher level in the usage hierarchy. The black box
is then logically independent of the rest of the
system, and can be designed to satisfy a well
defined behavior specification. The principle of
referential transparency provides a crisp disci
pline for management delegation and assignment
of responsibility.

Transaction closure-The principle of transac
tion closure defines a systematic, iterative spec
ification process to ensure that a sound and com
plete set of transactions is identified to achieve
the required system behavior. The closure pro-

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

cess can be performed at each box structure view
of an object abstraction. At the black box, checks
are performed to ensure that the system stimuli
are necessary and sufficient to generate the re
quired system responses. At the state box, the
defined transactions must be necessary and suf
ficient for the acquisition and preservation of all
state data, and the state data must be necessary
and sufficient for the completion of all transac
tions. At the clear box, the procedural design and
the internal black boxes must include all trans
actions.

State migration-State data should be identified
and stored in the system part (i.e., data abstrac
tion) at the lowest level in the box structure hi
erarchy that includes all references to those data.
At any time in the systems development process,
state data can be migrated upward or downward
in the hierarchy in order to achieve some system
objective, such as minimizing data scope. 22 State
migration must be performed carefully in order to
maintain the consistency and mathematical cor
rectness of data abstractions throughout the hi
erarchy.

Common services-A common service is a data
abstraction that is described in a separate box
structure hierarchy, and used in other box-struc
tured systems. System parts with multiple uses
should be defined as common services for reus
ability. Also, predefined common services, such
as database management systems and input/out
put interfaces, should be used to advantage
throughout the box-structured system. The ad
vantages of reusable common services for sys
tems development are obvious. Box structures
directly support the identification and reuse of
common services within and among systems.

More complete descriptions of box structure the
ory and principles can be found in References
16-18.

Box structures as objects

Similar to box structures, the object concept can
be seen as an extension of abstract data types in
programming languages. 23

•
24 A precise mathemat

ical definition of an object has not been widely
accepted or used. An object can be informally
defined as a unique unit of information and de
scriptions of its manipulations. More concisely,
Booch defines an object as having "state, behav-

- SYSTEMS JOURNAL, VOL 32, NO 2, 1993

ior, and identity." 8 A collection of objects that
have a common behavior and structure is termed
an object class . Booch establishes four major and
three minor elements of any object-oriented mod
el. 8 The four major (i.e., essential) elements are
abstraction, encapsulation, modularity, and hier
archy. The three minor (i.e., useful, but not es
sential) elements are typing, concurrency, and
persistence.

An object-oriented systems development process
must support all major object elements and
should support the minor object elements as ap
propriate for its application environment. In this
section, we demonstrate that the box structure
theory incorporates the essential elements of the
object model. We also discuss the box structure
approaches for supporting other useful elements
of the object concept.

Essential object-oriented elements. We now briefly
show that box structures provide the concepts of
abstraction, encapsulation, modularity, and hier
archy.

Abstraction. An object is an abstract representa
tion of an entity in the problem domain. Much
creative skill and experience are needed to iden
tify and design a good set of system objects and
classes. Box structures provide an excellent set of
abstraction capabilities for system description.
During analysis, a potential object can be defined
and studied in any of the three box structure
views. In particular, the black box view gives the
external, design-free system behavior that pro
vides the essence of a system abstraction. 25 The
state box views the object as a data abstraction
with the state visible. Within the clear box view
complex object abstractions can be rigorously de
composed into simpler objects and simple objects
can be grouped into larger objects.

During top-down design, the box structure usage
hierarchy provides a framework in which to cap
ture multiple levels of system abstraction in a con
trolled manner. All system design units, from the
top-level complete system to the smallest sub
system components, and even down to simple
variables, are viewed and described as box struc
ture objects. Throughout the hierarchy, the abil
ity to manage abstraction applies to all system
components; stimulus (i.e., input), responses
(i.e., outputs), state (i.e., internal data), and pro
cedures.

HEVNER AND MILLS 237

The ability to handle abstractions is also impor
tant for the reverse engineering of existing sys
tems. Bottom-up system analysis abstracts func
tionality (i.e., black box behavior) from system
implementation details of procedure and state.
The application of box structure theory to system
reverse engineering is presented in Reference 26.

Encapsulation. Encapsulation, also known as in
formation hiding, is supported by the state box
and clear box views of a box structure object. The
state of an object and the procedural operations
on that state are hidden within the box structure
as design constructs. The essential behavioral ab
straction, or interface, of the object is described
by the black box view.

An extension to object encapsulation can be
found in the box structure principle of state mi
gration. As box structure objects are decomposed
and composed in a usage hierarchy, opportunities
for state migration may exist. Beneficial state mi
grations provide insights into new class inheri
tance structures. Upward migration of state can
identify new superclass structures and downward
migration of state can identify new subclass struc
tures.

Modularity. Modularity in systems development
involves dividing the complete system into man
ageable units of analysis, design, and implemen
tation. Each system module must be internally
cohesive and loosely connected to the other mod
ules of the system. 8

Modularity is one of the major strengths of the
box structure development process. The princi
ple of referential transparency throughout the box
structure usage hierarchy provides module inde
pendence for all box structures in the system de
sign. Furthermore, referential transparency ap
plies to both object decomposition and object
composition in the systems development process,
as discussed in the next section on hierarchy.

Hierarchy. The concept of a system hierarchy is
an essential component for systems develop
ment. Box-structured systems development with
objects utilizes two distinct types of hierarchy:
usage hierarchies to describe system behavior
and inheritance hierarchies to describe object be
havior via inheritance.

A usage hierarchy of box structures is con
structed during system design by the application

238 HEVNER AND MILLS

of both system decomposition and object com
position. Top-down system decomposition en
ables an essential intellectual control in develop
ment. The system grows one level at a time. The
mathematical structuring of systems in usage hi
erarchies of objects allows formal verification
methods to be used. Also, the referential trans
parency of objects in a clear box provides an es
sential modularity and design independence to
each object.

In addition, in this framework of a usage hierar
chy, the advantages of object composition come
into play. An object requirement, stated as a
black box, can be matched with existing object
classes stored for reuse in a repository. During
the systems analysis phase the benefits and costs
of object reuse and modification can be studied.
Another opportunity for object composition
arises during the design of the clear box. Knowl
edge of existing object classes or insight into de
sired object classes will influence the designer's
invention of data abstractions as black boxes at
the next level in the object hierarchy.

As an object is used in the system usage hierar
chy, it carries with it a description of its inherent
behavior as defined in an inheritance hierarchy.
Inheritance is a fundamental aspect of object ori
entation. Inheritance is the means by which one
object class, the subclass, inherits the informa
tion and operations of another object class, the
superclass. The subclass can then be modified by
adding or deleting information or operations of its
own.

Inheritance is exhibited in the box structure de
velopment process by building new classes from
existing classes during systems development. Af
ter an object has been instantiated in a system
design, the designer has the freedom to modify
the object design by altering the state design of
the state box (e.g., via state migration) and the
procedural design of the clear box. If the modified
object is designated for reuse, then a choice can
be made as to its representation in the reuse re
pository. The new object class, from black box to
clear box, can be stored as a unit or the new sub
class can be stored as a set of modifications with
a pointer to the existing superclass. Thus, an in
heritance hierarchy can be developed of object
classes. The physical structure of the hierarchy is
a representation issue based upon an optimization
of the reuse repository. Thus, an object is defined

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

~ ~ ~~ ~-

and stored in the form of a generic common ser
vice. 27

Important object-based features. Based upon the
fact that the box structure theory supports the
four essential elements of Booch's object model,
we conclude that box structures support object
based systems development. In fact, box struc
tures provide important extensions for systems
development with objects. These extensions in
clude the isolation and verifiability of all creative
design steps in small units and systematic expan
sion of the design in a top-down hierarchy for
intellectual design control. Thus, there is no need
to develop transformational functions to tie ob
jects together, as is required in some traditional
object-oriented design methods. 28

Next we discuss several important features of
box-structured development methods, to include
Booch's minor elements of typing, concurrency,
and persistence, as well as reuse and object rep
resentations.

Typing. The typing of an object identifies the ob
ject as a member of a specific class with all in
herent states and behaviors. Object typing en
sures that differently typed objects may interact
only in very restricted ways. The support in var
ious OOP languages for typing ranges from weak
enforcement to strong enforcement. The box
structure syntax does not specifically enforce
strong typing in design specifications.

Concurrency. We believe that the ability to ana
lyze and design concurrent structures is essential
for realistic systems development. The clear box
structure provides the means to model the con
current behavior of black box objects. We have
defined analysis and design methods to optimize
the use of concurrency in system specifications. 29

However, many difficult questions remain to be
explored.

Persistence. Persistence through time and space
· embedded in the organization-wide common
services as discussed in the next section on reuse.
The use or reuse of persistent common services,
such as object-oriented database management
systems, allows data and procedures to be shared
- oss many system boundaries. 30

•
31

;reuse. Reuse is a fundamental concept in object
·ented development. 32 The reuse of objects

- SYSTEMS JOURNAL, VOL 32, NO 2, 1993

within and among systems has the potential to
significantly raise the productivity of systems de
velopment and the certified quality of systems.
Box structure methods support a high level of
object reuse.

In a top-down manner, each object in the system
hierarchy is stored in its three box structure views
in a systems development repository. Certain of
these objects, usually the smaller objects at lower
levels in the hierarchy, can be selected for future
reuse. Objects are stored in the form of their in
heritance hierarchies. Special design require
ments are imposed on the objects, such as inter
face standards, documentation standards, and
certification requirements. These reusable ob
jects are migrated to large organizational reposi
tories as object classes for potential reuse across
all development projects. By including all three
box views of the object in the reuse repository, a
verified design trail of the object from require
ment to detailed design is available for evaluation
and use during reuse decisions.

During design, reuse decisions are made for a
given black box requirement. It may be possible
to find a reusable object type in the reuse repos
itory that meets the requirement. (Current re
search on repository structures and access meth
ods for reuse is reported in Reference 33.) We
recognize several forms of object instantiation for
reuse during a systems development.

An organization-wide object instantiation would
encapsulate information and operations used by
many systems. Such objects would include data
base and file management systems, common user
interfaces, and sensors that maintain the state of
physical properties (e.g., temperature, pressure).
A system-wide object instantiation would encap
sulate information (e.g., data types and con
stants) and operations used in several different
places in the system usage hierarchy, but not out
side of the system. Examples would include com
monly used data structures and their operations
(e.g., files, stacks, queues) and monitors for crit
ical sections of the system. A one-time object in
stantiation would allow reuse of information and
operations without information sharing. This
would be beneficial primarily for reusing existing
program code. The first two forms of object in
stantiations are examples of box structure com
mon services.

HEVNER AND MILLS 239

Table 1 The 16 box structure operations

1. Requirements determination
2. Black box definition
3. Black box analysis
4. Black box requirements review
5. State box expansion
6. State box analysis
7. Black box derivation
8. Clear box expansion
9. Clear box analysis

10. State box derivation
11. Stepwise system decomposition
12. System implementation
13. System operations
14. System analysis
15. System box structure description
16. Stepwise system abstraction

Object representation languages. The search for
appropriate languages for object-oriented devel
opment has led to graphics-based aids such as
Small talk icons 34 and Booch diagrams, 8 and syn
tactical forms such as Ada program description
languages (PDLs). 35 Box structures have both a
graphic notation and a syntactic notation, that be
ing the box description language (BDL). 17 While
graphics may be appropriate for small system de
signs and high-level presentations, we see no al
ternative for the use of a syntactically complete
design language for large-scale object-oriented
development of systems. The use of the Z nota
tion has also been used to represent box-struc
tured designs. 36

An integrated box-structured environment
for systems development with objects

Box structures and the box structure usage hier
archy provide the common, unifying concepts for
achieving a truly integrated object-based devel
opment environment. No artificial bridges and
transformation procedures are needed to ex
change information among development activi
ties. We have defined 16 fundamental box struc
ture operations (see Table 1) and show these in a
schematic structure of an integrated development
environment (see Figure 2). These operations,
used and reused in various patterns, contain all
the required processing needed to perform all ac
tivities in object-based systems development.
The box structure information is stored in well
defined box structure formats, box structure
graphics, and the box description language in sys
tems development repositories. In this section,

240 HEVNER AND MILLS

we describe the 16 operations and discuss several
important patterns of object-based development.

Each of the box structure operations shown in
Table 1 is atomic, accepting stimuli from and pro
ducing responses to the system developer and the
systems development repositories. At any point
in systems development or systems evolution, an
operation can be performed as needed as long as
the stimuli for it are available. It is incumbent
upon the system developer to put the operations
to "good use" in the development process. Nat
ural groupings of the operations are exploited in
good-use patterns. The box structures that un
derlie all of the operations provide the essential
formalism and integration required for rigorous
systems development. We next briefly describe
the objectives of each of the operations.

1. Requirements detennination involves a series
of investigation activities in which system re
quirements are specified. The information is gath
ered via techniques such as user interviews, ques
tionnaires, documentation review, and analysis
of existing applications. The gathered require
ments information is represented in box structure
formats.

2. The black box of the system is completely de
fined (black box definition) based on the require
ments for the system. The black box is described
by its stimuli, responses, and the transactions that
map stimulus histories into responses.

3. Black box analysis evaluates the quality and
completeness of the black box specification. For
example, transaction closure would ensure that
all stimuli are necessary and sufficient in the sys
tem.

4. The defined black box is reviewed (black box
requirements review) to determine whether it
truly represents the desired system requirements.
The review involves the customers, users, and
managers of the system.

5. The state of the system is created (state box
expansion) by encapsulating required stimulus
history in a state box. Data design methods, such
as entity-relationship models, are used to create
a state design. An internal data abstraction is de
signed to map stimuli and state into responses and
new state.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

~-~~& ~~-
~~ ---

Figure 2 A schematic structure of an integrated development environment

REQUIREMENTS
DETERMINATION

BLACKBOX (
REQUIREMENTS
REVIEW

BLACK BOX
DERIVATION

)

BLACKBOX
DEFINITION

STATE BOX
EXPANSION

:2
UJZ (

(
STATE BOX
ANALYSIS

~Q
>-t::
(/)(f)

UJO
(/)Cl.

STATE BOX
DERIVATION

CLEAR BOX
EXPANSION

~~
[Du
f-UJ
(/)Q

CLEAR BOX
ANALYSIS

STEPWISE SYSTEM
ABSTRACTION

STEPWISE SYSTEM
DECOMPOSITION

PROCEDURES
(SYSTEM)

/-TEM SYSTEM BOX
STRUCTURE
DESCRIPTION

SYSTEM
ANALYSIS

6. State box analysis evaluates the quality and
completeness of the state box design. The prin
ciples of transaction closure and state migration
are applied. Data design metrics, such as level of
data normalization, are used to evaluate the qual
ity of the design decisions.

7. The black box derivation operation discovers
the black box representation of a given state box.
A state box can be verified as correct by deriving
an equivalent black box and comparing it to the
original black box requirement.

8. Clear box expansion is a creative step whose
purpose is to design the procedural structure of
the system. The uses of black box subsystems at

3M SYSTEMS JOURNAL, VOL 32, NO 2, 1993

SYSTEM
OPERATIONS IMPLEMENTATION

the next level of design are identified. The intel
lectual control of stepwise system decomposition
is contained in this operation.

9. Clear box analysis evaluates the quality and
completeness of the clear box design. The prin
ciples of transaction closure, state migration, and
common services are applied. Design metrics of
structured programming can be used to study the
clear box procedural design.

10. The state box derivation operation discovers
the state box representation of a given clear box.
A clear box can be verified as correct by deriving
an equivalent state box and comparing it to the
original state box.

HEVNER AND MILLS 241

.......

11. The stepwise system decomposition operation
continues the system design in a top-down man
ner by recursively applying the above operations
to each black box at the next level of the box
structure usage hierarchy. Common service box
structures are identified and developed separately
from the application system usage hierarchy.

12. System implementation accepts the design
specification in the form of a box structure usage
hierarchy and provides the capabilities and re
sources to implement it. Implementation may be
an integration of hardware, software, and human
behavior. Implementation objectives are to build
and optimize the specified system and to prepare
users and operators for its operation and mainte
nance.

13. Activities during system operations include
maintenance, performance monitoring, integrity
control, operations assurance, and system evo
lution. Box structures provide a rigorous and
common means of understanding and controlling
the system during operation.

14. For an existing system, system analysis is an
investigation activity to support a better under
standing of system behavior. Operational system
metrics, such as performance, reliability, avail
ability, etc., are computed and used to evaluate
the quality and completeness of the system. In
formation is gathered from interviews and docu
mentation reviews to better understand system
behavior. This information is stored in a reposi
tory.

15. An existing system can be described in box
structure representations to support further rig
orous analysis and reverse engineering. Our goal
is to enhance system understanding by describing
the system (system box structure description) as
a usage hierarchy of referentially transparent
clear boxes. Methods for transforming natural
procedures into clear box formats are presented
in Reference 17.

16. The stepwise system abstraction operation
builds an increasingly abstract description of an
existing system in a recursive, bottom-up fashion.
Detailed clear box descriptions of subsystems are
derived to state box and black box representa
tions. These subsystems are then represented as
black boxes within procedural clear boxes at the
next higher level of system description. This pro-

242 HEVNER AND MILLS

cess continues until the complete system is de
scribed and understood at the top-level behavior.
This operation is the basis of the reverse engi
neering of existing systems as presented in Ref
erence 26.

The integrated systems development environ
ment for box structures would include support for
the 16 box structure operations and a common
and controlled repository for storing box struc
ture information. With the flexibility of being able
to perform any of these operations at any time
during systems development, the developer is no
longer bound by a rigid systems development life
cycle paradigm. However, a discipline is still
needed for the good use of the operations toward
a well-defined systems goal.

The use of box structures can be adapted to any
development situation in a flexible way by defin
ing good-use patterns of operations. These pat
terns would be placed under strict management
control and adapted dynamically to changing cir
cumstances in the on-going systems develop
ment. Each box structure operation in the pattern
has well-defined completion criteria, allowing im
mediate validation of the success or failure of any
particular step in the development. In addition,
since the creative invention operations (i.e., state
box expansion and clear box expansion) are self
contained, it is easy to track and document the
critical design decisions in the system.

To illustrate, consider the following examples of
good-use patterns of box structure operations.
For conciseness, we refer to the operations using
their numbers as defined in Table 1.

Object description example. The description of an
object would begin from the discovery of the ob
ject and a thorough requirements determination
(operation 1). The object would be designed as
part of an existing inheritance hierarchy (i.e.,
common service) or would initiate a new inheri
tance hierarchy. In either case, the design of the
object would proceed through defining the black
box, state box, and clear box views (operations
2-10). Subclasses of the object are defined using
recursive application of these operations in the
inheritance hierarchy (operation 11).

New system development example. The develop
ment of a system from the beginning would start
from extensive requirements determination (op-

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

. ,,., __ -.-. .
~ ,.,. .

·~

eration 1) and proceed recursively through the
top-down construction (operations 2-11) of the
box structure usage hierarchy of the system de
sign. Finally, the system would be implemented
(operation 12) and brought into operation (oper
ation 13). While this pattern of operations is op
timistically possible, it is rare in practice. New
system development will require many iterations
of requirements determination, box structure
analysis (to include reuse analysis), box structure
design, and system implementation. The flexibil
ity to dynamically select and perform the opera
tion needed next is of great benefit.

Reverse engineering of systems example. Reverse
engineering is defined as "the process of analyz
ing a subject system to identify the system's com
ponents and interrelationships and to create rep
resentations of the system in another form or at a
higher level of abstraction." 37 A pattern of oper
ations to support reverse engineering would be
defined by the application of system analysis and
system box structure description (operations 14
and 15). Then stepwise system abstraction would
be performed as a recursive pattern of analyses
and derivations (analysis operations 3, 6, and 9,
derivation operations 7 and 10).

Prototyping example. A prototype is a limited ver
sion of a system built to provide requirements and
operations information. Prototypes can range in
scope from a simple study to see if software pack
ages can exchange data correctly to a large-scale
prototype of the complete system. Once the de
cision is made to prototype a portion of a system,
the prototype development takes on an indepen
dent existence of its own. The pattern of box
structure operations would be similar to the pat
tern for developing a new system. However, not
all branches of the box structure usage hierarchy
would be completed. Only the portions of the sys
tem to be studied would be designed and imple
mented. By developing the design with the usage
hierarchy, referential transparency of all system
parts in the prototype is maintained. This sup
ports the ability to make use of these prototype
subsystems in the design and implementation of
the desired final system.

The box-structured systems development
process

In this section, we apply the integrated systems
development environment discussed in the pre-

SYSTEMS JOURNAL, VOL 32, NO 2, 1993

vious section to build a good-use pattern of box
structure operations for the object-based devel
opment of a system. We propose an object-based
systems development process that consists of five
phases. The order of performance of the phases
during a system development is based on the spi
ral paradigm in which the next phase of develop
ment is determined by the results of the previous
phases. 18 This requires definite result milestones
and strict management control of the develop
ment process. The development phases follow.

Problem definition-A clear problem statement
must be generated to provide a basis for systems
development. Extensive domain analysis is es
sential for complete problem understanding.

Requirements definition-Requirements are elic
ited from the system domain experts and system
users. The requirements are represented in for
mats that facilitate review and feedback.

Systems analysis-The system requirements are
analyzed and information is gathered to support
subsequent design decisions. The discovery of
relevant, reusable objects is an important part of
systems analysis.

Systems design and verification-Definitive de
sign decisions are made and the system design is
grown via top-down functional decomposition in
a usage hierarchy. Each creative design step is
verified to be a correct expansion of the existing
design.

Systems implementation-The system design is
transformed into an operational system. The final
system will be a combination of hardware, soft
ware, firmware, and human behavior compo
nents. The boundaries and interfaces among
these components must be specified in the final
system design.

Our emphasis in this section is to detail the pro
cessing found in the middle three phases and to
demonstrate the inherent object basis of the box
structure development process. The phases of re
quirements definition, systems analysis, and sys
tems design and verification will be performed as
a tightly-integrated, iterative process. The ability
to achieve this tight integration comes about be
cause of the unifying box structure concepts and
representations. (We use the term "box struc
ture" to refer to a component in the system hi-

HEVNER AND MILLS 243

erarchy; however, the term "object" could be
used with equivalent meaning.)

Requirements definition. The input into the re
quirements definition phase is a complete prob
lem statement, typically presented as a structured
English document. Investigation tasks are per
formed in order to precisely determine the re
quirements of a system that solves the presented
problem. Note that the requirements definition
phase is performed for each box structure in the
usage hierarchy.

Requirements for any level of system object can
be represented in a box structure format. The ul
timate goal would be to state all requirements in
a state-free, procedure-free black box. Defining
requirements solely as a black box places no con
straints on the eventual design. The first four box
structure operations (requirements determina
tion, black box definition, black box analysis, and
black box requirements review) are performed it
eratively during this phase.

The transactions in a black box are defined as
mathematical functions for deterministic behav
ior or mathematical relations for nondeterministic
behavior. For high-level, complex box structures
it may be necessary to provide the function or
relation in the natural language of the problem
domain, often a mixture of formal and informal
language. Whatever the notation, the black box
description is a set of mathematical functions, one
per transaction.

Often system requirements do contain design
constraints on such things as the availability and
use of data or the need to conform to a defined
procedure. Such requirements cannot be re
corded in a black box; thus, a clear statement of
state box and clear box design constraints must
be provided. In addition, certain "nonfunctional"
requirements, such as performance and docu
mentation standards, can be stated in structured
English forms. It is important during requirement
reviews that the system owners understand that
any requirements beyond a black box are con
straints upon the design freedom for the system.
In this process, many nonessential "require
ments" can be discovered and eliminated.

The results of the requirements definition phase
are a precisely defined black box with accompa
nying state box, clear box, and nonfunctional de-

244 HEVNER AND MILLS

sign constraints. This box structure requirement
is stored in a repository as the initial definition of
the system object.

Systems analysis. Analysis tasks are performed to
support the decisions that must be made during
systems design. These tasks are performed as
part of the creative state box expansion and clear
box expansion structure operations. The box
structure requirement is analyzed and informa
tion is gathered to support one or more feasibility,
reuse, prototpye, or tradeoff types of activities.

Feasibility studies are performed to determine the
feasibility and cost versus the benefit of potential
designs. Reuse opportunities are explored in sev
eral ways. Repositories of system objects from
the current project or existing systems will be in
vestigated for requirements matching. The cost
and benefit of reusing existing objects, along with
any required modifications, would be deter
mined. Prototyping is performed to evaluate de
sign alternatives. The prototype development
process will progress independently from other
design activities with the five development phases
performed in an iterative manner. Objects devel
oped in the prototype may be candidates for reuse
and modification in the final system. Tradeoff
studies are used to determine the advantages and
disadvantages of designing and implementing the
current box structure as hardware, software,
firmware, human behavior, or some combination
thereof. Such decisions will impact reuse oppor
tunities and interface designs. Finally, the reuse
potential of the current box structure should be
analyzed. If the decision is made to design the box
structure as a reusable object, then reuse stan
dards may dictate certain design decisions (e.g.,
interface standards).

The above types of analyses are essential to sup
port high-quality system designs. The informa
tion, analysis, and conclusions of these studies
are recorded with the evolving box structure in
the system repository. Some analysis discoveries
may cause changes in the system requirements,
thus, iteration between the phases of require
ments definition and systems analysis is to be ex
pected and encouraged.

Systems design and verification. In this phase the
box structure requirement and the analysis re
sults are used to produce a complete design spec
ification of the box structure. This phase encom-

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

passes operations 5 through 11 of the integrated
box structure environment.

First the state box is designed from the black box
requirement specification using the state box ex
pansion, state box analysis, and black box deri
vation operations. The completed and verified
state box is stored in the repository. The clear box
then can be designed using the clear box expan
sion, clear box analysis, and state box derivation
operations.

The design and verification of the clear box com
pletes the detailed design of the current box struc
ture. The complete specification of the box struc
ture object, from the black box requirement,
through the intermediate state box, to the final
clear box design, is stored in the system reposi
tory. Finally, the stepwise system decomposition
operation is used to build the complete system in
a top-down manner.

The procedural clear box design, developed in the
clear box expansion operation, ensures that each
internal black box is referentially transparent
from all other peer black boxes and common serv
ices in the clear box. Thus, each black box can be
designed independently. For each black box re
quirement the development process of require
ments definition, systems analysis, and systems
design and verification begins. Note that much of
the work performed (and dutifully recorded in the
repository) for higher-level box structures in the
hierarchy can be used in the analysis and design
of lower-level box structures. The desired system
is complete when no further black box require
ments exist in the leaves of the box structure us
age hierarchy. The detailed design of the com
plete system is then sent to the final phase of
systems implementation.

The design of a Master File-Transaction File
system

We demonstrate the application of object-based
development with box structures to a simplified

ersion of the classic example of a Master File
Transaction File system. The following problem

atement is given:

A supply business maintains a master file of parts
inventory with attributes of part identification
PARTID) and quantity on hand (QOH). Each day

. arts are received and shipped. For each trans-

- SYSTEMS JOURNAL, VOL 32, NO 2, 1993

action, a record is added to a transaction file with
attributes of part identification (PARTID), action
(ACTION) , and quantity (QTY), where ACTION has
the values of "in" or "out. " The system transfers
the transactions to the master file at the end of

A classic example
illustrates the application
of object-based systems

development.

each day. A management control report is pro
duced showing the disposition of each transaction
record and its effect on the master file .

We develop the top level of this system using a
box structure box description language notation
similar to typical program description languages
(PDL), and it should be self-explanatory.

Requirements definition. We begin by listing all
of the stimuli and responses of the desired
INVENTORY system. They are:

Stimuli Transaction file and master file
Responses Updated master file and manage

ment report

The discovery of system requirements should
point out omissions and needed extensions of the
problem statement. For example, what are the
correct actions to be taken when unusual or er
roneous conditions arise? We deal with two such
conditions in this example. If the transaction file
is empty, the management report will note this
and the system finishes. If the PAR TID in the trans
action file does not match any record in the mas
ter file, the transaction record will be written with
an error message. All pertinent conditions and
contingencies should be studied during the re
quirements definition phase.

The black box notation for the INVENTORY sys
tem requirement is:

HEVNER AND MILLS 245

Black Box Inventory

stimulus
Transaction_file : file of records

record
PARTID : integer,
ACTION : type of ('in', 'out'),
QTY : integer

endrecord.
Master_file : file of records

record
PARTID : integer,
QOH : integer

endrecord.

response
Master_file : file of records

record
P ARTID : integer,
QOH : integer

endrecord .
Report:

record
HEADER : report_header,
BODY : report_body

endrecord.

behavior

if The transaction file is empty
then Write the management report
else

for Each record in the transaction file
do

Match the PARTID value into the
master file
if A match exists
then Modify the QOH value by add

ing (ACTION = 'in') or sub
tracting (ACTION = 'out') the
value of QTY;
Write the transaction record
and new master record in the
management report

else Write the transaction record
and an error statement in the
management report

if;
od;

fi·
' end Black Box Inventory.

Note that the transaction statement in the black
box is a mixture of keywords and structured En-

246 HEVNER AND MILLS

glish for exposition purposes. Equivalently, we
could have presented a mathematical representa
tion of conditional algebraic assignments for the
transaction.

Systems analysis. We concentrate our analysis for
the example in discovering reuse opportunities.
We assume that a File_manager object type exists
as a box structure design in the existing reuse
library. The object type is designed to encapsu
late a file of arbitrary design and size. Visible op
erations on the file would include typical file op
erations, such as the following:

OPEN Establishes currency pointer at first
record of file and checks access rights

ISEMPTY Checks if file is empty, returns Bool
ean value

READ Reads record at currency pointer,
moves pointer to next record

ATEOF Checks if currency pointer is at EOF,

returns Boolean value
WRITE Overwrites given record at currency

pointer
FIND Given a primary identifier value, finds

the first record with that identifier; if
no match is found, a STATUS value is
returned

ADD Given a record with a valid identifier,
places the record in the file in correct
order

DELETE Given a record identifier, finds record
and deletes it from file

CLOSE Establishes file integrity and update
commitments, releases any file locks

We assume that two object instantiations of File_
manager encapsulate the master file and the
transaction file. Since these files would also be
used by other systems in the business, these
objects would be organization-wide commori
services. We name the objects Master_file and
Trans_file .

Systems design and verification. State box design
of the INVENTORY system would discover the
need to store the evolving management report as
intermediate state. Thus, the state box design is
given as follows:

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

State Box Inventory

common services
Master_file.
Trans_file .

stimulus

response
Report:

record
HEADER : report_ header,
BODY : report_body

endrecord.
state

Report:
record

HEADER : report_ header,
BODY : report_body

endrecord.

behavior

if The transaction file is empty
then Write Report
else

for Each record in Trans_file
do

Match the PARTID value in Master_file
if A match exists
then Modify the QOH value in Master_file

by adding (ACTION = 'in')
or subtracting (ACTION = 'out')
the value of QTY from Trans_file;
Write Trans_file record and new
Master_file record in Report

else Write Trans_file record and an
error statement in Report

if;
od;

fi·
'

end State Box Inventory.

The state box can be verified as a correct design
of the black box requirement in a straightforward
manner. Although we do not present all of the
details here, the critical tasks would be to verify
the correct uses of Master_file and Trans_file ob
jects and the Report state in the state box trans
action.

During the clear box design, an important design
decision presents itself. Should Report remain as
global state in the system or should it be encap-

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

sulated into a data abstraction with visible oper
ations? We choose to develop a system-wide
common service object called Mgmt_report with
Report as encapsulated data and four visible op
erations:

NEW Initializes Report with defined header
information, such as date, time, titles,
and column headings

ADD Adds correctly processed Trans_file
record and new Master_file record to
body of Report

ERRORl Adds a Trans_file record and error
statement to body of Report when no
match is found in Master_file

PRINT Prints the current state value of theRe
port

The Mgmt_report object will be completely de
veloped and verified, from black box requirement
to clear box design, and used in the INVENTORY
system as a common service object. The clear
box design of INVENTORY could be presented as:

Clear Box Inventory

common services
Master_file. (* organization-wide

common service *)
Trans_file. (* organization-wide

common service *)
Mgmt_report. (* system-wide

common service *)

stimulus
response
state

behavior
data (* temporary data *)

TESTl : Boolean,
proc

use Mgmt_report(in: NEW);
use Master_file(in: OPEN);
use Trans_file(in: OPEN);
use Trans_file(in: ISEMPTY, out: TESTl);
if NOT TESTl then use Update_master fi;
use Mgmt_report(in: PRINT);
use Master_file(in: CLOSE);
use Trans_file(in: CLOSE)

corp
end Clear Box Inventory.

HEVNER AND MILLS 247

Again, the verification of the clear box can be
done and will not be presented here.

The only new object at the second level of the
system hierarchy is the Update_master black
box. We would iterate the development process
for this object, defining the black box, performing

The design work is complete
when there are no undefined
black boxes and the system

is completely specified.

systems analysis, and, finally, designing the state
box and clear box. For purposes of space, we
show the final clear box design.

Clear Box Update_master

common services
Master_file. (* organization-wide

common service *)
Trans_file. (* organization-wide

common service *)
Mgmt_report. (* system-wide

common service *)

stimulus
response
state

behavior
data (* temporary data *)

TEST2 : Boolean,
T_REC:

record
PARTID : integer,
ACTION : type of ('in', 'out'),
QTY : integer

endrecord.
M_REC:

record
PARTID : integer,
QOH : integer

endrecord.

248 HEVNER AND MILLS

proc
use Trans_file(in: ATEOF, out: TEST2);
while NOT TEST2
do

use Trans_file(in: READ, out: T_REC);
use Master_file(in: FIND,
T_REC.PARTID out: M_REC, STATUS);
if STATUS = NOT_FOUND
then use Mgmt_report(in:

ERRORl, T_REC)

else
if T_REC.ACTION = 'in'
then M_REC.QOH ~ M_REC.QOH

+ T_REC.QTY
else M_REC.QOH ~ M_REC.QOH

- T_REC.QTY
fi·
' use Master_file(in: WRITE,

M_REC);

use Mgmt_report(in: ADD,
M_REC, T_REC)

fi·
' use Trans_file(in: ATEOF, out: TEST2);

od
corp

end Clear Box Update_Master.

Since there are no undefined black boxes in
Update_master, no further design work is needed
and the INVENTORY system is completely speci
fied as a hierarchy of object uses. Figure 3 shows
the box structure usage hierarchy for this result
ing system.

Observations for this example. In the INVENTORY
system development, we have identified and cre
ated five objects: Inventory, Update_master,
Master_file, Trans_file, and Mgmt_report.

Master_file and Trans_file are instantiations of a
file management object type to encapsulate the
master inventory file and the daily transaction
file, respectively. The objects are organization
wide common services to all application systems
that require access to these files. For example, an
on-line application system will place transaction
records into Trans_file during the daily inventory
processing.

The Mgmt_report object can be an instantiation of
an object-type that standardizes report formats
and operations in the organization or it can be
developed from scratch for this application. If it
is newly developed, then the object becomes a

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Figure 3 Inventory system box structure usage hierarchy

COMMON SERVICES

APPLICATION SYSTEM

system-wide object for use throughout the INVEN
TORY system. If the encapsulated management
report is to be used further in other system ap
plications, then the Mgmt_report object can be
designed to become an organization-wide object.

Inventory and Update_master are objects unique
to the INVENTORY application. While the final de
signs of Inventory and Update_master encapsu
late no persistent data (all persistent data are in
the common services), the analysis and design of
these objects provide the insights and the creative
opportunities to perform the necessary object de
composition and composition for this system.
This example also demonstrates the ability to de
sign objects within objects since Update_master
is wholly contained within the Inventory object.

M SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Summary

Our goals in this paper have been to discuss and
demonstrate the use of box structures in a rigor
ous and systematic object-based systems devel
opment process. Box structures provide a bridge
between structured development methods and
object-oriented development methods. The fol
lowing observations support and summarize our
discussion.

• Box structures provide for the definition of data
abstractions and objects in three mathematical
views.

• The box structure usage hierarchy allows intel
lectual control over the development process.

HEVNER AND MILLS 249

Each box structure in the system usage hierar
chy is an object.

• All design inventions are separated into clearly
identified small steps. Design verification is per
formed after each inventive step of design and
provides a systematic basis for inspection.

• An object is stored in the system repository in
all box structure views, from black box require
ment to clear box detailed design. The object is
described in an inheritance hierarchy as a com
mon service.

• Box structures support an integrated develop
ment process, in that there is no need to trans
form the representation or content of develop
ment \information from one phase to another.

• The systems development process is com
pletely flexible between development phases.
The next phase to be performed is based upon
feedback from previous work results. The de
velopment of a system box structure usage hi
erarchy provides a discipline of sound and com
plete design.

Future research will expand upon the critical is
sues in this development process. We are cur
rently performing research in three areas:

• Requirements definition- The process of elic
iting requirements and representing system re
quirements in box structures needs important
new research. 38 While the goal of requirements
definition is to place all requirements in abstract
black boxes, there are often essential require
ments on data, procedure, and nonfunctional
requirements, such as system performance.

• Concurrent and real-time systems- Current
box structure theory supports the design and
verification of sequential systems. Our recent
research has provided extensions of box struc
tures to the design and verification of concur
rent systems. 29 Much more research is needed,
however, to handle all of the complexities of
real-time systems development.

• Integrated CASE-An eventual goal of this re
search is to design and build a comprehensive
CASE system that provides integrated support of
object-oriented development from require
ments definition through system implementa
tion. Our current research focuses on the rep
resentations of box structure information in
common system development repositories. 39

250 HEVNER AND MILLS

Cited references and note

1. E. Yourdon, Modem Structured Analysis, Yourdon
Press, Prentice-Hall, Inc., Englewood Cliffs, NJ (1989).

2. J. Cameron,JSP &JSD: TheJacksonApproach to Soft·
ware Development, IEEE Computer Society Press,
Washington, D.C. (1989).

3. J. Martin, Information Engineering: Book]-Introduc
tion; Book 2- Planning and Analysis; Book 3-Design
and Construction, Prentice-Hall, Inc., Englewood Cliffs,
NJ (1989).

4. S. Bailin, "An Object-Oriented Requirements Specifica
tion Method," Communications of the ACM 32, No. 5,
608-623 (May 1989).

5. P. Ward, "How to Integrate Object Orientation with
Structured Analysis and Design," Software 6, No. 2,
74-82 (March 1989).

6. P. Coad and E. Yourdon, Object-Oriented Analysis , Sec
ond Edition, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1991) .

7. S. Shlaer and S. Mellor, Object-Oriented Systems Anal
ysis, Prentice-Hall, Englewood Cliffs, NJ (1988).

8. G. Booch, Object-Oriented Design with Applications ,
Benjamin/Cummings Publishing Co. , Redwood City, CA
(1991).

9. E. Seidewitz and M. Stark, "Towards a General Object
Oriented Software Development Methodology, " Pro
ceedings of the 1st International Conference on Ada Pro
gramming Language Applications for the NASA Space
Station , D.4.6.1-D.4.6.14 (1986).

10. B. Meyer, Object-Oriented Software Construction, Sec
ond Edition, Prentice-Hall, Englewood Cliffs, NJ (1991).

11. P. Coad and E. Yourdon, Object-Oriented Design, Pren
tice-Hall, Inc., Englewood Cliffs, N.T (1991).

12. L. Cardelli and P. Wegner, " On Understanding Types,
Data Abstraction, and Polymorphism," ACM Computing
Surveys 17, No.4, 471- 522 (December 1985).

13. B. Henderson-Sellers and J. Edwards, "The Object-Ori
ented Systems Life Cycle," Communications of the A CM
33, No . 9, 142-159 (September 1990).

14. J. Rumbaugh, M. Blaha, W. Premerlani, F . Eddy, and
W. Lorensen, Object-Oriented Modeling and Design,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1991).

15. R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing
Object-Oriented Software , Prentice-Hall, Inc., Engle
wood Cliffs, NJ (1990).

16. H . Mills, " Stepwise Refinement and Verification in Box
Structured Systems," Computer 21, No. 6, 23- 36 (June
1988).

17. H . Mills, R. Linger, and A. Hevner, Principles of Infor
mation Systems Analysis and Design, Academic Press,
Inc., Orlando, FL (1986).

18. H. Mills, R. Linger, and A. Hevner, "Box Structured
Information Systems Development," IBM Systems Jour
nal 26, No. 4, 395--413 (1987).

19. R. Cobb and H. Mills, " Engineering Software under Sta
tistical Quality Control," Software 7, No. 6, 44-54 (No
vember 1990).

20. R. Linger, H. Mills, and B. Witt, Structured Program
ming: Theory and Practice, Addison-Wesley Publishing
Co., Reading, MA (1979).

21. D. Parnas, "On a 'Buzzword' Hierarchical Structure,"
Proceedings of the IFIP Congress 1974, North-Holland
Publishing Co. , Amsterdam (1974).

22. A. Hevner and R. Linger, "A Method for Data Re-En
gineering in Structured Programs, Proceedings of the

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

22nd Annual Hawaii International Conference on System
Sciences, Volume]- Software Track, IEEE Computer
Society Press, Los Alamitos, CA (January 1989), pp.
1025-1034.

23. B. Liskov and S. Zilles, "An Introduction to Formal Spec
ification of Data Abstractions," Current Trends in Program
ming Methodology: Software Specification and Design,
Vol. 1, Prentice-Hall, Inc., Englewood Cliffs, NJ (1977).

24. S. Danforth and C. Tomlinson, "Type Theories and Ob
ject-Oriented Programming," ACM Computing Surveys
20, No. 1, 29-72 (March 1988).

25. H. Abelson and G. Sussman, Structure and Interpretation
of Computer Programs, The MIT Press, Cambridge, MA
(1985).

26. P. Hausler, R. Linger, M. Pleszkoch, and A. Hevner,
"Using Function Abstraction to Understand Program Be
havior," Software 7, No. 1, 55-63 (January 1990).

27. This description of an object inheritance hierarchy is sim
ilar to the use of the Ada generic structure. Thus, we use
the term "object-based" to describe the box-structured
methods of systems development with objects.

28. P. Jalote, "Functional Refinement and Nested Objects for
Object-Oriented Design," IEEE Transactions on Soft
ware Engineering 15, No. 3, 264-270 (March 1989).

29. S. Becker and A. Hevner, "Concurrent System Design
with Box Structures," Proceedings of the 13th Annual
International Computer Software and Applications Con
ference (COMPSAC), IEEE Computer Society Press,
Washington, D.C. (September 1989), pp. 32-40.

30. Object-Oriented Concepts, Databases, and Applications,
W. Kim and F. Lochovsky, Editors, Addison-Wesley
Publishing Co., Reading, MA (1989).

31. J. Hughes, Object-Oriented Databases, Prentice-Hall In
ternational Series in Computer Science, Hartfordshire,
England (1991).

32. B. Meyer, " Reusability: The Case for Object-Oriented
Design," Software (March 1987).

33. T. Biggerstaff and A. Perlis, Software Reusability: VoL
]-Concepts and Models, Vol. 2-Applications and Expe
rience, Addison-Wesley Publishing Co. , Reading, MA
(1989).

34. A. Goldberg and D. Robson, Smalltalk-80: The Language
and Its Implementation, Addison-Wesley Publishing Co.,
Reading, MA (1983).

35. A da for Specification: Possibilities and Limitations,
S. Goldsack, Editor, Cambridge University Press, Cam
bridge, England (1985).

36. D. Fetzer and J. Poore, "Using Box Structures with the
Z Notation," Proceedings of the 25th Annual Hawaii In
ternational Conference on System Sciences, Vol. II
Software Technology Track, IEEE Computer Society
Press, Los Alamitos, CA (January 1992).

37. E. Chikofsky and J . Cross, "Reverse Engineering and
Design Recovery: A Taxonomy," Software 7, No. 1,
13-17 (January 1990).

38. A. Hevner, "Box Structured Requirements Determina
tion Methods," Proceedings of the First Workshop on
Information Technologies & Systems (WITS-91), MIT
Sloan School of Management, Cambridge, MA (Decem
ber 1991).

39. A. Hevner, S. Becker, and L. Pedowitz, "Integrated
CASE for Cleanroom Development," Software 9, No.2,
69-76 (March 1992).

A ccepted for publication August 17, 1992.

Alan R. Hevner College of Business and Management, Man
agement and Public Affairs Building, University of Maryland,
College Park, Maryland 20742. Dr. Hevner is an associate
professor and chairman of the Information Systems Depart
ment at the University of Maryland. He is a faculty member
of the Institute of Systems Research at Maryland . He has
published over 50 refereed papers in the research areas of
distributed database systems, information systems develop
ment, and systems engineering. Dr. Hevner is a member of
ACM, the IEEE Computer Society, and the Operations Re
search Society of America (ORSA) .

Harlan D. Mills Computer Science Department, Florida In
stitute of Technology, Melbourne, Florida 32901. Dr. Mills is
a professor of computer science at the Florida Institute of
Technology and President of Software Engineering Technol
ogy. He has written or coauthored six books and over 50
refereed technical journal articles on topics related to software
engineering. Dr. Mills received a Ph.D. in mathematics from
Iowa State U niversity. He is an honorary Fellow of Wesleyan
University and a Fellow of IBM, the American Computer
Programming Association, and the IEEE. He also holds the
Warner Prize for contributions to computer science.

Reprint Order No. G321-5511.

3M SYSTEMS JOURNAL, VOL 32, NO 2, 1993 HEVNER AND MILLS 251

	Box-Structured Methods for Systems-Development with Objects
	Recommended Citation

	tmp.1322710995.pdf.RixNC

