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Figure 1: Folding a car into a cube. Our system finds a collision-free folding sequence.

Abstract

We present a method for transforming a 3D object into a cube or a
box using a continuous folding sequence. Our method produces a
single, connected object that can be physically fabricated and folded
from one shape to the other. We segment the object into voxels
and search for a voxel-tree that can fold from the input shape to
the target shape. This involves three major steps: finding a good
voxelization, finding the tree structure that can form the input and
target shapes’ configurations, and finding a non-intersecting folding
sequence. We demonstrate our results on several input 3D objects
and also physically fabricate some using a 3D printer.
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1 Introduction

Humans are fascinated by objects that have the ability to transform
into different shapes. Our interest is especially piqued when these
shapes are dissimilar. Image-morphing and mesh-morphing have
this type of appeal [Wolberg 1998; Lazarus and Verroust 1998],
but they captivate us even more because watching the process of
transformation is often the most compelling part. This has recently

been exploited in motion pictures such as Transformers [2007].
Nevertheless, such transformations are applied in the virtual world
and are often physically implausible. In contrast, recent works on
the creation of 3D puzzles concentrate on physically creating objects
composed of building blocks. These captivate us arguably for a
similar reason—the building blocks do not resemble or hint as to the
final shape [Lo et al. 2009; Xin et al. 2011; Song et al. 2012], but on
top of that, they can be physically assembled and taken apart.

In this paper, we tackle both of these challenges together: creating
transformations of 3D shapes that are physically achievable. We
focus on one specific type of shape transformation: folding 3D
objects into a cube or a box-like shape (Fig. 1). A cube is considered
to be a special shape as it is highly symmetric and regular (one of
the platonic polyhedra). Cubes and boxes are often seen as the most
basic 3D shape that does not resemble any specific object. They can
be stacked, stored and transported more easily, and used as “building
blocks” for other shapes. Our work presents a method to create
a fabricated 3D object that can physically fold between the input
3D shape and a box. Unlike previous works in computer-assisted
fabrication that create disjoint pieces [McCrae et al. 2011; Luo et al.
2012; Hildebrand et al. 2012; Schwartzburg and Pauly 2013; Chen
et al. 2013], our method produces a single, connected object that can
be folded. Along with the visual appeal and functional advantages of
stacking and transporting, our technique allows for reduced printing
times and cost, due to the compactness and regularity of the shape.

Given the input 3D shape and the target box dimensions, finding a
physically achievable folding sequence is a challenge as it involves
many sub-problems that are interdependent. The input shape needs
to be segmented into parts, and these parts need to be connected in
a pattern that can fold into two configurations—the source and the
target shapes. Both the static configurations as well as the dynamic
folding sequence need to be physically achievable. This means
that parts should be able to fold, joints should be sturdy, and self
intersections or interlocking should not occur at both configurations
and each step of the folding sequence. Any segmentation choice
affects the connectivity pattern, which in turn affects the folding.
This creates an intractable search space for possible solutions, and
in general, this space is not continuous—for example, changing the
segmentation by a small amount can lead to a drastically different
connectivity solution.
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Figure 2: An illustration of our method. (a) We first find the best voxelization of the input shape. (b) Geometric neighbors define the
connectivity graph with nodes as voxels and edges as potential hinge locations. (c) We turn the graph into a tree. Some edges are removed, and
some edges are turned into rigid links. The rest are assigned a joint type and a folding angle. (d) Once we compute the locations of the joints
and their angles, the shape can transform into a box.

Theoretically these problems can be shown to be very difficult. For
instance, we examine the two subproblems of computing a segmenta-
tion with a connectivity structure (the joints), and finding physically
achievable folding sequences for a given structure. For the first one,
there exists an algorithm for placing joints given the common dissec-
tion between two shapes, but finding common dissection itself is an
open problem [Abbott et al. 2008]. In addition, this algorithm tends
to cut the shape into a large number of tiny structures, which are
implausible for actual 3D printing. For the second subproblem, one
can prove it is PSPACE-complete (more difficult than NP problems),
by reducing it from the 2D linkage tree reconfiguration problem [Alt
et al. 2004]. It is also well known in the protein folding community
that just finding the minimum energy state given a set of joints is
NP-complete [Berger and Leighton 1998].

To make the search space tractable, and to find a plausible solution
we make some underlying design choices. Instead of using arbi-
trary segmentation and arbitrary joint angles, we use voxels as our
folding primitives with a discrete set of joint angles between them
(see Fig. 2a). Hence, our segmentation problems turns into a vox-
elization problem. Next, we must choose the connectivity structure
for the voxels. Joints will be placed only between connected pieces
that need to move during folding. Since the whole object must be
connected, such a pattern forms a connectivity graph on the voxels
(Fig. 2b). Connectivity loops in this graph are plausible and could
potentially increase the stability of the static configuration. However,
since they typically cause complex locking patterns in the folding
sequence, we choose to constrain this graph to a tree structure (see
Fig. 2c). Each tree edge represents a connection between neighbor-
ing voxels. If these voxels must move relative to each other during
the folding sequence, a joint must exist. Our problem is therefore to
choose the location of these joints and then compute the angles so
that the initial shape will fold into the target shape (Fig. 2d).

In some cases, instead of using a
box directly as the target shape,
we will use a template that can
be easily folded into a box (see
example on the right). Using such a template not only makes the
search for solution easier but also reduces the printing time, since
we can print the object in a compact, flattened state.

Even after limiting the scope to voxels, the size of the search space
is still too large, and therefore we cannot hope to exhaustively search
through all possible folding patterns. Finding a solution manually
is possible only for small examples with a handful of pieces (e.g.,
cubebots [Weeks 2013]). We want to be able to produce outputs
with as many as 125 pieces, as shown in Fig. 7f. We use simulated
annealing [Kirkpatrick et al. 1983] along with beam search [Lowere
1976] to search the space of solutions.

We seek a solution that optimizes a number of objectives:

1. Geometric fit: The folded object must match the target shape.
2. Compactness: The space wasted in the folded shape must be

minimized.
3. Fabricability: All the joints and connectors must be printable.

Small pieces must be avoided.
4. Foldability: There must be a physically achievable sequence

of moves to fold/unfold the shape with no intersections.

Trying to solve all of these at once imposes a major challenge. The
key to our solution is the separation of the problem into three stages:
defining the shape, finding the connectivity structure, and finding the
folding sequence. In the first step, we search for a good voxelization
pattern of the input 3D shape following the first three objectives
above (§3). Because the voxels in the input shape are packed, it is
difficult to search for a solution that already maintains all the objec-
tives. In the second step, we simultaneously build a connectivity tree
between the voxels and search for a folding sequence that transforms
the input shape into the target shape by following only the first ob-
jective above (§4). This step only defines the connectivity structure
of the object that can fit the source and target configurations. Only
in the third step we follow the fourth objective and search for a
non-intersecting folding sequence. However, instead of searching
for a folding sequence from the source shape to the target, we utilize
a physical simulator to unfold both configurations and match them.
This provides a valid sequence of folding moves that will transform
the object from the input shape to the target shape in a plausible
manner (§5).

2 Related Work

There is a large body of work on each of the sub-problems we face:
segmentation (or voxelization), joints placement, and folding. We
are not aware of a work that combines these to solve a folding
problem similar to ours.

Shape segmentation is an active area of research [Shamir 2008;
Chen et al. 2009]. More specifically, voxelization of 3D objects is
useful for physical simulation and analysis, for medical imaging and
visualization, and for computer graphics and games [Varadhan et al.
2003; Pantaleoni 2011; Loop et al. 2013; Chang et al. 2013]. In our
setting, the constraints on the voxelization shape and size arise from
the fabricability and geometric-fit objectives, which were not used
explicitly before.

Foldable designs have long been created for furniture and other
useful objects (umbrellas, chairs, tents etc.). Our domain is closer
to recreational puzzles and art forms such as popup books [Li et al.
2010; Li et al. 2011], papercraft toys [Mitani and Suzuki 2004], and
cubebots [Weeks 2013]. Recently, several works have presented



methods to create puzzles of various types from 3D objects. These
include polyominoes [Lo et al. 2009], burr puzzles [Xin et al. 2011],
interlocking puzzles [Song et al. 2012], dissection puzzles [Zhou
and Wang 2012], or sliding planar slices [Hildebrand et al. 2012].
However, all these create disjoint-pieces puzzle, while we seek a
single connected object folding into two shapes. The addition of
joint constraint to keep the pieces connected presents new challenges
not encountered in previous methods.

Folding of paper to create various shapes (Origami) has been studied
extensively [O’Rourke 2011]. More recently this has been extended
to developable surfaces with curved folding [Kilian et al. 2008], and
to the creation of polyhedral surfaces [Tachi 2010]. Our work can
be seen as a type of voxel-Origami (or “ori-voxel”) since, once we
find a solution, we can begin from simple boxes and fold them into
various 3D-shapes.

As mentioned earlier, finding a folding pattern can become a very
challenging problem [Alt et al. 2004] and in some cases even present
an intractable search space. This complexity also appears in re-
lated fields such as protein folding [Berger and Leighton 1998;
Istrail and Lam 2009]. Some very nice mathematical results for
linkages, planes, and polyhedra are summarized by Demaine and
O’Rouke [2007]. Our specific problem is close in spirit to linkages,
but in our case, the parts, configuration, and structure of links are
unknown as well.

Computer assisted fabrication of objects is a new area of research
emerging from graphics, CAD, and design [Séquin 2012]. Fab-
rication in-parts create tangible, physical artifacts either by using
shape proxies such as planar boundary pieces [Chen et al. 2013]
or planar slices [Schwartzburg and Pauly 2013; Hildebrand et al.
2012; McCrae et al. 2011], or by segmenting the object to pieces
for assembly [Luo et al. 2012; Lau et al. 2011]. In all these works,
the object is cut into disjoint parts and reassembled, while our work
searches for a single foldable object. A somewhat similar problem
in terms of printing a single model, but for the creation of articulated
models, was presented recently [Bächer et al. 2012; Calı̀ et al. 2012].
Their challenge is more to assure pieces will function in a single con-
figuration, while ours is to find a shape that can take on two different
configurations. Similar to ours, most fabrication methods allow
minor shape modifications to comply with some given constraints.
Shape modifications were also used to increase stability [Prévost
et al. 2013; Bächer et al. 2014] or allow stackability [Li et al. 2012].
In our case, we optimize a small warp of the shape so that small
voxel pieces are avoided.

3 Voxelization

The first step in our approach is to find a voxelization of the input
shape that will meet our objectives. Voxelization is performed by
placing a grid around the object and marking the voxels that contain
any part of the object. By intersecting the voxels with the object
mesh we create the set of pieces for folding. For convenience, we
continue to call these pieces “voxels,” even though some of them are
only partially filled voxels.

We use cube-shaped voxels as they allow full freedom of movement
in folding and placing of hinges. Hence, the free parameters for
voxelization are the dimensions of the grid and its position and
orientation in space. Because our target shape is a box or a template
that can fold into a box, we fit the dimensions of the grid so that
the number of pixel pieces will be equal or smaller than those of
the box (we used several box sizes from 3×4×4 to 5×5×5). We
therefore search only for the orientation and position of the grid. In
addition, we allow small deformations of the input object to optimize
the fit into the voxels as will be described below. In general, the
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Figure 3: (a) The original, uniform voxelization may contain some
small parts. (b) We apply a small offset to each of the planes to
minimize the voxelization energy. (c) We move the planes back to
their original locations, which deforms the mesh parts in the voxels.
(d) We further divide each voxel into sub-voxels.

voxelization grid can also be defined and positioned manually by the
user.

To meet the printability criterion, our main goal in voxelization is to
make sure that the actual volume of each final voxel piece is large
enough to support and hold the connecting hinges and be printable.
Moreover, the closer the shapes of the pieces are to full voxels, the
easier it would be to fill a target box shape with little waste of space
(compactness). Hence, we define the “fullness” objective function
as follows:

Evox =
∑

v∈V

{

0 if M ∩ v = ∅,

1− volume(M∩v)
volume(v)

otherwise,
(1)

where M is the input mesh, V is the voxelization, and v is a voxel.
M ∩ v is the intersection of M and v. Although mesh intersection
can be used to compute the volume, we instead use a voxelization
approach once again. After the grid is chosen, we subdivide the
grid further so that each voxel is composed of 20x20x20 subvoxels
(Fig. 3(d)). The volume of intersection between the mesh and a
voxel, M ∩ v, can then be efficiently approximated by counting the
subvoxels occupied by the mesh inside each voxel. These subvoxels
also used for non-uniform voxelization and the evaluation of the
folding objective function, described below.
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1The graph of Eq. 1 is shown in the inset fig-
ure. This function penalizes voxels occupied
by a small portion of the input mesh but does
not penalize empty voxels. We do not need
a threshold since the volume computation us-
ing subvoxels means the volume ratio takes
on discrete values. To optimize this function
we choose different randomized rotation and
translation of the grid, and keep the best results after applying the
non-uniform voxelization step.

Non-uniform voxelization To lower the objective function further
we allow slight deformation to the input shape by locally offsetting
the grid planes, as shown in Fig. 3(b-c). We limit the offset of the
grid planes so that the grid spacing does not change by more than
10-20% along the normal of the plane, to ensure that the distortion
to the input shape would be small. This corresponds to each of
the planes having the freedom to move ±2 − 4 subvoxels. The
X, Y, and Z planes are adjusted using a block coordinate descent
approach; we hold two of the directions fixed and adjust the planes
in the remaining direction. Optimal solution in terms of the energy
function (1) is found using dynamic programming in each direction.
We iterate between the three directions (X, Y, Z, X, Y, Z, . . .) until
convergence, which in our examples tend to be around 3-4 iterations
per direction. Once the optimal grid plane offsets are found, they are
moved back to their original positions, carrying along with them the
input mesh, which results in a slightly deformed mesh with fewer
small voxel pieces.



4 Tree Fitting

After the object is segmented into voxels, we need to find the connec-
tivity between the voxels so that the resulting object can be folded
into the target shape. The voxels created in the previous step do not
yet have any joints between them. However, they do provide the
geometric neighborhood information that defines the potential joint
locations—we can only add joints between voxels that contain part
of the object along their shared face (Fig. 2b). Our final goal is to
define an undirected tree to represent the connectivity between the
voxels: nodes correspond to the voxels, and edges correspond to
joints that connect the voxels (Fig. 2c). As mentioned earlier, we
do not allow loops, as they almost always create over-constrained
configurations. The objective of the fitting step is to find a low
energy tree that spans all the voxels by assigning a joint type to each
pair of neighboring voxels. The energy we use is defined in §4.1.
The joints are parameterized by the following types:

• Null: No joint is added between the voxels and they can be
separated. These correspond to the dotted edges in Fig. 2b that
were removed in Fig. 2c.

• Rigid: The nodes, and the voxels that they represent, are at-
tached rigidly. This means there is no hinge between these
voxels and they move together. These correspond to the thick
edges in Fig. 2c.

• Single hinge: A simple hinge that connects the voxels with a
single axis of rotation, as shown in Fig. 4a (top left). There
are 4 types of single hinges, corresponding to the 4 rotation
directions of the child voxel with respect to the parent voxel.

• Double hinge: A hinge with two axes of rotation connecting the
voxels. This joint type provides a rich set of transformations of
the child with respect to the parent, some of which are shown
in Fig. 4.

Using this parameterization, the search boils down to assigning a
joint type to each graph edge in Fig. 2b so that the end result is a
tree, as in Fig. 2c.

The double hinge provides a rich set of transforms for the tree
fitting stage while still being simple enough for physical printing.
We parameterize the double hinge by the two axes of rotation it
provides: the 1st axis between the parent voxel (shown in pink in
Fig. 4a) and the link body (green), and the 2nd axis between the
link body and the child voxel (purple). The parameterization can be
described compactly as “[axis][sgn]:[axis][sgn]”, where [axis] can
be X, Y, or Z, and [sgn] can be -, - -, +, or ++. We use “-” to indicate
a -90◦rotation, “- -” for -180◦, “+” for +90◦, and “++” for +180◦.
For example, the 3 double hinges in the figure are Z-:Z-, Z-:Y-, and
X+:Z-. A sample transform is shown in Fig. 4b—with respect to the
parent voxel, the child voxel translates to the +Z position and rotates
by -90◦around the Z-axis. With a double hinge, a child voxel can
be transformed to a total of 78 distinct axis-aligned configurations
in SE(3), after all the double counting has been accounted for (e.g.,

Y++:Y++ and Y- -:Y- - give the same transform).1 This is in contrast
to the single hinge, which only provides 4.

We can now define the search space formally. Let xi be the joint type
of the ith edge. Then the assignment of edge types can be expressed
as

xi ∈ {N,R, SZ+, . . . , DZ+:Z+, . . .}, i = 1, . . . , n, (2)

where n is the number of edges, and N , R, S, and D correspond to
the joint types listed above.

1The total number of axis-aligned configurations is 144. There are 6

different positions for the child with respect to the parent: ±X,±Y,±Z.

For each of these positions, there are 6 different ways in which the X-axis of

the child can point, and after that 4 more choices for the Y-axis.

(a) (b)

Figure 4: (a) Examples of hinge types. The X-axis is to the right, Y is
into the paper, and Z is up. Top row: “Y-”, “Y-:Y++” & “Z++:Y-”.
Middle row: “Z-:Z-”, “Z-:Y+” & “Z- -:Y- -”. Bottom row: “Y- -:Z-
-”, “Y++:Z- -” & “X+:Z- -”. (b) Example motion sequence of a
double hinge.

Let V0 be the transform of the root node of the tree, which is chosen
randomly. Given a sequence of joint types, [x1, x2, . . .], starting
from the root transform, we can compute the transformation of each
voxel, Vi, by traversing the tree from the root to the voxel.

Vi = VoxelTransform(V0, [x1, x2, . . .]). (3)

We use Vi to denote the transformation of the ith voxel, i.e., the
4x4 SE(3) matrix that transforms from voxel’s local coordinates
to world coordinates. Depending on the context, we also use Vi to
denote the final position of the ith voxel in R

3. We also use a similar
traversing function to compute the position and orientation of the
ith joint.

Ji = JointTransform(V0, [x1, x2, . . .]). (4)

If we randomly assign values to the edges, then the resulting folded
configuration will almost always suffer from collisions. Instead, we
build a collision free configuration incrementally using a tree search.
Starting from a randomly chosen root node, the fitting step advances
on the graph using beam-search, an extension of best-first search
that sorts and keeps the top partial solutions whenever a new search
path is explored. Unlike breadth-first search and its variants, beam
search keeps the memory footprint small by throwing away paths
that look to be the least promising. The tree is expanded one edge
at a time while keeping the resulting partial configuration collision
free. The search ends when the tree spans the voxels and all edge
types have been determined.

4.1 Fitting Energy

The energy is a function of the root transform and the sequence of
edge types: E(V0, [x1, x2, . . .]). As we build the tree, we evaluate
the energy whenever the tree is expanded by adding an edge. Initially,
the tree only contains the root node, so the energy is E(V0, [ ]), and
only the transform of the root is known. Then, the edges incident to
the root, which is the current frontier, are evaluated, and the most
promising ones are added to the frontier. For brevity, we use E(x)
to indicate E(V0, [x1, x2, . . .]).

The energy function has four terms.

E = Ecollision + Etemplate + Esurface + Ecount. (5)

The first two terms are hard constraints, and the last two are energy
objectives.



Collision The collision term constrains the folded shape from
placing voxels or joints at the same location in space: Ecollision =
EV

collision + EJ
collision. We do, however, allow for two partially-filled

voxels to be at the same location if their meshes do not overlap when
placed at the same location. The joint collision term is required to
prevent two single hinges to reside on the same edge of the voxel, or
from two double joints to originate from the same voxel.

EV
collision(x) =

{

∞ if Vi(x) = Vj(x),
0 otherwise,

EJ
collision(x) =

{

∞ if Ji(x) = Jj(x),
0 otherwise,

(6)

for some i and j. The equality in this equation only checks for
the positions of voxels Vi and Vj and not their orientations. Voxel
collisions are trivial to compute using the subvoxels computed in the
voxelization step from §3.

Template The template term constrains the folded shape to match
the target template and is again composed of two subterms that
correspond to voxels and joints: Etemplate = EV

template + EJ
template. A

template defines sets of positions, TV and TJ , that the folded voxels
and joints, respectively, are allowed to take.

EV
template(x) =

{

∞ if Vi(x) 6∈ TV ,
0 otherwise,

EJ
template(x) =

{

∞ if Ji(x) 6∈ TJ ,
0 otherwise,

(7)

Constraints on the placement of joints imposed by partially filled
voxels are included in the joint template term. For instance, a single
hinge cannot be constructed on a voxel piece unless the edge it
is assigned to contains a large enough part of the object so as to
position the hinge geometry on. Since most voxels are only partially
filled, this constrains the search considerably.

Note that the template and collision energy terms are hard constraints.
If they are violated, then the tree search prunes off the branch and
searches down another branch. The following two terms are used as
soft constraints to differentiate between feasible solutions.

Surface Because our goal is to create a box
whose faces should be as planar as possible,
we want the outside faces of boundary voxels
in the target configuration to be filled. We use
the surface energy to encourage this behavior.
A 2D illustration is given in the inset figure.
The red voxel edges form the boundary sur-
face of the template. Rays, shown in green,
are shot from the boundary until they hit the surface or the edge of
the voxel. The ray distances are integrated to give the energy for
that voxel. The energy is minimized when the shape matches the
boundary and is maximized when the voxel location is unoccupied.

Esurface(x) =
∑

i

∫

ray distance. (8)

In the inset figure, the top two voxels have high energy, the lower
right voxel has low energy, and the lower left voxel has zero energy.
For interior voxels that do not contain a border, we set the energy to
be zero. Instead of actually shooting rays and calculating distances
we use the subvoxels from §3.

Counting The final energy term counts the number of joints.
Whenever possible, we prefer solutions with a fewer number of
joints as it will make folding simpler. Furthermore, some joint types
are preferred over others since they require less modification to the
input mesh. Each joint type is given a weight, and we simply sum
the weights to compute the energy.

Ecount(x) =
∑

i

‖xi‖, (9)

where ‖ · ‖ denotes the numerical weight given to each joint type
listed in Eq. 2.

4.2 Simulated Annealing

The tree fitting step returns a list of solutions ordered by the energy
value. Since the first two energy terms are hard constraints, these
solutions are guaranteed to be collision free and to fit inside the
template. Usually, however, just one tree search does not give a
satisfactory solution—some solutions have poor surface energy, and
others have too many joints to be printable. Therefore, we combine
the tree search with simulated annealing. Initially, the annealing
temperature is set to be high, which means that the tree search is run
many times with random position and orientation of the root voxel.
This portion of the algorithm is embarrassingly parallelizable. After
we have a certain number of solutions, we lower the temperature
gradually, so that whenever a good solution is found, we start the
search using a partial subtree from that solution.

4.3 Geometric Post-processing

Once the joint types are determined, we must modify the voxels
to include the geometry of the joints. We are guaranteed not to
have any hinges on an empty edge of a voxel, because of the hard
constraints applied in the tree search. We must also carve out some
geometry from the voxels to enable proper motion of the joints. As
shown in Fig. 4a, a single hinge is less obtrusive than a double hinge
to the voxel geometry, requiring less of the voxel to be carved out.
At this stage, we only look at neighboring voxels. Sometimes, it
is necessary to carve out the corners of the voxels due to global
contacts, and this is addressed in the next section.

5 Interactive Folding

The tree search only considers collisions in the folded state and not
during the movement of the voxels in the folding sequence. This
means that the computed solution may not be physically foldable
when manufactured. We mitigate this problem by disallowing loops
in the connectivity graph, but we must still verify that the computed
solution can be folded without collisions. We use a semi-automatic
approach that combines a physical simulator and user interactions.
The key idea here is that physics is quite effective at unfolding even
though it does not work well for folding.

The process of folding the original shape (Shape A) into the target
shape (Shape B, for “B”ox) is broken up into two steps as shown in
Fig. 5: unfolding and matching. First, the simulator simultaneously
tries to unfold both the original shape (A) and the folded shape (B)
by applying a repulsive force (∝ 1/r2) between all pairs of voxels
within the shapes. The simulator can be any off-the-shelf rigid body
dynamics engine that supports joint constraints and collisions. At
any time, the user can guide the system by supplying additional
external forces or by pinning certain voxels strategically.

After both shapes have been unfolded adequately, the repulsive
forces are removed and attractive forces between the corresponding
voxels from A and B are added to match their shapes. Once A and
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Figure 5: Using physics to find a folding sequence. Using repulsive
forces and some user interactions, A and B can be unfolded into A’
and B’. (The reverse is not easy to do with physics.) Then A’ and B’
are matched to each other using attractive forces. Once A’ and B’
coincide, we have a collision-free path from A to B and vice-versa.

B take on the same configuration, we have a valid folding sequence
from A to B, passing through the intermediate unfolded configura-
tion. Note that the order of first unfolding and later matching is very
important. Without unfolding first, the matching force will almost
always cause the shapes to get stuck due to collisions and will not be
able to cause A and B to reach the same intermediate configuration.

Interaction Fig. 6 shows a stage in the unfolding process where
the physics simulator has managed to unfold most of the joints
but is not able to untangle a small portion of the shape. The user
intervenes and decides that the correct ordering to unfold is to rotate
the purple voxel about the axis labeled “1.” However, before the
purple voxel can be rotated, its corners must be carved out, since
otherwise collisions will constrain the rotation physically (Fig. 6b).
After carving the appropriate corners, the physics simulator can
continue to unfold the remaining voxels (Fig. 6c). It took around
5-10 minutes of interaction to obtain a physically foldable solution
for all results in this paper.

The interactive physics simulator acts as a filter that semi-
automatically removes physically unfoldable solutions. If we find a
valid folding sequence using the interactive simulation process, then
we know that the solution is valid. Note however, that if we cannot
find it, we cannot guarantee that there is no solution. Also, if there
is a valid solution, we are not guaranteed to find it. In practice, this
simulator did assisted in filtering out some implausible solutions
found in the tree search.

6 Results

We used our system to create a foldable bunny (Fig. 7a), kitten
(Fig. 7b), car (Fig. 7c-d), dragon (Fig. 7e), and elephant (Fig. 7f). For
all our examples, we used the following energy weights: wsurface =
0.3, wcount(N) = 0, wcount(R) = 0, wcount(S) = 0.1, and wcount(D) =
0.12. The first three results were physically manufactured using the
Objet500 Connex 3D printer. For the tree search, we run the search
in parallel using a cloud computing service. We ran the tree search
for up to ∼30 hours with random restarts for each object. Then we
sort the generated solutions by the energy (all hard constraints are
satisfied), and starting from the best solution, we interactively folded
for around 5-10 minutes until we found a good working solution.

Table 1 lists the running time of the tree search, the number of joints
in the computed solution, and the number of voxels carved during the
interactive folding session. “Wall” is the wall-clock time to find the
solution used in the examples, “CUs” is the number of normalized

1 2

(a)

1 2

(b)

1 2

(c)

Figure 6: (a) The user sees that the correct unfolding sequence is
to rotate the purple voxel around 1 and then the pink voxel (which is
the purple voxel’s parent) around 2. (b) But the corner (marked in
yellow) on the purple voxel prevents rotation. (c) The user carves
some edges of the purple voxel and continues unfolding.

compute units employed (roughly equivalent to a single 1GHz core),
and “total” is the product of these two numbers, which is the total
number of core hours. Note that these numbers represent the amount
of time the tree search took to find the solutions used for the results,
not the total time we ran the tree search (up to ∼30 hours). As
can be seen, a reasonable solution can be found in the 5-15 hour
range, depending on the example. As this process is embarrassingly
parallelizable, these numbers can be further reduced by using more
processing power.

We found the animation produced by the interactive simulation, as
shown in Fig. 1, to be extremely useful as a guide for folding and
unfolding the 3D-printed prototypes (car, bunny, and kitten). Even
for the simplest example, it is non-trivial to fold the shape from one
to the other without the aid of the provided animation.

The U-car example shown in Fig. 7d demonstrates that shapes other
than cubes can be used as the target template, as long as it is a
voxelized shape.

For the dragon shown in Fig. 7e, the best results in terms of energy
were generated for a voxelization that has some voxels that cover
disconnected pieces. In these cases, we added “struts” between
disjoint pieces.

The final example, the elephant shown in Fig. 7f, uses a 5×5×5
voxelization.

Table 1: “Size” is the voxelization resolution. “wall” is the number
of wall-clock hours to find the solution used in the examples. “CUs”
is the number of compute units used (roughly equivalent to a single
1GHz core). “Total” is the total number of compute hours, i.e. the
product of wall and CUs. “Joints” is the number of joints that
are added to the shape. “Carves” is the number of voxels that are
carved with the interactive simulator.

size wall (h) CUs total (h) joints carves

bunny 4×4×4 4.9 50 245 29 7
kitten 4×4×4 6.9 50 345 34 3

car 3×4×4 11.5 14 161 22 3
U-car 112 16.1 50 805 45 19

dragon 4×4×4 4.3 50 215 32 3
elephant 5×5×5 13.4 75 1005 62 7

7 Conclusion & Future Work

We have introduced a method for folding 3D shapes into cubes and
boxes. Objects designed with our method can be physically printed
and folded from one shape to the other without collisions. We seg-
ment the input shape into a set of voxels and find a tree that connects
these voxels with joints. We make the problem tractable by dividing
the algorithm into three major steps: voxelization, tree fitting, and



(a) 3D printed foldable bunny (b) 3D printed foldable kitten

(c) 3D printed foldable car (d) Foldable U-car with 112 voxels

(e) 4×4×4 foldable dragon. (Some parts use struts.) (f) 5×5×5 foldable elephant

Figure 7: The first three objects (a-c) are physically manufactured using a 3D printer. (d) The U-car demonstrates that the target does not need
to be a box. (e) The dragon contains some struts due to the challenging geometry. (f) The 5×5×5 elephant is the largest example produced.

interactive folding. In the voxelization step, we find a good segmen-
tation of the input shape that reduces small pieces. In the tree fitting
step, we use beam search and simulated annealing to find the joint
types and locations that minimize our energy function, temporarily
ignoring collisions during folding. Finally, in the interactive folding
step, we use a physics simulator to unfold both the source and target
shapes in order to validate that a collision-free folding sequence can
be generated for the computed solution.

Currently, it is difficult to fabricate tight-fitting joints with no play,
and this causes our final output, which is printed in a single piece,
to be weaker than desired. One potential way around this problem
is to modify the geometry of the joints [Bächer et al. 2012; Calı̀
et al. 2012], but such techniques are designed for larger joints and
are difficult to apply to our intricate results. Fortunately, digital
manufacturing technologies are constantly improving, and so we
expect our framework to be more and more practical in the future.
Also, because the joints are very lose, we resort to applying a small
amount of glue or a putty to hold parts together. To produce more
robust models, we would need to design, either automatically or
semi-automatically, hooks, pegs, or other types of retention system.

The qualities of the computed solution and the fabricated result are
not perfect. There is a trade-off between the amount of inner void
and the completeness of the outer surface of the folded shape. This
can be changed, if desired, by modifying the surface energy (Eq. 8).

Our automatic voxelization method does not honor important fea-
tures of the model, such as the eyes and wheels. A user interface for
specifying which parts of the model to not segment would be useful.
Note that because of the way we divided the algorithm into three

stages, we can also run voxelization with user-specified constraints
in an interactive manner, without affecting the optimization stages.

We only included hinge joint in our examples. Other joints, such
as prismatic, cylindrical, or even linkages, would add more rich set
of transforms. A telescoping joint would be very interesting to add,
since this would enable us to hide a piece inside another larger piece.

We showed in Fig. 7d that the template does not necessarily need to
be a box, but because of our formulation, the target shape must be
composed of voxels. However, it is possible to explore ways to carve
away the inside of the shapes to make them transform to other shapes
as well. Also, it would be useful to add another energy objective
that allows the designer to specify where in the target shape each
segmented voxel maps to. This could potentially allow the shape to
transform more naturally to the target shape.

Our physics simulation result serves as a useful guide for folding
and unfolding the shape. However, it would be better if we could
generate a step-by-step manual rather than a continuous animation.

Finally, it is possible to connect multiple outputs from our system to
create one big output. For example, it would be amusing to create a
robot where the head is made of a bunny, the torso from an elephant,
the arms from kittens, and the legs from dragons.
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