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Abstract

The boxicity (cubicity) of a graph G is the minimum natural number k such that G
can be represented as an intersection graph of axis-parallel rectangular boxes (axis-parallel
unit cubes) in R

k. In this article, we give estimates on the boxicity and the cubicity of
Cartesian, strong and direct products of graphs in terms of invariants of the component
graphs. In particular, we study the growth, as a function of d, of the boxicity and the
cubicity of the d-th power of a graph with respect to the three products. Among others,
we show a surprising result that the boxicity and the cubicity of the d-th Cartesian power
of any given finite graph is in O (log d/ log log d) and Θ (d/ log d), respectively. On the
other hand, we show that there cannot exist any sublinear bound on the growth of the
boxicity of powers of a general graph with respect to strong and direct products.

Keywords: intersection graphs, boxicity, cubicity, graph products, boolean lattice.

1 Introduction

Throughout this discussion, a k-box is the Cartesian product of k closed intervals on the real
line R, and a k-cube is the Cartesian product of k closed unit length intervals on R. Hence both
are subsets of Rk with edges parallel to one of the coordinate axes. All the graphs considered
here are finite, undirected and simple.

Definition 1 (Boxicity, Cubicity). A k-box representation (k-cube representation) of a graph
G is a function f that maps each vertex of G to a k-box (k-cube) such that for any two distinct
vertices u and v of G, the pair uv is an edge in G if and only if the boxes f(u) and f(v)
have a non-empty intersection. The boxicity (cubicity) of a graph G, denoted by boxicity(G)
(cubicity(G)), is the smallest natural number k such that G has a k-box (k-cube) representation.

It follows from the above definition that complete graphs have boxicity and cubicity 0 and
interval graphs (unit interval graphs) are precisely the graphs with boxicity (cubicity) at most
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1. The concepts of boxicity and cubicity were introduced by F.S. Roberts in 1969 [9]. He
showed that every graph on n vertices has an ⌊n/2⌋-box and a ⌊2n/3⌋-cube representation.

Given two graphs G1 and G2 with respective box representations f1 and f2, let G denote
the graph on the vertex set V (G1)×V (G2) whose box representation is a function f defined by
f((v1, v2)) = f1(v1)× f2(v2). It is not difficult to see that G is the usual strong product of G1

and G2 (cf. Definition 2). Hence it follows that the boxicity (cubicity) of G is at most the sum
of the boxicities (cubicities) of G1 and G2. The interesting question here is: can it be smaller?
We show that it can be smaller in general. But in the case when G1 and G2 have at least one
universal vertex each, we show that that the boxicity (cubicity) of G is equal to the sum of the
boxicities (cubicities) of G1 and G2 (Theorem 1).

Definition 2 (Graph products). The strong product, the Cartesian product and the direct
product of two graphs G1 and G2, denoted respectively by G1⊠G2, G1�G2 and G1×G2, are
graphs on the vertex set V (G1)× V (G2) with the following edge sets:

E(G1⊠G2) = {(u1, u2)(v1, v2) : (u1 = v1 or u1v1 ∈ E(G1)) and (u2 = v2 or u2v2 ∈ E(G2))},
E(G1�G2) = {(u1, u2)(v1, v2) : (u1 = v1, u2v2 ∈ E(G2)) or (u1v1 ∈ E(G1), u2 = v2)},
E(G1×G2) = {(u1, u2)(v1, v2) : u1v1 ∈ E(G1) and u2v2 ∈ E(G2)},

The d-th strong power, Cartesian power and direct power of a graph G with respect to each of
these products, that is, the respective product of d copies of G, are denoted by G⊠ d, G� d and
G× d, respectively.

Unlike the case in strong product, the boxicity (cubicity) of the Cartesian and direct prod-
ucts can have a boxicity (cubicity) larger than the sum of the individual boxicities (cubicities).
For example, while the complete graph on n vertices Kn has boxicity 0, we show that the
Cartesian product of two copies of Kn has boxicity at least log n and the direct product of two
copies of Kn has boxicity at least n−2. In this note, we give estimates on boxicity and cubicity
of Cartesian and direct products in terms of the boxicities (cubicities) and chromatic number
of the component graphs. This answers a question raised by Douglas B. West in 2009 [11].

We also study the growth, as a function of d, of the boxicity and the cubicity of the d-th
power of a graph with respect to these three products. Among others, we show a surprising
result that the boxicity and the cubicity of the d-th Cartesian power of any given finite graph
is in O (log d/ log log d) and Θ (d/ log d), respectively (Corollary 7). To get this result, we had
to obtain non-trivial estimates on boxicity and cubicity of hypercubes and Hamming graphs
and a bound on boxicity and cubicity of the Cartesian product which does not involve the sum
of the boxicities or cubicities of the component graphs.

The results are summarised in the next section after a brief note on notations. The proofs
are moved to the appendix in the interest of space.

1.1 Notational note

The vertex set and edge set of a graph G are denoted, respectively, by V (G) and E(G). A pair
of distinct vertices u and v is denoted at times by uv instead of {u, v} in order to avoid clutter.
A vertex in a graph is universal if it is adjacent to every other vertex in the graph. If S is a
subset of vertices of a graph G, the subgraph of G induced on the vertex set S is denoted by
G[S]. If A and B are sets, then A△B denotes their symmetric difference and A× B denotes
their Cartesian product. The set {1, . . . , n} is denoted by [n]. All logarithms mentioned are to
the base 2.
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2 Our Results

2.1 Strong products

Theorem 1. Let Gi, i ∈ [d], be graphs with boxicity(Gi) = bi and cubicity(Gi) = ci. Then

maxdi=1 bi ≤ boxicity(⊠d
i=1Gi) ≤

∑d
i=1 bi, and

maxdi=1 ci ≤ cubicity(⊠d
i=1Gi) ≤

∑d
i=1 ci.

Furthermore, if each Gi, i ∈ [d] has a universal vertex, then the second inequality in both the
above chains is tight.

If we consider the strong product of a 4-cycle C4 with a path on 3 vertices P3, we get
an example where the the upper bound in Theorem 1 is not tight. It is easy to check that
boxicity(C4) = 2 and boxicity(P3) = 1. Figure 1 shows a 2-box representation of C4⊠P3.
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Figure 1: The graph C4⊠P3 and its 2-box representation. Every box represents the vertex of
the same colour at its center.

Theorem 1 has the following interesting corollary.

Corollary 2. For any given graph G, boxicity(G⊠ d) and cubicity(G⊠ d) are in O (d) and there
exist graphs for which they are in Ω (d).

2.2 Cartesian products

We show two different upper bounds on the boxicity and cubicity of Cartesian products. The
first and the easier result bounds from above the boxicity (cubicity) of a Cartesian product in
terms of the boxicity (cubicity) of the corresponding strong product and the boxicity (cubicity)
of a Hamming graph whose size is determined by the chromatic number of the component
graphs. The second bound is in terms of the maximum cubicity among the component graphs
and the boxicity (cubicity) of a Hamming graph whose size is determined by the sizes of the
component graphs. The second bound is much more useful to study the growth of boxicity and
cubicity of higher Cartesian powers since the first term remains a constant.
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Theorem 3. For graphs G1, . . . , Gd,

boxicity(�d
i=1Gi) ≤ boxicity(⊠d

i=1Gi) + boxicity(�d
i=1Kχi

) and

cubicity(�d
i=1Gi) ≤ cubicity(⊠d

i=1Gi) + cubicity(�d
i=1Kχi

)

where χi denotes the chromatic number of Gi, i ∈ [d].

When Gi = Kq for every i ∈ [d], G = ⊠
d
i=1Gi is a complete graph on qd vertices and hence

has boxicity and cubicity 0. In this case it is easy to see that both the bounds in Theorem 3
are tight.

Theorem 4. For graphs G1, . . . , Gd, with |V (Gi)| = qi and cubicity(Gi) = ci, for each i ∈ [d],

boxicity(�d
i=1Gi) ≤ maxi∈[d] ci + boxicity(�d

i=1Kqi), and
cubicity(�d

i=1Gi) ≤ maxi∈[d] ci + cubicity(�d
i=1Kqi).

In wake of the two results above, it becomes important to have a good upper bound on the
boxicity and the cubicity of Hamming graphs. The Hamming graph Kd

q is the Cartesian product
of d copies of a complete graph on q vertices. We call the Kd

2 the d-dimensional hypercube.

The cubicity of hypercubes is known to be in Θ
(

d
log d

)

. The lower bound is due to Chandran,

Mannino and Oriolo [4] and the upper bound is due to Chandran and Sivadasan [6]. But we do
not have such tight estimates on the boxicity of hypercubes. The only explicitly known upper
bound is one of O (d/ log d) which follows from the bound on cubicity since boxicity is bounded
above by cubicity for all graphs. The only non-trivial lower bound is one of 1

2
(⌈log log d⌉ + 1)

due to Chandran, Mathew and Sivadasan [5].
We make use of a non-trivial upper bound shown by Kostochka on the dimension of the

partially ordered set (poset) formed by two neighbouring levels of a Boolean lattice [8] and a
connection between boxicity and poset dimension established by Adiga, Bhowmick and Chan-
dran in [1] to obtain the following result.

Theorem 5. Let bd be the largest dimension possible of a poset formed by two adjacent levels
of a Boolean lattice over a universe of d elements. Then

1
2
bd ≤ boxicity(Kd

2 ) ≤ 3bd.

Furthermore, boxicity(Kd
2 ) ≤ 12 log d/ log log d.

We would also like to remark that a better upper or lower bound on the boxicity of hyper-
cubes will in turn give a commensurate upper or lower bound on the dimension of the poset
formed by neighbouring levels of Boolean lattices.

In order to extend these results on hypercubes to Hamming graphs, we use multiple weak
homomorphisms of the Hamming graph Kd

q into the hypercube Kd
2 . The homomorphisms are

generated based on a labelling of the vertices of each copy of Kq using a double distinguishing
family of subsets of a small universe. A family D of sets is called double distinguishing if
for any two pairs of set A,A′ and B,B′ from D, such that A 6= A′ and B 6= B′, we have
(A△A′) ∩ (B△B′) 6= ∅. The existence of such a family over a small universe is established
using probabilistic arguments. This gives us the upper bounds in the following result. The
lower bounds follow from a result on boxicity of line graphs of complete bipartite graphs in [2]
once we note that K2

q is isomorphic to the line graph of a complete bipartite graph.

Theorem 6. Let Kd
q be the d-dimensional Hamming graph on the alphabet [q] and let Kd

2 be
the d-dimensional hypercube. Then for d ≥ 2,

log q ≤ boxicity(Kd
q ) ≤ ⌈10 log q⌉ boxicity(Kd

2 ), and
log q ≤ cubicity(Kd

q ) ≤ ⌈10 log q⌉ cubicity(Kd
2 ).
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Theorem 4, along with the bounds on boxicity and cubicity of Hamming graphs, gives the
following corollary which is the main result in this article. The lower bound on the order of
growth is due to the presence of Kd

2 as an induced subgraph in the d-the Cartesian power of
any non-trivial graph.

Corollary 7. For any given graph G with at least one edge,

boxicity(G� d) ∈ O (log d/ log log d) ∩ Ω (log log d) , and

cubicity(G� d) ∈ Θ (d/ log d) .

2.3 Direct products

Theorem 8. For graphs G1, . . . , Gd,

boxicity(×d
i=1Gi) ≤ boxicity(⊠d

i=1Gi) + boxicity(×d
i=1Kχi

) and

cubicity(×d
i=1Gi) ≤ cubicity(⊠d

i=1Gi) + cubicity(×d
i=1Kχi

)

where χi denotes the chromatic number of Gi, i ∈ [d].

In the wake of Theorem 8, it is useful to estimate the boxicity and the cubicity of the direct
product of complete graphs. Before stating our result on the same, we would like to discuss a
few special cases. If G = ×d

i=1K2 then G is a perfect matching on 2d vertices and hence has
boxicity and cubicity equal to 1. If G = Kq ×K2, then it is isomorphic to a graph obtained
by removing a perfect matching from the the complete bipartite graph with q vertices on each
part. This is known as the crown graph and its boxicity is known to be ⌈q/2⌉ [3].

Theorem 9. Let qi ≥ 2 for each i ∈ [d]. Then,

1
2

∑d
i=1(qi − 2) ≤ boxicity

(

×d
i=1Kqi

)

≤
∑d

i=1 qi, and
1
2

∑d
i=1(qi − 2) ≤ cubicity

(

×d
i=1Kqi

)

≤
∑d

i=1 qi log(n/qi),

where n = Πd
i=1qi is the number of vertices in ×d

i=1Kqi.

We believe that it might be possible to improve the upper bound on cubicity to match its
lower bound (up to constants). But we leave it for the future. The two results established
above have the following two corollaries.

Corollary 10. For graphs G1, . . . , Gd,

boxicity(⊠d
i=1Gi) ≤

d
∑

i=1

(boxicity(Gi) + χ(Gi)).

Corollary 11. For any given graph G, boxicity(G× d) is in O (d) and there exist graphs for
which it is in Ω (d).
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Appendix A Preliminaries

Before giving the proofs of the results stated in Section 2, we collect together some results from
literature and some easy observations which are used in the proofs given in Section Appendix
B. First we give a more combinatorial characterisation for boxicity and cubicity, which is easier
to work with at times.

From Definition 1, it is clear that interval graphs are precisely the graphs with boxicity at
most 1. Given a k-box representation of a graph G, orthogonally projecting the k-boxes to
each of the k axes in R

k gives k families of intervals. Each one of these families can be thought
of as an interval representation of some interval graph. Thus we get k interval graphs. It is not
difficult to observe that a pair of vertices is adjacent in G if and only if the pair is adjacent in
each of the k interval graphs obtained. Similarly unit interval graphs are precisely the graphs
with cubicity 1, and the orthogonal projections of a k-cube representation of a graph G to each
of the k axes in R

k give rise to k unit interval graphs, whose intersection is G.
The following lemma, due to Roberts [9], formalises this relation between box representa-

tions and interval graphs.

Lemma 12 (Roberts [9]). For every graph G, boxicityG ≤ k (cubicityG ≤ k) if and only if
there exist k interval graphs (unit interval graphs) I1, . . . , Ik, with V (I1) = · · · = V (Ik) = V (G)
such that G = I1 ∩ · · · ∩ Ik.

From the above lemma, we get these alternate definitions of boxicity and cubicity.

Definition 3. The boxicity (cubicity) of a graph G is the minimum positive integer k for which
there exist k interval graphs (unit interval graphs) I1, . . . , Ik such that G = I1 ∩ · · · ∩ Ik.

Note that if G = I1 ∩ · · · ∩ Ik, then each Ii is a supergraph of G. Moreover, for every pair
of vertices u, v ∈ V (G) with {u, v} /∈ E(G), there exists some i ∈ [k] such that {u, v} /∈ E(Ii).
Hence finding a k-box representation (k-cube representation) of a graph G is the same as finding
k interval supergraphs (unit interval supergraphs) of G with the property that every pair of
non-adjacent vertices in G is non-adjacent in at least one of those supergraphs. The following
observations are immediate from one of the definitions of boxicity and cubicity.

Observation 1. If H is an induced subgraph of a graph G, then the boxicity (cubicity) of H is
at most the boxicity (cubicity) of G.

Observation 2. The intersection of two graphs G1 and G2 on the same vertex set is the graph,
denoted by G1 ∩ G2, is the graph on the same vertex set with edge set E(G1) ∩ E(G2). The
boxicity (cubicity) of G1 ∩G2 is at most the sum of the boxicities (cubicities) of G1 and G2.

Observation 3. The disjoint union of two graphs G1 and G2 on disjoint vertex sets, denoted
by G1 ⊎ G2, is the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The
boxicity (cubicity) of G1 ⊎G2 is equal to the larger of the boxicities (cubicities) of G1 and G2.

The next observation is not as easy, but follows once we note that, since interval graphs
cannot contain induced 4-cycles, in any interval supergraph of G1 ⊗G2 either V (G1) or V (G2)
induces a complete graph.

Observation 4. The join of two graphs G1 and G2 on disjoint vertex sets, denoted by G1⊗G2,
is the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {{u1, u2} : u1 ∈
V (G1), u2 ∈ V (G2)}. Then

boxicity(G1 ⊗G2) = boxicityG1 + boxicityG2, and
cubicity(G1 ⊗G2) ≥ cubicityG1 + cubicityG2.
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Observation 5. Let G be a graph and S be a set of vertices outside V (G). Then G⊗S denotes
the join of G and a complete graph on S, that is, V (G ⊗ S) = V (G) ∪ S and E(G ⊗ S) =
E(G) ∪ {{v, s} : v ∈ V (G) ∪ S, s ∈ S}. The boxicity of G⊗ S is equal to the boxicity of G.

Observation 6. A star graph Sn with root r is the graph with the vertex set {r}∪ [n] and edge
set {{r, l} : l ∈ [n]}. The cubicity of Sn is ⌈log n⌉ while its boxicity is 1.

Appendix B Proofs

B.1 Strong products

Proof of Theorem 1

Statement. Let Gi, i ∈ [d], be graphs with boxicity(Gi) = bi and cubicity(Gi) = ci. Then

maxdi=1 bi ≤ boxicity(⊠d
i=1Gi) ≤

∑d
i=1 bi, and

maxdi=1 ci ≤ cubicity(⊠d
i=1Gi) ≤

∑d
i=1 ci.

Furthermore, if each Gi, i ∈ [d] has a universal vertex, then the second inequality in both the
above chains is tight.

Proof. The lower bounds follow easily since the component graphs are present as induced
subgraphs in the product. Let G = ⊠

d
i=1Gi and b =

∑d
i=1 bi. Furthermore, let fi be a

bi-box representation of Gi, i ∈ [d]. It is easy to see that f defined by f((v1, . . . , vd)) =
f(v1)× · · · × f(vd), (where × denotes the Cartesian product) is a b-box representation for G.
The case for cubicity is also similar.

Let ui be a universal vertex of Gi for each i ∈ [d]. Now for each i ∈ [d], set Ai =
{(a1, . . . , ad) ∈ V (G) : ai ∈ V (Gi) and aj = uj if j 6= i} so that G[Ai] is isomorphic to Gi.
Since interval graphs do not contain induced 4-cycles, in any interval supergraph of G, all but
at most one set among Ai, i ∈ [d], must induce a complete graph. Hence the boxicity (cubicity)
of G is at least

∑d
i=1 bi (

∑d
i=1 ci).

B.2 Cartesian products

Proof of Theorem 3

Statement. For graphs G1, . . . , Gd,

boxicity(�d
i=1Gi) ≤ boxicity(⊠d

i=1Gi) + boxicity(�d
i=1Kχi

) and

cubicity(�d
i=1Gi) ≤ cubicity(⊠d

i=1Gi) + cubicity(�d
i=1Kχi

)

where χi denotes the chromatic number of Gi, i ∈ [d].

Proof. Let G� = �
d
i=1Gi, G⊠ = ⊠

d
i=1Gi and K� = �

d
i=1Kχi

. Let bs = boxicity(G⊠) and
bχ = boxicity(K�). Furthermore, let fs and fχ be bs-box and bχ-box representations of G⊠

and K�, respectively. Finally, let ci : V (Gi) → [χi] be a proper colouring of Gi, i ∈ [d]. It is
easy to see that f defined by f((v1, . . . , vd)) = fs((v1, . . . , vd)) × fχ((c1(v1), . . . , cd(vd))), is a
(bs + bχ)-box representation for G�. The case for cubicity is also similar.

Proof of Theorem 4

Statement. For graphs G1, . . . , Gd, with |V (Gi)| = qi and cubicity(Gi) = ci, for each i ∈ [d],

boxicity(�d
i=1Gi) ≤ maxi∈[d] ci + boxicity(�d

i=1Kqi), and
cubicity(�d

i=1Gi) ≤ maxi∈[d] ci + cubicity(�d
i=1Kqi).
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Proof. Let G = �
d
i=1Gi, K = �

d
i=1Kqi, and c = maxi∈[d] ci. We label the vertices of Gi using

distinct elements of [qi]. This defines a bijection l : V (G) → [q1] × · · · × [qd]. Henceforth, we
will identify v with l(v), for all v ∈ V (G). We do the same for K.

For a d-cube C = [c1, c1 + 1] × · · · × [cd, cd + 1] ⊂ R
d, we call the point (c1, . . . , cd) as the

origin of C and denote it by o(C). A d-cube is completely determined by its origin. Two cubes
C1 and C2 intersect if and only if d∞

(

o(C1), o(C2)
)

≤ 1, where d∞(x, y) = maxi∈[d] |x(i)− y(i)|
is the supremum norm in R

d. Hence we can identify a cube representation of a graph H with
an embedding f : V (H) → R

d such that {u, v} ∈ E(H) ⇐⇒ d∞(f(u), f(v)) ≤ 1. We will call
f as a cube embedding of H .

Let fi : V (Gi) → R
c be a cube embedding of Gi for each i ∈ [d], which exists since

cubicity(Gi) = ci ≤ c. Define F : V (G) → R
c by F ((v1, . . . , vd)) = f1(v1) + · · · + fd(vd). Let

H be the graph on the vertex set V (G) whose cube representation is F . We will show that
H ∩K = G. Then both the assertions in the theorem will follow from Observation 2.

It is easy to see that K is a supergraph of G. We show that H is also a supergraph of
G. If x, y are adjacent vertices in G, then they differ in exactly one position, say j ∈ [d] and
{x(j), y(j)} ∈ E(Gj). Hence, d∞(F (x), F (y)) = d∞(fj(x(j)), fj(y(j))) ≤ 1 making x adjacent
with y in H .

A pair of distinct non-adjacent vertices x, y ∈ V (G) is called a layer non-edge if the d-tuples
x and y differ in exactly one position and a cross non-edge otherwise. All the cross non-edges in
G are non-adjacent inK. We complete the proof by showing that all the layer non-edges inG are
non-adjacent in H . Let {x, y} be a layer non-edge in G, i.e., x and y differ in only one position,
say j ∈ [d] and {x(j), y(j)} /∈ E(Gj). Hence d∞(F (x), F (y)) = d∞(fj(x(j)), fj(y(j))) > 1, and
hence x is not adjacent to y in H .

B.2.1 Hypercubes

Our upper bound on boxicity of hypercubes uses a result from the theory of partial order
dimensions.

Definition 4 (Poset dimension). Let (P,⊳) be a poset (partially ordered set). A linear exten-
sion L of P is a total order which satisfies (x ⊳ y ∈ P ) ⇒ (x ⊳ y ∈ L). A realiser of P is a
set of linear extensions of P , say R, which satisfy the following condition: for any two distinct
elements x and y, x ⊳ y ∈ P if and only if x ⊳ y ∈ L, ∀L ∈ R. The poset dimension of P ,
denoted by pdim(P ), is the minimum positive integer k such that there exists a realiser of P
of cardinality k.

Among the several consequences of the connection between boxicity and poset dimension
established in [1], the one that we will use here is the following.

Theorem 13 ([1]). Let G be a bipartite graph with parts A and B. Let (P,⊳) be the poset on
A ∪B, with a⊳ b if a ∈ A, b ∈ B and {a, b} ∈ E(G). Then

1

2
pdim(P) ≤ boxicity(G) ≤ pdim(P).

There is a natural poset associated with the hypercube called the Boolean lattice.

Definition 5. The d-dimensional Boolean lattice, denoted by (Bd,⊳), is the poset on V (Kd
2 )

such that u ⊳ v if and only if u(i) ≤ v(i), ∀i ∈ [d]. The Hamming weight of a vertex v in Kd
2 ,

denoted by h(v), is the number of ones in v. The set Bd(i) = {v ∈ V (Kd
2 ) : h(v) = i}, i ∈

{0, . . . , d} is called the i-th layer of Bd. The subposet of Bd induced on layers i and j, i < j, is
denoted by Bd(i, j).
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The poset dimension of Bd(i, j) for various choices of i and j has been a subject of extensive
study starting from the study of Bd(1, 2) by Ben Dushnik in 1947 [7]. Later, Joel Spencer
showed that the poset dimension of Bd(1, 2) is (1 + o(d)) log log d [10]. The current best up-
per bound for Bd(j − 1, j), j ∈ [d], i.e., the subposet induced on two neighbouring layers of
Bd, is O (log d/ log log d) due to Kostochka [8]. The best known lower bound for the same is
Ω (log log d), which follows from the result of Spencer mentioned above.

We use the 3 ln d/ ln ln d upper bound on pdimBd(j−1, j) to prove the upper bound on the
boxicity of hypercubes given in Theorem 5.

Proof of Theorem 5

Statement. Let bd be the largest dimension possible of a poset formed by two adjacent levels of
a Boolean lattice over a universe of d elements. Then

1
2
bd ≤ boxicity(Kd

2 ) ≤ 3bd.

Furthermore, boxicity(Kd
2 ) ≤ 12 log d/ log log d.

Proof. In order not to introduce more notation, we will (ab)use the same notation for a poset
and its underlying (comparability) graph. Let H = Kd

2 .
The lower bound follows from Theorem 13 and Observation 1 since the graph Bd(j − 1, j)

is an induced subgraph of Kd
2 for all j ∈ [d]. The upper bound will be proved by showing the

existence of 3 graphs, H0, H1, H2, each of boxicity at most bd such that H = H0 ∩ H1 ∩ H2.
Then the bound follows from Observation 2.

Let (V0, V1, V2) be a partition of V (H) such that Vk = {v ∈ V (H) : h(v) ≡ k mod 3}. Let
Hk = H [Vk+1 ∪ Vk+2]⊗ Vk, k ∈ Z3, where H [S] denotes the subgraph of H induced on S, and
the operation ⊗ is as described in Observation 5. The graph H [Vk+1 ∪ Vk+2] is a disjoint union
of the graphs Bd(j−1, j), j ∈ [d], j ≡ k+2 mod 3 and Bd(0) and/or Bd(d) in some cases. Since
Bd(0), Bd(d), and Bd(j−1, j) are bipartite graphs, by Theorem 13, their boxicities are at most
their poset dimensions, which is at most bd. Hence the boxicity of H [Vk+1 ∪ Vk+2] is at most
bd by Observation 3. Therefore, by Observation 5, the boxicity of Hk is at most bd for every
k ∈ Z3.

We complete the proof by showing that H = H0 ∩ H1 ∩ H2. It is easy to see that each
Hk, k ∈ Z3 is a supergraph of H . Hence we only need to show that if u and v is an arbitrary
pair of non-adjacent vertices in H , then they are non-adjacent in at least one Hk, k ∈ Z3. Let
k ∈ Z3\{h(u) mod 3, h(v) mod 3}. Then u, v ∈ Vk+1∪Vk+2 and hence they remain non-adjacent
in Hk.

Hence boxicity(Kd
2 ) ≤ 12 log d/ log log d, by Kostochka’s result.

B.2.2 Hamming graphs

In order to extend the bounds on boxicity and cubicity of hypercubes to Hamming graphs we
need to introduce some more notation. The vertices of the Hamming graph Kd

q will be labelled
by elements of [q]d in the natural way. Hence two vertices are adjacent if and only if their
Hamming distance, i.e., the number of positions in which their labels differ, is exactly 1. For a
vertex u in Kd

q and for any i ∈ [d], we shall use u(i) to denote the i-th coordinate of the label
of u.

Definition 6 (Weak Homomorphism). Given two graphs G and H , a function f : V (G) →
V (H) is called a weak homomorphism if for every {u, v} ∈ E(G) either {f(u), f(v)} ∈ E(H)
or f(u) = f(v).

Remark. If Ho denotes the graph H with a self-loop added at every vertex, then a weak
homomorphism from G to H is a standard homomorphism from G to Ho.

10



Definition 7 (H-Realiser). A family F of weak homomorphisms from G to H is called an
H-realiser of G if for every u, v ∈ V (G) such that {u, v} /∈ E(G), there exists an f ∈ F such
that f(u) 6= f(v) and {f(u), f(v)} /∈ E(H). If G has an H-realiser then the cardinality of a
smallest such realiser is called the H-dimension of G and is denoted as dim(G,H).

The following lemma is an easy observation.

Lemma 14. For any graph G, if there exists an H-realiser of G for some graph H, then

boxicity(G) ≤ dim(G,H) boxicity(H), and

cubicity(G) ≤ dim(G,H) cubicity(H).

Definition 8. A family D of sets is called double distinguishing if for any two pairs of set A,A′

and B,B′ from D, such that A 6= A′ and B 6= B′, we have

(A△A′) ∩ (B△B′) 6= ∅,

where A△A′ denotes the symmetric difference of A and A′, i.e., (A \ A′) ∪ (A′ \ A).

Lemma 15. For a set U , there exists a double distinguishing family D of subsets of U with
|D| = ⌊c|U |⌋, where c = (4/3)1/4.

Proof. Let |U | = n and q = ⌊cn⌋. Construct a family D = {S1, . . . , Sq} of subsets of U by
choosing every u ∈ U to be in Si with probability 1/2, independent of every other choice.
Given A,A′, B, B′ ∈ D, such that A 6= A′ and B 6= B′, the probability that a particular u ∈ U
is present in (A△A′)∩(B△B′) is at least 1/4 (In fact, it is exactly 1/4 when {A,A′} 6= {B,B′}
and 1/2 otherwise). Hence the probability that (A△A′) ∩ (B△B′) = ∅, i.e., the probability
that no u ∈ U goes into (A△A′) ∩ (B△B′), is at most (3/4)n. So, by a union bound, the
probability p that D is not double distinguishing is less than q4(3/4)n, which is at most 1 by
our choice of q. Hence there exists a double distinguishing family of size q.

Lemma 15 guarantees that we can label the alphabet [q] using sets from a double distin-
guishing family D of subsets of a small universe U (|U | ≤ ⌈10 log q⌉). Every element u ∈ U
defines a natural bipartition of the alphabet [q] between sets that contain u and those that do
not. Each of those bipartitions gives a weak homomorphism from Kd

q to Kd
2 . We show that

that collection of weak homomorphisms form a Kd
2 -realiser of K

d
q .

Lemma 16. Let Kd
q be the d-dimensional Hamming graph on alphabet [q] and let Kd

2 be the
d-dimensional hypercube. Then for d ≥ 2,

1

2
log q ≤ dim(Kd

q , K
d
2 ) ≤ ⌈10 log q⌉.

Proof. The two-dimensional Hamming graph K2
q is an induced subgraph of Kd

q . It is easy to
check that K2

q is isomorphic to the line graph of Kq,q, the complete bipartite graph with q
vertices on each part. It was shown in [2], that the boxicity of the line graph of Kq,q is at least
log q. Hence the lower bound follows from Lemma 14 and the easy fact that boxicityK2

2 = 2.
Let n = ⌈10 log q⌉ and U = [n]. Since c10 log q ≥ q, where c = (4/3)1/4, by Lemma 15, we

know that there exists a double distinguishing family D = {S1, . . . , Sq} in 2U .
Consider the family of of n functions fu : [q] → [2], u ∈ U , where fu(x) = 1 if u ∈ Sx and 2

otherwise. Extend each fu to a function Fu : [q]d → [2]d by Fu = (fu, . . . , fu). We claim that
F = {Fu}u∈U is a Kd

2 -realiser of K
d
q .

It is easy to see that each Fu is a weak homomorphism from Kd
q to Kd

2 . Hence it suffices
to show that for every pair of non-adjacent vertices x, y ∈ V (Kd

q ), there exists an Fu, u ∈ U ,
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such that Fu(x) and Fu(y) are distinct and non-adjacent in Kd
2 . Since x and y are non-adjacent

in Kd
q , they are different in at least two coordinates, say i and j, i 6= j. Let A = Sx(i),

A′ = Sy(i), B = Sx(j), B′ = Sy(j). Since i and j are positions where x and y differ, we
have A 6= A′ and B 6= B′. Since D is double distinguishing, we have some u ∈ U such that
u ∈ (A△A′) ∩ (B△B′). Hence fu(x(i)) 6= fu(y(i)) and fu(x(j)) 6= fu(y(j)). So Fu(x) and
Fu(y) differ in at least two coordinates and hence are distinct and non-adjacent in Kd

2 .

Completing the proof of Theorem 6 is now easy.

Proof of Theorem 6

Statement. Let Kd
q be the d-dimensional Hamming graph on the alphabet [q] and let Kd

2 be
the d-dimensional hypercube. Then for d ≥ 2,

log q ≤ boxicity(Kd
q ) ≤ ⌈10 log q⌉ boxicity(Kd

2 ), and
log q ≤ cubicity(Kd

q ) ≤ ⌈10 log q⌉ cubicity(Kd
2 ).

Proof. The upper bounds follows from Lemmata 14 and 16. Once we note thatK2
q is isomorphic

to the line graph of a complete bipartite graph, the lower bounds follow from Corollary 27 in
[2] which is a result on boxicity of line graphs of complete bipartite graphs.

B.3 Direct products

Proof of Theorem 8

Statement. For graphs G1, . . . , Gd,

boxicity(×d
i=1Gi) ≤ boxicity(⊠d

i=1Gi) + boxicity(×d
i=1Kχi

) and

cubicity(×d
i=1Gi) ≤ cubicity(⊠d

i=1Gi) + cubicity(×d
i=1Kχi

)

where χi denotes the chromatic number of Gi, i ∈ [d].

Proof. Let G× = ×d
i=1Gi, G⊠ = ⊠

d
i=1Gi and K× = ×d

i=1Kχi
. Let bs = boxicity(G⊠) and

bχ = boxicity(K×). Furthermore, let fs and fχ be bs-box and bχ-box representations of G⊠

and K×, respectively. Finally, let ci : V (Gi) → [χi] be a proper colouring of Gi, i ∈ [d]. It is
easy to see that f defined by f((v1, . . . , vd)) = fs((v1, . . . , vd)) × fχ((c1(v1), . . . , cd(vd))), is a
(bs + bχ)-box representation for G×. The case for cubicity is also similar.

Proof of Theorem 9

Statement. Let qi ≥ 2 for each i ∈ [d]. Then,

1
2

∑d
i=1(qi − 2) ≤ boxicity

(

×d
i=1Kqi

)

≤
∑d

i=1 qi, and
1
2

∑d
i=1(qi − 2) ≤ cubicity

(

×d
i=1Kqi

)

≤
∑d

i=1 qi log(n/qi),

where n = Πd
i=1qi is the number of vertices in ×d

i=1Kqi.

Proof. Let G = ×d
i=1Kqi and q =

∑d
i=1 qi. Label the vertices of each Kqi with [qi] so that

V (G) = [q1]× · · · × [qd].
First we show the upper bound for boxicity. Let Vi,j = {(v1, . . . , vd) ∈ V (G) : vi = j} for

i ∈ [d] and j ∈ [qi] for each i. For each Vi,j, construct an interval graph Ii,j in which the vertices
in Vi,j are mapped to mutually disjoint intervals on R and every other vertex is mapped to the
universal interval R. Next we show that G = ∩i∈[d] ∩j∈[qi] Ii,j, from which the theorem follows.
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It is easy to see that each Vi,j is an independent set since every vertex in Vi,j have the same
i-th component. Hence every interval graph Ii,j is a supergraph of G. Let u, v ∈ V (G) be
two distinct non-adjacent vertices in G. Then, since they are non-adjacent, they agree in some
component, say the i-th. Hence both the vertices belong to Vi,j where j is their common value
in i-th component. Hence G = ∩i∈[d] ∩j∈[qi] Ii,j.

Next, we show the lower bound for boxicity. For each i ∈ [d], set

Ai = {(a1, . . . , ad) ∈ V (G) : ai > 2 and aj = 1 if j 6= i}, and
Bi = {(b1, . . . , bd) ∈ V (G) : bi > 2 and bj = 2 if j 6= i}.

Also set A = ∪i∈[d]Ai and B = ∪i∈[d]Bi. Note that |Ai| = |Bi| = qi − 2. When d = 2, it is
easy to see that G[A∪B] = G[A1∪B1]⊗G[A2∪B2] and that G[Ai∪Bi], i ∈ [2], are crown graphs,
that is, a complete bipartite graph with a perfect matching removed. Hence boxicity(G[Ai ∪
Bi]) = (qi − 2)/2 and hence by Observation 4, boxicity(G[A ∪ B]) = 1

2

∑2
i=1(qi − 2). When

d > 2, G[A ∪ B] is a crown graph with parts A and B. Hence boxicity(G[A ∪ B]) = 1
2
|A| =

1
2

∑d
i=1(qi − 2). In either case, the lower bound now follows easily from Observation 1.
Each of the interval graph Ii,j can be represented as an intersection graph of ⌈log |Vi,j|⌉ =

⌈log Πk 6=iqk⌉ unit interval graphs. Hence the upper bound on cubicity. The lower bound on
cubicity follows since it cannot be lower than the boxicity.
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