
Boxlets: a Fast Convolution Algorithm for
Signal Processing and Neural Networks

Patrice Y. Simard·, Leon Botton, Patrick Haffner and Yann LeCnn
AT&T Labs-Research

100 Schultz Drive, Red Bank, NJ 07701-7033
patrice@microsoft.com

{leon b ,haffner ,yann }@research.att.com

Abstract

Signal processing and pattern recognition algorithms make exten­
sive use of convolution. In many cases, computational accuracy is
not as important as computational speed. In feature extraction,
for instance, the features of interest in a signal are usually quite
distorted. This form of noise justifies some level of quantization in
order to achieve faster feature extraction . Our approach consists
of approximating regions of the signal with low degree polynomi­
als, and then differentiating the resulting signals in order to obtain
impulse functions (or derivatives of impulse functions). With this
representation, convolution becomes extremely simple and can be
implemented quite effectively. The true convolution can be recov­
ered by integrating the result of the convolution. This method
yields substantial speed up in feature extraction and is applicable
to convolutional neural networks.

1 Introduction

In pattern recognition, convolution is an important tool because of its translation
invariance properties. Feature extraction is a typical example: The distance between
a small pattern (i.e. feature) is computed at all positions (i.e. translations) inside a
larger one. The resulting "distance image" is typically obtained by convolving the
feature template with the larger pattern. In the remainder of this paper we will use
the terms image and pattern interchangeably (because of the topology implied by

translation invariance).
There are many ways to convolve images efficiently. For instance, a multiplication
of images of the same size in the Fourier domain corresponds to a convolution of
the two images in the original space. Of course this requires J{ N log N operations
(where N is the number of pixels of the image and J{ is a constant) just to go in and
out of the Fourier domain. These methods are usually not appropriate for feature
extraction because the feature to be extracted is small with respect to the image.
For instance, if the image and the feature have respectively 32 x 32 and 5 x 5 pixels,

• Now with Microsoft, One Microsoft Way, Redmond, WA 98052

572 P Y. Simard, L. BOllou, P Haffner and Y. Le Cun

the full convolution can be done in 25 x 1024 multiply-adds. In contrast, it would
require 2 x J{ x 1024 x 10 to go in and out of the Fourier domain.
Fortunately, in most pattern recognition applications, the interesting features are
already quite distorted when they appear in real images. Because of this inherent
noise, the feature extraction process can usually be approximated (to a certain de­

gree) without affecting the performance. For example, the result of the convolution
is often quantized or thresholded to yield the presence and location of distinctive
features ll]. Because precision is typically not critical at this stage (features are
rarely optimal, thresholding is a crude operation), it is often possible to quantize
the signals before the convolution with negligible degradation of performance.
The subtlety lies in choosing a quantization scheme which can speed up the con­
volution while maintaining the same level of performance. We now introduce the
convolution algorithm, from which we will deduce the constraints it imposes on
quantization.
The main algorithm introduced in this paper is based on a fundamental property of
convolutions. Assuming that 1 and 9 have finite support and that r denotes the
n-th integral of 1 (or the n-th derivative if n is negative), we can write the following
convolution identity:

(J * g)n = r * 9 = 1 * gn (1)

where * denotes the convolution operator. Note that 1 or 9 are not necessarily
differentiable. For instance, the impulse function (also called Dirac delta function),
denoted J, verifies the identity:

(2)

where J~ denotes the n-th integral of the delta function, translated by a (Ja(x) =
J(x - a)). Equations 1 and 2 are not new to signal processing. Heckbert has devel­

oped an effective filtering algorithm [2] where the filter 9 is a simple combination
of polynomial of degree n - 1. Convolution between a signal 1 and the filter 9 can
be written as

I*g = r *g-n (3)

where r is the n-th integral of the signal, and the n-th derivative of the filter
9 can be written exclusively with delta functions (resulting from differentiating
n - 1 degree polynomials n times). Since convolving with an impulse function is
a trivial operation, the computation of Equation 3 can be carried out effectively.
Unfortunately, Heckbert's algorithm is limited to simple polynomial filters and is
only interesting when the filter is wide and when the Fourier transform is unavailable
(such as in variable length filters).
In contrast, in feature extraction, we are interested in small and arbitrary filters
(the features). Under these conditions, the key to fast convolution is to quantize
the images to combinations of low degree polynomials, which are differentiated,
convolved and then integrated. The algorithm is summarized by equation:

1 * 9 ~ F * C = (F- n * C-m)m+n (4)

where F and C are polynomial approximation of 1 and g, such that F- n and
C- m can be written as sums of impulse functions and their derivatives. Since the
convolution F- n * C- m only involves applying Equation 2, it can be computed quite
effectively. The computation of the convolution is illustrated in Figure 1. Let 1
and 9 be two arbitrary I-dimensional signals (top of the figure). Let's assume that
1 and 9 can both be approximated by partitions of polynomials, F and C. On
the figure , the polynomials are of degree 0 (they are constant), and are depicted in
the second line. The details on how to compute F and C will be explained in the
next section. In the next step, F and C are differentiated once, yielding successions
of impulse functions (third line in the figure). The impulse representation has the
advantage of having a finite support, and of being easy to convolve. Indeed two
impulse functions can be convolved using Equation 2 (4 x 3 = 12 multiply-adds on

the figure). Finally the result of the convolution must be integrated twice to yield

F * C = (F- 1 * C- 1)2 (5)

Boxlets: A Fast Convolution Algorithm

Original

Quantization =
F

Differentiation -1...' -----L..---r_--1-

Convolution

Double
Integration

FIG'

FIG

G V
'r-I ------,11-__ ----..I

G'
t t

573

Figure 1: Example of convolution between I-dimensional function f and g , where
the approximations of f and 9 are piecewise constant .

2 Quantization: from Images to Boxlets

The goal of this section is to suggest efficient ways to approximate an image f by
cover of polynomials of degree d suited for convolution. Let S be the space on
which f is defined , and let C = {cd be a partition of S (Ci n Cj = 0 for i =f. j ,

and Ui Ci = S). For each Ci, let Pi be a polynomial of degree d which minimizes
equatIOn:

(6)

The uniqueness of Pi is guaranteed if Ci is convex. The problem is to find a cover
C which minimizes both the number of Ci and I.:i ei. Many different compromises
are possible, but since the computational cost of the convolution is proportional
to the number of regions, it seemed reasonable to chose the largest regions with a
maximum error bounded by a threshold K . Since each region will be differentiated
and integrated along the directions of the axes, the boundaries of the CiS are re­
stricted to be parallel to the axes , hence the appellation boxlet. There are still many
ways to compute valid partitions of boxlets and polynomials. We have investigated
two very different approaches which both yield a polynomial cover of the image in
reasonable time. The first algorithm is greedy. It uses a procedure which, starting
from a top left corner , finds the biggest boxlet Ci which satisfies ei < K without
overlapping another boxlet . The algorithm starts with the top left corner of the
image, and keeps a list of all possible starting points (uncovered top left corners)
sorted by X and Y positions. When the list is exhausted, the algorithm terminates.
Surprisingly, this algorithm can run in O(d(N + PlogN)), where N is the number
of pixels, P is the number of boxlets and d is the order of the polynomials PiS.

Another much simpler algorithm consists of recursively splitting boxlets, starting
from a boxlet which encompass the whole image, until ei < K for all the leaves
of the tree. This algorithm runs in O(dN) , is much easier to implement, and is
faster (better time constant). Furthermore , even though the first algorithm yields
a polynomial coverage with less boxlets, the second algorithm yields less impulse
functions after differentiation because more impulse functions can be combined (see
next section). Both algorithms rely on the fact that Equation 6 can be computed

574 P. Y. Simard, L. Bottou, P. Haffner and Y. Le Cun

Figure 2: Effects of boxletization: original (top left), greedy (bottom left) with a

threshold of tO,OOO, and recursive (top and bottom right) with a threshold of 10,000.

in constant time. This computation requires the following quantities

L f(x, y), L f(x, y)2 , L f(x, y)x, L f(x, y)y, L f(x, y)xy,... (7)

~~------~v~------~"~--------------v-------------~
degree a degree 1

to be pre-computed over the whole image, for the greedy algorithm, or over recur­
sively embedded regions, for the recursive algorithm. In the case of the recursive
algorithm these quantities are computed bottom up and very efficiently. To prevent
the sums to become too large a limit can be imposed on the maximum size of Ci.

The coefficients of the polynomials are quickly evaluated by solving a small linear
system using the first two sums for polynomials of degree a (constants), the first 5
sums for polynomials of degree 1, and so on.
Figure 2 illustrates the results of the quantization algorithms. The top left corner
is a fraction of the original image. The bottom left image illustrates the boxleti­
zation of the greedy algorithm, with polynomials of degree 1, and ei <= 10, 000
(13000 boxlets, 62000 impulse (and its derivative) functions . The top right image
illustrates the boxletization of the recursive algorithm, with polynomials of degree
o and ei <= 10, 000 (47000 boxlets, 58000 impulse functions). The bottom right
is the same as top right without displaying the boxlet boundaries. In this case the
pixel to impulse function ratio 5.8.

3 Differentiation: from Boxlets to Impulse Functions

If Pi is a polynomial of degree d, its (d + 1)-th derivative can be written as a sum of
impulse function's derivatives, which are zero everywhere but at the corners of Ci.

These impulse functions summarize the boundary conditions and completely char­
acterize Pi. They can be represented by four (d + 1)-dimensional vectors associated
with the 4 corners of Ci. Figure 3 (top) illustrates the impulse functions at the 4

Boxlets: A Fast Convolution Algorithm

Polynomial
(constant)

Polynomial covering
(constants)

X derivative

Derivatives

l-~C~)
Yd ·1. envatlve

(of X derivative)

Combined

~~
D D D

~
D D

~
D D

Sorted list
representation

575

Figure 3: Differentiation of a constant polynomial in 2D (top). Combining the

derivative of adjacent polynomials (bottom)

corners when the polynomial is a constant (degree zero). Note that the polynomial
must be differentiated d + 1 times (in this example the polynomial is a constant,
so d = 0), with respect to each dimension of the input space. This is illustrated at
the top of Figure 3. The cover C being a partition, boundary conditions between
adjacent squares do simplify, that is, the same derivatives of a impulse functions
at the same location can be combined by adding their coefficients. It is very ad­
vantageous to do so because it will reduce the computation of the convolution in
the next step. This is illustrated in Figure 3 (bottom). This combining of impulse
functions is one of the reason why the recurslve algorithm for the quantization is
preferred to the greedy algorithm. In the recursive algorithm, the boundaries of
boxlets are often aligned , so that the impulse functions of adjacent boxlets can be
combined . Typically, after simplification, there are only 20% more impulse func­
tions than there are boxlets. In contrast, the greedy algorithm generates up to 60%
more impulse functions than boxlets, due to the fact that there are no alignment
constraints. For the same threshold the recursive algorithm generates 20% to 30%
less impulse functions than the greedy algorithm.
Finding which impulse functions can be combined is a difficult task because the
recursive representation returned by the recursive algorithm does not provide any
means for matching the bottom of squares on one line, with the top of squares
from below that line. Sorting takes O(P log P) computational steps (where P is the
number of impulse functions) and is therefore too expensive. A better algorithm is
to visit the recursive tree and accumulate all the top corners into sorted (horizontal)
lists. A similar procedure sorts all the bottom corners (also into horizontal lists).
The horizontal lists corresponding to the same vertical positions can then be merged
in O(P) operations. The complete algorithm which quantizes an image of N pixels
and returns sorted lists of impulse functions runs in O(dN) (where d is the degree
of the polynomials).

4 Results

The convolution speed of the algorithm was tested with feature extraction on the
image shown on the top left of Figure 2. The image is quantized, but the feature
is not. The feature is tabulated in kernels of sizes 5 x 5, 10 x 10, 15 x 15 and
20 x 20 . If the kernel is decomposable, the algorithm can be modified to do two 1D
convolutions instead of the present 2D convolution.
The quantization of the image is done with constant polynomials, and with thresh­
olds varying from 1,000 to 40,000. This corresponds to varying the pixel to impulse
function ratio from 2.3 to 13.7. Since the feature is not quantized , these ratios
correspond exactly to the ratios of number of multiply-adds for the standard convo­
lution versus the boxlet convolution (excluding quantization and integration). The

576 P Y. Simard, L. Bottou, P Haffner and Y. Le Cun

8.4 12.5 13.4 13.8

Table 1: Convolution speed-up factors

Horizontal convolution A *

(a) A
Convolution of runs

(b) --- *

~'\- I A

(C) ~ ?-)- ld..b-
-------------- - ----r ------T-------

'w w' \. ----

(d)~;%) +r: ~ ~

Figure 4: Run length X convolution

actual speed up factors are summarized in Table 1. The four last columns indicate
the measured time ratios between the standard convolution and the boxlet convo­
lution. For each threshold value, the top line indicates the time ratio of standard
convolution versus quantization, convolution and integration time for the boxlet
convolution. The bottom line does not take into account the quantization time.
The feature size was varied from 5 x 5 to 20 x 20. Thus with a threshold of 10,000
and a 5 x 5 kernel, the quantization ratio is 5.8, and the speed up factor is 2.8.
The loss in image quality can be seen by comparing the top left and the bottom
right images. If several features are extracted, the quantization time of the image
is shared amongst the features and the speed up factor is closer to 4.7.
It should be noted that these speed up factors depend on the quantization level
which depends on the data and affects the accuracy of the result. The good news is
that for each application the optimal threshold (the maximum level of quantization
which has negligible effect on the result) can be evaluated quickly. Once the optimal
threshold has been determined, one can enjoy the speed up factor. It is remarkable
that with a quantization factor as low as 2.3, the speed up ratio can range from
1.5 to 2.3, depending on the number of features. We believe that this method is
directly applicable to forward propagation in convolutional neural nets (although
no results are available at this time) .
The next application shows a case where quantization has no adverse effect on the
accuracy of the convolution, and yet large speed ups are obtained.

Boxlets: A Fast Convolution Algorithm 577

5 Binary images and run-length encoding

The quantization steps described in Sections 2 and 3 become particularly simple
when the image is binary. If the threshold is set to zero, and if only the X deriva­
tive is considered, the impulse representation is equivalent to run-length encoding.
Indeed the position of each positive impulse function codes the beginning of a run,
while the position of each negative impulses code the end of a run. The horizontal
convolution can be computed effectively using the boxlet convolution algorithm.
This is illustrated in Figure 4. In (a), the distance between two binary images must
be evaluated for every horizontal position (horizontal translation invariant distance).
The result is obtained by convolving each horizontal line and by computing the sum
of each of the convolution functions. The convolution of two runs, is depicted in
(b), while the summation of all the convolutions of two runs is depicted in (c). If
an impulse representation is used for the runs (a first derivative) , each summation
of a convolution between two runs requires only 4 additions of impulse functions,
as depicted in (d). The result must be integrated twice, according to Equation 5.
The speed up factors can be considerable depending on the width of the images (an
order of magnitude if the width is 40 pixels), and there is no accuracy penalty.

Figure 5: Binary image (left) and compact impulse function encoding (right).

This speed up also generalizes to 2-dimensional encoding of binary images. The gain
comes from the frequent cancellations of impulse functions of adjacent boxlets. The
number of impulse functions is proportional to the contour length of the binary
shapes. In this case, the boxlet computation is mostly an efficient algorithm for
2-dimensional run-length encoding. This is illustrated in Figure 5. As with run­
length encoding, a considerable speed up is obtained for convolution, at no accuracy
penalty cost.

6 Conclusion

When convolutions are used for feature extraction, preCISIon can often be sacri­
ficed for speed with negligible degradation of performance. The boxlet convolution
method combines quantization and convolution to offer a continuous adjustable
trade-off between accuracy and speed. In some cases (such as in relatively simple
binary images) large speed ups can come with no adverse effects. The algorithm is
directly applicable to the forward propagation in convolutional neural networks and
in pattern matching when translation invariance results from the use of convolution.

References

[1] Yann LeCun and Yoshua Bengio, "Convolutional networks for images, speech,
and time-series," in The Han'dbook of Brain Theory and Neural Networks, M. A.
Arbib, Ed. 1995, MIT Press.

[2] Paul S. Heckbert, "Filtering by repeated integration," in ACM SIGGRAPH
conference on Computer graphics, Dallas, TX , August 1986, vol. 20, pp. 315-
321.

