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Abstract 

Signal processing and pattern recognition algorithms make exten­
sive use of convolution. In many cases, computational accuracy is 
not as important as computational speed. In feature extraction, 
for instance, the features of interest in a signal are usually quite 
distorted. This form of noise justifies some level of quantization in 
order to achieve faster feature extraction . Our approach consists 
of approximating regions of the signal with low degree polynomi­
als, and then differentiating the resulting signals in order to obtain 
impulse functions (or derivatives of impulse functions). With this 
representation, convolution becomes extremely simple and can be 
implemented quite effectively. The true convolution can be recov­
ered by integrating the result of the convolution. This method 
yields substantial speed up in feature extraction and is applicable 
to convolutional neural networks. 

1 Introduction 

In pattern recognition, convolution is an important tool because of its translation 
invariance properties. Feature extraction is a typical example: The distance between 
a small pattern (i.e. feature) is computed at all positions (i.e. translations) inside a 
larger one. The resulting "distance image" is typically obtained by convolving the 
feature template with the larger pattern. In the remainder of this paper we will use 
the terms image and pattern interchangeably (because of the topology implied by 

translation invariance). 
There are many ways to convolve images efficiently. For instance, a multiplication 
of images of the same size in the Fourier domain corresponds to a convolution of 
the two images in the original space. Of course this requires J{ N log N operations 
(where N is the number of pixels of the image and J{ is a constant) just to go in and 
out of the Fourier domain. These methods are usually not appropriate for feature 
extraction because the feature to be extracted is small with respect to the image. 
For instance, if the image and the feature have respectively 32 x 32 and 5 x 5 pixels, 
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the full convolution can be done in 25 x 1024 multiply-adds. In contrast, it would 
require 2 x J{ x 1024 x 10 to go in and out of the Fourier domain. 
Fortunately, in most pattern recognition applications, the interesting features are 
already quite distorted when they appear in real images. Because of this inherent 
noise, the feature extraction process can usually be approximated (to a certain de­

gree) without affecting the performance. For example, the result of the convolution 
is often quantized or thresholded to yield the presence and location of distinctive 
features ll]. Because precision is typically not critical at this stage (features are 
rarely optimal, thresholding is a crude operation), it is often possible to quantize 
the signals before the convolution with negligible degradation of performance. 
The subtlety lies in choosing a quantization scheme which can speed up the con­
volution while maintaining the same level of performance. We now introduce the 
convolution algorithm, from which we will deduce the constraints it imposes on 
quantization. 
The main algorithm introduced in this paper is based on a fundamental property of 
convolutions. Assuming that 1 and 9 have finite support and that r denotes the 
n-th integral of 1 (or the n-th derivative if n is negative), we can write the following 
convolution identity: 

(J * g)n = r * 9 = 1 * gn (1) 

where * denotes the convolution operator. Note that 1 or 9 are not necessarily 
differentiable. For instance, the impulse function (also called Dirac delta function), 
denoted J, verifies the identity: 

(2) 

where J~ denotes the n-th integral of the delta function, translated by a (Ja(x) = 
J(x - a)). Equations 1 and 2 are not new to signal processing. Heckbert has devel­

oped an effective filtering algorithm [2] where the filter 9 is a simple combination 
of polynomial of degree n - 1. Convolution between a signal 1 and the filter 9 can 
be written as 

I*g = r *g-n (3) 

where r is the n-th integral of the signal, and the n-th derivative of the filter 
9 can be written exclusively with delta functions (resulting from differentiating 
n - 1 degree polynomials n times). Since convolving with an impulse function is 
a trivial operation, the computation of Equation 3 can be carried out effectively. 
Unfortunately, Heckbert's algorithm is limited to simple polynomial filters and is 
only interesting when the filter is wide and when the Fourier transform is unavailable 
(such as in variable length filters). 
In contrast, in feature extraction, we are interested in small and arbitrary filters 
(the features). Under these conditions, the key to fast convolution is to quantize 
the images to combinations of low degree polynomials, which are differentiated, 
convolved and then integrated. The algorithm is summarized by equation: 

1 * 9 ~ F * C = (F- n * C-m)m+n (4) 

where F and C are polynomial approximation of 1 and g, such that F- n and 
C- m can be written as sums of impulse functions and their derivatives. Since the 
convolution F- n * C- m only involves applying Equation 2, it can be computed quite 
effectively. The computation of the convolution is illustrated in Figure 1. Let 1 
and 9 be two arbitrary I-dimensional signals (top of the figure). Let's assume that 
1 and 9 can both be approximated by partitions of polynomials, F and C. On 
the figure , the polynomials are of degree 0 (they are constant), and are depicted in 
the second line. The details on how to compute F and C will be explained in the 
next section. In the next step, F and C are differentiated once, yielding successions 
of impulse functions (third line in the figure). The impulse representation has the 
advantage of having a finite support, and of being easy to convolve. Indeed two 
impulse functions can be convolved using Equation 2 (4 x 3 = 12 multiply-adds on 

the figure). Finally the result of the convolution must be integrated twice to yield 

F * C = (F- 1 * C- 1 )2 (5) 
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Figure 1: Example of convolution between I-dimensional function f and g , where 
the approximations of f and 9 are piecewise constant . 

2 Quantization: from Images to Boxlets 

The goal of this section is to suggest efficient ways to approximate an image f by 
cover of polynomials of degree d suited for convolution. Let S be the space on 
which f is defined , and let C = {cd be a partition of S (Ci n Cj = 0 for i =f. j , 

and Ui Ci = S). For each Ci, let Pi be a polynomial of degree d which minimizes 
equatIOn: 

(6) 

The uniqueness of Pi is guaranteed if Ci is convex. The problem is to find a cover 
C which minimizes both the number of Ci and I.:i ei. Many different compromises 
are possible, but since the computational cost of the convolution is proportional 
to the number of regions, it seemed reasonable to chose the largest regions with a 
maximum error bounded by a threshold K . Since each region will be differentiated 
and integrated along the directions of the axes, the boundaries of the CiS are re­
stricted to be parallel to the axes , hence the appellation boxlet. There are still many 
ways to compute valid partitions of boxlets and polynomials. We have investigated 
two very different approaches which both yield a polynomial cover of the image in 
reasonable time. The first algorithm is greedy. It uses a procedure which, starting 
from a top left corner , finds the biggest boxlet Ci which satisfies ei < K without 
overlapping another boxlet . The algorithm starts with the top left corner of the 
image, and keeps a list of all possible starting points (uncovered top left corners) 
sorted by X and Y positions. When the list is exhausted, the algorithm terminates. 
Surprisingly, this algorithm can run in O(d(N + PlogN)), where N is the number 
of pixels, P is the number of boxlets and d is the order of the polynomials PiS. 

Another much simpler algorithm consists of recursively splitting boxlets, starting 
from a boxlet which encompass the whole image, until ei < K for all the leaves 
of the tree. This algorithm runs in O(dN) , is much easier to implement, and is 
faster (better time constant). Furthermore , even though the first algorithm yields 
a polynomial coverage with less boxlets, the second algorithm yields less impulse 
functions after differentiation because more impulse functions can be combined (see 
next section). Both algorithms rely on the fact that Equation 6 can be computed 
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Figure 2: Effects of boxletization: original (top left), greedy (bottom left) with a 

threshold of tO,OOO, and recursive (top and bottom right) with a threshold of 10,000. 

in constant time. This computation requires the following quantities 

L f(x, y), L f(x, y)2 , L f(x, y)x, L f(x, y)y, L f(x, y)xy,... (7) 

~~------~v~------~"~--------------v-------------~ 
degree a degree 1 

to be pre-computed over the whole image, for the greedy algorithm, or over recur­
sively embedded regions, for the recursive algorithm. In the case of the recursive 
algorithm these quantities are computed bottom up and very efficiently. To prevent 
the sums to become too large a limit can be imposed on the maximum size of Ci. 

The coefficients of the polynomials are quickly evaluated by solving a small linear 
system using the first two sums for polynomials of degree a (constants), the first 5 
sums for polynomials of degree 1, and so on. 
Figure 2 illustrates the results of the quantization algorithms. The top left corner 
is a fraction of the original image. The bottom left image illustrates the boxleti­
zation of the greedy algorithm, with polynomials of degree 1, and ei <= 10, 000 
( 13000 boxlets, 62000 impulse (and its derivative) functions . The top right image 
illustrates the boxletization of the recursive algorithm, with polynomials of degree 
o and ei <= 10, 000 ( 47000 boxlets, 58000 impulse functions). The bottom right 
is the same as top right without displaying the boxlet boundaries. In this case the 
pixel to impulse function ratio 5.8. 

3 Differentiation: from Boxlets to Impulse Functions 

If Pi is a polynomial of degree d, its (d + 1 )-th derivative can be written as a sum of 
impulse function's derivatives, which are zero everywhere but at the corners of Ci. 

These impulse functions summarize the boundary conditions and completely char­
acterize Pi. They can be represented by four (d + 1 )-dimensional vectors associated 
with the 4 corners of Ci. Figure 3 (top) illustrates the impulse functions at the 4 
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Figure 3: Differentiation of a constant polynomial in 2D (top). Combining the 

derivative of adjacent polynomials (bottom) 

corners when the polynomial is a constant (degree zero). Note that the polynomial 
must be differentiated d + 1 times (in this example the polynomial is a constant, 
so d = 0), with respect to each dimension of the input space. This is illustrated at 
the top of Figure 3. The cover C being a partition, boundary conditions between 
adjacent squares do simplify, that is, the same derivatives of a impulse functions 
at the same location can be combined by adding their coefficients. It is very ad­
vantageous to do so because it will reduce the computation of the convolution in 
the next step. This is illustrated in Figure 3 (bottom). This combining of impulse 
functions is one of the reason why the recurslve algorithm for the quantization is 
preferred to the greedy algorithm. In the recursive algorithm, the boundaries of 
boxlets are often aligned , so that the impulse functions of adjacent boxlets can be 
combined . Typically, after simplification, there are only 20% more impulse func­
tions than there are boxlets. In contrast, the greedy algorithm generates up to 60% 
more impulse functions than boxlets, due to the fact that there are no alignment 
constraints. For the same threshold the recursive algorithm generates 20% to 30% 
less impulse functions than the greedy algorithm. 
Finding which impulse functions can be combined is a difficult task because the 
recursive representation returned by the recursive algorithm does not provide any 
means for matching the bottom of squares on one line, with the top of squares 
from below that line. Sorting takes O(P log P) computational steps (where P is the 
number of impulse functions) and is therefore too expensive. A better algorithm is 
to visit the recursive tree and accumulate all the top corners into sorted (horizontal) 
lists. A similar procedure sorts all the bottom corners (also into horizontal lists). 
The horizontal lists corresponding to the same vertical positions can then be merged 
in O(P) operations. The complete algorithm which quantizes an image of N pixels 
and returns sorted lists of impulse functions runs in O(dN) (where d is the degree 
of the polynomials). 

4 Results 

The convolution speed of the algorithm was tested with feature extraction on the 
image shown on the top left of Figure 2. The image is quantized, but the feature 
is not. The feature is tabulated in kernels of sizes 5 x 5, 10 x 10, 15 x 15 and 
20 x 20 . If the kernel is decomposable, the algorithm can be modified to do two 1D 
convolutions instead of the present 2D convolution. 
The quantization of the image is done with constant polynomials, and with thresh­
olds varying from 1,000 to 40,000. This corresponds to varying the pixel to impulse 
function ratio from 2.3 to 13.7. Since the feature is not quantized , these ratios 
correspond exactly to the ratios of number of multiply-adds for the standard convo­
lution versus the boxlet convolution (excluding quantization and integration). The 
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Table 1: Convolution speed-up factors 
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Figure 4: Run length X convolution 

actual speed up factors are summarized in Table 1. The four last columns indicate 
the measured time ratios between the standard convolution and the boxlet convo­
lution. For each threshold value, the top line indicates the time ratio of standard 
convolution versus quantization, convolution and integration time for the boxlet 
convolution. The bottom line does not take into account the quantization time. 
The feature size was varied from 5 x 5 to 20 x 20. Thus with a threshold of 10,000 
and a 5 x 5 kernel, the quantization ratio is 5.8, and the speed up factor is 2.8. 
The loss in image quality can be seen by comparing the top left and the bottom 
right images. If several features are extracted, the quantization time of the image 
is shared amongst the features and the speed up factor is closer to 4.7. 
It should be noted that these speed up factors depend on the quantization level 
which depends on the data and affects the accuracy of the result. The good news is 
that for each application the optimal threshold (the maximum level of quantization 
which has negligible effect on the result) can be evaluated quickly. Once the optimal 
threshold has been determined, one can enjoy the speed up factor. It is remarkable 
that with a quantization factor as low as 2.3, the speed up ratio can range from 
1.5 to 2.3, depending on the number of features. We believe that this method is 
directly applicable to forward propagation in convolutional neural nets (although 
no results are available at this time) . 
The next application shows a case where quantization has no adverse effect on the 
accuracy of the convolution, and yet large speed ups are obtained. 
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5 Binary images and run-length encoding 

The quantization steps described in Sections 2 and 3 become particularly simple 
when the image is binary. If the threshold is set to zero, and if only the X deriva­
tive is considered, the impulse representation is equivalent to run-length encoding. 
Indeed the position of each positive impulse function codes the beginning of a run, 
while the position of each negative impulses code the end of a run. The horizontal 
convolution can be computed effectively using the boxlet convolution algorithm. 
This is illustrated in Figure 4. In (a), the distance between two binary images must 
be evaluated for every horizontal position (horizontal translation invariant distance). 
The result is obtained by convolving each horizontal line and by computing the sum 
of each of the convolution functions. The convolution of two runs, is depicted in 
(b), while the summation of all the convolutions of two runs is depicted in (c). If 
an impulse representation is used for the runs (a first derivative) , each summation 
of a convolution between two runs requires only 4 additions of impulse functions, 
as depicted in (d). The result must be integrated twice, according to Equation 5. 
The speed up factors can be considerable depending on the width of the images (an 
order of magnitude if the width is 40 pixels), and there is no accuracy penalty. 

Figure 5: Binary image (left) and compact impulse function encoding (right). 

This speed up also generalizes to 2-dimensional encoding of binary images. The gain 
comes from the frequent cancellations of impulse functions of adjacent boxlets. The 
number of impulse functions is proportional to the contour length of the binary 
shapes. In this case, the boxlet computation is mostly an efficient algorithm for 
2-dimensional run-length encoding. This is illustrated in Figure 5. As with run­
length encoding, a considerable speed up is obtained for convolution, at no accuracy 
penalty cost. 

6 Conclusion 

When convolutions are used for feature extraction, preCISIon can often be sacri­
ficed for speed with negligible degradation of performance. The boxlet convolution 
method combines quantization and convolution to offer a continuous adjustable 
trade-off between accuracy and speed. In some cases (such as in relatively simple 
binary images) large speed ups can come with no adverse effects. The algorithm is 
directly applicable to the forward propagation in convolutional neural networks and 
in pattern matching when translation invariance results from the use of convolution. 

References 

[1] Yann LeCun and Yoshua Bengio, "Convolutional networks for images, speech, 
and time-series," in The Han'dbook of Brain Theory and Neural Networks, M. A. 
Arbib, Ed. 1995, MIT Press. 

[2] Paul S. Heckbert, "Filtering by repeated integration," in ACM SIGGRAPH 
conference on Computer graphics, Dallas, TX , August 1986, vol. 20, pp. 315-
321. 


