
Copyedited by: B.S MANUSCRIPT CATEGORY: APPLICATIONS NOTE

[07:40 7/5/2012 Bioinformatics-bts167.tex] Page: 1525 1525–1526

BIOINFORMATICS APPLICATIONS NOTE Vol. 28 no. 11 2012, pages 1525–1526
doi:10.1093/bioinformatics/bts167

Genome analysis Advance Access publication April 12, 2012

Bpipe: a tool for running and managing bioinformatics pipelines
Simon P. Sadedin1,∗, Bernard Pope2 and Alicia Oshlack1

1Murdoch Childrens Research Institute, Royal Children’s Hospital, Flemington Road, Parkville, Victoria 3052 and
2Victorian Life Sciences Computation Initiative, The University of Melbourne, Carlton, Victoria 3010, Australia
Associate Editor: Alex Bateman

ABSTRACT

Summary: Bpipe is a simple, dedicated programming language
for defining and executing bioinformatics pipelines. It specializes in
enabling users to turn existing pipelines based on shell scripts or
command line tools into highly flexible, adaptable and maintainable
workflows with a minimum of effort. Bpipe ensures that pipelines
execute in a controlled and repeatable fashion and keeps audit
trails and logs to ensure that experimental results are reproducible.
Requiring only Java as a dependency, Bpipe is fully self-contained
and cross-platform, making it very easy to adopt and deploy into
existing environments.
Availability and implementation: Bpipe is freely available from
http://bpipe.org under a BSD License.
Contact: simon.sadedin@mcri.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on December 18, 2011; revised on March 28, 2012;
accepted on April 2, 2012

1 INTRODUCTION
Bioinformatics is a rapidly expanding field in which the arrival
of new technologies and tools, and the evolution of experimental
techniques is a constant occurrence. Therefore, data analysis
pipelines cannot be static and researchers are faced with a continual
need to adapt, understand, experiment with and integrate new
computational tools into their analyses. Such analyses are usually
composed of a chain of tools that perform separate stages of the
process. For example, calling variants from exome sequencing
data typically involves several tasks such as aligning the raw
data to the genome; removing duplicate reads; recalibrating quality
scores; calling variants; and filtering variants. For each step, several
alternative computation tools are available, but ultimately a tool for
each step needs to be chosen and integrated into a complete pipeline
to produce results of biological significance.

Integration of such diverse computational tasks into a cohesive
unit is approached in different ways. Where the expertise is available,
scripting languages such as Perl or Python are frequently employed
to create ‘pipeline’ scripts. At the other end of the spectrum, tools
such as Galaxy (Goecks et al., 2010) and Taverna (Oinn et al., 2004)
have emerged which offer many advantages in terms of ease of use
and level of automation.

Despite the advantages of other tools, some bioinformaticians still
prefer to run jobs as shell scripts. Although this makes running them
easy, it has many limitations. For example, when scripts fail before

∗To whom correspondence should be addressed.

completion, it is often difficult to determine where or why they
failed and even harder to restart from the point of failure. There is
no automatic log of commands or capture of output. Failed jobs may
leave half-created files that can be confused with completed files.
Modifying the pipeline often requires changes in multiple places,
meaning that a missed change can cause commands to fail, or use
incorrect data. Bpipe tries to solve these problems while retaining
much of the simplicity and syntax of a shell script.

2 BPIPE LANGUAGE
Bpipe is implemented in Groovy, a language that supports creation
of Domain-Specific Languages for the Java Virtual Machine. While
Bpipe retains the ability for advanced users to extend scripts using
Java or Groovy, it does not require knowledge of either language to
implement pipelines (see Supplementary Material).

The key drivers behind the design of the Bpipe language
are simplicity and concision, allowing expression of the pipeline
behavior with very little syntactical overhead. There are two steps
to creating a Bpipe pipeline. The first is to define the computational
stages of the pipeline that perform the specific tasks, such as aligning
sequencing reads to the genome. The second step is to then combine
the tasks together into a pipeline. This achieves reusability of
pipeline stages and easy modification of the pipeline sequence.

The Bpipe syntax for defining stages is very similar to running a
tool with the command line; the command is simply placed inside
curly braces and executed using the keyword exec. For example, to
define the stage of aligning sequencing reads to a genome using bwa
(Li et al., 2009), we would write:

1 align_reads = {
2 exec “bwa aln –t 8 $input > $output”
3 }

The two variables, $input and $output, are provided implicitly by
Bpipe and ensure that Bpipe can verify and track both the inputs and
outputs of the stage. Next, once a set of stages have been defined, a
pipeline can be joined together using a concise syntax that utilizes
mathematical operators to symbolize pipeline construction:

4 Bpipe.run {
5 align_reads + dedupe + call_variants
6 }

Bpipe pipeline construction includes other useful features such as
running stages in parallel, indicated by placing the sections in square
brackets:

7 Bpipe.run {
8 align_reads+[dedupe, calculate_stats] +

© The Author 2012. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 1525

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/11/1525/266669 by guest on 21 August 2022

Copyedited by: B.S MANUSCRIPT CATEGORY: APPLICATIONS NOTE

[07:40 7/5/2012 Bioinformatics-bts167.tex] Page: 1526 1525–1526

S.P.Sadedin et al.

9 call_variants
10 }

and handling batch inputs using simple pattern matching
functionality:

11 Bpipe.run {
12 “input%_*.txt” * [align_reads + dedupe]
13 + call_variants
14 }

where each group will be processed in parallel by the align_reads
and dedupe stages that follow.

3 RUNNING A BPIPE PIPELINE
Bpipe scripts are executed by a simple command line tool called
‘bpipe’. The tool can launch a pipeline, display status, stop a pipeline
or retry a partially executed pipeline from the point of failure. It
automatically captures all output and executed commands to log
files while forwarding the output to the console for the user to
see or leave running in the background as desired. Requiring only
Java as a dependency, it can run in a user’s local directory without
any installation, making it especially easy to deploy into a new
environment. In addition, Bpipe can interact with cluster resource
management systems and includes built-in support for the TORQUE
Resource Manager system (http://www.adaptivecomputing.com/
products/torque.php). We provide a generic interface to resource
managers, making it easy to support other systems in the future.

4 APPLICATION DOMAIN
There are numerous existing tools for performing computational
workflows offering differing degrees of automation and control.
Some tools such as Galaxy and Taverna feature high levels of
automation and support sophisticated graphical user interfaces.
These tools are ideal for a broad range of practicing
bioinformaticians as they are easy to use, built from well-established
tools and protocols and allow easy access to a wide range of online
data sources. Other tools, such as shell scripts, are mostly manual
but offer complete control over how tasks execute. Bpipe and Ruffus
(Goodstadt, 2010), a pipeline construction toolkit based on Python,
sit somewhere in the middle of this spectrum where there is some
level of automation but also still a significant level of fine-grained
control.

While Bpipe has similar goals and features to Ruffus, it differs in
several ways. Bpipe was created in response to a need to frequently
run many variations of a pipeline with stages deleted, inserted,
reordered or adjusted. Although Ruffus supports such activity, it
was found to be challenging to implement because Ruffus does
not explicitly model the joining of stages together as a language
construct. Rather it combines the definition of pipeline stages and
ordering by using Python annotations attached to each pipeline stage.
In addition, Bpipe, through its support of shell variable syntax,
enables the user to copy and paste a shell command they already use

directly into their pipeline with little modification. Ruffus, however,
usually needs commands to be converted to a Python-based syntax
for variable substitution. Thus, although both tools can accomplish
the same job, Bpipe is optimized for users who wish to execute shell
commands as directly as possible and desire the ability to frequently
modify or reorder them as their pipeline evolves.

To illustrate how Bpipe eases pipeline modifications, the pipeline
above could be trivially modified to remove the ‘dedupe’ stage by
simply deleting it from line 5 as follows:

4 Bpipe.run {
5 align_reads + call_variants
6 }

As the pipeline stages were not modified, both versions of the
pipeline can be maintained simultaneously. By comparison, unless
the user went to special efforts to enable it, a Ruffus script would
require modifications to several places including the pipeline stages
themselves and it would be harder to maintain both versions of the
pipeline simultaneously.

In summary, Bpipe contains attractive features to build and
maintain bioinformatics pipelines including the following:

• Simple definition of tasks—Bpipe runs shell commands
almost as is.

• Transactional management of tasks—outputs of failed
commands are cleaned up, log files saved and the pipeline
cleanly aborted.

• Automatic connection of stages—removing or adding new
stages never breaks the flow of data.

• Easy restarting of jobs—when a job fails, Bpipe cleanly
restarts from the point of failure.

• Audit trail—Bpipe keeps a journal of which commands were
executed and all their inputs and outputs.

ACKNOWLEDGEMENTS
We acknowledge Nadia Davidson for testing and providing
feedback, and other members of the Oshlack group for helpful
discussion.

Conflict of Interest: none declared.

REFERENCES
Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting accessible,

reproducible, and transparent computational research in the life sciences. Genome
Biol., 11, R86.

Goodstadt,L. (2010) Ruffus: a lightweight Python library for computational pipelines.
Bioinformatics, 26, 2778–2779.

Li,H. et al. (2009) Fast and accurate short read alignment with Burrows-Wheeler
Transform. Bioinformatics, 25, 1754–1760.

Oinn,T. et al. (2004) Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20, 3045–3054.

1526

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/28/11/1525/266669 by guest on 21 August 2022

	Bpipe: a tool for running and managing bioinformatics pipelines
	1 INTRODUCTION
	2 BPIPE LANGUAGE
	3 RUNNING A BPIPE PIPELINE
	4 APPLICATION DOMAIN

