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BPLight-CNN: A Photonics-based Backpropagation 

Accelerator for Deep Learning  

DHARANIDHAR DANG, UC San Diego 

SAI VINEEL REDDY CHITTAMURU, Micron Technology 

SUDEEP PASRICHA, Colorado State University 

RABI MAHAPATRA, Texas A&M University 

DEBASHIS SAHOO, UC San Diego 

Training deep learning networks involves continuous weight updates across the various layers of the deep 
network while using a backpropagation algorithm (BP). This results in expensive computation overheads 

during training. Consequently, most deep learning accelerators today employ pre-trained weights and focus 
only on improving the design of the inference phase. The recent trend is to build a complete deep learning 
accelerator by incorporating the training module. Such efforts require an ultra-fast chip architecture for 
executing the BP algorithm. In this article, we propose a novel photonics-based backpropagation accelerator 
for high performance deep learning training. We present the design for a convolutional neural network, 
BPLight-CNN, which incorporates the silicon photonics-based backpropagation accelerator. BPLight-CNN is 
a first-of-its-kind photonic and memristor-based CNN architecture for end-to-end training and prediction. We 
evaluate BPLight-CNN using a photonic CAD framework (IPKISS) on deep learning benchmark models 

including LeNet and VGG-Net. The proposed design achieves (i) at least 34× speedup, 34× improvement in 
computational efficiency, and 38.5× energy savings, during training; and (ii) 29× speedup, 31× improvement 
in computational efficiency, and 38.7× improvement in energy savings, during inference compared to the state-
of-the-art designs. All these comparisons are done at a 16-bit resolution; and BPLight-CNN achieves these 
improvements at a cost of approximately 6% lower accuracy compared to the state-of-the-art.  

CCS Concepts: • Computer systems organization → Neural networks; Heterogeneous (hybrid) systems; 

Architectures; • Hardware → Photonic and optical interconnect; Emerging optical and photonic technologies 

General Terms: Design, Experimentation, Performance 

Additional Key Words and Phrases: Deep learning, on-chip photonics, memristor 

 INTRODUCTION 

In today’s era of big data, the volume of data that computing systems process has been increasing 

exponentially. Deep neural networks have become the state-of-the-art across a broad range of big 
data applications such as speech processing, image recognition, financial predictions, etc. 

Convolutional neural networks (CNNs) are a popular deep learning framework with superior 

accuracy on applications that deal with videos and images. However, CNNs are highly compute and 

memory intensive, requiring enormous computational resources. With Moore’s law coming to an 

end, traditional Von Neuman computing systems such as heterogeneous CPU/GPU platforms cannot 

address this high computational demand, within reasonable power and processing time limitations. 

Therefore, several FPGA [1] and ASIC [2] approaches have been proposed to accomplish large-

scale deep learning acceleration.  

A CNN comprises of two stages: training and inference (i.e., testing). Most hardware 

accelerators for CNNs in prior literature focus only on the inference stage. However, training a CNN 

is several hundred times more compute intensive and power intensive than its inference [3]. 
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Moreover, for many applications, training is not just a one-time activity, especially under changing 

environmental and system conditions, where re-training of the CNN at regular intervals is essential 

to maintaining prediction accuracy for the application over time.  

Training a CNN in general, incorporates a backpropagation algorithm which involves notable 

memory locality and compute parallelism. Recently, a few resistive memory (memristor) based 

training accelerators have been demonstrated for CNNs, e.g. ISAAC [2], PipeLayer [4], RCP [5], 

and MNN [6]. ISAAC, RCP and MNN use highly parallel memristor crossbar arrays to address the 

need for parallel computations in CNNs. In addition, ISAAC uses a very deep pipeline to improve 

system throughput. However, this is only beneficial when a large number of consecutive images can 
be fed into the architecture. Unfortunately, during training, in many cases, a limited number of 

consecutive images need to be processed before weight updates. The deep pipeline in ISAAC also 

introduces frequent pipeline bubbles. Compared to ISAAC, PipeLayer demonstrates an improved 

pipeline approach to enhance throughput. However, RCP, MNN, ISAAC, and PipeLayer involve 

several analog-to-digital (AD) and digital-to-analog (DA) conversions which become a performance 

bottleneck, in addition to their large power consumption. Also, training in these accelerators 

involves sequential weight updates from one layer to another. This incurs inter-layer waiting time 

for synchronization, which reduces overall performance. This motivates an analog accelerator that 

can drastically reduce the number of AD/DA conversions, and inter-layer waiting time.  

 It has been recently demonstrated that a completely analog matrix-vector multiplication is 100× 

more efficient than its digital counterpart implemented with an ASIC, FPGA, or GPU [7]. HP labs 
have showcased a memristor dot product engine that can achieve a speed-efficiency product of 

1000× compared to a digital ASIC [7]. The high efficiency of analog computing with memristors 

motivates their usage in the construction of next generation accelerators. Moreover, several prior 

works have emphasized the importance of using ultrafast photonic devices in hardware accelerators 

for CNNs. For example, matrix multiplication based on photonic devices is demonstrated in [9]-

[10]. Photonic device-based training with backpropagation was proposed in [11].  Vandroome et al. 

in [8] have demonstrated a small-scale efficient recurrent neural network using analog photonic 

computing. A few efficient on-chip photonic accelerators have also been proposed in [12]-[17], but 

all of these accelerators primarily focus on inference only. Furthermore, the CNN accelerators 

proposed in prior works [12]-[13] are promising for small-scale CNNs, but for large-scale CNNs, 

data in each layer needs to be stored back in a DRAM, which limits their performance and scalability 

for universal adoption. [14] demonstrates an inference small-scale CNN accelerator using silicon 
photonics. A memristor integrated photonic design for medium scale inference CNN accelerator is 

proposed in [15]. [16] adopts a hybrid approach in which convolution is performed using silicon 

photonics circuitry and other operations are performed using digital ALUs. This leads to multiple 

inter-layer O/E and A/D conversions followed by E/O conversions. As a result, although promising, 

the performance is limited. In [17], the authors have demonstrated a photonic inference only CNN 

accelerator. They have shown a few orders of magnitude improvement in speedup and energy-

efficiency for binarized CNN accelerators. It is not clear if such a design could be applied to generic 

CNN accelerator design. In summary, a full-fledged analog CNN accelerator that is capable of both 

training and inference has yet to be demonstrated. 

 In this article, we propose a novel silicon photonics-based backpropagation accelerator for 

training CNNs. We present the design of this novel CNN accelerator (BPLight-CNN) that integrates 
the photonics-based backpropagation accelerator. BPLight-CNN is a first-of-its-kind memristor-

integrated silicon photonic CNN accelerator for end-to-end training and inference. It is intended to 

perform highly energy efficient and ultra-fast training for deep learning applications with state-of-

the-art prediction accuracy. The main contributions of this article are summarized as follows: 

— We propose BPLight-CNN, a fully analog and scalable silicon photonics-based backpropagation 

accelerator in conjunction with a configurable memristor-integrated photonic CNN accelerator 
design; 

— We demonstrate a pipelined data distribution approach for high throughput training with 

BPLight-CNN; 
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— We synthesize the BPLight-CNN architecture using a photonic CAD framework (i.e., IPKISS). 
The synthesized BPLight-CNN is used to execute four variants of VGG-Net and two variants of 

LeNet, demonstrating at least 35×, 31×, and 45× improvements in throughput, computation 

efficiency, and energy efficiency, respectively, compared to the state-of-the-art CNN 

accelerators. All these comparisons are done at a 16-bit resolution; and BPLight-CNN achieves 

these improvements at a cost of approximately 6% lower accuracy compared to the state-of-the-

art. For 32-bit resolution BPLight-CNN attains state-of-the-art accuracy with negligible effects 

on energy savings and speedup. 

 
The rest of the article is organized as follows. Section 2 introduces on-chip photonic components 

which are the building blocks of the BPLight-CNN architecture. Section 3 presents a brief overview 

of CNNs. Section 4 provides a detailed description of the BPLight-CNN architecture. Section 5 

illustrates an implementation of a popular CNN model using the proposed BPLight-CNN 

architecture. Section 6 presents the experimental setup, results, and comparative analysis. Lastly, 

we present concluding remarks in Section 7. 

 ON-CHIP PHOTONICS COMPONENTS: OVERVIEW 

The BPLight-CNN architecture is a fully analog photonic-based accelerator. To understand this 

architecture, in this section we introduce some of the basic on-chip photonics components that are 
utilized by it, such as photonic waveguides, microring modulators (MRMs), semiconductor-optical-

amplifiers (SOAs), photodetectors, and multi-wavelength laser sources for on-chip photonic 

signaling [18].  

An MRM is a circular shaped photonic structure with a radius of ~5 µm which is used to 

modulate electronic signals onto a photonic signal at the transmission source in a waveguide. MRMs 

are also used to couple/filter out light from the waveguide at the destination. Each MRM 

modulates/couple light of a specific wavelength. The geometry of the MRM determines its 

wavelength selectivity. We can also inject (remove) charge carriers to (from) an MRM to alter its 

operating wavelength. An SOA is an optoelectronic device that under suitable operating conditions 

can amplify photonic signals. A detailed description of the structure, functionality, and modeling of 

SOAs is given in [19]. 

In a typical high bandwidth photonic link, an off-chip laser source (either on the board or on a 
2.5D interposer) generates multiple wavelengths, which are coupled by an optical grating coupler 

to an on-chip photonic waveguide. The use of multiple wavelengths (e.g., 32) to transmit multiple 

streams of bits simultaneously is referred to as dense-wavelength-division-multiplexing (DWDM).  

To enable processing of these photonic signals, the on-chip photonic waveguide guides the input 

optical power of these DWDM photonic signals via a series of MRMs (where each MRM operates 

on a photonic signal with specific wavelength) and SOAs. Finally, the photonic signals arrive at the 

destination where they are coupled out of the waveguide by MRMs, which drop the photonic signals 

onto photodetectors, to convert them back to electronic signals.   

An important characteristic of photonic signal transmission in an on-chip photonic link is that it 

is inherently lossy, i.e., the photonic signal is subject to losses such as insertion losses in MRMs, 

active region losses in SOAs, detection losses in photo-detectors, and propagation and bending 
losses in waveguides. In addition, there are splitting and coupling losses in grating couplers, splitters, 

and multiplexers. Higher laser power is needed to compensate for the losses, for reliable photonic 

signal transmission. These photonic links are used to construct parts of our BPLight-CNN 

architecture, as discussed next. 
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 CONVOLUTIONAL NEURAL NETWORKS: OVERVIEW 

  Basics of Convolutional Neural Network 

Convolutional neural networks (CNNs) are a class of feed-forward neural networks commonly 

used for analyzing visual imagery for image classification and object detection/prediction tasks. 
CNNs comprise of a sequence of hidden layers where each layer is composed of neurons arranged 

in three dimensions: width, height and number of channels. The neurons in a layer are connected to 

a small region of the layer before it. This ensures that weights are shared among the neural 

connections across adjacent layers, thereby reducing the number of parameters (weights) to be learnt 

in the network. The final output layer in a CNN is a fully connected neural network (FCN) that 

transforms the full input image into a single vector of class scores arranged along the channel 

dimension.  

 

 
Figure 1: Overview of CNN with two hidden layers and an FC layer. Each hidden layer comprises of [CONV-
POOL]. 

 
In principle, three types of layers are used to build a CNN: convolution layer (CONV), pooling 

layer (POOL) and a fully connected layer (FC). Generally, CONV is accompanied with a non-linear 

activation function, such as ReLU. Depending on the sequence in which these layers are arranged, 

there are different CNN models, such as AlexNet [40], VGG [42], LeNet [43], GoogLeNet [33] etc. 

Furthermore, LeNet has lesser number of kernels compared to VGG (see Table 1). Therefore, VGG 

is capable of processing large images with more features with high accuracy, whereas the simpler 

LeNet can provide high accuracy for inputs with small images that require less features to be learned. 

Fig. 1 illustrates an example of a CNN with [CONV-POOL]-[CONV-POOL]-[FC] i.e., 2 hidden 

layers each of which comprises of [CONV-POOL]. LeNet has the configuration [CONV-POOL]-

[CONV-POOL]-[2FC] and VGG16 is built with [2CONV-POOL]-[2CONV-POOL]-[3CONV-

POOL]-[3CONV-POOL]-[3CONV-POOL]-[3FC].  
 

The functional details of the various layers are as follows. 

1) Convolution layer (CONV) is used to extract features from the image using multiple filters. 

An ܯ ×ܰ CONV receives M features as input and produces N features as output. It uses a set of 

M filters (or kernels), each of size 1ܨ ×  Each of these filters slide across a corresponding feature .2ܨ

with a stride of 1ܵ × 2ܵ to perform element-wise vector matrix multiplication. The resulting N output 

features can be represented using the following equation: 

[ݍ][݌][݊]ݐݑܱ  = ∑  ∑ ܹ(݊, ,݌ (ݍ
ிభ௜ୀ଴ெ௠ୀ଴                                     (1) 

where, 

 ܹ(݊, (ݍ,݌ = ∑ ൣܹ[݊][݉][݅][݆] × ]݊ܫ ଵܵ ∗ ݌ + ݅][ܵଶ ∗ ݍ + ݆]൧ிమ௝ୀ଴                      (2) 

 
Here, n and m are kernel index, i and j are (x,y) values of a kernel, and p and q are (x,y) values of 

input In.  
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2) Neural activation layer performs a biological activation function such as a sigmoid, rectified 

linear unit (ReLU), or tanh, on each feature of its previous layer. We utilize ReLU which is a widely 

used non-linear activation function with state-of-the-art performance [1], [7], [40], which can be 

described as follows: 

(ݔ) ܷܮܴ݁  = max {0,ݔ}    (3) 

 

3) Pooling layer (POOL) is used to obtain spatial invariance while scaling features from 

preceding layers. A ‘maximum/average of many features’ approach is considered to scale down 
extracted features. POOL maintains translational invariance, or in other words, it results in a scaled-

down feature map identical to its original version.  

4) Fully Connected Network layer (FC) performs the final classification or prediction in a CNN. 

An FC takes the feature maps generated from previous layers and multiplies a weight matrix 

following a dense matrix vector multiplication pattern. A few cascaded FC layers carry out the same 

procedure to produce the final classification or prediction output. The computation of an FC layer 

can be described by the equation: 

[ݍ][݌]ݐݑܱ  =  ∑ [݊][݌]ܹ] × ே௡ୀ0[[ݍ][݊]݊ܫ    (4) 

 
  Backpropagation Algorithm 

A deep neural network such as a CNN has two stages: training and inference (testing). In the 

training phase, the filter weights (and biases) in CONV and FC layers are learnt by using a 

backpropagation (BP) algorithm. The BP algorithm involves a forward and a backward pass in the 

deep network. Given a training sample x in the forward pass, the weighted input sum (convolution) 

z is computed for neurons in each layer l with some initial filter weights w (and bias b) followed by 

neural activation (ݖ)ߪ (ReLU(z) in our work), and POOL. The final layer L computes the output 

label of the overall network for every forward pass. This can be summarized as follows: 

Forward Pass: For each layer l, 
 

௫,௟ݖ  ← ௟ܽ௫,௟ି1ݓ + ܾ௟                                  (5) 

 

   ܽ௫,௟ ←  (6)      (௫,௟ݖ)ߪ
 

A cost function C is defined to quantitatively evaluate how well the output of a neural network 
at the final layer L compares to the target class label. The optimization goal in training is to minimize 

this cost function. The output error in the final prediction ߜ௫,௅  is a result of errors induced by the 
neurons in each hidden layer during the forward pass. To compute the error contribution of a neuron 

in the previous layer i.e., ߜ௫,௟, the final error is back propagated through the network starting from 
the output layer. This can be summarized as follows: 

Output error: At the final layer L, 
 

௫,௅ߜ  ← ∇௔ܥ௫⨀ߪ′(ݖ௫,௅)     (7) 
 

Backward Pass: For each layer l, 

௫,௟ߜ  ← ்(௟ା1ݓ)) ×  (8)                               (௫,௟ݖ)′ߪ⨀(௫,௟ା1ߜ
 

Here, ∇௔ is gradient of ܽ௫,௟, ⨀ is the dot product, and ߪ′(ݖ௫,௅) is derivative of ߪ(ݖ௫,௅). These 
error contributions are necessary to update the filter weights w and biases b in the respective layers 

using a gradient descent method. In gradient descent, the forward and backward pass happen 

iteratively until the cost function is minimized and the network is trained. This can be summarized 

as follows: 
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Gradient Descent: For each layer l and m training samples with learning rate ߟ, 

௟ݓ  ← ௟ݓ  −  
ఎ௠∑ ௫,௟ߜ × (ܽ௫,௟ି1)்௫                                        (9) 

 ܾ௟ ←  ܾ௟ −  
ఎ௠∑ ௫,௟௫ߜ                        (10) 

 

Once the parameters of the model are learnt with the aid of the BP algorithm, recognizing an 

object in an image involves a simple forward propagation of a test image through a sequence of 

[CONV-POOL] hidden layers to extract the relevant features. Lastly, the feature maps flow through 

the FC layer which activates certain neurons in this dense network, to recognize the object it is 

trained for.  

Now that we have covered some background on CNNs in this section and on-chip photonics in 

the previous section, we will describe our proposed BPLight-CNN accelerator in the next section. 

 

 
Figure 2: An overview of BPLight-CNN architecture. 

 BPLIGHT-CNN ARCHITECTURE 

 Overview of BPLight-CNN Architecture 

Our proposed BPLight-CNN architecture is a fully analog, scalable, and configurable memristor-

integrated photonic CNN accelerator design. Unlike previously proposed state-of-the-art CNN 

accelerators [2], [4], BPLight-CNN accelerator enables completely analog end-to-end training and 

testing for a CNN. Fig. 2 gives a high-level overview of this BPLight-CNN architecture. As shown 

in the figure, BPLight-CNN comprises of three parts: feedforward CNN accelerator architecture, 

backpropagation accelerator architecture, and weight update and peripheral circuitry. The proposed 

analog feedforward CNN accelerator (discussed in subsection 4.2) enables Feature Extraction (FE) 

through a memristive convolution layer and silicon photonics based ReLU and pooling layers. The 

feedforward CNN accelerator uses memristive multiplication for Feature Classification (FC). The 

entire backpropagation accelerator (discussed in subsection 4.3) is implemented in the photonic 

realm using MRMs, splitters, and multiplexers. Finally, BPLight-CNN’s weight update and 
peripheral circuitry (discussed in subsection 4.4) are implemented through a group of memristors. 

Furthermore, BPLight-CNN architecture scope of work is limited to functioning of resistive-

memristors. Analysis on the impact of thermal- and shot-noise on memristors is beyond the scope 

of this work. Rest of this section describes these three components of BPLight-CNN in more detail. 
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Figure 3: Microarchitecture of Feature Extractor (FE) in BPLight-CNN: showing CONV, ReLU, POOL, and 

and the Interface layer 
 

  Feedforward CNN Architecture 

We consider an image dataset as input data and its classification as the application to be executed 

with BPLight-CNN. The CNN accelerator in the proposed BPLight-CNN architecture (see Fig. 2) is 

used for feedforward feature extraction (FE) followed by feature classification of input images. The 

FE in the CNN architecture is carried out using multiple FE stages (ܧܨ௜). After all of the features 
are extracted, feature classification is performed using one or more fully-connected layers (FC). Fig. 

3 illustrates the microarchitecture of an FE stage. Each FE stage comprises of multiple memristor-

based convolution layers (CONV), a semiconductor-optical amplifier (SOA)-based ReLU layer, an 

optical comparator based max-pooling (POOL) layer, and an interface layer. BPLight-CNN’s FE 

adopts a completely analog computing paradigm by avoiding inter-layer A-to-D (Analog-to-Digital) 

and D-to-A (Digital-to Analog) conversions compared to state-of-the-art CNN accelerators [2], [4] 

which use analog memristive convolution and digital CPU/GPU based ReLU and Pooling. The 

detailed design is discussed in the following subsection. 

 

4.2.1 CONV Layer Microarchitecture  

CONV is the first step for FE. As shown in Fig. 3, there are multiple CONV layers in each FE. 
Each CONV layer has multiple weight memristor arrays (WMAs). The basic building block of a 

WMA is a memristor. A memristor is a metal-oxide-based two-terminal electronic component [22], 

whose conductance G can be varied by external current flux. A detailed discussion on the operation 

of a WMA is presented in Section 4.2.1(a). The first CONV layer receives analog data from an 

SRAM register through a DAC array or from the previous FE stage. An efficient pipelined approach 

is used to store input data (e.g., image pixels) in the SRAM, and this approach is discussed in Section 

5. Intermediate CONV layers receive data from previous CONV layer and transfer data to the next 

CONV layer. Finally, an array of MRMs receives convolved data from the last CONV layer and 

modulates that information on carrier wavelengths to transfer this data to the ReLU layer (see 

Section 4.2.2) for further processing.  In addition, FE process employs array of mode-locked lasers 

to produce light-wave carriers with different wavelengths. 
The FE process in the BPLight-CNN architecture can convolve 56×56 image pixels in a 

complete cycle. Furthermore, BPLight-CNN processes 56×56 RGB image pixels sequentially in a 

pipelined manner. The 56×56 input data is divided into 4 chunks of 28×28 input pixels. BPLight-

CNN can use multiple chunks (i.e., 8, 16 and so on) of 28×28 input pixels to process input data 

larger than 56×56, however this analysis is beyond the scope of this work. As explained earlier, 

before performing convolution, 28×28 input pixels stored in SRAM are converted to analog data 

using a DAC array. Moreover, an SRAM is connected to the DAC array using eight 128-bit memory 

buses. To enable conversion of 784 pixels (or 28×28), 13 64-channel DACs are employed. Four 

WMAs are used are in each CONV layer to process the analog data, where each WMA comprises 
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of 38416 memristors. More information about performing convolution using WMAs is presented in 

next subsections 4.1.1(a) (i.e., WMA reconfiguration) and IV.A(1)(b) (i.e., memristive convolution).  

Finally, FE utilizes 196 dense wavelength-division-multiplexing (DWDM) waveguides, each 

carrying 16 wavelengths. More discussion on the choice of 16 wavelengths is presented in Section 

6. This ensures simultaneous traversal of 4 28×28 pixels in a single cycle. In the following sections, 

the term waveguide group refers to the set of 196 DWDM waveguides. 

 

 
Figure 4: Memristive convolution in a CONV layer; red boxes contain transistor  

switch for reconfiguration; yellow rectangular boxes are memristors. 

 
(a) WMA Reconfiguration: A major parameter to consider during CNN model selection is its 

filter size. A CNN model can use filters of different sizes such as 1×1, 2×2, 3×3, 4×4, 5×5, and 7×7 

etc. The WMA in CONV can be configured to support filters of different sizes. Fig. 4 demonstrates 

the WMA reconfiguration process to deploy 3×3 filters as an example. To configure a 3×3 

memristor filter, memristors in a WMA are divided into multiple 9-memristor based memristor 

banks. The input of a memristor is either connected to an analog output of a DAC from the DAC-

array or is grounded for zero-padding which is required in the convolution. The output terminal of 

each memristor is connected to two electronic switches p and q. Similarly, to configure a 7×7 

memristor bank, all the memristors in a WMA are divided into 784 memristor banks, each 

comprising of 49 memristors. This novel reconfiguration approach makes the proposed BPLight-

CNN architecture flexible enough to emulate any CNN model. Another important aspect of 
convolution is striding (see Section 2.1.1). Analog inputs from the DAC or previous FE stages are 

connected with each memristor unit considering the required interval during the design time to 

satisfy striding, e.g. for a 1×1 stride, the WMA (G1
C

, G2
C

, …G9
C

) is connected with the 1st set of inputs 

(V1, V2, …V9) and then the next identical WMA (G1
C

, G2
C

, …G9
C

) is connected with (V2, V3, …V10), 

and so on.  

(b) Memristive Convolution: Fig. 4 demonstrates memristive convolution using a 3×3 memristor 

bank as an example. Each memristor bank has 9 memristors with conductance  1ܩ
஼, 2ܩ

஼ 9ܩ… ,
஼. A 

memristor can be programmed to carry up to 1000 states or conductance values [32]. We chose the 

value of each conductance ܩ௜஼ such that  ௜ܹ஼ = ௜஼(i = 1,2, …9), where 1ܹܩ
஼ , 2ܹ

஼ , … 9ܹ
஼ are weight 

elements of a 3×3 kernel as defined in Eq.1 and Eq.2. The kernel elements are chosen randomly in 

the beginning and then are updated by backpropagation during the training mechanism. The weight 

update mechanism was explained in Section 2.2.  
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Convolution with a memristor bank works as follows. Each weight value ௜ܹ஼ can either be a 

positive value or be a negative value. As conductance of a memristor cannot be negative, a CMOS 

switch is used in our design to store negative weight in a memristor. If ௜ܹ஼ is positive, CMOS switch 

pi (see Fig. 4) of the corresponding memristor (i.e., ܩ௜஼) is switched ON. If ௜ܹ஼ is negative, switch 

qi (see Fig. 4) is switched ON. Let the analog voltage inputs (i.e., input image pixels converted to 

analog data) to memristors 1ܩ
஼, 2ܩ

஼ 9ܩ… ,
஼ of the first memristor bank be 1ܸ, 2ܸ, … 9ܸ respectively. In 

Fig. 4, currents from memristors carrying positive weights are accumulated in terminal A and 

currents from memristors carrying negative weights are accumulated in terminal B (Kirchhoff’s law). 

The convolved output can be written as ( ஺ܸ − ஻ܸ) where ஺ܸ is voltage at A and ஻ܸ  is voltage at B: 

௞ܥ  = ஺ܸ − ஻ܸ     (11) 

 

where ܥ௞ is the resulting voltage or the convolved output from the ݇௧ℎ memristor bank, ( ஺ܸ =

௣ܫ  ∗ ܴ) and ( ஻ܸ = ௤ܫ ∗  ௣ is current accumulated from memristors through all switches markedܫ ,(ܴ

as p and ܫ௤is the current accumulated from memristors through all switches marked as q. The current 

values are: 

 

௣ܫ    = ∑ [ 9ܸ∗௞ା௜ ∗ ௜஼]9௜ୀ1ܩ      for ௜ܹ஼ > 0        (12) 

 

௤ܫ  = ∑ [ 9ܸ∗௞ା௝ ∗ ௝஼]9௝ୀ1ܩ   for ௝ܹ஼ < 0   (13) 

 

Each convolved output ܥ௞ is fed to the peripheral circuit as it will be used by the backpropagation 

architecture later. Details of the peripheral circuit are discussed in Section 4.4. Apart from the 

peripheral circuit, each ܥ௞ is input to a microring modulator (MRM) for data modulation. There are 

784 MRMs each of which can modulate a light-wave in the DWDM waveguide. A modulated 

photonic signal with wavelength λk in a photonic waveguide can be expressed as: 
௞ܮ  = ௞ܥ ∗ ܣ sin(

2గఒೖ ݐ +  (14)    (ߠ

where ܮ௞  is modulated light-wave with wavelength ߣ௞ , carrying convolved data ܥ௞ , A is the 

amplitude of the ݇௧ℎ light-wave before the data modulation phase. By setting A = 1, 

 

௞ܮ                  = ௞ܥ sin(
2గఒೖ ݐ +  (15)                     (ߠ

After data modulation, all the light-waves Lk (k = 1, 2, …, 784) are decoupled from the DWDM 

waveguide by a DWDM de-coupler. After decoupling, each individual light-wave is fed to a 

semiconductor-optical-amplifier (SOA) in the ReLU layer. 

 

4.2.2 ReLU Layer Microarchitecture 

 As discussed in Section 3, an SOA is a silicon photonic component used to amplify a photonic 

signal. An SOA uses an electronic pumping mechanism to provide gain to an input photonic signal. 

The electronic pump current to an SOA can be varied to set its total gain. The characteristics are 

almost linear when an SOA’s gain is close to 1.  This linear behavior is identical to ReLU (see Eq. 

(3)) which is a widely used deep learning neural activation function. In addition to simple linear 

amplification, it has been demonstrated in [8] that an SOA can be tuned to emulate other neuron 
functions that are used in deep learning, such as Tanh, Sigmoid, exponential, etc, which broadens 

the scope of our BPLight-CNN accelerator neurons. Therefore, we set the gain of all the SOAs in 

our design to 1. There are 784 SOAs in a ReLU layer of BPLight-CNN as shown in Fig. 3. The ݇௧ℎ 

SOA takes light-wave ܮ௞ as input and produces the following output.  

ܮܴ݁  ௞ܷ = ൜ 0, ௞ܥ ≤ 0

௞ܮ  , ௞ܥ > 0
     (16) 
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This is according  to the ReLU model explained in Eq. 3. The outputs ܴ݁ܮ ௞ܷ of all SOAs are 

subsequently fed to the max-pooling layer, which is discussed next. 

 

 
(a) 

 

 
(b) 

Figure 5: (a) Cascaded optical comparator in POOL, (b) Fully Connected Layer (FC). 
 

4.2.3 POOL Layer Microarchitecture 
The VGG [42] and LeNet [43] benchmarks (see Table 1) that are used in this work operate on a 

2×2 max-pooling with a stride of 2. Therefore, for max-pooling we consider a 2×2 window with a 

stride of 2. To facilitate 2×2 max-pooling for 784 outputs from the ReLU layer, the photonic max-

pooling layer (POOL) uses 196 4-input max-pooling units such as 1ܲ , 2ܲ , 3ܲ, … 1ܲ96. Each max-

pooling unit consists of a cascaded optical comparator arrangement to perform max-pooling. As 

shown in Fig. 5(a), three 2-channel optical comparators are cascaded to form a 4-input max-pooling 

unit. For benchmarks operating on higher order max-pool (e.g. 3×3), proportional number of optical 

comparators can be integrated to design the desired max-pooling unit. We consider a high-speed 

two-channel optical comparator identical to [20] designed for a nominal wavelength of 1560 nm. 

The 784 outputs from the ReLU layer are bundled into 196 sets and each set j is fed to max-pooling 

unit ௝ܲ . Assuming ܴ݁ܮ ܮܴ݁,1ܷ ܮܴ݁,2ܷ ܮܴ݁,3ܷ 4ܷ all belong to set 1 and are input to 1ܲ, the max-

pooling output of unit ௝ܲ  can be written as: 

ܯ  ௝ܲ = ܮܴ݁}ݔܽ݉ 4ܷ(௝ି1)ା1,ܴ݁ܮ 4ܷ(௝ି1)ା2,ܴ݁ܮ 4ܷ(௝ି1)ା3, ܴ݁ܮ 4ܷ(௝ି1)ା4}                    (17) 

 

The output from the POOL layer is directed to interface layer which has a series of MRM 

detectors. These detector MRMs perform optical to electrical (O/E) conversion of data before 

feeding it to the next convolution layer or FC layer.   
 

4.2.4 FC Layer Microarchitecture 

After feature extraction is performed using the FE stages (by using the CONV, ReLU, and POOL 

microarchitectures discussed in the previous subsections), features are sent to a feature classification 
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phase. In CNN, the feature classification segment can be viewed as a special case of convolution, 

where each extracted feature map uses the largest possible kernel. In other words, feature 

classification comprises of one or more fully-connected (FC) layers. All the layers discussed in the 

previous subsections are used for feature extraction, whereas the FC layer performs feature 

classification.  

BPLight-CNN employs a memristive matrix vector multiplication (M-MVM) based FC layer. 

The working principle of M-MVM based FC is similar to that of memristive convolution. Fig. 5(b) 

illustrates a logical layout of a M-MVM based FC layer. When all the features from the feature 

extraction stage are stored and available in the SRAM buffer, the features are fed to the DAC array 
of the FC layer as depicted in the figure. As an example, we consider 512 features coming from the 

feature extraction (FE) stages. VGG and LeNet operate on a 7×7 kernel in FC. Therefore, each 

feature is a 7×7 matrix, e.g. the ith feature is 1ܧ
௜ 2ܧ,

௜ , 49ܧ…
௜ . FC has 49 identical memristor banks each 

of which has 512 memristors:  1ܩ
ி஼ 2ܩ,

ி஼ , 512ܩ…
ி஼ . Each memristor ܩ௜ி஼  represents an FC weight ௜ܹி஼ 

which is obtained through offline training. After analog conversion, each analog value of a feature 

is applied as voltage across a memristor of the FC’s memristor bank. For example, a voltage of 1ܧ
௜ 

is applied across 1ܩ
ி஼ , voltage of 2ܧ

௜  across 2ܩ
ி஼ , etc. Depending on whether the weight Wi

FC 

corresponding to memristor Gi
FC

 is positive or negative, the p or q switch is set respectively, (see 

Fig.4). The accumulated current from each memristor bank is fed to the next FC stage until the final 

FC stage is reached. Also, outputs from each FC stage are fed to the peripheral circuit to be used by 
the backpropagation architecture for weight update. The outputs from the final FC stage are the 

classified outputs for a feedforward CNN. During training, the classified outputs and target outputs 

are input to an analog subtraction unit, the result of which is fed to the backpropagation architecture, 

as discussed next. 

 

  Backpropagation Architecture 

BPLight-CNN’s backpropagation (BP) architecture employs analog microring modulators, 

photodiodes, multiplexers, and splitters to perform completely analog matrix-multiplication and 

other arithmetic operations. In contrast, previously proposed CNN accelerators [2], [4] adopt a 

hybrid approach by using analog memristors for matrix multiplications and digital CPU/GPU for 

other arithmetic operations, which requires performance hindering A-to-D and D-to-A conversions.  

Our analog BP architecture mainly involves computing matrix-vector multiplication in the 

backward pass. A photonic modulator is used for analog amplitude modulation of a light carrier. In 

its simplest term, analog amplitude modulation is the multiplication of a scalar input with an analog 
signal. The authors in [18], [39] have demonstrated photonic modulator based analog multipliers. 

Fig. 6 illustrates the microarchitecture of the proposed BP accelerator design. It is based on photonic 

matrix-vector multiplication using MRMs (which were discussed in Section 3). We use MRMs for 

their high accuracy and quality factor [23].  

We now describe the operation of the proposed BP architecture. As discussed in Eq. (7), the 

error at the final layer (l=L) of BP is ߜ௫,௅ ← ∇௔ܥ௫⨀ߪ′(ݖ௫,௅). Here, ∇௔ܥ௫ is rate of change of output 
w.r.t the output activation (i.e., difference of actual classified output from FC of CNN architecture 

and the target output). ߪ′(ݖ௫,௅) is the derivative of the ReLU function in the final FC stage of the 
CNN architecture. Outputs from the final FC stage of the CNN architecture are fed to an analog 

subtraction and multiplication unit to determine ߜ௫,௅. Using Eq. (8) and the computed ߜ௫,௅, we 
calculate error for the (L-1)th layer using the following equation: 

௫,௅ି1ߜ  ← ்(௅ݓ)) ×  (18)                                  (௫,௅ି1ݖ)′ߪ⨀(௫,௅ߜ
 

where, ݓ௅  is weight matrix obtained from Lth layer of CNN architecture through the peripheral 
circuit. The details of the peripheral circuit are explained in the next subsection. 
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Figure 6: Backpropagation architecture in BPLight-CNN which presents the backpropagation between  

the final layer l=L and penultimate layer l=L-1. 

  

Fig. 6 shows the backpropagation between the final layer l=L and its penultimate layer l=L-1. 
As illustrated in Fig. 6, there are N number of wavelength carriers coming from a mode-locked laser 

array. The value of N for a layer equals to the output feature size for the corresponding layer in the 

CNN architecture, e.g. N equals 49 (7×7) for the last layer. Each wavelength in layer L is modulated 

with error ߜ௫,௅ by an MRM tuned to that wavelength. In Fig. 6, the violet MRM is tuned to modulate 1ߣ. Now the jth MRM’s (where 1 ≤ ݆ ≤ ܰ) modulation output on ߣ௝ is ܯܴܯ௝ = ௝௫,௅ߜ ∗ ܣ sin(
2గఒೕ ݐ  ௝ is split into two equal parts. The first part is sent to the weight-update circuitry (seeܯܴܯ Each .(ߠ+

Section 4.4) to update the corresponding weights in the CNN architecture. The other part is fed to a 
WDM multiplexer. A WDM multiplexer is used to combine multiple light wavelengths into a single 

multi-wavelength carrier. After multiplexing, the combined optical signal is split into M parts where 

M equals the number of neurons (i.e, 1 ≤ ݉ ≤ ܯ ) in layer L-1. Each part is fed to a multi-

wavelength waveguide. As a result, in each waveguide there are N wavelengths each carrying data ߜ௝,௡௫,௅ ∗ ܤ sin(
2గఒೕ ݐ + where 1 ,(ߠ ≤ ݊ ≤ ܤ,ܰ =

஺
2ே. Each weight ݓ௜௝௅  of the transpose of ݓ௅  obtained 

from the peripheral circuit is modulated to a light carrier. This results in:  

௜,௡ܯ                                                                                                                  = ௜௠௅ݓ ∗ ௝,௡௫,௅ߜ ∗ ܣ sin(
2గఒೕ ݐ +  (19)                                   (ߠ

 

Now, each ܯ௜,௡ is modulated with ܽ௡௅  which is a derivative of the ReLU functions of layer L-1 

(equal to ߪ′(ݖ௫,௅ି1)  in Eq. (18)).  Then, ܯ′௜,௡  becomes, 

௜,௡′ܯ  = ௜௠௅ݓ ∗ ௝,௡௫,௅ߜ ∗ ܽ௡௅ ∗ ܣ sin(
2గఒೕ ݐ +  (20)                        (ߠ

 

Next, a photodiode is used to demodulate photonic data from each waveguide. The photodiode 

demodulates the combined output ܯ′௜,௡ for all wavelengths in a waveguide which is nothing but the 

matrix-vector multiplication identical to Eq. (18). The output of each photodiode is passed through 

a signal conditioning and filtering circuit to remove unwanted noises. Details of the conditioning 
circuit are omitted for brevity. The output from the signal conditioning circuit looks as follows: 

௫,௅ି1ߜ  = ்(௅ݓ)) ×  ௫,௅)⨀ܽ௅                       (21)ߜ

 

where, ߜ௫,௅ି1 is the error to be propagated from layer (L-1) to (L-2). The same procedure as 
above is continued until the 1st layer is reached. While doing the backpropagation, the error value 
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in each layer is also fed to the corresponding weight-update circuit, which is discussed in more detail 

below. 

 

 
Figure 7: Weight-update circuitry for any layer l 

 

 Weight Update and Peripheral Circuitry 

4.4.1 Weight-update circuitry 

For weight-update, each element of a weight kernel in any layer l of CNN architecture can be 

written as ݓ௞,௝௟ . Please note that l=L for the final layer. Each ݓ௞,௝௟ is stored in a memristor of a 

memristor bank in layer l as ܩ௞,௝௟ (as explained in Section 4.2.1). The weight-update equation for ݓ௞,௝௟ (or, ܩ௞,௝௟ ) can be written as per Eq. (9), as follows: 

௡௘௪(௞,௝)ܩ 
௟ ← ௢௟ௗ(௞,௝)ܩ 

௟ −  
ఎ௠ × ௞௟ߜ × ௝ܱ௟ି1                                    (22) 

 

where, ௝ܱ௟ି1 is the jth output from the POOL of the (l-1) layer of the CNN architecture. Fig.7 

illustrates the weight-update circuitry for any layer l. As shown in Fig. 7, ߜ௞௟  is obtained from the 

BP architecture as a photonic signal. ௝ܱ௟ି1, which is collected from the peripheral circuit, is used to 

modulate the light carrier carrying the error value ߜ௞௟ . The modulated output is demodulated using a 

photodiode and then sent to a signal conditioning circuit. In the signal conditioning circuit, first the 

analog signal is filtered (from noises) and passed through a subtractor to obtain new ܩ௞,௝௟  as depicted 

in Eq. (20). The previous conductance or weight value ܩ௢௟ௗ(௞,௝)
௟ is fed to the subtractor from the lth 

layer memristor bank. The new conductance value ܩ௞,௝௟  is now fed to the equivalent memristor 

control circuit to update its weight value. The conditioning circuit as well as the memristor control 

circuit are from [3]. 

 

4.4.2 Peripheral Circuitry 

The output ܯ ௝ܲ  from the POOL of a layer l can be written as ܯ ௝ܲ௟. During the feedforward 

training phase, each ܯ ௝ܲ௟is stored as conductance in a memristor in the peripheral circuitry. This is 

used in backpropagation as ௝ܱ௟, an output of the lth layer (as per Eq. (22)). Each ܯ ௝ܲ௟ is sent to a 

signal conditioning circuit and then a memristor control circuit. The resulting electronic signal is 

used to update the conductance (or weight value) of the memristor.  

 BPLIGHT-CNN CASE STUDY 

In this section, we demonstrate the working principle of a pipelined BPLight-CNN architecture 

for a CNN benchmark VGG [42] on the ImageNet dataset [45]. We select a particular configuration, 

namely, VGG-A for the case study. However, we also experiment with all variants of the VGG [42] 

and LeNet [43] benchmarks as shown in Table 1 and discussed in Section 6. Using 

microarchitectures of the convolution layer, ReLU layer, POOL layer, interface layer, and FC layer 
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as explained in Section 4, we configured BPLight-CNN as illustrated in Fig. 8(a) for VGG-A 

application with four FE stages. The details of it are as follows.  

VGG for the ImageNet dataset operates on a 224×224 image input. As explained in Section 4.2.1, 

BPLight-CNN can convolve 56×56 pixels at a time, i.e., one BPLight-CNN cycle. Therefore, it 

requires 16 BPLight-CNN cycles to execute a 224×224 image. Please note that a BPLight-CNN cycle 

is different from its clock cycle. Here, one BPLight-CNN cycle refers to the complete feature 

extraction and feature classification of a 56×56 image.  The SRAM register array in BPLight-CNN 

is of size 2 KB to store the 56×56 input data. CONV performs feature extraction on a 28×28 input 

data at a time in a pipelined manner. FE in BPLight-CNN is performed as explained in the CONV 
architecture (Section 4.4.1). 

 

 

(a) 

 

(b) 

Figure 8: (a) VGG-A implemented on BPLight-CNN (b) Pipelined dataflow in feedforward operation in 
BPLight-CNN. 

 

       Fig. 8(b) demonstrates the pipelined dataflow of the feedforward operation in BPLight-CNN. 

We consider a 2.5 GHz clock. Therefore, the clock cycle period Tsm = 400 ps. As shown in Fig. 8(b), 

at t=Tsm, the first set of 28×28 pixels from SRAM (i.e., A) are convolved (64 filters/features) and 

are stored in memristors in the peripheral circuit. The other three set of 28×28 pixels are namely, B, 

C, and D. Note that CONV convolves a 28×28 input in one clock cycle. As FE1  for VGG-A consists 

of one convolution layer (see Table 2), convolved outputs of CONV-1 of FE1 is directly sent to the 

modulation phase. In the modulation phase, each convolved output is modulated by an MRM of a 

particular tuning wavelength to a light carrier of that wavelength in the DWDM waveguide group. 

The DWDM waveguide group (i.e., as mentioned in Section 4.2.1 each waveguide group has 196 

waveguides with 16 DWDM wavelengths in each of the waveguide) can accommodate 4×784 
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wavelengths or in other words 4 features of size 28×28. The time required for convolved data of one 

FE to arrive at the next FE, ிܶா  = modulation time + ReLU time + POOL time + interface time = 

20 ps + 10 ps + 10 ps + 10 ps = 50 ps. From t= ௦ܶ௠ to t=2 ௦ܶ௠, CONV(A) outputs from the peripheral 

circuit of 1ܧܨare modulated, ReLU and POOL’ed, and then fed to FE2. There can be 8 such data 

movements as ೞ்೘்ಷಶ = 8. In one data movement, 4 28×28 features can be processed. Therefore, at 

t=2 ௦ܶ௠, 32 CONV(A) features arrive at FE2. Similar to CONV(A), from t=2 ௦ܶ௠ to t=3 ௦ܶ௠, 32 

CONV(B) features; from  t=3 ௦ܶ௠ to t=4 ௦ܶ௠, 32 CONV(C) features; from t=4 ௦ܶ௠ to t=5 ௦ܶ௠, 32 

CONV(D) features are convolved and stored in the peripheral circuit of 2ܧܨ. After this, from t=5 ௦ܶ௠ 

to t=6 ௦ܶ௠ ,  the remaining 32 CONV(A) features in 1ܧܨ are convolved in 2ܧܨ. In this way, by 

t=6 ௦ܶ௠ , all the 64 CONV(A) features in 1ܧܨare convolved with 128 2ܧܨ filters to produce 128 

features and stored in the memristors of its peripheral circuit. Similarly, remaining 32 B, C, and D 

features are convolved and stored (Fig. 8(b)) by t=7 ௦ܶ௠, t=8 ௦ܶ௠, and t=9 ௦ܶ௠ respectively. 1ܧܨ has 

64 features, 2ܧܨ has 128 features, 3ܧܨ has 256 features, etc, as per the VGG-A configuration (Table 

1). It is important to note that 64 CONV(A) features from 1ܧܨare convolved with 128 memristive 

WMAs (kernels/filters) to produce 128 CONV(A) features for 2ܧܨ . Similarly, 128 CONV(A) 

features from FE2are convolved with 256 WMAs to produce 256 CONV(A) features for 3ܧܨ. 
 

Table 1. CNN Benchmark Configuration For VGG, LeNeT 
  

FE1 

 

FE2 

 

FE3 

 

FE4 

 

FE5 

 

VGG-A 3×3, 64, 1 3×3, 128, 1 3×3, 256, 2 3×3, 512, 2 3×3, 512, 2 

F
C

-4
0

9
6

,2
  

F
C

-1
0

0
0

, 
1

 

VGG-B 3×3, 64, 2 3×3, 128, 2 3×3, 256, 2 

1×1, 256, 1 

3×3, 512, 2 

1×1, 256, 1 

3×3, 512, 2 

1×1, 256, 1 

VGG-C 3×3, 64, 2 3×3, 128, 2 3×3, 256, 3 3×3, 512, 3 3×3, 512, 3 

VGG-D 3×3, 64, 2 3×3, 128, 2 3×3, 256, 4 3×3, 512, 4 3×3, 512, 4 

LeNET-A 3×3, 6,1 3×3, 6,1 3×3, 16,2 3×3, 16, 4 3×3, 120, 1 

F
C

8

4
,1

 

LeNET-B 3×3, 6,1 3×3, 6,1 3×3, 256, 1 3×3, 16,6 3×3, 120, 1 

 

A, B, C, and D are convolved separately until ݐ = 10 ௦ܶ௠ when all of them arrive at 3ܧܨ as 256 

7×7 features each. Now, all of these features are merged together to form 256 28×28 features. 

Therefore, it will require another 8 ௦ܶ௠ time (i.e., t=10 ௦ܶ௠ to t=18 ௦ܶ௠ ) to send 256 28×28 features 

from 3ܧܨ and convolve them as 512 14×14 features at 4ܧܨ. Similarly, convolution, ReLU, and 

POOL are performed in 4ܧܨ  and 5ܧܨ . As illustrated in Fig. 8(b), at t=24 ௦ܶ௠ , 512 features are 

obtained from 5ܧܨ for 56×56 pixels. As shown in Fig. 8(a), features from 5ܧܨ  are stored in SRAM 

until all the 224×224 pixels are extracted. For 224×224 pixels, it will take 

16×24 ௦ܶ௠=384 ௦ܶ௠=153.6ns. After this, all the features are retrieved from SRAM and fed to FC for 

feature classification. The first FC operation requires ( ௦ܶ௠ + ܶ)  time as it is identical to FE. The 

second FC operation requires T time as no more SRAM read is needed. This means that BPLight-

CNN requires 153.6 ns (for FE) + ௦ܶ௠ + 2ܶ  = 154 ns, for one forward pass.   

After a forward pass, the FC output is sent to the BP architecture for backpropagation. Each layer 

in BP requires ௕ܶ units of time where ௕ܶ = (error modulation to light carrier along with its driver 

time) + (split time) + (WDM multiplexing time) + (split time) + (weight modulation time) + (ReLU 

function derivative modulation time) + (demodulation time along with photodiode and 

transimpedance amplifier time) = 20 ps + 10 ps + 10 ps + 10 ps + 10 ps + 10 ps +20 ps = 90 ps. It 

takes 6 ௕ܶ units of time to complete one backward pass.  

In summary, BPLight-CNN requires 154 ns for one forward pass and 90 ps for a backward pass. 

The ultra-fast nature of photonic interconnects allows for high-speed backpropagation in BPLight-

CNN.  
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 EXPERIMENTAL ANALYSIS 

 CAD for BPLight-CNN 

We use IPKISS [46], a commercial optoelectronic CAD tool, to design and synthesize all of the 

photonic components of BPLight-CNN. All of the synthesized components are integrated together 
to design BPLight-CNN. For all of the photonics components, we consider a 32nm IPKISS library, 

similar to prior work [47]. The parametric details for BPLight-CNN are shown in Table 2. We 

developed a C++ based architectural simulator which takes device- and link-level parameters from 

IPKISS, to estimate performance of BPLight-CNN accelerator for several benchmarks. 

 

6.1.1 Power and Area Models  

The power and area of all BPLight-CNN components are summarized in Table 2. A DWDM 

wavelength range in the C and L bands [25], with a starting wavelength of 1550 nm [26] is 

considered for our analysis. MRs in BPLight-CNN are expected to be in partial resonance with their 

corresponding wavelengths in the waveguide. This MR partial resonance was modeled based on the 

circuit-level analysis presented in prior work [30], [48], [50]. In addition, we consider an MR heating 

power of 15 µW [31] per MR. Note that the power overheads of mitigating process variations are 
not considered and are beyond the scope of this work. Furthermore, we use Caphe [46] for modeling 

power and area of all photonic elements such as modulators, demodulators, waveguides, lasers, etc. 

The energy and area parameters for memristors are adapted from [2]. We adapted power and area 

models for DAC from [41]. We also use power and area parameters from [3] for the ADC array 

used in the FC layer of BPLight-CNN. 

 

6.1.2 Performance Models  

We use Caffe [38], a deep learning framework, to train the datasets in conjunction with photonic 

component results from IPKISS. We program the switches in each CONV layer to map each of our 

benchmarks in BPLight-CNN. This ensures zero pipeline hazards between any two layers in 

BPLight-CNN. Currently both VGG and LeNET require only a few CONV layers therefore we 
choose to program their corresponding switches manually. We can easily automate this process for 

a workload which requires tens to hundreds of CONV layers by storing each switch configuration 

as a bit in an SRAM which will be connected to all CONV layer switches to program them. We 

determine computational efficiency, energy efficiency, throughput, and prediction error rate to 

compare the performance of BPLight-CNN with a state-of-the-art CNN accelerator, namely 

PipeLayer [4]. We also use GPU results (from [4]) as the baseline for comparison. We evaluate for 

the following metrics: Computational efficiency represents the total number of fixed point 

operations performed per unit area in one second (GOPS/s/mm2); Energy efficiency refers to the 

number of fixed point operations performed per watt (Giga operations per watt or GOPS/s/W); 

Throughput is the total number of operations per unit time (GOPS/s); and lastly, Prediction error 

rate is the percentage of error in inferring any datasets. 

 
6.1.3 Benchmarks and Datasets  

We use two widely used CNN benchmarks: VGG-Net and LeNet [45]. We consider four variants 

of the VGG benchmark: VGG-A, VGG-B, VGG-C, and VGG-D and two variations of LeNet 

(LeNet-A and LeNet-B). The configuration of all stages of VGG and LeNet benchmarks for these 

variants are depicted in Table 1. In the table, CONV-I represents convolution stage ‘I’ for a 

benchmark model. “M×M, K, N” for a convolution stage means that the convolution stage comprises 

of M×M filters, and N number of back-to-back convolution layers, with each convolution layer 

having convolutional width K. The convolutional width is the number of convolutional filters in a 

convolution layer. Furthermore, we do consider a unit size window stride for the benchmark variants. 

For VGG, we use ImageNet dataset [45] having 224×224 images for training and inference. For 

LeNet, we use 28×28 images of MNIST datasets [21] for training and inference. 
 

 
TABLE 2. BPLIGHT-CNN Parameter Details [4], [31], [35]-[37], [49]-[51] 
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Components Parameters Values 
Power 

(mW) 

Area 

(mm2) 

SRAM register 
Size 2KB 10 0.2 

Count 16   

DAC 

Resolution 16-bit 

4.374 0.000208 
Frequency 1.2 Gbps 

Channel 64 

Count 208 

ADC 

Resolution 16-bit 

490 0.294 Frequency 1.2 Gbps 

Count 245 

WRA Number 48 24.5 0.000514 

Memristor banks (512 

per bank in FCN) 
Number 49 0.45 0.000003 

Modulator 
Time 20ps 

1080.8 39.38 
Count 62720 

De-Modulator 
Time 20ps 

1080.8 39.38 
Count 62720 

Trans-Impedance-

Amplifiers (TIA) 

Time 10ps 
0.18 pJ/bit 0.28 

Count 62720 

Electrical Comparator 
Time 180 ps 

0.02 0.00049  
Count 784 

WDM coupler Count 16 0 0.00028 

WDM de coupler Count 16 0 0.00028 

Optical comparator 
Time 60 0 0.0045 

Count 980 0  

Mode-locked laser 
Wavelengths 16 

32000 0.384 
Count 6 

Waveguide 

DWDM 16 

0 80 Width 450 nm 

Count 520 

 

   
(a)                                                                 (b) 

 

 
(c) 

Figure 9: (a) MRM Q-factor (b) MRM Finesse (c) average prediction accuracy w.r.t propagation loss in 
photonic components diameter (assuming a 32-bit weight resolution). 
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 Sensitivity Analysis with Prediction Accuracy 

MRMs are used extensively in the BPLight-CNN design, both in the feedforward and BP 
architectures. The prediction accuracy of BPLight-CNN depends on losses encountered by the 

photonic signal when it traverses through the photonic waveguide, MRMs, and other photonic 

components. These losses degrade photonic signal intensity before it reaches SOA (which acts as 

ReLU in BPLight-CNN), and causes the SOA to operate in a non-linear region, reducing the overall 

prediction accuracy. Among all of the losses, the MRM’s insertion loss and waveguide propagation 

loss are the major contributors to prediction error in BPLight-CNN. The MRM’s insertion loss 

depends on its Quality factor (Q-factor) and finesse. Q-factor is the number of photonic cycles taken 

by a photonic signal before its intensity goes to zero in an MRM. Finesse is the number of photonic 

cycles before a photonic signal’s intensity becomes 70.7% of its initial value. As both Q-factor and 

finesse are determined by the MRM diameter, therefore, in this section we present a sensitivity 

analysis to determine the optimal MRM diameter.  

Fig. 9(a) and 9(b) illustrate the MRM’s Q-factor and finesse w.r.t. its diameter (in µm), 
respectively. From Fig. 9(a), it can be seen that increase in MRM diameter leads to higher Q-factor, 

which ultimately leads to lower insertion loss. On the other hand, from 9(b) it can be observed that 

increase in MRM diameter decreases its finesse, and increases insertion loss. Therefore, we select 

an optimal MRM of diameter of 10µm to minimize overall insertion loss. Furthermore, we have 

considered an FSR of 20nm based on the device-level analysis presented in prior work [34] on an 

MRM of diameter 10µm. In line with this MRM FSR, each waveguide is expected to have 16 

DWDM with a channel spacing of 1.25nm (see Table 2). Considering this MRM diameter, Fig. 9(c) 

presents average prediction accuracy variation with increase in waveguide propagation loss (in 

dB/cm) for all the applications discussed in Section 6.1.3. In this analysis, we have considered 

photonic waveguide groups of fixed lengths in different parts of the BPLight-CNN architecture, 

where each waveguide in a waveguide group is coupled with a fixed number of MRMs with 10µm 
diameter. From this plot it can be seen that increase in photonic waveguide propagation loss 

decreases prediction accuracy. An increase in waveguide propagation loss decreases photonic signal 

integrity and decreases predication accuracy. In addition, increased waveguide propagation loss also 

increases insertion losses of MRMs which increases overall losses and worsens prediction accuracy 

further. Therefore, we have considered the waveguide propagation loss of 2.5 dB/cm [24] for the 

rest of our analysis. The worst-case power loss path in our BPLight_CNN architecture will be in our 

Feedforward architecture, as the Backpropagation architecture performs optical to electrical 

conversions between its layers. Therefore, the worst-case power loss path will be from the grating 

coupler to ReLU (i.e., SOA) of the Feature Extractor (FE) process shown in Fig. 3. Furthermore, 

we used SOA sensitivity of -20dBm [27], MR through loss of 0.02 dB [28], and waveguide 

coupler/splitter loss of 0.5dB [28] to calculate the worst-case power loss of BPLight-CNN, to 

determine the photonic laser power and correspondingly the electrical laser power considering wall-
plug laser efficiency of 3% [29]. Finally, the SOA sensitivity is sufficient to mitigate crosstalk noise 

effects and yield a bit-error-rate (BER) of 10-9. Therefore, crosstalk noise in BPLight-CNN has 

negligible impact on optical data computation accuracy. 

There are other minor factors which affect the prediction accuracy of BPLight-CNN: (1) Each 

memristor can have 1000 quantized states. The quantization error encountered due to limited 

number of memristor states contributes up to 1.2% of Prediction Error (PER); (2) The signal-to-

noise ratio of SOA used in BPLight-CNN is 50 dB, which is adapted from [8]. The SOA’s 

contribution to the overall PER is 2.35%; (3) Each optical comparator in BPLight-CNN has an SNR 

of 40 dB [42]. This accounts for a PER of 1%; and (4) the memristor-photonic interface is noisy. 

The signals from memristors going to modulators encounter a noise with an SNR of 25 dB which 

leads to a PER of 1.45%. We obtained these numbers through detailed optoelectronic synthesis using 
the IPKISS tool. 
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Figure 10: BPLight-CNN average prediction accuracy comparison with PipeLayer [4] and GPU-based 
execution across different weight resolutions varying from 2-bit to 32-bit. 

 

We conducted another sensitivity analysis to explore the impact of weight resolution on average 

prediction accuracy. Fig. 10 compares the accuracy of the proposed BPLight-CNN with PipeLayer 

[4] and GPU-based execution across different weight resolutions from 2-bit to 32-bit. From this plot 

it can be seen that the accuracy of BPLight-CNN increases with increase in weight resolution, due 

to the resulting reduction in quantization error across BPLight-CNN. Interestingly, BPLight-CNN 

achieves a prediction accuracy of 95% (i.e., slightly lower than state-of-the-art GPU accuracy of 96% 

and PipeLayer accuracy of 95.6%) when its weight resolution is 32-bit. The DACs used in BPLight-

CNN can be configured upto a precision of 16-bit. Therefore, we use a 16-bit weight resolution in 
our performance and energy analysis. 

 

     
(a)                                                                        (b) 

Figure 11: (a) Training throughput comparison across accelerators, (b) Inference throughput comparison 
across accelerators. 

 

   
                                 (a)                                                                             (b)                

Figure 12: Normalized Speedup of BPLight-CNN w.r.t weight resolution, (a) for training, and (b)   

for inference. Here the training and inference speedup are normalized w.r.t GPU for different weight 

resolutions. 
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 Performance analysis 

Fig.11a and Fig.11b demonstrate training and inference throughputs (respectively) of BPLight-

CNN and PipeLayer [4], and a baseline GPU implementation [4], for four variations of the VGG 

and two variants of the LeNet benchmarks. The results are almost identical for both training and 

inference. The GPU-based accelerator performs with an average throughput of 305 GOPS/s during 

training and 347 GOPS/s during inference. PipeLayer shows an average throughput of 2923 GOPS/s 

during training and 3102 GOPS/s during inference. The proposed BPLight-CNN shows an average 

throughput of 99534 GOPS/s during training and 90985 GOPS/s during inference. The superior 

performance of BPLight-CNN is due to the intelligent integration of ultra-fast memristors and high-

speed photonic components such as MRAs, SOAs, and comparators. The overall throughput of 

PipeLayer is affected by inter-layer data conversion with relatively slow ADCs. Also, PipeLayer 
spends most of its time in sequential weight updates during training. However, BPLight-CNN has 

an inherent advantage due to its photonic parallel weight update mechanism. On average, BPLight-

CNN outperforms PipeLayer by 34× for training and 29× during inference; and the proposed 

accelerator outperforms GPU by 326× for training and 263× for inference. Finally, for the results 

presented in Fig. 11, the variance of speedup across benchmarks is 1650 with a standard deviation 

of 40.02. 

Fig. 12a and 12b illustrate the effects of weight resolution on training and inference speedups of 

BPLight-CNN respectively. For both training and inference, with the rise in weight resolution, there 

is a gradual degradation in speedup. The 32-bit speedup is 1.5% lower compared to 16-bit and 8% 

lower compared to 8-bit during training. During inference, the 32-bit speedup is 3.5% lower 

compared to 16-bit speedup and 11% lower compared to 8-bit speedup. This is due to the additional 

delay in storing 32-bit data in SRAM compared to 16 or 8-bit data. However, data conversion is 
done either at the beginning or at the end of the forward pass in BPLight-CNN. Therefore, the effect 

is very minimal. Furthermore, it can also be noted from Fig. 12a and 12b that the speedup has a 

slightly decreasing trend from VGG-A to VGG-D. This is due to the increase in total number of 

convolution layers from VGG-A to VGG-D (VGG-A: 8 layers, VGG-B: 13 layers, VGG-C: 13 

layers, VGG-D: 16 layers) as shown in Table 1. However, BPLight-CNN’s speedup for LeNet-A 

and LeNet-B are significantly higher than that for VGG-A though they have 9 and 10 layers, 

respectively. This increase in speedup for LeNet is due to its fewer number of WMAs. Lower 

number of WMAs means less computational time, which in turn leads to higher speedup. 

Fig. 13a and 13b illustrate the comparison of computational efficiency (CE) (i.e., the total 

number of fixed-point operations performed per unit area in one second (GOPS/s/mm2)) of the 

proposed BPLight-CNN with memristor crossbar based PipeLayer [4] and a baseline GPU based 
design. For training, GPU performs with an average CE of 305.67 GOPS/s/mm2 (Min: 285, Max: 

325); PipeLayer has an average CE of 2923 GOPS/s/mm2(Min: 1710, Max: 3904). BPLight-CNN’s 

average CE during training is 99533.5 GOPS/s/mm2 (Min: 58140, Max: 121024). Similarly, during 

inference GPU, PipeLayer, and BPLight-CNN’s average CEs are 130 GOPS/s/mm2, 1425 

GOPS/s/mm2, and 44030 GOPS/s/mm2 respectively.  The proposed BPLight-CNN architecture 

shows a computational efficiency variance of 302 GOPS/s/mm2 which is reasonable considering its 

high computational efficiency. PipeLayer uses memristor crossbars for the bulk of its arithmetic 

operations. Each memristor crossbar has a CE of 1707 GOPS. However, the overall CE of PipeLayer 

comes down to 1485 GOPS due to its extensive usage of data conversions. Also, ReLU and POOL 

are performed by a digital ALU in PipeLayer. This requires more memory to store intra-layer data 

for synchronizing with its pipeline mechanism. The superiority of BPLight-CNN comes from the 

fact that it is a completely analog accelerator. Therefore, BPLight-CNN does not involve inter-layer 
data conversions or storage for synchronization. AD and DA conversions are done either at the 

beginning or at the end of feature extraction in BPLight-CNN. On the contrary, PipeLayer’s 

extensive inter-layer data conversions limits its computational efficiency. In addition to the compute 

efficient memristor, BPLight-CNN also uses high speed SOA as ReLU which has a CE in the order 

of 50000 GOPS/s/mm2 [43]. In summary, compared to PipeLayer and GPU, BPLight-CNN has 34× 

and 325× higher computational efficiency during training, and 31× and 339× higher computational 
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efficiency during inference. Weight resolution has a negligible effect on computational efficiency 

of BPLight-CNN, therefore, we do not present that result. Finally, BPLight-CNN’s computational 

efficiency has a decreasing trend similar to its speedup from VGG-A to VGG-D. This is due to the 

increase in computational requirements (with more convolution layers) from VGG-A to VGG-D. 

Also, BPLight-CNN has a significantly higher computational efficiency for LeNet-A and LeNet-B. 

This is due to the reduction in their memristive convolution (lower WMAs) requirements.  

 

      
                                  (a)                                                                           (b) 

Fig.13: Comparison of computational efficiency [during (a) training & (b) inference] across 

accelerators (in GOPS/s/mm2) 

 

 Energy Savings 

We compare the energy efficiency of BPLight-CNN with PipeLayer and GPU as shown in Fig. 

14a and 14b. During training, PipeLayer computes with an energy efficiency of 242.3 GOPS/s/W 

which is 11.6× higher than GPU based accelerator. BPLight-CNN outperforms both with an average 
energy efficiency of 9327.5 GOPS/s/W. PipeLayer replicates its early feature extraction layers 

several times (close to 50K times) to maintain a balanced pipeline. This involves excessive use of 

high-power consuming data conversions. BPLight-CNN uses passive optical components such as 

waveguides and comparators, in addition to energy efficient components such as ring 

modulators/demodulators, SOAs, and memristor. Also, BPLight-CNN uses very few ADCs/DACs 

compared to PipeLayer. As shown in Fig. 14(a), during training, we obtain 38.5× and 447× 

improvements in energy efficiency for BPLight-CNN compared to PipeLayer and GPU, respectively. 

Overall, the standard deviation of training energy efficiency of BPLight-CNN across benchmarks is 

178 GOPS/s/mm2. Similarly, Fig.14b demonstrates energy savings of BPLight-CNN as compared 

to PipeLayer and GPU during inference. BPLight-CNN improves energy-efficiency by 38.7× and 

413× compared to PipeLayer and GPU.  

Fig. 15a and 15b show the effects of weight resolution on overall energy efficiency during 
training and inference respectively, for all the benchmarks in BPLight-CNN. As the weight 

resolution increases, there is a minimal reduction in energy efficiency for both training and inference. 

During training, 32-bit energy efficiency is 4.5% lower compared to 16-bit efficiency, and 5.2% 

lower compared to 8-bit efficiency on average. During inference, 32-bit energy efficiency is 4.2% 

lower compared to 16-bit energy efficiency, and 7.4% lower compared to 8-bit energy efficiency, 

on average. The reduction in energy efficiency for high resolution is due to the increase in power 

consumption for high resolution DACs and ADCs.  It can also be noted that there is a minimal 

increase in energy efficiency of BPLight-CNN from VGG-A to VGG-D. The increase in 

computational requirements from VGG-A to VGG-D improves utilization of all the components of 

BPLight-CNN, which results in an increase in energy efficiency. On the contrary, LeNet-A and 

LeNet-B have relatively less computational demand, which underutilizes our BPLight-CNN 
accelerator and leads to lower energy efficiency.  
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                                     (a)                                                                         (b) 

Fig.14: Comparison of energy efficiency [during (a) training & (b) inference] across accelerators 

(in GOPS/s/Watt)  
 

   
                                  (a)                                                                         (b)           

Fig.15: Normalized energy efficiency of BPLight-CNN w.r.t weight resolution (a) for training, and 

(b) for inference 

 
Table 3. Results Summary 

Architecture Speedup 

Computational 

Efficiency 

Energy 

Efficiency 

BPLight-CNN Highest Highest Highest 

PipeLayer Medium Medium Medium 

GPU Lowest Lowest Lowest 

 

 Results Summary      

We summarize the results presented in Section 6.3 and Section 6.4 in Table 3. From the table it 

is apparent that our novel BPLight-CNN accelerator outperforms previously proposed CNN 

accelerators by combining the photonics-based backpropagation accelerator with a configurable 

memristor-integrated photonic CNN accelerator design. The excellent performance and energy 

gains compared to previous approaches strongly motivate the use of BPLight-CNN to execute future 

CNN based workloads. 

 CONCLUSIONS 

This work demonstrates a fully analog CNN accelerator called BPLight-CNN that integrates 

compute-efficient memristors and ultra-fast photonic components. We introduce a reconfigurable 

convolution design in each CNN layer to enable BPLight-CNN to emulate a range of sample CNN 

models. We also use a novel approach to handle analog signed-weight arithmetic in the memristive 

convolution layers. Compared to PipeLayer [4] and GPU implementations, the proposed BPLight-
CNN architecture shows higher computational and energy efficiency due to the use of energy 

efficient SOAs, optical comparators, and also due to its use of a fully analog feature extraction 

method. We demonstrated that the proposed design has the potential to achieve (i) at least 34× 

acceleration in speedup, 34× improvement in computational efficiency, and 38.5× energy savings 
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during training; and (ii) 29× acceleration in speedup, 31× improvement in computational efficiency, 

and 38.7× improvement in energy savings during inference compared to the state-of-the-art designs 

such as PipeLayer, at a 16-bit resolution. BPLight-CNN attains these performances with an 

approximately 6% reduction in accuracy over the state-of-the-art. The proposed architecture attains 

the state-of-the-art accuracy with a 32-bit resolution with negligible compromise in terms of power 

and throughput.  Photonic components have insertion losses which may slightly affect the overall 

accuracy when the number of deep learning stages increases. Our future work will address the issue 

of broader applicability of our accelerator to other types of deep learning models, and explore the 

scalability of this architecture for larger neural network problem sizes.  
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