
BPLRU: A Buffer Management Scheme for Improving Random Writes in

Flash Storage

Hyojun Kim and Seongjun Ahn

Software Laboratory of Samsung Electronics, Korea

{zartoven, seongjun.ahn}@samsung.com

Abstract

Flash memory has become the most important storage

media in mobile devices, and is beginning to replace

hard disks in desktop systems. However, its relatively

poor random write performance may cause problems in

the desktop environment, which has much more compli-

cated requirements than mobile devices. While a RAM

buffer has been quite successful in hard disks to mask the

low efficiency of random writes, managing such a buffer

to fully exploit the characteristics of flash storage has

still not been resolved. In this paper, we propose a new

write buffer management scheme called Block Padding

Least Recently Used, which significantly improves the

random write performance of flash storage. We evalu-

ate the scheme using trace-driven simulations and exper-

iments with a prototype implementation. It shows about

44% enhanced performance for the workload of MS Of-

fice 2003 installation.

1 Introduction

Flash memory has many attractive features such as low

power consumption, small size, light weight, and shock

resistance [3]. Because of these features, flash memory

is widely used in portable storage devices and handheld

devices. Recently, flash memory has been adopted by

personal computers and servers in the form of onboard

cache and solid-state disk (SSD).

Flash memory-based SSDs exhibit much better per-

formance for random reads compared to hard disks be-

cause NAND flash memory does not have a seek de-

lay. In a hard disk, the seek delay can be up to sev-

eral milliseconds. For sequential read and write requests,

an SSD has a similar or better performance than a hard

disk [4]. However, SSDs exhibit worse performance for

random writes due to the unique physical characteristics

of NAND flash memory. The memory must be erased

before it can be written. The unit of erase operation is

relatively large, typically a block composed of multiple

pages, where a page is the access unit. To mask this mis-

match between write and erase operations, SSDs use ad-

ditional software, called the flash translation layer (FTL)

[6, 14] whose function is to map the storage interface

logical blocks to physical pages within the device. The

SSD random write performance is highly dependent on

the effectiveness of the FTL algorithm.

Different types of FTL algorithms exist. Mobile

phones use relatively complicated algorithms, but sim-

pler methods are used for flash memory cards and USB

mass storage disks. In SSDs, the controller has restricted

computing power and working random access memory

(RAM) to manage a large quantity of NAND flash mem-

ory, up to tens of gigabytes. Therefore, the SSD FTL

must attain the cost efficiency of flash memory cards

rather than mobile phones.

To obtain better performance with restricted resources,

some FTLs exploit locality in write requests. A small

portion of the flash memory is set aside for use as a

write buffer to compensate for the physical characteris-

tics of NAND flash memory. With high access local-

ity, the small write buffer can be effective. However,

FTLs show poor performance for random writes with

no locality. The poor performance of SSDs for random

writes can significantly impact desktop and server sys-

tems, which may have more complicated write patterns;

in these systems, multiple threads commonly request I/O

jobs concurrently, resulting in complex write access pat-

terns. Therefore, the random write performance is of in-

creasing importance in SSD design.

Several different approaches exist to enhancing ran-

dom write performance. We selected a method of using

a RAM buffer inside the SSD because it is very realistic

and can be easily applied to current SSD products regard-

less of their FTL algorithms. The issue, however, is how

to use the RAM buffer properly. In the case of a hard

disk, the elevator algorithm is used to minimize the head

movements.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 239

In this paper, we present a new write buffer man-

agement scheme called Block Padding Least Recently

Used (BPLRU) to enhance the random write perfor-

mance of flash storage. BPLRU considers the common

FTL characteristics and attempts to establish a desirable

write pattern with RAM buffering. More specifically,

BPLRU uses three key techniques, block-level LRU,

page padding, and LRU compensation. Block-level LRU

updates the LRU list considering the size of the erasable

block to minimize the number of merge operations in the

FTL. Page padding changes the fragmented write pat-

terns to sequential ones to reduce the buffer flushing cost.

LRU compensation adjusts the LRU list to use RAM for

random writes more effectively. Using write traces from

several typical tasks and three different file systems, we

show that BPLRU is much more effective than previ-

ously proposed schemes, both in simulation and in ex-

periments with a real prototype.

The rest of the paper is organized as follows. Section 2

presents the background and related work. Section 3 ex-

plains the proposed buffer cache management schemes.

Section 4 evaluates the BPLRU scheme, and Section 5

contains our conclusions.

2 Background and Related Work

2.1 Flash Memory

There are two types of flash memories: NOR and NAND

flash memories [18]. NOR flash memory was developed

to replace programmable read-only memory (PROM)

and erasable PROM (EPROM), which were used for

code storage; so it was designed for efficient random ac-

cess. It has separate address and data buses like EPROM

and static random access memory (SRAM). NAND-type

flash memory was developed more recently for data stor-

age, and so was designed to have a denser architecture

and a simpler interface than NOR flash memory. NAND

flash memory is widely used.

Flash memories have a common physical restriction;

they must be erased before writing. In flash memory, the

existence of an electric charge represents 1 or 0, and the

charges can be moved to or from a transistor by an erase

or write operation. Generally, the erase operation, which

makes a storage cell represent 1, takes longer than the

write operation, so its operation unit was designed to be

bigger than the write operation for better performance.

Thus, flash memory can be written or read a single page

at a time, but it can be erased only block by block. A

block consists of a certain number of pages. The size of

a page ranges from a word to 4 KB depending on the type

of device. In NAND flash memory, a page is similar to a

hard disk sector and is usually 2 KB. For NOR type flash

memory, the size of a page is just one word.

Flash memory also suffers from a limitation in the

number of erase operations possible for each block. The

insulation layer that prevents electric charges from dis-

persing may be damaged after a certain number of erase

operations. In single level cell (SLC) NAND flash mem-

ory, the expected number of erasures per a block is

100,000 and this is reduced to 10,000 in multilevel cell

(MLC) NAND flash memory. If some blocks that contain

critical information are worn out, the whole memory be-

comes useless even though many serviceable blocks still

exist. Therefore, many flash memory-based devices use

wear-leveling techniques to ensure that blocks wear out

evenly.

2.2 Flash Translation Layer

The FTL overcomes the physical restriction of flash

memory by remapping the logical blocks exported by a

storage interface to physical locations within individual

pages [6]. It emulates a hard disk, and provides logi-

cal sector updates1(Figure 1). The early FTLs used a

log-structured architecture [23] in which logical sectors

were appended to the end of a large log, and obsolete

sectors were removed through a garbage collection pro-

cess. This architecture is well suited for flash memory

because it cannot be overwritten. We call this method

page mapping FTL because a logical sector (or page) can

be written to any physical page [14]. The FTL writes the

requested sector to a suitable empty page, and it main-

tains the mapping information between the logical sector

and the physical page separately in both flash and main

memories because the information is necessary to read

the sector later.

Page-mapping FTL sufficed for small flash memory

sizes; its mapping information size was also small. How-

ever, with the development of NAND flash memory and

its exponential size increase, the page-mapping method

became ineffective. It requires a great deal of memory

for its mapping information. In some cases, the map-

ping information must be reconstructed by scanning the

whole flash memory at start-up, and this may result in

long mount time. Therefore, a new memory-efficient al-

gorithm was required for very large NAND flash memo-

ries.

The block mapping FTL which is used for the Smart

Media card [26], is not particularly efficient because a

sector update may require a whole block update. An

improvement on this scheme, called the hybrid mapping

FTL [15], manages block-level mapping like block map-

1Even though the term sector represents physical block of data on

a hard disk, it is commonly used as an access unit for the FTL because

it emulates a hard disk. The size of logical sector in the FTL may be

512 B, 2 KB, or 4 KB for efficiency. We adopt the same convention in

this paper.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association240

Figure 1: FTL and NAND flash memory. FTL emulates sec-

tor read / write functionalities of a hard disk to use conventional

disk file systems on NAND flash memory.

ping FTL, but the sector position is not fixed inside the

block. While this requires additional offset-level map-

ping information, the memory requirement is much less

than in page mapping FTL.

Other FTLs were designed to exploit the locality of

the write requests. If write requests are concentrated

in a certain address range, some reserved blocks not

mapped to any externally visible logical sectors can be

used temporarily for those frequently updated logical

sectors. When we consider the usage pattern of the flash

storage, this is quite reasonable. Because the number

of reserved blocks is limited, more flexible and efficient

mapping algorithms can be applied to the reserved blocks

while most data blocks use simple block mapping.

The replacement block algorithm [2] assigns multiple

physical blocks to one logical block. It only requires

block-level mapping information, which represents a

physical block mapped to a particular logical block, and

its creation order when multiple physical blocks exist.

The log-block FTL algorithm [17] combines a coarse-

grained mapping policy of a block mapping method with

a fine-grained mapping policy of page mapping inside a

block. Compared to the replacement block algorithm, it

requires more mapping tables for log blocks, but can use

reserved blocks more effectively. The log-block FTL al-

gorithm is one of the most popular algorithms today be-

cause it combines competitive performance with rather

low cost in terms of RAM usage and CPU power.

2.3 Log-block FTL

In the log-block FTL algorithm, sectors are always writ-

ten to log blocks that use a fine-grained mapping policy

allowing a sector to be in any position in a block. This

is very efficient for concentrated updates. For example,

if Sector 0 is repeatedly written four times when a block

consists of four pages, all pages in the log block can be

used only for sector 0. When a log block becomes full,

it merges with the old data block to make a new data

block. The valid sectors in the log block and in the old

data block are copied to a free block, and the free block

becomes the new data block. Then, the log block and the

old data block become free blocks.

Sometimes, a log block can just replace the old data

block. If sectors are written to a log block from its first

sector to the last sector sequentially, the log block gains

the same status as the data block. In this case, the log

block will simply replace the old data block, and the old

data block will become a free block. This replacement is

called the switch merge in log-block FTL.

Switch merge provides the ideal performance for

NAND flash memory. It requires single-block erasure

and N page writes, where N is the number of pages per

block. To distinguish it from a switch merge, we refer

to a normal merge as a full merge in this paper. The full

merge requires two block erasures, N page reads, and N

page writes.

2.4 Flash Aware Caches

Clean first LRU (CFLRU) [21, 22] is a buffer cache man-

agement algorithm for flash storage. It was proposed

to exploit the asymmetric performance of flash memory

read and write operations. It attempts to choose a clean

page as a victim rather than dirty pages because writ-

ing cost is much more expensive. CFLRU was found

to be able to reduce the average replacement cost by

26% in the buffer cache compared to the LRU algorithm.

CFLRU is important because it reduces the number of

writes by trading off the number of reads. However, this

is irrelevant when only write requests are involved. Thus,

it is not useful for enhancing random write performance.

The flash aware buffer policy (FAB) [10] is another

buffer cache management policy used for flash mem-

ory. In FAB, the buffers that belong to the same erasable

block of flash memory are grouped together, and the

groups are maintained in LRU order: a group is moved to

the beginning of the list when a buffer in the group is read

or updated, or a new buffer is added to the group. When

all buffers are full, a group that has the largest number

of buffers is selected as victim. If more than one group

has the same largest number of buffers, the least recently

used of them is selected as a victim. All the dirty buffers

in the victim group are flushed, and all the clean buffers

in it are discarded. The main use of FAB is in portable

media player applications in which the majority of write

requests are sequential. FAB is very effective compared

to LRU. Note that BPLRU targets random write patterns.

Jiang et al. proposed DULO [8], an effective buffer

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 241

cache management scheme to exploit both temporal and

spatial locality. Even though it is not designed for flash

storage, the basic concept of DULO is very similar to our

proposed method. In DULO, the characteristics of a hard

disk are exploited so that sequential access is more effi-

cient than random access. Similarly, flash storage shows

optimized write performance for sequential writes in a

block boundary because most FTLs use the spatial local-

ity of the block level. Therefore, we use a RAM buffer to

create the desirable write pattern while the existing buffer

caches are used to try to reduce the number of write re-

quests.

Recently developed SSDs for desktop or server ap-

plications face quite different access patterns compared

to mobile applications. In server systems, multiple pro-

cesses may request disk access concurrently, which can

be regarded as essentially as a random pattern because

many processes exist.

An SSD has very different performance characteristics

compared to a hard disk. For random read requests, the

SSD is much better than a hard disk because it does not

have any mechanical parts. This is one of the most im-

portant advantages of SSDs, offset, however, by the poor

random write performance. Due to the characteristics of

NAND flash memory and the FTL algorithm inside an

SSD, the performance is now much worse than a hard

disk and the life span of the SSD can be reduced by ran-

dom write patterns.

Two different approaches are possible. First, the FTL

may use a more flexible mapping algorithm such as page

mapping, hybrid mapping, or the super-block FTL algo-

rithm [13]. However, flexible mapping algorithms gener-

ally require more RAM, CPU power, and a long start-up

time, so they may not be feasible for SSDs. The sec-

ond approach involves embedding the RAM buffer in the

SSDs just like in a hard disk. We propose a method for

proper management of this write buffer.

3 BPLRU

We devised BPLRU as a buffer management scheme to

be applied to the write buffer inside SSDs. BPLRU al-

locates and manages buffer memory only for write re-

quests. For reads, it simply redirects the requests to the

FTL. We chose to use all of available RAM inside an

SSD as write buffers because most desktop and server

computers have a much larger host cache that can absorb

repeated read requests to the same block more effectively

than the limited RAM on the SSD device.

Figure 2 shows the general system configuration con-

sidered in this paper. The host includes a CPU, a file

system, and a device-level buffer cache on the host side.

The SSD device includes the RAM for buffering writes,

the FTL, and the flash memory itself. For the host buffer

Figure 2: System configuration. BPLRU, the proposed buffer

management scheme, is applied to RAM buffer inside SSDs.

cache policy, CFLRU can be applied to reduce the num-

ber of write requests by trading off the number of reads.

We do not assume any special host side cache policy in

this paper.

BPLRU combines three key techniques, which are de-

scribed in separate subsections: block-level LRU man-

agement, page padding, and LRU compensation.

3.1 Block-level LRU

BPLRU manages an LRU list in units of blocks. All

RAM buffers are grouped in blocks that have the same

size as the erasable block size in the NAND flash mem-

ory. When a logical sector cached in the RAM buffer is

accessed, all sectors in the same block range are placed

at the head of the LRU list. To make free space in the

buffer, BPLRU chooses the least recent block instead of

a sector, and flushes all sectors in the victim block. This

block-level flushing minimizes the log block attaching

cost in log-block FTL [17].

Figure 3 shows an example of the BPLRU list. In

the figure, eight sectors are in the write buffer, and each

block contains four sectors. When sector 15 is written

again, the whole block is moved to the head of the LRU

list. Thus sector 12 is at the front of the LRU list even

though it has not been recently accessed. When free

space is required, the least recently used block is selected

as a victim block, and all sectors in the victim block are

flushed from the cache at once. In the example, block 1

is selected as the victim block, and sectors 5 and 6 are

flushed.

Table 1 shows a more detailed example. It assumes

that only two log blocks are allowed, and eight sectors

can reside in the write buffer. In this example, 14 highly

scattered sectors are written in this order: 0, 4, 8, 12,

16, 1, 5, 9, 13, 17, 2, 6, 10, and 14. Because no dupli-

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association242

Figure 3: An example of Block-level LRU. When sector 15 is

accessed, sector 12 is also moved to the front of the list because

sector 12 is in the same block with sector 15.

cated access exists in the sequence, the LRU cache does

not influence the write pattern, and these writes evoke

12 merges in the FTL. If we apply block-level LRU for

exactly the same write pattern, we can reduce the merge

counts to seven.

If write requests are random, the cache hit ratio will be

lower. Then, the LRU cache will act just like the FIFO

queue and not influence the performance. BPLRU, how-

ever, can improve write performance even if the cache

is not hit at all. If we calculate the cache hit rate for

the block level, it may be greater than zero even though

the sector level cache hit rate is zero. BPLRU mini-

mizes merge cost by reordering the write sequences in

the erasable block unit of NAND flash memory.

3.2 Page Padding

Our previous research [16] proposed the page padding

technique to optimize the log-block FTL algorithm. In

the method, we pad the log block with some clean pages

from the data block to reduce the number of full merges.

Here we apply the same concept for our buffer manage-

ment scheme.

BPLRU uses a page padding technique for a victim

block to minimize the buffer flushing cost. In log-block

FTL, all sector writes must be performed to log blocks,

and the log blocks are merged with data blocks later.

When a log block is written sequentially from the first

sector to the last sector, it can simply replace the associ-

ated data block with a switch merge operation. If a victim

block flushed by BPLRU is full, then a switch merge will

occur in the log-block FTL. Otherwise, a relatively ex-

pensive full merge will occur instead of a switch merge.

Figure 4: An example of page padding. When Block-level

LRU chooses a victim block having sector 12 and sector 15,

sector 13 and sector 14 are read from the storage, and four sec-

tors are written back sequentially.

Therefore, BPLRU reads some pages that are not in a

victim block, and writes all sectors in the block range

sequentially. Page padding may seem to perform unnec-

essary reads and writes, but it is more effective because it

can change an expensive full merge to an efficient switch

merge.

Figure 4 shows an example of page padding. In the ex-

ample, the victim block has only two sectors (12 and 15),

and BPLRU reads sectors 13 and 14 for page padding.

Then, four sectors from sectors 12-16 are written sequen-

tially. In log-block FTL, a log block is allocated for the

writes, and the log block replaces the existing data block

because the log block is written sequentially for all sec-

tors in the block, i.e., a switch merge occurs. We show

the effectiveness of page padding separately in Section 4.

3.3 LRU Compensation

Because LRU policy is not as effective for sequential

writes, some enhanced replacement algorithms such as

low inter-reference recency set (LIRS) [9] and adaptive

replacement cache (ARC) [19] have been proposed.

To compensate for a sequential write pattern, we used

a simple technique in BPLRU. If we know that the most

recently accessed block was written sequentially, we es-

timate that that block has the least possibility of being

rewritten in the near future, and we move that block to

the tail of the LRU list. This scheme is also important

when page padding is used.

Figure 5 shows an example of LRU compensation.

BPLRU recognizes that block 2 is written fully sequen-

tially, and moves it to the tail of the LRU list. When more

space is needed later, the block will be chosen as a vic-

tim block and flushed. We show the effectiveness of LRU

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 243

Note: [], , M mean a block boundary, flushing, merge operation in FTL, respectively

LRU Block-level LRU
Sector

Writes Cache status (8 sectors)
Log block

(2 blocks)
Cache status (8 sectors)

Log block

(2 blocks)

0, 4, 8, 12, 16 16, 12, 8, 4, 0 [16], [12], [8], [4], [0]

1, 5, 9 9, 5, 1, 16, 12, 8, 4, 0 [8, 9], [4, 5], [0, 1], [12], [16]

13 13, 9, 5, 1, 16, 12, 8, 4 0 [0] [12, 13], [8, 9], [4, 5], [0, 1] 16 [16]

17 17, 13, 9, 5, 1, 16, 12, 8 4 [4], [0] [17], [12, 13], [8, 9], [4, 5], 0, 1 [0, 1], [16]

2 2, 17, 13, 9, 5, 1, 16, 12 8 [8], [4] M[0] [2], [17], [12, 13], [8, 9], [4, 5]

6 6, 2, 17, 13, 9, 5, 1, 16 12 [12], [8] M[4] [6], [2], [17], [12, 13], [8, 9] 4, 5 [4,5], [0, 1] M[16]

10 10, 6, 2, 17, 13, 9, 5, 1 16 [16], [12] M[8] [8, 9, 10], [6], [2], [17], [12, 13]

14 14, 10, 6, 2, 17, 13, 9, 5 1 [1] , [16] M[12] [14], [8, 9, 10], [6], [2], [17] 12, 13 [12, 13], [4, 5] M[0, 1]

14, 10, 6, 2, 17, 13, 9 5 [5] , [1] M[16] [14], [8, 9, 10], [6], [2] 17 [17], [12, 13] M[4, 5]

14, 10, 6, 2, 17, 13 9 [9], [5] M[1] [14], [8, 9, 10], [6] 2 [2], [17] M[12, 13]

14, 10, 6, 2, 17 13 [13], [9] M[5] [14], [8, 9, 10] 6 [6], [2] M[17]

14, 10, 6, 2 17 [17], [13] M[9] [14] 8, 9, 10 [8, 9, 10], [6] M[2]

14, 10, 6 2 [2], [17] M[13] 14 [14], [8, 9, 10] M[6]

14, 10 6 [6], [2] M[17]

14 10 [10], [6] M[2]

Buffer flush-

ing by LRU

order

 14 [14], [10] M[6]

 Total merge count 12 7

Table 1: Comparison of LRU and Block-level LRU. All sectors in the example write sequence are written only once. Thus, LRU

cache acts just like FIFO queue, and does not influence write performance. Meanwhile, Block-level LRU can reduce the number of

merges in FTL by reordering the write sequences in the erasable block unit of NAND flash memory.

compensation in Section 4 with a sequential workload.

3.4 Implementation Details

Since BPLRU is for the RAM buffer inside an SSD,

we must design BPLRU to use as little CPU power as

possible. The most important part of LRU implementa-

tion is to find the associated buffer entry quickly because

searching is required for every read and write request.

For this purpose, we used a two-level indexing tech-

nique. Figure 6 illustrates the data structure of BPLRU.

There are two kinds of nodes, a sector node and a block

header node, but we designed our system to share only

one data structure to simplify memory allocation and free

processes. Free nodes are managed by one free node list,

and a free node can be used for a block header node or a

sector node.

The members of the node structure are defined as fol-

lows: Two link points for LRU or a free node list (nPrev,

nNext), block number (nLbn), number of sectors in a

block (nNumOfSct), and sector buffer (aBuffer). When

a node is used as a sector node, aBuffer[] contains the

contents of the writing sector, while it is functioning as a

secondary index table that points to its child sector nodes

when the node is used as a block header node. That is,

every block header node has its second-level index table.

With this two-level indexing technique, we can find

the target sector node using just two index references.

The memory for the block header nodes should be re-

garded as the cost for the fast searching. To find a sector

node with a sector number, first we calculate the block

number by dividing the sector number by the number of

sectors per block, N. Then, the first-level block index

table is referenced with the calculated block number. If

no associated block header exists, the sector is not in the

write buffer. If a block header node exists, then we check

the secondary index table in the block header node with

the residue of dividing the sector number by N.

4 Evaluation

To evaluate BPLRU, we used both simulation and ex-

periments on a real hardware prototype to compare four

cases: no RAM buffer, LRU policy, FAB policy, and the

BPLRU method.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association244

Figure 5: An example of LRU compensation. When sec-

tor 11 is written, BPLRU recognizes that block 2 is written fully

sequentially, and moves it to the tail of the LRU list.

4.1 Collecting Write Traces

For our experiments, we collected write traces from three

different file systems: NTFS, FAT16, and EXT3. Since

we were interested in the random write performance, we

excluded read requests from the traces. We attached a

new hard disk to the test computer, and used a 1-GB par-

tition for collecting write traces; our prototype hardware

had 1-GB capacity limitation.

We used Blktrace [1] on Linux and Diskmon [24] on

Windows XP to collect the traces. For Windows Vista,

we used TraceView [20] in the Windows Driver Devel-

opment Kit to collect write traces including buffer flush

command.

We used nine different work tasks for our experiments.

W1: MS Office 2003 Installation. We captured the

write traces while installing MS Office 2003 with the

full options on Windows XP using NTFS. However,

because we used a separate partition for the installation,

some writes for Windows DLL files were missed in our

traces.

W2: Temporary Internet Files. We changed the

position of the temporary Internet files folder to a 1-GB

partition formatted with NTFS. We then collected traces

while surfing the Web with Internet Explorer 6.0 until

we filled the folder with 100 MB of data spread across

several small files.

W3: PCMark05. PCMark05 [5] is one of the most

widely used benchmark programs for Windows. It

consists of several tests, and subsets of the test can be

performed separately. We performed the HDD test and

Figure 6: Data structure of BPLRU. For fast buffer lookup,

two-level indexing is used. The first-level table is indexed by

block numbers. Each entry in the table points to the block

header if there are some buffers belonging to the block. Oth-

erwise it has a null value. Each block header has second-level

index table for all sectors in the block.

traced the write requests on NTFS in Windows XP.

W4: Iometer. We used Iometer [7] on NTFS to produce

pure uniformly distributed random write accesses.

Iometer creates a large file with the size of the complete

partition, and then overwrites sectors randomly.

W5: Copying MP3 Files. In this task, we copied 90

MP3 files to the target partition and captured the write

traces. This task was chosen to examine the effect of the

write buffer when writing large files. Even though the

goal of BPLRU is to enhance random write performance,

it should not be harmful for sequential write requests

because sequential patterns are also very important. The

average file size was 4.8 MB. We used the FAT16 file

system since it is the most popular in mobile multimedia

devices such as MP3 players and personal media players.

W6: P2P File Download. We used emule [11] to

capture write traces of a peer-to-peer file download

program. Since emule permits configuring the positions

of temporary and download folders, we changed the

temporary folder position to the target partition. We

then downloaded a 634-MB movie file and captured

the write traces. We used the FAT16 file system, and

this pattern can be considered as the worst case. Small

parts of a file are written almost randomly to the storage

because the peer-to-peer program downloads different

parts concurrently from numerous peers.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 245

Operation Time(us)

256-KB Block Erase 1500

2KB-Page Read 50

2KB-Page Write 800

2KB-Data Transfer 50

Table 2: Timing parameters for simulation. These are typ-

ical timing values that are shown in the datasheet of MLC

NAND flash memory.

W7: Untar Linux Sources. We downloaded linux-

2.6.21.tar.gz from the Internet and extracted the source

files to the target partition, which was formatted with the

EXT3 file system. After the extraction, we had 1,285

folders and 21,594 files, and the average file size was

10.7 KB.

W8: Linux Kernel Compile. With the sources of

linux-2.6.21, we compiled the Linux kernel with the

default configuration and collected write traces.

W9: Postmark. We chose Postmark because it is widely

used for evaluating the performance of I/O subsystems.

The benchmark imitates the behavior of an Internet mail

server and consists of a series of transactions. In each

transaction, one of four operations (file creation, dele-

tion, read, or write) is executed at random. We collected

the write traces from all three file systems. Because Post-

mark can be compiled and run under Windows as well as

Linux, we used it to compare the performance of BPLRU

among the different file systems.

4.2 Simulation

4.2.1 Environment

For our simulation, we assumed the log-block FTL algo-

rithm and a 1-GB MLC NAND flash memory with 128

2-KB pages in each block. The log-block FTL was con-

figured to use seven log blocks. We ignored the map

block update cost in the FTL implementation because it

was trivial. We simulated the write throughput and the

required number of block erase operations while varying

the RAM buffer size from 1 to 16 MB.

We used the parameters of Table 2 for the performance

calculation. Note that these values are typical of those

provided by MLC NAND flash memory data sheets [25].

Some differences may exist in real timing values.

4.2.2 Performance and Erase Count

The simulation results for W1 through W8 are shown in

Figure 7 through Figure 14, respectively.

For the MS Office Installation task (W1), BPLRU ex-

hibited a 43% faster throughput and 41% lower erase

count than FAB for a 16-MB buffer.

For the W2, the BPLRU performance was slightly

worse than FAB for buffers less than 8 MB. However,

the performance improved for buffer sizes larger than 8

MB, and the number of erase operations for BPLRU was

always less than for FAB. The result of PCMark05 (W3)

test (Figure 9) was very similar to the Temporary Internet

Files (W2) test.

The result of the Iometer test (W4) was different from

all the others. FAB showed better write performance than

BPLRU, and the gap increased for bigger buffer cache

sizes. This is because of the difference in the victim se-

lection policy between FAB and BPLRU. BPLRU uses

the LRU policy, but no locality exists in the write pattern

of Iometer because it generates pure random patterns.

Therefore, considering the reference sequence is a poorer

approach than simply choosing a victim block with more

utilized sectors like FAB. However, due to page-padding,

BPLRU exhibits lower erase counts.

Figure 11 shows the effect of BPLRU for a sequen-

tial write pattern (W5). While the result of the peer-to-

peer task (W6)(figure 12) illustrates the generally poor

performance of flash storage for random writes, it does

show that BPLRU can improve the performance of ran-

dom write requests significantly. We can see that FAB

requires more RAM than BPLRU to get better perfor-

mance.

The two results with the EXT3 file system (Figures

13 and 14) demonstrate the benefits of BPLRU. It pro-

vides about 39% better throughput than FAB in the Linux

source untar case, and 23% in the Linux kernel compile

task with a 16-MB buffer.

4.2.3 File System Comparison

To show the effects of BPLRU on different file sys-

tems, we used the Postmark benchmark for all three. We

can see in Figure 15 that BPLRU exhibits fairly good

throughput for all three file systems.

4.2.4 Buffer Flushing Effect

In our simulation, we assumed that no SCSI or SATA

buffer flush command was ever sent to the device. How-

ever, in practice, file systems use it to ensure data in-

tegrity. Naturally, the inclusion of the flush command

will reduce the effect of write buffering and degrade

BPLRU performance.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association246

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ra

s
e
 c

o
u
n
t

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

Figure 7: W1 MS Office 2003 installation (NTFS).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ra

s
e
 c

o
u
n
t

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

Figure 8: W2 Temporary internet files of Internet Explorer (NTFS).

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ra

s
e
 c

o
u
n
t

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

Figure 9: W3 HDD test of PCMark05 (NTFS).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ra

s
e
 c

o
u
n
t

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

Figure 10: W4 Random writes by Iometer (NTFS).

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 247

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ra

s
e
 c

o
u
n
t

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

Figure 11: W5 Copy MP3 files (FAT16).

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ra

s
e
 c

o
u
n
t

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

Figure 12: W6 634-MB file download by P2P program, emule (FAT16).

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU
 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ra

s
e
 c

o
u
n
t

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

Figure 13: W7 Untar linux source files from linux-2.6.21.tar.gz (EXT3).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU
 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

E
ra

s
e
 c

o
u
n
t

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

Figure 14: W8 Kernel compile with linux-2.6.21 sources (EXT3)

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association248

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

(a) NTFS

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

(b) FAT16

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU
FAB

BPLRU

(c) EXT3

Figure 15: Results of Postmark (W9) on three different file systems. BPLRU shows fairly good performance compared with

LRU and FAB. Especially BPLRU shows the biggest performance gain for FAT16.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU

BPLRU
BPLRU with flushing buffer

Figure 16: Buffer flushing effect. The throughput of BPLRU

is reduced by about 23

To collect write traces including buffer flush com-

mand, we had to use Windows Vista since the Trace-

View utility does not trace this command for Windows

XP. However, we discovered that for some unknown rea-

son, Windows does not send the buffer flush command to

a secondary hard disk.

Because of this, we traced the flush command on the

primary C: drive to determine approximately how much

it decreases the performance. As the simulation results

in Figure 16 show, buffer flushing with a 16-MB buffer

reduces the throughput by approximately 23%.

4.2.5 Detailed BPLRU Analysis

We also tested the benefits of page padding and LRU

compensation on a subset of the experiments previously

described. Figure 17 shows the effect of page padding

with the simulation results for the write traces from the

MS Office 2003 installation, and Figure 18 shows the

effect of LRU compensation for the traces from copying

MP3 files on the FAT file system. Page padding and LRU

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU

BPLRU
BPLRU without page padding

Figure 17: Page padding effect. The throughput for MS Of-

fice 2003 installation is reduced by about 21

compensation enhance the throughput by about 26% (16

MB RAM) and 10% (1 MB RAM), respectively.

4.3 Real Hardware Prototype

We also implemented and tested three algorithms on a

real prototype based on a target board with an ARM940T

processor (Figure 19). It has 32 MB of SDRAM, a USB

2.0 interface, two NAND sockets, and an error correction

code hardware engine for MLC and SLC NAND flash

memory. We used a 200-MHz clock and a 1-GB MLC

NAND flash memory whose page size was 2 KB. Since

128 pages were in each block, the block size was 256

KB.

We used our prototype to implement a USB mass stor-

age (UMS) disk. We used the log-block FTL algorithm

because of its wide commercial use. We configured it for

seven log blocks and used an 8-MB RAM cache for three

algorithms: LRU, FAB, and BPLRU. We used a 2.4-GHz

Pentium 4 PC with Windows XP Professional, 512 MB

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 249

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

Buffer size(MB)

NO CACHE
LRU

BPLRU
BPLRU without LRU Comp.

Figure 18: LRU compensation effect. The throughput of

BPLRU for copying MP3 files on FAT16 is reduced by approx-

imately 9

Figure 19: Prototype flash storage board. We implemented

USB mass storage device with 1-GB MLC NAND flash mem-

ory and 8-MB RAM buffer.

of RAM, and a USB 2.0 interface as a host machine.

We designed a simple application to replay write

traces to the UMS disk. After attaching our prototype

UMS disk to the host computer, the application replayed

the write traces and measured the time automatically.

When all traces were written to the UMS disk, our ap-

plication sent a special signal to the UMS disk to flush

its RAM buffer to FTL and report the total elapsed time

in seconds including the RAM flushing time. During the

test, the trace replay application wrote sectors by directly

accessing the Windows device driver, bypassing the Win-

dows file system and buffer cache. Therefore the exper-

imental results were not affected by the file system and

the buffer cache of the host.

Figure 20 compares the simulation and the prototype

experimental results for six tasks. Some slight differ-

ences are evident. For the MP3 copying task, the pro-

totype results show that using the RAM buffer is worse

than not using it. Also, the performance of BPLRU in the

simulation is slightly better than in our prototype sys-

tem. The reason for this is that we did not include the

RAM copy cost in our simulation, but simply derived

the performance from the operation counts of page reads,

page writes, and block erasures. In addition, the opera-

tion time of NAND flash memory was not constant in our

real-target experiments. For example, we used 1.5 ms for

the block erase time because this value is given by data

sheets as a typical time. However, the actual time may

depend on the status of the block on the actual board.

Even so, the overall trends were very similar between

the prototype experiment and the simulation results.

5 Conclusions

We demonstrated that a certain amount of write buffer in

a flash storage system can greatly enhance random write

performance. Even though our proposed BPLRU buffer

management scheme is more effective than two previous

methods, LRU and FAB, two important issues still re-

main. First, when a RAM buffer is used in flash storage,

the integrity of the file system may be damaged by sud-

den power failures. Second, frequent buffer flush com-

mands from the host computer will decrease the benefit

of the write buffer using BPLRU.

Dealing with power failures is an important opera-

tional consideration for desktop and server systems. We

are considering different hardware approaches to address

this issue as an extension of our current work. A small

battery or capacitor may delay shutdown until the RAM

content is safely saved to an area of flash memory re-

served for the purpose; an 8-MB buffer could be copied

to that space in less than 1 s. Also, we may use non-

volatile magnetoresistive RAM or ferroelectric RAM in-

stead of volatile RAM.

Our study focused on a write buffer in the storage de-

vice. However, the BPLRU concept could be extended to

the host side buffer cache policy. We may need to con-

sider read requests with a much bigger RAM capacity. At

that point, an asymmetrically weighted buffer manage-

ment policy will be required for read and write buffers,

such as CFLRU or LIRS-WSR [12]. This is also a sub-

ject for future research.

6 Acknowledgments

We thank Dongjun Shin, Jeongeun Kim, Sun-Mi Yoo,

Junghwan Kim, and Kyoungil Bahng for their frequent

assistance and valuable advice. We also like to express

our deep appreciation to our shepherd, Jiri Schindler, for

his helpful comments on how to improve the paper.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association250

 0

 500

 1000

 1500

 2000

 2500

(1) (2) (3) (4) (5) (6)

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

NO CACHE
LRU
FAB

BPLRU

(a) Simulation Results

 0

 500

 1000

 1500

 2000

 2500

(1) (2) (3) (4) (5) (6)

T
h
ro

u
g
h
p
u
t(

K
B

/s
e
c
)

NO CACHE
LRU
FAB

BPLRU

(b) Prototype Experimental Results

Figure 20: Results comparison between simulation and prototype results for six workloads. (1) MS Office Installation (NTFS),

(2) Temporary Internet Files (NTFS), (3) Copying MP3 Files (FAT16), (4) P2P File Download (FAT16), (5) Untar Linux Sources

(EXT3), and (6) Linux Kernel Compile (EXT3)

References

[1] Jens Axboe. Block IO Tracing. http://www.kernel.

org/git/?p=linux/kernel/git/axboe/blktrace.

git;a=blob;f=README.

[2] Amir Ban. Flash File System, 1993. United States Patent,

No 5,404,485.

[3] Fred Douglis, Ramon Caceres, M. Frans Kaashoek, Kai

Li, Brian Marsh, and Joshua A. Tauber. Storage alterna-

tives for mobile computers. In Operating Systems Design

and Implementation, pages 25–37, 1994.

[4] Douglas Dumitru. Understanding Flash SSD Per-

formance. Draft, http://www.storagesearch.com/

easyco-flashperformance-art.pdf, 2007.

[5] Futuremark Corporation. PCMARK’05. http://www.

futuremark.com/products/pcmark05/.

[6] Intel Corporation. Understanding the Flash Translation

Layer (FTL) Specification. White Paper, http://www.

embeddedfreebsd.org/Documents/Intel-FTL.pdf,

1998.

[7] Iometer Project, iometer-

[user—devel]@lists.sourceforge.net. Iometer Users

Guide. http://www.iometer.org.

[8] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and

Xiaodong Zhang. DULO: an effective buffer cache man-

agement scheme to exploit both temporal and spatial lo-

cality. In FAST’05: Proceedings of the 4th Conference on

USENIX Conference on File and Storage Technologies,

pages 8–8, Berkeley, CA, USA, 2005. USENIX Associa-

tion.

[9] Song Jiang and Xiaodong Zhang. LIRS: an efficient low

inter-reference recency set replacement policy to improve

buffer cache performance. In SIGMETRICS ’02: Pro-

ceedings of the 2002 ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer

Systems, pages 31–42, New York, NY, USA, 2002. ACM.

[10] Heeseung Jo, Jeong-Uk Kang, Seon-Yeong Park, Jin-Soo

Kim, and Joonwon Lee. FAB: flash-aware buffer manage-

ment policy for portable media players. Consumer Elec-

tronics, IEEE Transactions on, 52(2):485–493, 2006.

[11] John, Hendrik Breitkreuz, Monk, and Bjoern. eMule.

http://sourceforge.net/projects/emule.

[12] Hoyoung Jung, Kyunghoon Yoon, Hyoki Shim, Sungmin

Park, Sooyong Kang, and Jaehyuk Cha. LIRS-WSR: In-

tegration of LIRS and writes sequence reordering for flash

memory. Lecture Notes in Computer Science, 4705:224–

237, 2007.

[13] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joon-

won Lee. A superblock-based flash translation layer for

NAND flash memory. In EMSOFT ’06: Proceedings of

the 6th ACM & IEEE International Conference on Em-

bedded Software, pages 161–170, New York, NY, USA,

2006. ACM.

[14] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda.

A flash-memory based file system. In USENIX Winter,

pages 155–164, 1995.

[15] Bumsoo Kim and Guiyoung Lee. Method of driving

remapping in flash memory and flash memory architec-

ture suitable therefore, 2002. United States Patent, No

6,381,176.

[16] Hyojun Kim, Jin-Hyuk Kim, ShinHo Choi, HyunRyong

Jung, and JaeGyu Jung. A page padding method for frag-

mented flash storage. Lecture Notes in Computer Science,

4705:164–177, 2007.

[17] Jesung Kim, Jong Min Kim, S.H. Noh, Sang Lyul Min,

and Yookun Cho. A space-efficient flash translation layer

for CompactFlash Systems. IEEE Transactions on Con-

sumer Electronics, 48(2):366–375, 2002.

[18] M-Systems. Two Technologies Compared: NOR vs.

NAND. White Paper, http://www.dataio.com/pdf/

NAND/MSystems/MSystems_NOR_vs_NAND.pdf, 2003.

FAST ’08: 6th USENIX Conference on File and Storage TechnologiesUSENIX Association 251

[19] Nimrod Megiddo and Dharmendra S. Modha. ARC: a

self-tuning, low overhead replacement cache. In FAST

’03: Proceedings of the 2nd USENIX Conference on File

and Storage Technologies, pages 115–130, Berkeley, CA,

USA, 2003. USENIX Association.

[20] Microsoft. Windows Driver Kit: Driver Development

Tools, TraceView. http://msdn2.microsoft.com/

en-us/library/ms797981.aspx.

[21] Chanik Park, Jeong-Uk Kang, Seon-Yeong Park, and Jin-

Soo Kim. Energy-aware demand paging on NAND flash-

based embedded storages. In ISLPED ’04: Proceedings

of the 2004 International Symposium on Low Power Elec-

tronics and Design, pages 338–343, New York, NY, USA,

2004. ACM.

[22] Seon-Yeong Park, Dawoon Jung, Jeong-Uk Kang, Jin-

Soo Kim, and Joonwon Lee. CFLRU: a replacement al-

gorithm for flash memory. In CASES ’06: Proceedings of

the 2006 International Conference on Compilers, Archi-

tecture and Synthesis for Embedded Systems, pages 234–

241, New York, NY, USA, 2006. ACM.

[23] Mendel Rosenblum and John K. Ousterhout. The design

and implementation of a log-structured file system. ACM

Transactions on Computer Systems, 10(1):26–52, 1992.

[24] Mark Russinovich. DiskMon for Windows

v2.01. http://www.microsoft.com/technet/

sysinternals/utilities/diskmon.mspx, 2006.

[25] Samsung Electronics. K9XXG08UXM 1G x8 Bit / 2G

x 8 Bit NAND Flash Memory. http://www.samsung.

com/global/business/semiconductor/products/

flash/Products_NANDFlash.html, 2005.

[26] SSFDC Forum. SmartMedia Specification. http://www.

ssfdc.or.jp.

FAST ’08: 6th USENIX Conference on File and Storage Technologies USENIX Association252

