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Abstract: The Internet of Things (IoT) enables a variety of smart applications, including smart home,
smart manufacturing, and smart city. By enhancing Business Process Management Systems with
IoT capabilities, the execution and monitoring of business processes can be significantly improved.
Providing a holistic support for modeling, executing and monitoring IoT-driven processes, however,
constitutes a challenge. Existing process modeling and process execution languages, such as BPMN
2.0, are unable to fully meet the IoT characteristics (e.g., asynchronicity and parallelism) of IoT-driven
processes. In this article, we present BPMNE4IoT—A holistic framework for modeling, executing
and monitoring IoT-driven processes. We introduce various artifacts and events based on the BPMN
2.0 metamodel that allow realizing the desired IoT awareness of business processes. The framework
is evaluated along two real-world scenarios from two different domains. Moreover, we present a user
study for comparing BPMNE4IoT and BPMN 2.0. In particular, this study has confirmed that the
BPMNE4IoT framework facilitates the support of IoT-driven processes.

Keywords: IoT; BPM; BPMN; IoT-driven processes

1. Introduction

The Internet of Things (IoT) has attracted a lot of attention in recent years, making
it one of the core technologies for realizing digital twins [1,2]. This trend is fueled by the
fact that the electronic components of IoT devices have become cheaper, smaller and more
powerful [3]. IoT devices can be found in smart cities, cyber-physical systems, and many
other smart applications. As IoT devices are equipped with sensors, actuators, software,
protocols, and network interfaces, data can be captured from the physical environment and
be exchanged over the IoT network [4]. In this context, sensors are used to capture data
from the physical world (e.g., brightness, air quality, temperature or humidity), whereas
actuators transform electrical signals into mechanical motion (e.g., translate or rotate) or
change physical quantities such as light or pressure [5,6].

Business Process Management (BPM), in turn, deals with the modeling, implemen-
tation, execution, monitoring, and analysis of business processes [4,7]. Incorporating IoT
capabilities into BPM systems, therefore, offers promising perspectives for bridging the
gap between the digital and the physical world, for automating processes and decision
making, and for optimizing business processes based on IoT data. By integrating business
process with the Internet of Things, it further becomes possible to automate various types
of physical tasks, e.g., to start an air conditioner, to turn on/off the light, or to open/close
the window [7].

To enable a holistic support for IoT-driven processes, IoT-specific elements are needed
that allow modeling, executing and monitoring the IoT-specific aspects of business pro-
cesses. Modeling IoT-enabled processes shall foster the understanding of how these pro-
cesses operate. During process enactment, it should be also possible to detect and handle
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IoT device errors such using faulty sensors or the non-reachability of IoT devices. Though
there exist many process modeling languages such as Event Process Chains (EPCs), Petri
Nets, Business Process Modeling and Notation (BPMN) 2.0, Flowcharts, and Role Activity
Diagrams, these languages are not sufficiently expressive to model IoT-driven BPs [4].

1.1. Problem Identification and Motivation

We illustrate an IoT-driven business process (BP) along an example from smart manu-
facturing. More precisely, we consider the processing of perishable products (e.g., food,
vaccine and chemicals) whose safety and quality control depend on temperature and hu-
midity. We refer to BPs as IoT-driven if they utilize IoT devices and map IoT behavior to
process activities and events, respectively.

Imagine a smart factory that receives perishable and/or highly sensitive products,
which are then processed and stored. According to [8], such products should be checked
(weight, size, temperature, and damage) immediately after receipt. Figure 1 presents the
flow of a corresponding BP modeled in terms of BPMN 2.0.
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Figure 1. IoT-driven business process modeled in terms of BPMN 2.0.

The process starts upon the arrival of a container at the receiving department. This can
be detected with the help of different sensors, e.g., GPS transmitters, cameras in the goods
receiving area or a light barrier at the loading ramp. After the arrival of the container, the
monitoring of the environment starts. The warehouse temperature must not be lower than
70 °C and the humidity must be less than or equal 60%. If the measured temperature and
humidity are not in the predefined range, an alarm is triggered. Subsequently, the container
is rejected and discarded.

In addition to the monitoring of the physical environment, a worker may inspect the
history (e.g., NFC code) of the container, e.g., to check whether or not the cooling and
humidity chain was interrupted during the transport. Based on this, a decision is made
on whether the products meet the specified quality criteria or a violation has occurred.
In the latter case, the container is rejected and discarded. Otherwise, it is transported to
the production line. Subsequently, the container is registered and unpacked by a worker,
the perishable products are sorted, and a QR code is generated in parallel. Finally, the
perishable products are stored in the high-bay warehouse. Note that the BP from Figure 1
involves different types of tasks, including manual tasks to be accomplished by humans (cf.
Tasks 2 and 10), automated tasks invoking an external service (cf. Tasks 6, 9, and 12) and
IoT-driven Tasks (cf. Tasks 3, 4, 5, 7, 8, 11 and 13).

As shown in Figure 1, IoT devices and physical context play a crucial role when
executing and monitoring IoT-driven BPs. However, when modeling the latter with BPMN
2.0, it does not become clear which tasks are IoT-related and which are not [9]. Instead, the
process model viewer needs to interpret the task label to assess this. Furthermore, no visual
distinction can be made between IoT-related service tasks (cf. Tasks 3,4 5, 7, 8, 11 and 13 in
Figure 1) and non-IoT-related ones (cf. Tasks 6, 9 and 12 in Figure 1). This aggravates both
the readability and comprehensibility of the process model. Note that similar drawbacks
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hold for events as well. For example, it is not possible to distinguish between an IoT-related
conditional event (cf. Event 1) and a Non-IoT-related event. Further note that similar
concerns hold when using modeling languages such as Petri Nets, Event-driven Process
Chains, and WS-BPEL (Business Process Execution Language). Generally, it is unclear how
to model IoT aspects, as the semantics provided by contemporary language constructs has
not been conceived to address the specific needs of the IoT domain [6].

To execute IoT-driven BPs, the executable process models need to be deployed on an
execution engine. Additionally, the IoT devices need to be set up and configured. However,
process engineers are familiar with modeling BPs, but usually do not have the knowledge
to manage the interactions between BPs and IoT devices. Note that IoT devices may rely on
different technologies (e.g., MQTT, CoAP, Zigbee, LoRa, and LoRaWAN) [10]. Moreover,
the response messages returned by IoT sensors may differ. While certain IoT devices return
raw sensor data, others deliver JSON-formatted results. Consequently, a process engine
must be able to cope with IoT device characteristics [9]. On one hand, tools are needed to
control and monitor the process, on the other, mechanisms are required to execute the IoT
actions (i.e., sensing and actuating).

There are many efforts to extend BP modeling languages with IoT specific aspects;
most existing approaches, however, suffer from four drawbacks:

1. IoT-specific extensions do not cover all IoT characteristics, but only support common
behaviors (i.e., sensing and/or actuating).

2. IoT-specific extensions increase the complexity of the modeling language.
3. The proposed solutions focus on the modeling phase, but either neglect execution or

depend on specific IoT technologies or application domains.
4. Existing approaches either do not support the (real-time) monitoring of IoT-driven

BPs or the monitoring approach depends on specific IoT technologies.

Overall, the management of IoT-driven BPs is challenging due to a high complexity and
heterogeneity. To remedy the above drawbacks, we consider the following research questions:

RQ1 In what way should BPMN be extended to enable the modeling of IoT-driven BPs in
a user-friendly way?

RQ2 How to design an IoT-driven BPMS that covers the modeling, execution and monitor-
ing of IoT-driven BPs?

RQ3 How to support process engineers in modeling, executing and monitoring IoT-
driven BPs?

1.2. Contributions

This work proposes a sophisticated framework for the modeling, execution and
monitoring of IoT-driven BPs that address problems discussed in Section 1.1. Starting with
these problems, we have derived research questions RQ1–RQ3 and then refined them by
defining research objectives O1–O8. To model IoT-driven BPs, we propose the use of the
defacto standard modeling language BPMN 2.0, as many of its modeling elements can be
found in the context of IoT-driven BPs as well (cf. Section 2). To make the involvement
of IoT devices in BPs explicit, we extend the BPMN 2.0 metamodel. Our main goal is to
provide an intuitive and user-friendly modeling notation for IoT-driven BPs, based on
which IoT-driven BPs can be executed, monitored and recorded. Moreover, we propose an
appropriate software architecture that enables the integration of IoT devices as well as the
flexibility to evolve and maintain the IoT-enhanced BPMS.

This article extend the work we published in [11], as follows:

1. We add a backgrounds section that summarizes basic concepts necessary for the
understanding of this article.

2. We systematically compare the framework with recent works.
3. We present more detailed insights into the implementation of the framework.
4. We extend the evaluation section by adding a second case study from the smart

home domain.
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5. We present the results of a comprehensive user study.
6. We carefully revise the architecture (middleware, IoT services and recording compo-

nent) according to the feedback obtained from experts.

1.3. Paper Structure

The remainder of this paper is structured as follows. Section 2 presents backgrounds
needed to understand the proposed framework, whereas Section 3 outlines the research
method and objectives. Section 4 discusses related work with the goal to identify current
research gaps. Section 5 introduces the BPMNE4IoT framework for modeling, executing
and monitoring IoT-driven BPs, which is then applied in two real-world case studies
presented in Section 6. Section 7 describes the user study. Finally, Section 8 discusses our
results and Section 9 concludes the article.

2. Background

This section provides basics on the Internet of Things (IoT), business process modeling
and BPM system (BPMS).

2.1. Internet of Things

The Internet of Things provides a network of interconnected physical objects (things)
equipped with hardware, software, sensors, actuators and network connections that are
uniquely addressable based on standard communication protocols [7,12,13]. These inter-
connected devices allow for gathering data from the physical world, processing these data,
acting on the physical world and communicating with other smart things. In this article,
we follow the suggestions of the IoT Reference Model [5] and view Sensors and Actuators as
key components of IoT devices and environments. An IoT device may consist of multiple
sensors and actuators of varying complexity. From the IoT perspective, the following basic
types of devices are of interest:

• Sensors enable the detection and measurement of physical and chemical properties
such as temperature, brightness, humidity, and pressure. Thereby, a sensor detects
the physical quantity and transforms it with appropriate transducers (e.g., inductive,
capacitive, magnetic, or piezoelectric) into an electrical output signal [14]. Sensors
may be attached to physical objects, placed in the environment, or embedded in
physical objects [5]. Usually, the generated sensor data is retrieved by clients on a
publish/subscribe basis using web-based protocols (e.g., MQTT, RESTful API) [5,12].

• Actuators are driving elements that transform electrical signals into mechanical motion
(e.g., translate, rotate and switch on/off) or changes of physical quantities such as
light, pressure or temperature. In general, actuators are able to change the state of a
physical entity [5]. They are often controlled and accessed by web services based on
the REST paradigm and HTTP [12,15].

Another fundamental aspect of interconnected physical objects in the IoT is the ex-
change of information between these objects and with external systems. Therefore, the way
data and information are structured and exchanged is crucial. In the IoT Reference Model [5],
these aspects are defined in the information view layer. This layer allows for an overview of
the process information flow [5]. The following message exchanges patterns existing for
IoT devices:

• Push pattern: The push pattern is a one-way communication between two parties.
Interested parties receive the information they have subscribed to. This pattern can be
considered as an event-driven data communication [6]. The data consumer is interested
in the events that take place in the physical world and waits for them to occur. The
physical world is the element triggering events and informing the data consumer of
their occurrence [6].

• Pull pattern: The data consumer fetches the necessary data object when needed or the
next data can be processed [16,17]. The data provider notifies the data receiver as soon as
new values are available.
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2.2. Business Process Modeling

There are several languages that can be used to model business processes, including
Event Process Chains (EPC), Petri Nets, and Business Process Modeling and Notation
(BPMN) 2.0. A business process is described by Weske [18] as “a set of activities performed
in coordination in an organizational and technical environment”. More precisely, a business
process specifies the sequence of activities, the constrains for their execution, and the actors
to be involved [6,18,19]. BP modeling is crucial to better understand the BP and to identify
any problems. Modeled BPs can be analyzed, improved, automated, and optimized [4,19].

In this work, we focus on BPMN 2.0 [20], whose key modeling elements include (1)
different activity types (e.g., service, script, message and user tasks) to specify the active
parts of a BP, (2) pools and lanes to specify process participants, (3) various types of catching
and throwing events (e.g., message, conditional, timer and signal events) to represent
elements reacting to other activities, events and messages, (4) different types of gateways
(e.g., exclusive, inclusive, parallel and event-based) to split and merge the sequence flow
based on conditions, and (5) message flows to describe the interactions between participants.
As these modeling elements are also relevant in the context of IoT-driven BPs, many
researchers (cf. Section 4) consider BPMN as a suitable basis for modeling IoT-driven BPs.

2.3. Business Process Management Systems (BPMS)

To automate a BP, a BPMS can be used. A BPMS relies on an explicit description of
a business process in the form of a process model to coordinate and automate the BP in
such a way that all work is conducted at the right time and by the right resource. A BPMS
typically provides services for process modeling, process execution, process monitoring
and user interaction. Furthermore, the BPMS is responsible for creating and managing
process instances. The progress of a process instance is reflected by its trace, which is stored
in an event log [7]. Finally, any BPMS architecture needs to be designed in a way that
allows for the flexible modeling and execution of BPs [19,21,22].

3. Research Methodology and Objectives

Using the Design Science Research Methodology (DSRM) [23], we follow six iterative steps
(cf. Figure 2): (1) problem identification and motivation, (2) definition of solution objectives,
(3) design and development, (4) demonstration, (5) evaluation and (6) communication.

In Step (1), we identified the research problem and motivated it (cf. Section 1.1). Then,
we derived the research questions (cf. Section 1.1) and objectives (cf. Section 3) of the
framework. In Step (3), we designed and developed the framework required to support the
proposed research questions and main contributions. For this purpose, we developed a
holistic framework for modeling, executing and monitoring IoT-driven BPs (cf. Section 5).
In Step (4), we demonstrated the applicability of the framework in two real-world scenarios
from two different domains (cf. Section 6. In Step (5), we present a comprehensive user
study as the evaluation of our BPMN extension (cf. Section 7). In Step (6), we discuss our
findings, research questions and objectives. Figure 2 summarizes the DSRM steps.
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Figure 2. Design Science Research Methodology applied in this work.
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Objectives

The main goal of this work is to address research questions RQ1–RQ3 by developing a
BPMS for modeling, executing and monitoring IoT-driven BPs. Due to the high complexity,
ambiguity of modeling elements (cf. Figure 1), insufficient support for IoT integration and
blurred boundaries between the physical and virtual world, it is challenging to provide a
holistic framework (cf. Section 1.1). Based on the problem statement (cf. Section 1.1), the
hands-on experiences we have had with implementing IoT-driven BPs [4,9,11,24,25], and a
literature study (cf. Section 4), we refine the research questions RQ1–RQ3 and derive the
following objectives (O) from them:

O1 Visualize IoT involvement in BPs (RQ1): When modeling IoT-driven BPs, IoT in-
volvement should be made transparent and visualized to avoid ambiguity (e.g., to
distinguish IoT-related task vs. non IoT-related task), to enable better readability and
understandability of the BP (cf. Figure 1), and to represent IoT-specific aspects (e.g.,
IoT-driven conditions at XOR splits) [4,6,12,24,26].

O2 Specify intrinsic IoT characteristics at the process modeling level (RQ1): In an IoT-
driven BP, the IoT-intrinsic characteristics such as (1) push and pull interactions,
(2) asynchronicity, (3) parallelism, (4) IoT context data (e.g., sensor data), and
(5) support for event-based communication need to be specified at a modeling
level [6,9,22,27,28].

O3 Design IoT extensions for BPMN in a user-friendly manner (RQ1): End-user accep-
tance as well as the learning of new language concepts are increased by adhering
to BPMN 2.0 basic principles. This ensures that the standard elements remain in-
tact and are understandable to users [20]. Therefore, any extension for IoT-driven
BPs should stick to BPMN 2.0 and be designed in an intuitive and easy-to-use
way [6,12,20,26,29].

O4 Execute IoT-driven BPs (RQ2): An IoT-driven engine is needed to enable the IoT-
enhanced process execution. This engine should be able to interpret a process model
with its IoT-specific extensions and characteristics [6,9,21,24,25,28,30].

O5 Provide an IoT-aware process monitoring system (RQ2): In order to monitor IoT-
specific process parameters during the execution of IoT-driven BPs (e.g., measured
metrics, IoT-device type, device location, and device status), an IoT-aware monitoring
system is needed that communicates with the IoT-driven process engine. Moreover,
the monitoring of IoT devices shall increase the robustness of the IoT-driven BPs. If
a failure occurs (e.g., unreachable IoT device), its source can be detected with the
monitoring system and, thus, remedied quicker. Note that monitoring is also critical
for ensuring a high quality of task execution [9,25,30,31].

O6 Enhance event logs with IoT data (RQ2): In addition to the data generated during
process execution, the data captured by IoT devices should be included in the process
event logs. Note that the integration of IoT data and process data is accomplished
offline in a separate post-processing phase, as IoT data are collected and stored sepa-
rately from the process data. Thus, an IoT-enhanced event log should be recorded
automatically during the execution of IoT-driven BPs [7,9,25,32–34].

O7 Provide user-friendly interfaces (RQ3): Traditional process modeling tools tend to
be overloaded with menus, options, frames, and windows, leading to high cogni-
tive efforts and low acceptance by process modelers, especially non-experts. Con-
sequently, an intuitive user interface should be provided in an environment the
modelers of IoT-driven BPs are familiar with [6,12,22].

O8 Separation of concerns (RQ3): A difficulty of many IoT-driven BPs is the separation
of concerns for BP experts and IoT experts [10]. To foster their collaboration of the
two disciplines, a BP expert should be able to model IoT-driven BPs without need to
cope with the intrinsic IoT devices and their characteristics. Likewise, the IoT expert
should not be tasked with process modeling [10].
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4. Related Work

There are many approaches and notations that deal with the modeling, execution,
monitoring and recording of IoT-driven BPs. Two options are proposed in this context:
(i) extending the BPMN 2.0 metamodel with IoT-specific modeling elements or (ii) relying
on the BPMN 2.0 metamodel as-is [6,30,35,36]. Section 4.1 presents approaches that rely on
the as-is BPMN 2.0 metamodel, whereas Section 4.2 presents works that extend the BPMN
2.0 metamodel with IoT-specific modeling elements.

4.1. Using BPMN 2.0 Metamodel As-Is

This section discusses works that use the BPMN 2.0 metamodel without extending
it. Primarily, BPMN 2.0 is used to create a high-level model that may be enhanced with
technical details to become executable by a process engine [6,30].

Ref. [31] presents a BPMN-based approach to manage IoT devices in a Controlled
Environment and in Agriculture. To enable interactions with IoT devices (i.e., to enable
push and pull interactions) the BPMN script task is used and a sophisticated architecture
is proposed. Monitoring IoT-driven BPs based on a web framework developed in Python
using the Django framework is proposed.

Refs. [37–39] propose the use of the standard BPMN to capture aspects of Wireless
Sensor Networks (WSN) applications. Java and C# code is generated and deployed on
the Mote Runner WSN platform. The transformation of the BPMN process model into an
executable code is performed with patterns.

Ref. [40] proposes modeling business processes with BPMN 2.0 and transforming
the resulting process models into artifacts (i.e., Guard-Stage-Milestone (GSM)). The GSM
specifications are then deployed and executed on smart objects. For this purpose, a specific
infrastructure needs to be set up for each of these objects. [41] suggests using the BPMN
resource class to integrate IoT devices as data objects into the model and the BPMN
performer class to define the IoT devices involved in the process. To enable their execution,
the resulting BPMN 2.0 process models are translated into Callas, an IoT-neutral platform
programming code that can be executed by a Callas virtual machine in any IoT device.
Ref. [42] focuses on monitoring multi-party IoT-driven BPs. First, the IoT-driven BPs
are modeled with standard BPMN 2.0. Then, for each BPMN artifact, an extended GSM
(eGSM) model is derived semi-automatically from the process model. Finally, the smart
objects are used to transform the BPMN 2.0 artifacts into active entities. An architecture is
proposed that enables the monitoring with the above highlighted characteristics. Ref. [43]
propose defining IoT-driven BPs in terms of BPMN 2.0 and performing the interaction
between IoT devices and BPs based on the Bosch IoT Things Service, thus encapsulating
the implementation of the IoT view.

Ref. [44] uses BPMN 2.0 to model IoT-driven BPs. An extended BPMS architecture for
the decentralized process execution over mobile nodes is proposed. [6] presents a modeling
approach that uses standard BPMN elements. IoT-driven BPs and low-level real-world
data are captured in an ontology. To execute the BPMN models, a microservice architecture
is proposed. [21] uses BPMN 2.0 service tasks to represent IoT-driven activities, which
are then used by the BPMS to invoke the specific web service resources. Additionally,
Ref. [21] proposes a layered architecture for executing and monitoring IoT-driven BPs.

All these works argue that BPMN 2.0 itself is capable of modeling IoT-driven BPs
without the need to extend the metamodel, as many of the typical BPMN modeling ele-
ments (e.g., tasks, events, pools, and lanes) are characteristic for IoT-driven BPs as well [12].
Following such a straightforward approach, however, the involvement of IoT devices is
unclear, as BPMN 2.0 does not allow for their explicit representation. Furthermore, the
corresponding BP models are difficult to understand due to the ambiguous use of modeling
elements (cf. Figure 1). In particular, the resulting IoT-driven BPs lack structure, expres-
siveness and flexibility. This aggravates both the readability and the comprehensibility of
the modeled BP [4,9,24]. Moreover, the complex nesting and ambiguous use of the BPMN
modeling elements for IoT devices makes any later extensions or changes difficult.
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As the involvement of IoT devices in BPMN 2.0 does not become evident (Objective O1)
in most works, BPMN 2.0 is just used as a modeling artifact (cf. Figure 1) that needs to be
transformed into an executable language [6]. To support the inherent characteristics of IoT
devices (Objective O2), BPMS such as Camunda are not sufficient [4,6,9,24]. Consequently,
the IoT-driven BPs modeled with BPMN 2.0 need to be (1) converted to a IoT neutral-
platform programming code (e.g., Callas, Java, or C#), (2) an appropriate ontology to
extend BPs with context data [6] is required, (3) or a suitable IoT middleware needs to be
introduced for the IoT-driven BPs (cf. Objective O4). The latter is particularly challenging,
as existing middleware differs in the underlying technologies [45]. For instance, ref. [39]
generates Java and C# code for deploying it on the Monte Runner WSN platform; ref. [41]
translates the model of an IoT-driven BP into Callas; Valderas et al. [6] suggests combining
BPMN with ontologies to execute IoT-driven BPs. Finally, Seiger et al. [21] proposes the
use of a layered architecture for executing IoT-driven BPs.

For the monitoring of IoT-driven BPs, specific solutions exist. As standard BPMN
elements (e.g., service or script tasks) are used to express the IoT involvement in processes,
IoT behavior cannot be explicitly monitored and tracked (e.g., in an event log) (Objectives O5
and O6). For example, it needs to be monitored which IoT devices are currently processing,
in what state these devices are (e.g., running, waiting or error), and what outputs are
produced by them. Ref. [31] developed a Django web framework to monitor IoT devices
as well as the progress of the process state. Ref. [42] uses smart objects, which communicate
the state changes of their process or IoT devices to the architecture. In turn, these changes
are forwarded to the monitoring system.

4.2. Extending the BPMN 2.0 Metamodel with IoT-Specific Modeling Elements

This section deals with works that extend the BPMN 2.0 metamodel to explicitly
capture IoT aspects in BP models. An overview of related approaches extending BPMN
with IoT-specific modeling elements is given in Table 1.

uBPMN [26], extends BPMN 2.0 with five task types: (1) sensor tasks to collect physical
data, (2) reader tasks to collect data from ubiquitous technology (e.g., RFID, NFC and
magnetic stripes), (3) image tasks to collect data from video streams, (4) audio tasks to collect
information from an audio stream and (5) collector tasks to collect information except from
sensors (e.g., databases, files or proxy entity). For each activity type, there is a start and
intermediate event. Moreover, uBPMN extends BPMN with IoT-driven Data and Context
Objects. A Data Object is used to represent the data transmitted from the IoT devices. To
describe attributes of the physical context (e.g., brightness > 10) the Context Object may
be used.

The Stream Processing Unit SPU [46] extends BPMN 2.0 with two tasks for managing
data streams in the context of IoT-driven BPs: (1) Event stream specification tasks manage
the stream events and their parameters. To stop the data stream, a condition needs to be
specified for this task. (2) An Event stream processing task, in turn, manages the stream events
and their parameters. To stop the data stream, a condition needs to be specified for this
task. Furthermore, the concept of the data stream is introduced to collect input or output
data from smart devices. For this purpose, standard BPMN data objects are transformed
into an input/output event stream data object.

BPMNE4WSN [47] extends BPMN 2.0 to represent Wireless Sensor Networks (WSNs).
For this purpose, a WSN task, a WSN pool, and performance annotations are introduced.
The WSN task corresponds to an action performed in a WSN process and includes six
attributes: (1) tWSNOperation to bind a WSN operation, (2) actionType to define the op-
eration as sensing (?) or actuation (!), (3) isCommandAction to define a WSN task as a
command action, (4) tWSNPerformer to define the resource needed to perform the task,
(5) tActionPerformer extending tWSNPerformer to represent the nodes that are supposed
to execute the tWSNOperation and (6) isEventDriven to mark a WSN Task as event-driven.
Each attribute has its own icon and is displayed accordingly (when enabled) in a WSN Task
in the upper left corner.
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Refs. [48,49] add three IoT-specific modeling elements to BPMN 2.0 (1) a sensing task
for representing pull interactions, (2) an actuation task for representing push interactions
and (3) an empty pool for representing physical entities (e.g., chocolate). Within such a pool,
an icon may be displayed to represent the special process role. Ref. [50] describes a BPMN
metamodel extension for representing physical entities as well as their interaction with
smart devices. This metamodel includes the (1) PhysicalObject to model physical entities,
(2) SensingTask to enable pull interactions, (3) SensingAssociation to enable a flow of physical
information (pull) from a physical entity to a sensor, (4) ActuatingTask for push interactions
and Actuating Association to represent actuator commands, which may can be considered as
a flow of physical interaction (pull). For the SensingAssociation and ActuatingAssociation,
Sperner proposes the reuse of the same stencil as defined for a DataAssociation.

Ref. [51] extends BPMN to enable the management of smart services by sensing data
from smart devices with an IoT Sensor Activity. To enable push interactions, an IoT Service Ac-
tivity is introduced. Ref. [52] provides a BPMN extension that includes (1) a Sensor Device to
determine the type of sensor (e.g., temperature sensor, brightness sensor, or pressure sensor),
(2) a Sensor Service to define the function of the sensor device (e.g., request sensor data)
and (3) a Handler to specify the technology used to communicate with the sensor (e.g.,
REST-API, MQTT or WiFi).

BPMNE4CPS [53] suggests extending the BPMN 2.0 Service Task in the context of
Cyber–Physical Systems (CPS). Besides sensor and actuator tasks, the extension introduces
the following additional task types (1) web service tasks for web services (i.e., REST-API
requests), (2) embedded service tasks for executing software inside the smart device and
(3) cloud service task to trigger operations in the cloud. Furthermore, a pool marked with a
world symbol is introduced to represent a physical entity.

Ref. [54] proposes a BPMN extension to represent location-specific, sensitive informa-
tion based on sensors (e.g., GPS). The following event types are introduced: (1) the position
achieved event that occurs when the participant reaches a predefined location, (2) the position
update event to notify the BPMS about the position change and (3) the conditional positional
event that occurs when a participant reaches a predefined maximum distance of a location.

Ref. [55] extends the BPMN 2.0 pool with a cloud icon labeled as IoT to visually
represent the IoT involvement. To represent a human being involved in the IoT pool,
additionally, a smiley may attached to the pool. [56] extends the BPMN 2.0 pool, with a
cloud as marker to indicate that the pool communicates with a smart scenario (e.g., smart
home or smart factory). Note that the marker may contain the label pub for public, priv for
private and hybrid for hybrid clouds.

Discussion of Related Work

As a major drawback, all presented approaches do not fully cover IoT-specific char-
acteristics (cf. Objectives O1 and O2), but only support common behaviors (i.e., sensing
and/or actuating). For example, none of the extensions consider asynchronous and parallel
IoT interactions (push/pull) within a task, though this behavior can be frequently observed
when controlling actuators [27]. BPMN extensions such as uBPMN, BPMN4WSN and
BPMN4CPS introduce further task types or events in addition to sensor and actuator tasks.
However, these additional language elements are by far too specific (e.g., uBPMN-audio,
image, and reader tasks and events) or only support a certain IoT domain, e.g., Wireless
Sensor Networks or Cyber-Physical Systems (cf. Objective O3). As another drawback, in
most cases the extensions are considered solely from a theoretical point of view, but neglect
implementation issues [35], i.e., these works describe IoT-specific extensions of the BPMN
metamodel, but do not provide an extended BPMN modeler to support process engineers
in modeling IoT-driven BPs (cf. Objectives O7 and O8). Moreover, the proposed solutions
focus on extending the BPMN from a modeling perspective, but the resulting models are
not executable (cf. Objective O4). Nevertheless, extensions exist that provide both a modeler
and an engine with the specifics of the extension as well [46,47,51]. As explained, however,
these approaches are either too specific, only support a specific domain, or depend on
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specific IoT technologies, making it difficult to maintain the system. As another draw-
back none of the extensions introduces a real-time monitoring or a recording approach for
IoT-driven BPs in the context of an holistic approach (cf. Objectives O5 and O6).

As opposed to our framework, none of the discussed works provides a holistic frame-
work for modeling, executing, monitoring and recording IoT-driven BPs. The framework
proposes a BPMN extension with IoT-specific modeling elements. However, we have
extended BPMN with domain-independent modeling elements, i.e., our extension can
be used in any domain. Furthermore, we ensure the support of IoT-specific behavior
such as asynchronicity, parallelism, and IoT expressions. To support a wide range of IoT
technologies, we designed our software architecture that allows adding further IoT com-
munication protocols as well. The main goal of our work is to address these drawbacks of
existing approaches and to propose a holistic framework for IoT-driven BPs addressing the
Objectives O1–O8.

Table 1. Overview on related approach extending BPMN 2.0 for IoT-driven BPs.

Approach Modeling Executing Monitoring Logging User Interface Domain Independent

uBPMN [26] 3 7 7 7 7 7

SPU [46] 3 3 3 7 7 3

BPMN4WSN [47] 3 3 3 7 7 7

Meyer et al. [48,49] 3 7 7 7 7 3

Park et al. [51] 3 7 7 7 3 3

BPMN4CPS [53] 3 3 7 7 3 7

Kozel et al. [54] 3 7 7 7 7 3

Petrach et al. [55] 3 7 7 7 7 3

5. BPMNE4IoT–A Holistic Framework for IoT-Driven BPs

This section presents BPMNE4IoT—a holistic framework for modeling, executing,
monitoring and recording IoT-driven BPs based on a BPMN 2.0 extension. In all these BPM
lifecycle phases, we provide sophisticated visualizations for the support of various user
groups. Our extension provides suitable modeling elements to describe the interactions
between processes and IoT devices. This includes the involvement of IoT devices and
their behavior. Moreover, BPMNE4IoT enables the real-time monitoring of IoT-driven
BPs, visualizing the current state of the involved IoT devices and aligning them along the
process flow.

Section 5 is structured as follows: Section 5.1 presents the extended BPMN 2.0 metamodel
for modeling, executing, monitoring and recording the IoT-driven BPs. The corresponding
notation is presented in Section 5.2 and illustrated in the examples. Section 5.3 presents an
advanced architecture for implementing the BPMNE4IoT framework. Finally, Section 5.4
elaborates on the execution of IoT-driven BPs based on BPMNE4IoT.

5.1. Metamodel

To meet Objectives O1, O2, and O3, we decided to use BPMN 2.0 as a basis for modeling
IoT-driven BPs. As BPMN 2.0 has shown several drawbacks in this context (cf. Section 1.1),
we extend BPMN 2.0 with IoT-specific modeling elements. This extension is based on the
procedure described in [57]: First of all, we describe the extension at the metamodel level
(also called Abstract Syntax) and then present concrete examples utilizing our extension
for the Concrete Syntax. Figure 3 shows the proposed extension of the BPMN 2.0 in UML.
Note that the white classes are already part of BPMN 2.0, whereas the red classes reflect the
BPMNE4IoT extension. To cover the characteristics of IoT-driven BPs at the modeling level,
we extended the BPMN 2.0 classes Activity, Throw Event, and Catch Event [20] with new
subclasses (cf. Figure 3). The following is an abstract description of the artifacts and events.
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Figure 3. BPMNE4IoT metamodel.

Artifacts:

• IoTActivity: To an IoTActivity, one or more IoT artifacts are attached.
• IoTActuator(Group)Artifact: The IoTActuatorArtifact represents a physical actuator that

contains the information required for the execution of the physical actuator. This
artifact is also used for monitoring the state of the physical actuator. To increase its
abstraction, an IoTActuatorGroupArtifact may combine multiple IoTActuatorArtifacts.

• IoTSensor(Group)Artifact: The IoTSensorArtifact represents a physical sensor, containing
the information required for querying the physical sensor. This artifact is also used
for monitoring the state the of the physical sensor. To increase its abstraction, an
IoTSensorGroupArtifact may combine multiple IoTSensorArtifacts.

• IoTCatch(Group)Artifact: An IoTCatchArtifact allows for checking a condition based
on a sensor value, i.e., it contains the information required for condition checking.
An IoTCatchGroupArtifact, in turn, combines multiple IoTCatchArtifacts to increase the
abstraction level.

• IoTObjectArtifact: An IoTObjectArtifact represents a physical object (e.g., a robot or a
smart machine), which may contain multiple IoTSensorArtifacts and IoTActuatorArti-
facts. Furthermore, this artifact is used for monitoring the state of a physical object.

Events:

• IoTStartEvent: An IoTStartEvent refers to a physical sensor and enables the start of an
IoT-driven BP.

• IoTEndEvent: An IoTEndEvent represents a physical actuator that triggers the execution
of an actuator, terminating the corresponding process instance.

• IoTIntermediateThrowEvent: An IoTIntermediateThrowEvent refers to a physical actuator,
enabling the control of an actuator along the sequence flow.

• IoTIntermediateCatchEvent: An IoTIntermediateCatchEvent represents a sensor that en-
ables the process instance to check a condition based on the received sensor data.

• IoTBoundaryEvent: An IoTBoundaryEvent represents a physical sensor being attached
to a task. If the defined condition is fulfilled, the sequence flow is redirected.
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5.2. BPMNE4IoT Notation

The BPMN 2.0 [20] notation offers various modeling elements (cf. Section 2.2) to shape
a business process as well as to define its behavior [18,19,26]. The IoT extension introduced
in Section 5 provides suitable modeling concepts for IoT-driven BPs that can be used to
incorporate new behavior within business processes (e.g, context awareness, IoT-driven
conditions, asynchronicity, and parallelism). As we extend the BPMN 2.0 metamodel
(cf. Figure 3) with IoT-specific modeling elements, we need to complement the BPMN
2.0 notation accordingly (cf. Figure 4). In the following, each element of BPMNE4IoT is
described. Note that all elements are decorated with a WLAN icon and labeled as IoT.
Moreover, the letter in the upper left corner indicates the artifact type (i.e., “A” for actuator
and “S” for sensor). All artifacts may only be connected to a task using an association.

Sensor 
Artifact

Actuator  
Artifact

Actuator Group 
Artifact

A

+
Sensor 

Group Artifact
Catch 
Artifact

Catch Group 
Artifact

IoT Start 
Event

IoT End 
Event

IoT Intermediate  
Catch Event

IoT Intermediate 
Throw Event:

Object 
Artifact

IoT Boundary 
Event

S

+

S A S S

+

Figure 4. BPMNE4IoT with the notation of the IoT-specific modeling elements.

5.2.1. Sensor Artifact and Sensor Group Artifact

A sensor artifact can represent various sensors whose measurements become relevant
during process execution (e.g., measuring humidity, pressure or brightness). Thus, it
enables the collection of data from the physical environment and processes the context,
respectively. When connecting a task with a sensor artifact, the corresponding sensor
may be queried by the task during its execution. A sensor artifact captures all necessary
information about the sensor. The task associated with a sensor artifact may only be
successfully completed after having received a positive response from the physical sensor.
Note that the representation of sensors as artifacts allows linking any number of sensors to a
task. In turn, a sensor artifact may be arbitrarily combined with other artifacts (cf. Figure 5).
In such a case, the sensors are simultaneously queried during task execution.

Individual sensor artifacts may be aggregated to a sensor group artifact in order to
increase the abstraction level. A sensor group artifact shows the same behavior as a sensor
artifact. Moreover, it is represented by a collapsed sensor artifact (cf. Figure 4). As soon
as a task becomes activated, all physical sensors defined in the sensor group artifact are
pulled (push/pull interaction). The returned sensor values are stored and may then be
used in the further course of the process execution. Note that the representation of the
artifact is generic, allowing for the representation of arbitrary sensor types. Moreover, text
annotations may be used, for example, to designate artifacts and events.

Query sensors

S
SS

Query sensors

S

+

Temp
sensor 1

Temp
sensor 2 Temp

sensor 3

Temperature 
sensors

≙

Figure 5. Usage of Sensor Artifact and Sensor Group Artifact.
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5.2.2. Actuator Artifact and Actuator Group Artifact

An actuator artifact (cf. Figure 6) allows modeling actuators (e.g., electric motor, relay
and light). This enables the process to react to situations, e.g., by starting the air conditioner
as soon as a certain temperature threshold is exceeded. An actuator is controlled by the
task associated with the corresponding actuator artifact. All necessary information about
the actuator is captured by the actuator artifact. The corresponding task is completed
successfully once it has received a positive response from the actuator (e.g., status code
200 OK). Note that the artifact is represented in a generic way, allowing for the representa-
tion of arbitrary actuator types.

Individual actuator artifacts may be combined to an actuator group artifact in order to
increase the abstraction level. An actuator group artifact shows the same behavior as an
actuator artifact and is represented by a collapsed actuator artifact (cf. Figure 6). As soon as
a task becomes activated, all physical actuators defined by the actuator group artifact are
controlled (push/pull interaction). The corresponding task is completed successfully once
it has received a positive response from all physical actuators. Figure 6 shows an example
combining both sensor and actuator artifacts.

Set dimming 
level according 

to intensity

Set dimming 
level according 

to intensity

A
A

S
A

+

S
Intensity
sensor

Lamp 2
Lamp 1

Lamps
Intensity
sensor

≙

Figure 6. Usage of Actuator Artifact and Actuator Group Artifact.

5.2.3. Catch Artifact and Catch Group Artifact

A catch artifact (cf. Figure 7) allows for checking a condition during task processing in
combination with a boundary timer event. Immediately after starting the task, its condition
is continuously checked. All necessary information about the condition is provided by the
catch artifact. The task may be completed successfully only when meeting the specified
condition. If the condition is not satisfied within the time period specified by the boundary
timer event, the sequence flow attached to this event is executed (cf. Figure 7). Note that
if other artifacts are attached to the task, their execution and verification run in parallel.
Furthermore, the catch artifact may be used in combination with the actuator artifact to
support asynchronous actuator calls (cf. Figure 8). As soon as the task becomes activated,
the actuator artifact is processed (send command to the physical actuator). While executing
the actuation command (e.g., start conveyor belt), the condition defined in the catch artifact
is checked in parallel. The conveyor belt is active until the condition set out by the catch
artifact becomes fulfilled. If the latter applies, the task is completed successfully.

Individual catch artifacts may be aggregated to a catch group artifact to increase the
abstraction level. A catch group artifact shows the same behavior as a catch artifact and is
represented by a collapsed catch artifact (cf. Figure 4). As depicted in Figure 7, the group
artifact aggregates multiple catch artifacts to increase the abstraction level. As soon as the
task becomes activated, all conditions specified in the catch group artifact are continuously
checked in parallel. The task is successfully completed as soon as all conditions defined in
the catch group artifact are met. Note that the conditions are logically linked by an AND
operator (cf. Figure 7).
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Figure 7. Usage of Catch Artifact and Catch Group Artifact.

Start conveyor
belt
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Light
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Figure 8. Usage of Catch Artifact and Actuator Artifact.

5.2.4. Object Artifact

An object artifact (cf. Figure 4) enables the modeling of physical objects (e.g., robot,
machine or smart factory). As illustrated in Figure 9, an object artifact may contain both
sensors and actuators. On one hand, this allows hiding unnecessary information from
domain experts. On the other, the modeling becomes more accurate.

≙Control Smart 
Home

Control Smart 
Home

S
A

+

A

A
Temperature

sensor

Living room
lights Living room

blind

Smart Home

Figure 9. Usage of Object Artifact.

5.2.5. IoT Boundary Event

An IoT boundary event (cf. Figure 10) is attached to a task. This element may be used
to define a condition and to redirect the sequence flow if this condition becomes fulfilled
during the task execution. As soon as the task becomes activated, the condition defined in
the IoT boundary event is continuously checked. The condition check stops either upon
task completion or in case the condition becomes fulfilled before task completition. For
example, in Figure 10, a workpiece is weighed. During the execution of this task, the weight
is continuously checked using a load cell sensor. If the weight exceeds 1000 kg, an alarm is
triggered, as the conveyor belt can only transport a maximum of 1000 kg. Otherwise, the
process ends. Note that all events use the sequence flow as a connection type.
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5.2.6. IoT Start Event

To enable the start of an IoT-driven process depending on an IoT sensor and a corre-
sponding physical condition (e.g., motion detected, temperature ≥ 20 °C, or workpiece arrived),
the IoT start event (cf. Figure 10) may be used. When using this element the process
instance does not start directly, but only upon fulfillment of the condition. A decision can
be made between the at-most-once and at-least-once options. If the at-most-once option is
selected, only one instance may be created at runtime when meeting the condition. The
at-least-once option allows creating any number of instances upon the fulfillment of the
condition (e.g., check every 200 ms if temperature ≥ 20 °C).

5.2.7. IoT End Event

An IoT end event (cf. Figure 10) triggers the execution and/or control of an actuator
and terminates the corresponding process instance. In Figure 10, for example, the IoT end
event starts an alarm if the weight exceeds 1000 kg. Then, it terminates the process instance.
Unlike the IoT start event, the IoT end event has a thicker border.

Weight
workpiece

Weight >
1000 kg

Workpiece 
arrived

Start alarm

Figure 10. Usage of IoT Boundary, IoT Start and IoT End event.

5.2.8. IoT Intermediate Catch Event

An IoT intermediate catch event (cf. Figure 11) is linked to an IoT sensor. This element
enables the process to check a physical condition along the sequence flow
(e.g., volume ≥ 60 decibels, motion detected, or location arrived). More precisely, when reaching
an IoT intermediate catch event, the sequence flow does not continue until its correspond-
ing condition is met. Note that an artifact (e.g., sensor, actuator, catch or object artifact)
must not be linked to an IoT intermediate catch event.

5.2.9. IoT Intermediate Throw Event

To control an actuator along a sequence flow, the IoT intermediate throw event (cf.
Figure 11) may be used. Semantically, such events correspond to a task with a linked
actuator artifact. However, only one actuator may be controlled at the same time in the
context of an IoT intermediate throw event. The latter is successfully completed upon
receipt of a positive response from the actuator. Only then, the sequence flow continues.
Furthermore, the IoT intermediate throw event may affect the physical world through
actuators (e.g., open window, start air conditioner and turn on light). Note that an artifact
(e.g., sensor, actuator, catch or object artifact) must not be linked to an IoT intermediate
throw event.

Transport 
box to 

warehouse

Box arrived at
warehouse

Figure 11. Usage of IoT intermediate catch and throw event.
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5.3. Architecture

A holistic IoT-driven BPMS supporting the modeling, execution, monitoring and
logging of IoT-driven BPs based on BPMNE4IoT ( https://github.com/elmurd0r/bpmne4i
ot, accessed on 20 January 2023)) (see RQ2) necessitates an advanced architecture (Objectives
O4, O5 and O6). In particular, such an architecture shall implement the behavior of the IoT-
specific artifacts and events introduced in Section 5.2. Figure 12 depicts a coarse-grained
view on the BPMNE4IoT architecture, highlighting our contribution in green. Basically,
the architecture consists of three main components, i.e., IoT Devices, IoT Middleware and
IoT-driven BPMS.

IoT-driven BPMS

IoT Middleware

(2.3) Control / Response

(2.2) Query /  
Response

(1) XML

IoT Process Modeler

(3) Execution  
Updates

IoT Process Engine

IoT Process Monitoring

IoT Devices

Data
storage

Data ProcessingAcquisition

Sensor  
Data

(2.1) Sensor  
Subscription

IoT Subscription Manager

IoT Element Parser

IoT Execution Orchestrator
IoT-driven

Process Log(4) Write

IoT-driven Business
Expression Evaluator

Figure 12. Abstract view on System architecture and communication between system components.

IoT Devices are used to measure the state of the physical world and to digitize it or to
change the state of the physical world (e.g., turn/off the light). IoT devices may include
sensors and actuators that, in turn, may be combined into more complex ”things” such as a
smart fridge or smart car. The data collected with IoT devices is made available and may
be further exploited. In this context, either the IoT devices themselves provide access to the
data or a gateway can be used. Note that any connection to the respective IoT devices or
gateways is made through standard security mechanisms to ensure data protection. This
becomes necessary, as IoT devices generate a large amount of sensitive data, providing a
potential attack surface. Particularly, actuators are frequently affected, as they have the
ability to influence the state of the physical world.

IoT Middleware is responsible for data acquisition, data processing and data storage.
As the data formats and access methods (e.g., push or pull) of the various data sources
differ significantly, it becomes necessary to use middleware (e.g., Apache Kafka) that is able
to cope with this heterogeneity. Moreover, the middleware processes the obtained sensor
data, i.e., it transforms the heterogeneous data into a unified from, validates the data, and
cleans it (if required). Subsequently, the IoT data needs to be stored to enable access at any
point in time. In this context, IoT devices often run on reduced power and send their data
only with a limited frequency to keep power consumption low. Consequently, if the data
are not immediately stored (e.g., in a database), no data might be available. Moreover, the
middleware handles standard security mechanisms such as the encryption of data traffic
and authentication. These mechanisms prevent unauthorized access to the IoT data.

As a core component of the architecture, the IoT-driven BPMS enables the holistic inte-
gration of BPM with IoT. In detail, this component comprises the following sub-components.

• The IoT Process Modeler enables the modeling of IoT-driven processes. This sub-
component is based on bpmn.io ( https://bpmn.io/, accessed on 18 January 2023))
extended with the elements and metamodel described in Section 5. To enable the
configuration of the IoT characteristics (cf. Section 2.1), the extended properties panel
may be used (Objectives O7 and O8).

https://github.com/elmurd0r/bpmne4iot
https://github.com/elmurd0r/bpmne4iot
https://bpmn.io/
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• The IoT Process Engine executes IoT-driven BPs that contain IoT-specific information.
The process model contains both IoT-specific and Non-IoT-specific information to exe-
cute the IoT-driven BP. In our proof-of-concept, the open source Javascript workflow
engine ( https://github.com/paed01/bpmn-engine, accessed on 19 December 2022))
serves as the basis for executing the IoT-driven BPs. In detail:

– We extend the process engine with an IoT Element Parser, which parses all IoT-
specific information (e.g., endpoints; defined condition, i.e., for the IoT start
event; and device information) from the exported XML file and processes it for
its further use by the engine.

– The IoT Execution Orchestrator receives the IoT-specific information during process
execution and orchestrates the execution of the IoT artifacts and events.

– The IoT Subscription Manager allows the process instances to subscribe and unsub-
scribe to IoT devices as well as to integrate the real-world data provided by the
IoT devices and cleansed by the middleware.

– The IoT-driven Business Expression Evaluator accepts IoT data and expressions (e.g.,
light barrier is interrupted) and evaluates them based on the received sensor data.

• IoT Process Monitoring enables the monitoring of IoT-driven BPs using a similar visu-
alization as the IoT Process Modeler. In particular, IoT Process Monitoring receives
execution events and displays them in the process monitoring view.

• IoT-driven Process Log may be any persistent storage (e.g., PostgreSQL) recording the
process information and IoT device data during the process execution.

Due to the modular and flexible structure of the architecture, it becomes possible to
add components or to alter existing ones. Note that this enables a broad support of different
technologies. For example, IoT devices may be integrated regardless of the underlying
technologies (e.g., MQTT, CoAP, Zigbee, LoRa and LoRaWAN) on which they rely.

5.4. Executing IoT-Driven Business Processes

When executing IoT-driven BPs, a distinction is made between the deployment and
execution phases. To illustrate this, the communication between the components of the
architecture is shown in Figure 12 as well. Note that the deployment phase is represented
by Step (1) and the execution phase by Steps (2)–(4).

Deployment Phase. The process engineer models an IoT-driven BP and configures its
IoT parameters (e.g., endpoint and expressions). The configured BP model then contains
both information specific to IoT and not specific to IoT that is required to execute the
IoT-driven BP. The BP model is encoded as an XML file, which is deployed to the process
engine. Note that this XML file is machine-readable and, thus, is executable (cf. Step (1)).

Execution Phase. When creating a new process instance, the IoT process engine reads
the XML file and then starts the execution of this process instance. As soon as the engine
encounters an IoT artifact or event during the process execution, the IoT Element Parser
parses the IoT-specific information. In turn, the IoT Execution Orchestrator ensures that the
required action is taken. If sensor values are required, e.g., to check expressions in the IoT
start event, the IoT Subscription Manager enables sensor subscriptions at the IoT Middleware
in Step (2.1). The middleware responds regularly with the most recent sensor data as
long as the subscription is necessary. These data are then sent to the IoT-driven Business
Expression Evaluator, which uses it to evaluate expressions, e.g., for the IoT start event, IoT
boundary event, or the IoT catch artifact. Another option to query the data is an active
(pull) middleware request to instantly fetch sensor values (see Step (2.2)). Additionally, it is
possible to send commands to actuators. The communication between the actuators and
the IoT-driven BPMS is depicted in Step (2.3). In Step (3), all progress updates as well as
failures during the execution of an IoT-driven process are sent to the IoT Process Monitoring
via execution updates. The latter then displays these execution updates.

https://github.com/paed01/bpmn-engine
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5.5. IoT-Driven Event Log

As described in Section 5.3, an IoT-driven Event Log is recorded by the IoT-driven
BPMS (cf. Step (4)). This log combines the known process event log with the IoT-related data.
Figure 13 shows a segment of an IoT-driven process from a smart factory and the resulting
excerpt of the generated log. The depicted IoT-driven BP measures the temperature using
a sensor artifact. Subsequently, the oven valve is opened using an actuator artifact in
combination with a sensor catch artifact. The columns of the event log are as follows:

• Case. Unique identifier of the case to which the event belongs.
• Label. Label of the element (e.g., activity, events, and artifacts) to which the event be-

longs.
• Timestamp. Time at which the event occurred.
• TimestampType. Indicates the type of the timestamp. This can be either StartTime,

EndTime or EvaluationTime.
• ID. Unique identifier of the element to which the event refers.
• Type. Type of the element to which the event refers (e.g., sensor, actuator and activity).
• ConnectedTo. This column is defined for elements of the BPMNE4IoT extension solely.

It refers to the activity to which the respective BPMNE4IoT artifact is connected.
• Response Value. Return value of the executed IoT command (e.g., sensor values).
• Response Type. Indicates the type of response (e.g., temperature and humidity).
• Condition. Expression (e.g., temperature < 20 °C) of the IoT-driven Business Expression

Evaluator as defined, for example, in a catch artifact.

First of all, the activation of task Measure oven temperature (green color) creates a log
entry. Then, the attached ’temperature sensor’ artifact (orange color) becomes activated, i.e.,
the specified sensor in the artifact is queried and a log entry is created. After receiving
the sensed value, it is added to the log. Subsequently, the activity Open oven valve (blue
color) is executed. Two artifacts are attached to this activity, i.e., actuator Oven valve (purple
color) and catch artifact Oven valve limit switch (yellow color). The two artifacts becomes
activated simultaneously. The IoT Process Engine sends the execution command to the
actuator defined in the actuator artifact. At the same time, the condition defined in the
catch artifact is evaluated. At intervals of around 10 ms, sensor values are received and
the condition is evaluated. In the meantime, the actuator executes the defined command
and returns the status code to 200. From Line 15, it can be observed that the condition of
the catch artifact is fulfilled, which results in the completion of activity Open oven valve.
Afterwards, the remaining part of the process is executed. The described log is not only a
valuable input for process mining, but also captures the data provided by the IoT devices.
Finally, the IoT-driven process log connects the IoT devices with the corresponding task,
enabling the creation of digital twins for IoT processes [58].

There are several approaches [33,34,59] that extend the XES format to enriching process
event logs with IoT sensor data (including an extensive semantic description of these data).
In future work, we plan to convert the BPMNE4IoT log to XES. An approach would be to
convert the BPMNE4IoT log into the SensorStream approach [59].
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Figure 13. Excerpt of an output event log showing a segment of an IoT-driven Process in CSV Format.

6. Prototype Evaluation

This section presents the proof-of-concept prototype we developed. We introduce two
sophisticated scenarios from different domains, i.e., smart factory and smart home, and
apply the BPMNE4IoT framework to define, implement, monitor and record IoT-driven
BPs from these scenarios. In particular, we want to investigate whether the framework
enables the integration of business operations with IoT capabilities.

6.1. Smart Factory Scenario

We use a smart factory model provided by Fischertechnik® (FT) ( https://www.fischer
technik.de/en/simulating/industry-4-0, accessed on 14 December 2022)) to emulate a real-
world smart factory. Figure 14 shows this factory, which simulates a complete production
line. In detail, the smart factory consists of five stations: the high-bay warehouse, vacuum
gripper robot, oven, milling machine and sorting machine.

The smart factory is equipped with six different types of IoT sensors (cf. Figure 14),
whose short labels and colors are summarized in Table 2.

In addition to the sensors of the smart factory, the scenario comprises four sensor types
that measure the state of the environment (cf. Table 3).

In total, the smart factory has 34 sensors (see Figure 14), including 7 light barrier
sensors that detect the interruption of a light beam, 10 limit switch sensors that are activated
by the movement of a machine part or the presence of an object, 3 pressure sensors that
measure the intake pressure, one temperature sensor that measures oven temperature,
4 encoder sensors that return the current motor position and one color sensor that detects

https://www.fischertechnik.de/en/simulating/industry-4-0
https://www.fischertechnik.de/en/simulating/industry-4-0
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the color of the workpiece. In addition, two vibration sensors, two brightness sensors, two
humidity sensors and two air quality sensors are used to evaluate the workpiece condition.

Smart Factory

Vacuum Gripper Robot 

EC03

10
EC02

CR01

LM05

LM06

LM07

Milling Machine 

LB04

LB03 LM09

LM10

Sorting Machine
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CL01 CR03

TS02 CR02
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Oven 
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Sorting Machine

High-Bay Warehouse

Vacuum Gripper Robot

High-Bay Warehouse 
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LM01LM04 LM03 LM02

LB02 LB01

Oven

Milling Machine

Figure 14. Overview of components and sensors in the smart factory.

Table 2. IoT sensors of smart factory with short label and color.

IoT Sensor Type Quantity Short Label Color

Limit switch 10 LM Red
Light barrier 7 LB Yellow

Pressure sensor 3 CR Blue
Temperature sensor 1 TS Orange

Encoder sensor 4 EC Cyan
Color sensor 1 CL Purple

Table 3. Environment sensors of smart factory with short label and color.

IoT Sensor Type Quantity Short Label Color

Vibration sensors 2 VR Pink
Brightness sensors 2 BN Green
Humidity sensor 2 HD Neon Green
Air quality sensor 2 AQ Brown

Figure 15 illustrates a production process enabled by the smart factory. This example
shows how we can model, setup, execute and monitor the IoT-driven BP based on the
BPMNE4IoT framework. First of all, a white workpiece (WP) is transported to the transfer
point of the high-bay warehouse. While delivering the workpiece, the vacuum gripper
moves to the transfer point and waits until the condition of the IoT catch artifact evaluates
it to be true. The Outside LB triggered catch artifact evaluates whether or not a light barrier
is activated. The process may end, for example, if the condition is not satisfied within
120 s, e.g., due to network errors or defective sensors. The transport of the workpiece is
activated by the Vacuum Gripper object artifact (cf. Section 5.2.4) and the oven is waiting
for the arrival of the workpiece. Upon arrival, it is burned and then transported to the
turntable for milling. Subsequently, the workpiece is transported to the sorting machine via
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a conveyor belt. After activating the light barrier, the color of the workpiece is automatically
determined to sort it by color. Finally, the process terminates.

Custom  
IoT Elements

Selected  
Catch Artifact

Properties
Panel

Object Artifact

Property Setting Of
Selected Catch Artifact

Figure 15. Modeling and configuring IoT-driven process with the modeling tool.

The BPMS (cf. Section 5.3) manages the smart factory. First, the IoT-driven process
must be modeled, accompanied by the configuration of the involved IoT devices. The
modeling part of the BPMS is shown in Figure 15. It offers both the traditional BPMN 2.0
elements and the described IoT-specific artifacts and events (see Section 5.3). The process
model depicted in Figure 15 comprises an object artifact, an IoT intermediate catch event,
and an IoT intermediate catch artifact. In the properties panel (cf. Figure 15), the IoT
condition (cf. Section 5.2.3) is configured. A sensor catch artifact and an object artifact are
included in the process model from Figure 15. The IoT condition (cf. Section 5.3) of the
selected catch artifact is configured inside the properties panel (cf. Figure 15). Note that one
may add further conditions by using the plus symbol of the Add Property label for both the
object artifact and the group artifacts. For the catch artifact, the following properties need
to be specified: (i) an endpoint, (ii) an attribute that address the value from the response,
and (iii) the condition to be met before continuing with the process. The created IoT-driven
BP may be mapped to an XML file that can be imported by the IoT process engine. All
information needed to execute the IoT-driven process is contained in this XML file.

Subsequently, the IoT-driven BP may be deployed to the execution engine of the BPMS,
i.e., the IoT process engine. The latter creates and starts IoT-driven BP instances. An
example of such an instance execution is shown in Figure 16. Each green colored element
was successfully executed. A yellow overlay indicates the execution time and is displayed
upon completion of the modeling element. The orange-colored elements are currently
executed. In turn, the elements are highlighted in red when an error event occurs (e.g., a
network issue or timeout during runtime). An execution log is shown on the right side,
listing pertinent events (e.g., current progress and error messages).
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Figure 16. IoT-driven smart factory process in execution.

6.2. Smart Home Scenario

Another domain, in which we evaluated BPMNE4IoT, is Smart Home. To keep the
presented example simple, we focus on the sub-processes for controlling and monitoring
the temperature and brightness of the smart office based on the BPMNE4IoT framework.
Figure 17 shows the smart office, which is equipped with four different types of IoT sensors
(cf. Table 4) and three different types of IoT actuators (cf. Table 5). In total, six sensors and
three actuators are involved in the two sub-processes for controlling and monitoring the
temperature and brightness.

AB01
AB02

PS01 PS02WS01
WS02

BN1 TS01

HE01

MD01

Figure 17. Overview of the sensors and actuators in the smart office scenario.
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Table 4. IoT sensors used in Smart Office scenario with short label and color.

IoT Sensor Quantity Short Label Color

Brightness sensors 1 BN Green
Temperature sensor 1 TS Orange

Motion detector 1 MD Red
Position Sensor 2 PS Cyan

Wind Sensor 2 WS Blue

In addition to the sensors installed in the smart office, the scenario comprises actuators
to influence the physical environment (cf. Table 5).

Table 5. IoT actuators used in Smart Office scenario with short label and color.

IoT Actuator Quantity Short Label Color

Electrical blind motor 2 AB Pink
Heater 1 HE Purple

The sub-process for controlling the brightness in the smart office is illustrated by
Figure 18. This example shall demonstrate how such a controlling process can be modeled
with BPMNE4IoT. The process is started as soon as the brightness exceeds 1000 Lux.
In this case, the window blinds 1 and 2 are closed, controlling the respective actuators
based on the IoT actuator artifact. The associated tasks are successfully completed as soon as
the conditions specified by the IoT catch artifacts are met, i.e., position sensor “PS01 == 512”
and position sensor “PS02 == 512”. While the window blinds are closed, the wind speed
is continuously checked to determine whether it exceeds 20 km/h. If the latter applies,
the corresponding blind motors are stopped using an IoT end event. Then, the process
is aborted.

Close window
blind 1

Close window
blind 2

A

AB01
S

PS01 == 512

A

AB02

S

PS02 == 512

BN1
> 1000 Lux WS01

> 20 km/h

WS02
> 20 km/h

Stop AB01Stop AB02

Figure 18. Process to control the brightness in a smart office.

The sub-process for controlling the temperature in the smart office is illustrated by
Figure 19. The process starts upon the detection of any movement. Afterwards, the temper-
ature is queried using a smart IoT sensor. If the temperature is lower than 16 °C, the heating
level is set to 100%. The heating level is set to 25% if the temperature lies between 16 °C and
22 °C. The heating level is set to 0% if the temperature exceeds 22 °C. Finally, the process ends.
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Figure 19. Process to control the temperature in a smart office.

6.3. Conclusions from Prototype Evaluation

Based on the insights we gained when modeling, executing, monitoring and recording
the process of the two scenarios, we can evaluate the feasibility of our framework. The
modeling tool, which we extended with BPMNE4IoT, enables the non-ambiguous modeling
of IoT participation (cf. Objective O1) in IoT-driven BPs by providing new artifact and event
types. In addition, the properties panel (cf. Figure 15) may be used to configure the
IoT properties and, thus, to separate concerns (cf. Objectives O2 and O8). Based on the
BPMNE4IoT framework, we were able to model, execute, monitor and log IoT-driven smart
factory processes as well as smart home processes, taking the intrinsic IoT characteristics of
both scenarios into account. The implemented proof-of-concept prototype demonstrates
that we were able to automate a smart factory process and to manufacture a product
utilizing the BPMNE4IoT framework (cf. Objective O4). Although the presented scenarios
work under lab conditions, it can be transferred to a real-world smart factory as only the
scaling changes. In addition, Figure 16 shows the running smart factory process including
the monitoring of the IoT-driven BP and a corresponding log. On one hand, we were
able to show that the framework enables the real-time monitoring of IoT-driven processes
(cf. Objective O5). On the other, we can generate an IoT-enhanced BP log, which can be
used online, i.e., during process execution, and offline (cf. Objective O6).

7. End-User Study

In the Design Science Research Methodology, the evaluation step (cf. Figure 2—Step 5)
shall observe and measure how well the designed artifact (cf. Section 5) supports a solution
for the addressed problem (cf. Section 1.1). For this purpose, we conducted a controlled
study with 30 participants to evaluate the proposed BPMN extension (BPMNE4IoT) with
respect to user-friendliness, effectiveness, and workload (see RQ1). Study participants
were asked to model the same IoT process and thereby compare IoT process modeling in
BPMNE4IoT with BPMN 2.0. Note that we have compared our approach with the process
modeling standard BPMN 2.0, as there is no agreed upon standard or tool for modeling
IoT-driven BPs. Furthermore, the BPMN 2.0 standard is widely used and the participants
are largely familiar with it. Moreover, comparing our framework with related works is
complicated due to the fact that these works are often purely conceptual and the availability
of modeling tools as open source software artifacts is limited. Specifically, we validated the
following two hypotheses:

Hypothesis 1 (H1). When modeling IoT-driven BPs with BPMNE4IoT, the workload decreases
compared to the workload of BPMN 2.0 (cf. Objectives O3 and O7).
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Hypothesis 2 (H2). The time required to model a given process description with IoT characteristics
into an IoT-driven BP model with BPMNE4IoT is less, compared to the time required with BPMN
2.0 (cf. Objectives O3 and O7).

7.1. Participants

Thirty participants (10 female and 20 male) aged between 22 and 32 years
(M = 25.5, SD = 2.2) were recruited either via e-mail or within a learning platform to
participate in the user study. Three participants were doctoral students at Ulm University,
thirteen participants worked in the industry with a Bachelor’s degree, and the remain-
ing fourteen participants were students (13 Master’s students in Computer Science and
1 student without a degree). All participants had some experiences with modeling business
processes based on BPMN 2.0 (i.e., they participated in the BPM course or BPMN Modeling
Lab at Ulm University); 6 of them were experienced with IoT as well. To avoid learning
effects, we formed the following two groups G1 and G2 with 15 participants each.

G1: Members of this group modeled the textually described process first with the Web-
based BPMN 2.0 modeler BPMN.io ( https://bpmn.io/, accessed on 18 January
2023). Subsequently, they performed the same task with the BPMNE4IoT modeler.

G2: Members of this group first modeled the given process description with the
BPMNE4IoT modeler. Subsequently, the same task was performed with BPMN.io.

7.2. Design and Instruments

The user study was performed as a within-subject design, where each participant was
tested on each condition. Thereby, we measured the following two influencing variables
for usability requirements [60]: (1) efficiency and (2) user acceptance [6]. Efficiency was
measured as the time needed to complete the task successfully. In turn, user acceptance was
measured with a NASTA-TLX questionnaire [61]. In a nutshell, the following instruments
were applied to perform the experiment:

• A demographic questionnaire with questions about the educational degree, age and
gender of the study participants, as well as their experience level with process model-
ing and IoT of the study participants.

• A task description for modeling the IoT-driven BP. This modeling shall be accom-
plished with (1) BPMNE4IoT and (2) standard BPMN (BPMN.io).

• A NASA-TLX [61] questionnaire that is used to capture the perceived mental, physical
and temporal demand as well as performance, effort, and frustration on a 20-point
scale with 1-point steps. The questionnaire is extended with a text field form to capture
the start and completion times of modeling the process description [61].

7.3. Execution

To perform the study, we organized two workshops on two different days, each with
15 participants (G1 and G2). Both workshops were structured and performed identically,
with the only difference being that in the second workshop the participants created the
model of the given process description first with the BPMN extension (BPMNE4IoT) and
then with BPMN 2.0 (cf. G1 and G2).

Directly before the study, we explained its procedure and goal to the participants. To
ensure that the study participants reach a common ground, BPMN 2.0 was briefly intro-
duced. Following this, BPMNE4IoT was presented. Finally, the study leader demonstrated
both the BPMN.io and BPMNE4IoT modeling tools. After these introductions, the par-
ticipants started modeling the process with the first tool and were guided by the study
leader in case of major deviations, errors or questions. Each participant tracked the start
and end time of the modeling task independently. Moreover, the study leader observed
the participants during the study experiment and took notes regarding questions and the
behavior of the study participants. Afterwards, the participants completed the NASA-TLX
questionnaire. This procedure was repeated with the second tool.

https://bpmn.io/
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7.4. Analysis of the Results

This section analyses the results of the user study. Section 7.4 provides a descriptive analysis,
whereas Section 7.6 examines the study results with respect to their statistical significance.

7.4.1. Efficiency

We measured the efficiency as the task completion time required per approach. Mod-
eling the given process description with BPMN.io took participants between 11 and 29 min
(M = 17.6, SD = 5.6), whereas the time needed with the BPMNE4IoT modeler was between
4 to 10 min (M = 6.0, SD = 1.3). Figure 20 illustrates the results.

0 2 4 6 8 10 12 14 16 18 20 22 24

BPMN 2.0

BPMNE4IoT

Figure 20. Means and standard deviation of task completion time in minutes.

The results reveal a longer task completion for modeling the IoT process with BPMN.io.
Most of the problems that emerge when modeling IoT-driven BPs with BPMN 2.0 were
related to the use of the different modeling elements. As there are no IoT-specific modeling
elements in BPMN 2.0, study participants were unsure how to model the IoT involvement.
While some participants represented IoT involvement in terms of pools or lanes, others used
different task types (i.e., service and script task) or event types (i.e., message and signal
event). As another aspect noticed during the review of the models, some participants
used business rule tasks to represent sensors and service tasks for actuators, while others
used service tasks for both sensors and actuators. A third group used script tasks for
modeling sensors and actuators. Due to the ambiguous BPMN modeling elements (cf.
Figure 1: IoT-driven service task vs. non IoT-driven service task) and the fact that there
are no IoT-specific modeling elements in BPMN 2.0, modeling IoT-driven BPs was more
time consuming and complex. In BPMNE4IoT (cf. Section 5), there are specific elements
(i.e., artifacts and events) for modeling sensors and actuators. As our BPMN extension
(BPMNE4IoT) can explicitly represent specific IoT behavior (push and pull interaction and
IoT conditions), the participants completed the given task faster compared to the use of
BPMN 2.0. Note that the process models created by the study participants were checked
for their semantic by two study guides. It was noticed that none of the study participants
caused semantic errors in either BPMN or BPMNE4IoT. This can be explained with the
fact that the participants already were experienced with modeling business processes
in terms of BPMN 2.0. Moreover, the BPMNE4IoT extension conforms with BPMN 2.0.
Consequently, we may conclude that BPMNE4IoT is more efficient than BPMN 2.0, i.e.,
less time is needed for modeling IoT-driven BPs compared to BPMN 2.0, which confirms
Hypothesis H1.

7.4.2. Workload

After completing the modeling task with either one of the two languages (i.e., BPMN
2.0 vs. BPMNE4IoT), the participants were asked to fill out the NASA-TLX questionnaire
to assess the individual task load perceived by them. Note that this questionnaire captures
the perceived mental, physical and temporal demand as well as performance, effort and
frustration on a 20-point scale, where the highest scores represent the worst results, i.e.,
these properties are rated on a scale from very low (0) to very high (20). The performance is
rated on a scale ranging from very good (0) to very bad (20) [61]. Table 6 shows the obtained
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values (average (Avg), median (Med), standard deviation (SD), best result (Best), and worst
result (Worst) columns). Figure 21 compares the TLX means and standard deviation of
BPMNE4IoT and BPMN 2.0.

Due to the higher complexity of representing the IoT involvement with BPMN 2.0, its
limited suitability to represent IoT-specific behavior (e.g., continuous pull interaction), as
well as the ambiguity of how to describe IoT aspects in process models, the overall task
load and the individual factors are significantly higher for BPMN 2.0 than for BPMNE4IoT
(cf. Table 6). As BPMN 2.0 is a general-purpose language that does not allow for the
explicit modeling of IoT aspects, the study participants had to find workarounds to express
the IoT devices and the desired process behavior. This task was overwhelming for study
participants without experience in IoT-intensive domains (e.g., smart home, smart factory
and smart health).

Although all participants had never applied BPMNE4IoT before and received only
a short training of about 45 min, for the given task, the workload with BPMNE4IoT was
lower than with BPMN 2.0. The better results for BPMNE4IoT can be explained with
the ability of BPMNE4IoT to represent the IoT specifics (e.g., sensor pull interaction in a
loop, asynchronicity and parallelism) and IoT behavior (e.g., IoT-driven business rules).
Furthermore, BPMNE4IoT conforms to the BPMN standard, making the extension intuitive
for BPMN process modelers. The results of the NASA-TLX (cf. Table 6 and Figure 21)
reinforce these statements and confirm the Hypothesis H2.

Table 6. Results of the NASA-TLX questionnaire.

Factors BPMNE4IoT Modeler BPMN Modeler

Avg Med SD Best Worst Avg Med SD Best Worst

Mental load 4.2 4.0 1.8 1.0 9.0 12.8 14.0 3.0 5.0 16.0
Physical demand 3.1 3.0 2.1 0.0 13.0 8.2 9.5 5.5 0.0 16.0
Temporal demand 3.1 3.0 1.9 0.0 6.0 13.2 14.0 4.2 1.0 20.0
Performance 2.1 2.0 1.6 0.0 6.0 9.3 8.5 4.4 2.0 18.0
Effort 3.5 3.0 2.0 0.0 8.0 12.8 13.0 3.4 4.0 18.0
Frustration 2.6 2.0 2.5 0.0 10.0 13.3 14.0 4.2 2.0 20.0

0 2 4 6 8 10 12 14 16 18 20

Frustration

Effort

Performance

Temporal Demand

Physical Demand

Mental Load

BPMNE4IoT BPMN 2.0

Figure 21. Comparison of TLX means and standard deviation for modeling IoT-driven BPs.
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7.5. Observations

We have derived additional findings from the observations and notes made by the
study leader:

1. When the study participants from both groups G1 and G2 were modeling the provided
IoT-driven BP with BPMN 2.0, the study leader learned that the frustration level
had been very high. This is noticeable as most study participants expressed their
displeasure or disappointment about modeling the IoT-specific behavior with BPMN
2.0, which also affected their performance (cf. Figure 21). Most participants struggled
to find proper workarounds to capture the involved IoT devices and IoT-specific
process behavior. Moreover, they captured IoT involvement in terms of a black or
white box pool. For communication purpose, the study participants used message
events or tasks. While they applied service, script and message tasks for sensors
and actuators, they either used conditional events or loops via XOR gateways for
modeling the IoT conditions. Regarding the BPMNE4IoT modeling framework, it is
noteworthy that none of the study participants used pools when modeling IoT-driven
BPs, as unique modeling element exists for capturing sensor and actuator behaviors
(cf. Section 5), meaning IoT involvement no longer needs to be represented by pools.

2. Prior knowledge of BPMN 2.0 and the IoT domain was advantageous. Study partici-
pants with knowledge of IoT-driven BPs found it easier to model the given IoT-driven
process according to the textual instructions. They also found it more accessible and
required less time. Moreover, these study participants experienced a lower workload
than others (cf. Table 6—BPMN Modeler Best value). This can be explained with the
fact that study participants with prior knowledge in IoT-driven BPs already knew
which BPMN 2.0 modeling elements can be used to express IoT participation (service,
script, business rule and message tasks or events and pools) and IoT-specific behavior
(e.g., continuous pull interaction and IoT conditions). Finally, study participants
with prior knowledge of IoT-driven BPs in BPMN 2.0 reported a lower task load
when using BPMNE4IoT than when using BPMN 2.0 despite their non-familiarity
with BPMNE4IoT.

7.6. Inferential Statistics

The insights presented in Section 7.4 are merely based on descriptive differences.
To evaluate whether the differences in the descriptive results reach statistical significance,
independent-samples t-tests [62] were conducted to compare BPMNE4IoT and BPMN 2.0.
All statistical tests performed were two-tailed and the significance value was set to p < 0.05.
Table 7 summarizes the independent-samples t-tests.

Table 7. Two-Sample T-Test Results for BPMNE4IoT and BPMN 2.0.

Factors BPMNE4IoT Modeler BPMN Modeler

Mean SD Mean SD t df Sig(2-Tailed)

Mental load 4.2 1.8 12.8 3.0 13.1 47.4 <0.001
Physical demand 3.1 2.1 8.2 5.5 4.4 43.7 <0.001
Temporal demand 3.1 1.9 13.2 4.2 11.9 40.4 <0.001
Performance 2.1 1.6 9.3 4.4 8.2 37.1 <0.001
Effort 3.5 2.0 12.8 3.4 12.7 47.3 <0.001
Frustration 2.6 2.5 13.3 4.2 11.7 46.8 <0.001
Completion time 6.0 1.3 17.6 6.1 11.0 32.0 <0.001

The results demonstarte that the participants had a statistically significant lower
(t(47.4) = 13.1, p < 0.001) mental load when modeling IoT-driven BPs with BPMNE4IoT
(M = 4.2, SD = 1.8) than when modeling them with BPMN 2.0 (M = 12.8, SD = 3.0). Physical
demand was significantly lower (t(43.7) = 4.4, p < 0.001) when modeling IoT-driven BPs with
BPMNE4IoT (M = 3.1, SD = 2.1) compared to BPMN 2.0 (M = 8.2, 5.5). Regarding temporal
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demand, study participants had a significantly higher load (t(40.4) = 37.1, p < 0.001) when
modeling IoT-driven BP with BPMN 2.0 (M = 13.2, SD = 4.2) than with BPMNE4IoT
(M = 3.1, SD = 1.9). The performance of modeling IoT-driven BPs is significantly better
(t(37.1) = 8.2, p < 0.001) in BPMNE4IoT (M = 2.1, SD = 1.6) in comparison to BPMN 2.0
(M = 12.8, SD = 3.4). To model the given IoT-driven BP, study participants had to exert
significantly more efforts (t(47.3) = 12.7, p < 0.001) when using BPMN 2.0 (M = 12.8,
SD = 3.4) than when using BPMNE4IoT (M = 3.5, SD = 2.0). When modeling IoT-driven BPs
with BPMN 2.0 (M = 13.3, SD = 4.2), study participants were more frustrated (t(46.8) = 11.7,
p < 0.001) compared to the use of BPMNE4IoT (M = 2.6, SD = 2.5). Finally, participants
require significantly less time (t(32.0) = 11.0, p < 0.001) to model the IoT-driven BP with
BPMNE4IoT (M = 6.0, SD = 1.3) than when using BPMN 2.0 (M = 17.6, SD = 6.1). Overall,
the independent-samples t-tests statistically confirms Hypotheses H1 and H2.

7.7. Threats to Validity

The results of our within-subject study need also be considered in the light of certain
limitations. First, in a random participant group, it is always possible that there are users
that are more experienced than others. Consequently, we faced the risk of an unexpected
heterogeneity of the participants assigned to G1 and G2. Therefore, the final results could
be influenced by the varying BPMN & IoT knowledge of the participants as well as by their
domain knowledge. Although all the participants were randomly divided into two groups
(i.e., G1 and G2), we attempted to minimize this risk by pre-training all participants to
create a similar background as well as knowledge of the technologies required to perform
the task. In this context, we provided a short tutorial on both the BPMN 2.0 basics and the
BPMNE4IoT framework. In this tutorial, the participants learned how to apply BPMNE4IoT
and BPMN 2.0, respectively. We provided the study participants with a more detailed
explanation of the artifacts and events we had introduced for modeling IoT-driven business
processes. Finally, we gave a introduction to both the BPMN.io and the BPMNE4IoT
modeling tool.

Second, the two groups were built out of fourteen students, three doctoral students,
and thirteen employees from the IT field (i.e., industry). Note that study participants
with prior knowledge in modeling IoT-driven BPs with BPMN 2.0 still reported a lower
task completion time when using BPMNE4IoT compared to the use of BPMN 2.0, even
though they were using BPMNE4IoT for the first time. However, we acknowledge that
further studies are needed with participants who are both process and IoT experts to
generalize the results.

Third, the participants had to model an IoT-driven process based on a given process
description. In future studies, participants should model multiple processes from different
domains to verify whether the given process description or domain has an impact on the
study outcome. However, we expect that BPMNE4IoT performs better than BPMN, as
the involvement of IoT can be explicitly and unambiguously modeled using the intro-
duced artifacts (cf. Section 5). Finally, process modeling is more straightforward when
using BPMNE4IoT.

Finally, the study was conducted with a relatively limited sample size of 30 participants.
Further studies with a larger number of participants are needed to generalize findings.
Nevertheless, the obtained process models, combined with the NASA-TLX questionnaire
and the required modeling time, provided promising initial results and insights into the
workload and efficiency of modeling IoT-driven BPs with BPMNE4IoT.

7.8. Conclusions from User-Study

The results obtained in the within-subject study support Hypotheses H1 and H2. Thus,
we may conclude that the proposed BPMN 2.0 extension (BPMNE4IoT) is more effective
(i.e., less time is needed) and more intuitive (Objective O3) than BPMN 2.0 regarding the
modeling of IoT-driven BPs (see H1). As pointed out in Section 7.4.1, participants with
and without IoT experience were able to model the given IoT process description faster
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with BPMNE4IoT than with BPMN 2.0. In this context, no semantic modeling errors were
introduced. Regarding H2, which focuses on the workload of users during the modeling of
IoT-driven BPs, we showed that study participants experienced a lower workload when
using BPMNE4IoT compared to BPMN 2.0 (see Section 7.4.2). This is remarkable, as
most participants have had experiences with BPMN 2.0, whereas none of them had used
BPMNE4IoT before.

As the findings obtained through the study are merely based on descriptive results, we
conducted independent-samples t-tests to evaluate whether the differences described in the
descriptive results reach statistical significance. The obtained results have demonstrated (cf.
Table 7) that BPMNE4IoT performs significantly better than BPMN 2.0 in terms of efficiency
and workload when modeling IoT-driven BPs. Overall, we can conclude that the proposed
BPMN 2.0 extension for IoT-driven BPs is suitable.

8. Discussion

In this section, we discuss how the BPMNE4IoT framework for modeling, executing,
monitoring and recording IoT-driven BPs addresses the derived research questions and
objectives (cf. Section 1.1).

Regarding the modeling of IoT-driven BPs (RQ1), we identified a lack of support in
both BPMN 2.0 and existing BPMN 2.0 extensions. To capture the IoT involvement and IoT
characteristics in process models more explicitly, we extended the BPMN 2.0 metamodel
with IoT-specific modeling elements and a corresponding notation (Objectives O1 and O2).
The results of the user study further confirmed that the modeling of IoT-driven BPs with
BPMNE4IoT leads to a positive user experience, takes less time, and decreases the workload
in comparison to BPMN 2.0 (Objective O3).

The proposed BPMN 2.0 extension and the presented software architecture together
form a holistic framework for modeling, executing, monitoring and recording IoT-driven
BPs (RQ2). The modeling of IoT-driven BPs is enabled through extensions, which can
represent IoT device involvement and IoT device behavior (cf. Objectives O1 and O2). The
execution of the resulting IoT-driven BPs is enabled based on the implemented BPMS and
its architecture (cf. Objective O4). In particular, the BPMS is able to interpret and execute
the IoT-driven BP modeled in terms of the BPMNE4IoT extension. The monitoring of
the corresponding process instances is enabled by the IoT Process Monitoring component,
which is closely coupled with the engine, receiving continuous execution updates from it (cf.
Objective O5). Both process execution data and IoT-specific execution data are stored in an
IoT-enhanced event log (cf. Objective O6). Altogether, we have been able to demonstrate the
modeling, execution, monitoring and recording of IoT-driven BPs from different domains.

To assist process engineers in modeling, executing and monitoring IoT-driven BPs
(RQ3), we developed a tool that integrates the BPMNE4IoT extension (cf. Section 5.3).
To keep the cognitive efforts low and to increase user acceptance, especially for non-
experts, we implemented BPMNE4IoT in an already existing BPMN 2.0 modeler (bpmn.io).
To increase usability, we have kept the configuration options for IoT devices to a minimum.
Furthermore, process engineers are enabled to execute IoT-driven BPs with this tool. As
the monitoring system is directly coupled with the execution engine, the process engineers
receive direct feedback, e.g., at the occurrence of an error, non-reachability of IoT device,
or defective IoT devices. Furthermore, an event log is available that contains more de-
tailed information (cf. Objective O7). The tool was evaluated in two real-world scenarios
(cf. Section 6). Moreover, we have separated the modeling of IoT-driven BPs from the
specification of IoT devices in the tool. This allows BP experts to model processes without
the need to deal with IoT-specific characteristics (cf. Objective O8).

As opposed to the existing approaches, we provide a holistic framework that supports
all phases of the process lifecycle, i.e., the scope of this work is the modeling, execution,
monitoring and logging of IoT-driven BPs. Note that we did not discuss other challenges
such as IoT data security, robustness and reliability. Regarding the IoT data security, we
made use of the standard mechanisms provided by the middleware, gateways, and IoT
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devices. The current approach enables the monitoring of defective and unreachable IoT
devices. However, the handling of such failures has not been considered.

9. Summary and Outlook

In this work, we presented a holistic framework for modeling, executing, monitoring
and recording IoT-driven BPs. Following the Design Science Research Methodology, we
identified a missing integrated support of these tasks. Then, we studied existing approaches
to evaluate their suitability with respect to such an integrated lifecycle support for IoT-
driven BPs. As drawbacks of the studied approaches, they do not support the intrinsic
IoT characteristics, are described only theoretically, or focused on extending BPMN for
modeling and do not support the execution, recording and monitoring of IoT-driven
BPs. Based on these insights, we derived research questions, which we then refined by
formulating several objectives to improve the lifecycle support of IoT-driven BPs. Regarding
the modeling and monitoring phase, we extended the BPMN 2.0 metamodel with IoT-
specific artifacts and events, resulting in BPMNE4IoT. To be able to execute and monitor the
BP created with BPMNE4IoT, we defined an appropriate architecture and implemented an
IoT-aware BPMS. Together, they enable a holistic framework for IoT-driven BPs. Moreover,
we extended a common BPMN 2.0 modeler with BPMNE4IoT and, thus, support process
engineers with a modeling environment with which they are familiar. Based on the proof-
of-concept evaluation and the application of the resulting prototype to the smart production
and smart home, we could demonstrate the applicability of the framework and its concepts
in different domains. Altogether, the prototype evaluation has demonstrated that we are
able to model, execute, monitor and log IoT-driven BPs. The results of the user study
confirmed that the use of BPMNE4IoT has led to an increased usability and user experience
(i.e., better task completion times, positive feelings and lower workload) compared the
modeling of IoT-driven BPs with BPMN 2.0.

In future work, we want to perform further experiments and studies to assess the
completeness and domain independence of the BPMNE4IoT framework. So far, we have
compared BPMNE4IoT with the de-facto process modeling standard BPMN 2.0, as there is
no defined standard or tool for modeling, executing, monitoring and recording IoT-driven
BPs. Nevertheless, in future work we want to compare BPMNE4IoT with other approaches
regarding modeling, usability, acceptance and user experience. Finally, we want to review
how we can complement our framework with state-of-the-art IoT security mechanisms.
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