

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 26, 2022

BProVe: A formal verification framework for business process models

Corradini, Flavio; Fornari, Fabrizio; Polini, Andrea; Re, Barbara; Tiezzi, Francesco; Vandin, Andrea

Published in:
Proceedings of 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)

Link to article, DOI:
10.1109/ASE.2017.8115635

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., & Vandin, A. (2017). BProVe: A formal verification
framework for business process models. In Proceedings of 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE) (pp. 217-228). IEEE. https://doi.org/10.1109/ASE.2017.8115635

https://doi.org/10.1109/ASE.2017.8115635
https://orbit.dtu.dk/en/publications/ee92fd63-25b3-467e-ae4c-8d8a05ea0020
https://doi.org/10.1109/ASE.2017.8115635

BProVe: A Formal Verification Framework for

Business Process Models

Flavio Corradini, Fabrizio Fornari, Andrea Polini, Barbara Re, Francesco Tiezzi

School of Science and Technology

University of Camerino

Camerino, Italy

firstname.lastname@unicam.it

Andrea Vandin

DTU Compute

Technical University of Denmark

Lyngby, Denmark

anvan@dtu.dk

Abstract—Business Process Modelling has acquired increasing
relevance in software development. Available notations, such as
BPMN, permit to describe activities of complex organisations.
On the one hand, this shortens the communication gap between
domain experts and IT specialists. On the other hand, this per-
mits to clarify the characteristics of software systems introduced
to provide automatic support for such activities. Nevertheless,
the lack of formal semantics hinders the automatic verification
of relevant properties.

This paper presents a novel verification framework for BPMN
2.0, called BProVe. It is based on an operational semantics,
implemented using MAUDE, devised to make the verification
general and effective. A complete tool chain, based on the
Eclipse modelling environment, allows for rigorous modelling
and analysis of Business Processes. The approach has been
validated using more than one thousand models available on a
publicly accessible repository. Besides showing the performance
of BProVe, this validation demonstrates its practical benefits in
identifying correctness issues in real models.

Index Terms—Business Processes, BPMN, Structural Opera-
tional Semantics, MAUDE, Software Verification.

I. INTRODUCTION

A Business Process (BP) model generally describes a set

of activities that an organisation should perform to fulfil a

specific business goal [1]. In addition it is possible to use such

kinds of models, in particular the so-called Collaborations, in

order to describe the coordination of different organisations

that cooperate to achieve a shared goal.

A BP model results from the synthesis of perspectives

related to different aspects of an organisation, and on the activ-

ities that should be performed [2]. Among these, the following

kinds of information are particularly relevant in order to derive

an effective BP model. The functional perspective describes

those units of work, also referred as activities, included in

a BP that may be needed to reach a particular objective.

The behavioral perspective specifies the behavior of the BP

defining the control flow relationships between the included

activities. The organisation perspective describes the different

actors that are involved in a BP and their message exchange.

Such modelling approach has not specifically emerged in

relation to the development of software systems. Instead, it

has initially acquired consensus as an effective way to reflect

on how an organisation operates, also in relation to possible

collaborations with others. On the other hand, such kind of

modelling activity constitutes an important thrust toward the

introduction of software systems. As it happens for any mod-

elling activity, the usage of a modelling notation to describe

the reality of interest permits to reduce the communication gap

between the different users of the model, so to keep the focus

just on the relevant aspects. Interestingly, possible different

users of BP models are domain experts and IT professionals.

Therefore in the last years BP modelling has emerged as

an effective approach in relation to requirements engineering

activities [3], [4], [5], [6], in particular for the development of

those software systems supporting the BP execution.

The relevance of BP modelling for software development is

probably even more evident if we consider the notations in-

spired by BP modelling that have been proposed, with different

levels of success, as executable languages. This is for instance

the case of service orchestrations expressed using the Web

Services Business Process Execution Language [7]. Another

common use of BP languages in driving complex software

systems concerns Process-Aware Information Systems, which

dynamically coordinate different resources (people, applica-

tions, and information sources) according to what is defined in

BP models. In summary, BP modelling has evolved to become

an effective way to specify software characteristics, and even

to program software systems. As a consequence, the relevance

of formal verification for BP models has become more and

more evident.

In the last years the Business Process Modeling Notation

(BPMN 2.0) [8], an Object Management Group (OMG) stan-

dard, emerged as one of the most accepted proposals to define

BP models. BPMN success comes from its versatility and

capability to represent BP for different purposes. The notation

acquired, at first, acceptance within business analysts and

operators. Successively, it has been more and more adopted

by IT specialists to lead the development and settlement of

IT systems supporting the execution of a specified process

model. This shift in the usage of the notation is particularly

relevant and poses the basis for our work. Indeed, OMG

does not provide a precise definition for the semantics of the

notation. The lack of a precise semantics may not represent

a big issue when the notation is used just for communication

purposes. Instead its adoption for shaping IT systems, and

even more importantly to apply model driven approaches to

978-1-5386-2684-9/17/$31.00 c© 2017 IEEE
ASE 2017, Urbana-Champaign, IL, USA
Technical Research

217

automatic code generation, does require the definition of a

precise semantics. To overcome such semantic gap, many

different proposals can be found in the literature. Use of

encodings and composition rules permitting to derive a Petri

Net inspired model is a quite popular approach to provide

the semantics of a BP (see, e.g., the seminal work in [9]). In

this case, the analysis will be conducted on the derived Petri

Net. Other approaches provide, instead, denotations of BPMN

elements with terms in a given process algebra (see, e.g., [10],

[11], [12]).

In this paper we provide an alternative verification frame-

work that is based on the definition of a native semantics

according to a Structural Operational Semantics (SOS) style

[13]. The framework, as detailed in the following, has some

distinctive characteristics:

• It does not make any assumption on the structural prop-

erties of the original model. Indeed, in order to make

the definition of semantic rules easier, some approaches

assume that models are defined according to good mod-

elling practices. Well-structuredness, which informally

asks for the usage of nested structures, is probably the

most common assumption. On the other hand, it is quite

common in practice that BP designers, in particular

less experienced ones, do not generally follow such a

recommendation. On the other hand some authors suggest

that modellers should not be constrained by structural

characteristics, so to freely represent the reality [14]. Thus

it is not uncommon to find models with an arbitrary

topology.

• It permits easy handling of BPMN elements that can have

non-local effects, and that are difficult to handle with

other approaches.

• It considers also BPMN communication elements, thus

dealing with BPMN Collaborations. Hence, it enables the

checking of issues possibly related to messages exchange.

• It makes easier to re-conduct the results of verification

activities to the elements of the original model.

The semantics has been concretely implemented using the

formal framework MAUDE [15]. This implementation has

been integrated with the MAUDE model checker, to allow the

automatic verification of properties of BPMN collaborations.

The resulting verification component has been wrapped as

a publicly available Web service, and a specific plug-in for

the Eclipse modelling environment has also been developed.

In particular, the resulting tool allows the user to select the

collaboration properties he wants to verify out of a predefined

list of intuitive behavioral properties expressed in natural

language, and then to automatically generate logical formulas

and to model check them over the BPMN model. This makes

transparent to the user the use of formal methods, by offer-

ing a modern integrated development environment, equipped

with verification facilities for BPMN models. The result is a

complete tool chain for BP modelling and verification, which

we called BProVe. The verification strategy has been also

extensively validated using models from an open repository

(http://bpmai.org/) [16], in order to derive its performance

characteristics in relation to BP properties (i.e., soundness

and safeness) relevant in software implementations. Notably,

we report on a large set of publicly available models that do

not satisfy such properties, witnessing the need of enriching

BPMN modelling with rigorous analysis techniques.

Summing up, the major contributions of this paper are:

1) an efficient implementation of a formal operational se-

mantics for BPMN within the MAUDE environment,

which enables the formal analysis of BPMN models;

2) a complete tool chain presenting a modelling environ-

ment and a service for the automatic verification of

properties over the designed BPMN models;

3) an extensive validation of the approach.

The rest of the paper is organised as follows. Section II

provides an overview of BPMN. Section III discusses the main

features of the verification framework we propose, focusing on

its implementation and on the supported verification strategies.

Section IV provides an overview of the tool chain. Section V

illustrates the results of the validation experiments. Section VI

reviews related works mainly focusing on existing tools. Fi-

nally, Section VII concludes by also touching upon directions

for future work.

II. BACKGROUND NOTIONS

Having understood the rationale of considering Business

Process management on software development for IT systems,

in this section we introduce some basic notions. In particular,

we first discuss the phases of the BP life-cycle, and we

introduce BPMN as the reference language for modelling BP.

Then, we present relevant properties to be checked.

There are many proposals for the generic life-cycle of BPs,

deployed within IT infrastructures; here we refer to a slightly

revised version of the one proposed in [17]. It consists of four

phases: (i) Design and Modelling, where domain requirements

are collected to produce a model suitable to represent as-is or

to-be scenarios in organisations; (ii) Analysis, where syntactic,

structural and behavioral issues of the model are detected;

(iii) Enactment and Execution, where the model is deployed

based on the underlying IT infrastructure; (iv) Monitoring

and Improvement, where functional traces and non-functional

measures from the process execution are collected in order

to identify bottlenecks. In this paper we mainly concentrate

on the Design and Modelling and Analysis phases, which are

usually completed in an iterative method till reaching a stable

release of the model.

Focusing on Design and Modelling, several languages and

graphical notations have been proposed to represent process

models with differences in the level of formality. BPMN,

which has been standardised by OMG [8], is currently ac-

quiring a clear predominance thanks to: (i) its intuitive and

graphical notation that is accepted by industry and academia;

and (ii) the support provided by a wide spectrum of modelling

tools (currently more than 50, see http://www.bpmn.org for a

detailed list). Here we discuss the BPMN elements supported

by BProVe (see Fig. 1). Pools represent participants or or-

218

Notation
Po

ol

Task

ANDXOR

Connecting Edges

Events Gateways

EndStart Intermediate Event-BasedTerminate

sequence flow message flow

Fig. 1. BPMN Notation (an excerpt).

ganizations involved in the collaboration, and provide details

on internal process specifications and related elements. Pools

are drawn as rectangles. Tasks represent specific jobs to be

performed within a process. Tasks are drawn as rectangles

with rounded corners. Gateways manage the flow of a process

both for parallel activities and choices. Gateways are drawn

as diamonds and act as either join nodes (merging incoming

sequence edges) or split nodes (forking into outgoing sequence

edges). Different types of gateways are available: an XOR

gateway describes choices, an AND gateway enables parallel

execution flows, and an Event-Based gateway activates its

outgoing branches according to the taking place of catching

events. Events are used to represent something that can hap-

pen. An event can be a Start Event, representing the point from

which the process starts, an Intermediate Event representing

something that happens during process execution, or an End

Event representing the process termination. Events are drawn

as circles. We also refer to a particular type of end event,

the Terminate End Event, displayed by a thick circle with a

darkened circle inside; it stops and aborts the running process.

Connecting Edges connect process elements in the same or

different pools. Sequence Edge is a solid connector used to

specify the internal flow of the process, thus ordering elements

in the same pool, while Message Edge is a dashed connector

used to visualise communication flows between organisations.

Notably, we consider a subset of BPMN elements regularly

used to design process models in practice. Indeed, we have

selected such subset of BPMN elements by following a prag-

matic approach and only retained the features actually used

in practice (corresponding to less than 20% of its vocabulary

[18]). Therefore, even if we focus on a restricted number of

elements, we do not consider such design choice a major

limitation of the work. Also, we remark that, if necessary, we

might extend our framework to cover further elements. The

only element that could present some challenges is probably

the OR-join gateway. For such an element the BPMN standard

provides a quite articulated description in which the behavior

depends on the possibility that an upstream token could reach

or not one of the flows entering the gateway itself.

Given that we focus on properties for BP analysis, in

this paper we stress the importance of formal verification

to check behavioral correctness. In the experimental section

we consider the most relevant properties from the point of

view of implementing a software system based on a BP

model. In particular, we refer to soundness and safeness as

formally defined in [19], [9], and [2], and for which we

provide consistent LTL characterisations in Section III-C.

Informally, soundness can be described as the combination of

three basic characteristics concerning the dynamic behavior

of a process model: (i) Option to Complete, requiring that a

process instance can always complete, once started; (ii) Proper

Completion, requiring that there exists no running or enabled

activity for this instance when the process instance completes;

(iii) No dead activities, requiring that a process model does

not contain any dead activity, i.e., for each activity there exists

at least one producible trace which contains the activity. On

the other hand, safeness refers to the occurrence of no more

than one token at the same time along the same sequence

edge of a process instance. These properties naturally extend

to process collaborations, requiring that the process instances

of all involved organisations satisfy them.

The satisfaction of these properties is generally considered

a minimal guarantee to avoid unexpected behavior of a BP

model [17].

III. BPROVE FRAMEWORK

This section presents the proposed verification framework.

First, we summarise the distinctive aspects focusing on

BPMN modelling principles. Then, we exemplify the defined

Structural Operational Semantics and its implementation in

MAUDE. Finally, we discuss the properties we check.

A. Distinctive Aspects of the Proposed Framework

Our approach relies on a direct formalisation of BPMN

semantics that, as a main distinctive aspect, supports models

with an arbitrary topology. We are aware that this is not in

line with good modelling practices and recommendations to

use structuredness in modelling as a guideline to avoid errors

[20]. However, in the real-world modelling practice most BPs

designers do not follow such a guideline, as witnessed by a

study we carried out on the BPM Academic Initiative repos-

itory. In fact, by following an arbitrary topology, designers

are free to model the process according to the reality they

feel, without needing to provide structured models [14]. In

this way, the modelling activity results to be less complex

[21] and more expressive [22], [23]. Therefore, we believe that

considering models with an arbitrary topology will facilitate

our verification framework in having a real impact on the

development of process-aware systems, because all process

designers are supported in their usual modelling activities,

without imposing them any restriction or forcing them to

follow a specific modelling style. Nevertheless, given that we

consider a wider class of models, we can obviously verify

those BPs that comply to the structuredness recommendation.

Another relevant contribution comes from the use of a direct

formalisation of BPMN, avoiding typical problems given by

encodings, where the semantics is not given in terms of

features and constructs of the language, but in terms of low-

level details of their translations. More specifically, in these

approaches Petri Nets are often used as target language for

mapping BPMN [9]. While for the basic BPMN modelling

elements the encoding in Petri Nets is rather straightforward,

for others such encodings are quite difficult to define. For ex-

ample, the management of termination end events, permitting

to abort a running process, is usually not supported. This is due

219

to the inherent complexity of managing non-local propagation

of tokens in Petri Nets, which instead is natively supported

by our semantics. Moreover, the main motivation to use Petri

Nets is the availability of already developed tools supporting

verification [24]. However, it is worth noticing that such tools

work well for the basic Petri Nets formalism, but they are not

anymore valid when considering extended versions of Petri

Nets needed to support all the BPMN features, such as the

management of task state evolution (e.g., enabling, running

and complete) or different types of tasks. Our semantics

provides an extensible framework that is able to potentially

support all the features of BPMN, as Structural Operational

Semantics permits to apply language extensions to cover

any other BPMN feature without affecting the verification

technique.

Another advantage of our framework, when compared to

approaches based on encodings, is that it makes the veri-

fication of BPMN models more effective. This is because

with the encodings the verification results refer to the low-

level implementation of the models, and may be difficult

to interpret them at BPMN level. On the other hand, our

direct semantics enables formal reasoning on model properties

at a level as close as possible to BPMN diagrams, so that

diagnostic information can be directly reported on the diagram

in a way that is understandable by process stakeholders. This

is especially useful when many parties need to properly and

quickly interact on the base of the models.

Concerning BP analysis, we provide a further novel con-

tribution since we reason at collaboration level. This enables

inter-organisational correctness which is still a challenge [25].

Thus, results of checking safeness and soundness with respect

to BPMN collaborations differ from results obtained through

encodings, which usually introduce a mapping at process level

and then compose the processes in a collaboration by means

of an inner transition [26]. In particular, differently from these

approaches and in accordance with the BPMN standard, we

do not impose any a-priori upper bound on the number of

pending messages, which however has to be finite in order to

perform the intended model checking analysis.

B. MAUDE Implementation of the Semantics

To practically enable verification of BPMN collaborations,

we implemented within the MAUDE environment [15] the

operational semantics for BPMN presented in [27]1. MAUDE

is an instantiation of rewriting logic [28] that has been used to

specify the formal semantics of a wide variety of formalisms

and languages [29], including C11 [30], [31], Java 1.4 [32],

and JavaScript ES5 [33].

Since MAUDE specifications are executable, we obtained

a formal interpreter for BPMN specifications. This enables

formal verification of BPMN collaborations, e.g., by means of

the MAUDE state space generator [15], or the MAUDE LTL

model checker [34].

1Our MAUDE implementation of the BPMN semantics is available at
http://pros.unicam.it/tools/bprove.

Fig. 2. Minimal Collaboration Example.

A detailed presentation would require to describe the seman-

tics from [27], and rewriting logic, which is out of the scope

of this paper. Rather, we summarise the main ideas used in

our implementation by exemplifying the BPMN syntax and

semantics that we implemented in MAUDE. We do this using

a simple example consisting of a pool containing a start event,

a task, and an end event. The example is depicted in Fig. 2,

while its MAUDE encoding is provided in Listing 1.

collaboration(

pool("Customer" ,

proc(

start(enabled , "e1" . 0)|

task(disabled , "e1" . 0 , "o1" . 0, "Check Offer")|

end("o1" . 0)

) , in: emptyMsgSet , out: emptyMsgSet)).

Listing 1. The MAUDE encoding of the collaboration in Fig. 2

As we can see from Listing 1, a collaboration is specified

using the operator collaboration, which takes a set of

pools as arguments (only one in Listing 1). A pool, defined

by means of the operator pool, takes as argument its name, a

BPMN process, and a set of incoming and outgoing messages

to communicate with other pools (both empty in Listing 1). A

BPMN process is specified using the operator proc, having

as arguments the set of BPMN elements (separated by |) that

compose it. The control flow is specified by the presence of

tokens in the process elements, which are allowed to act only

when enabled by tokens. In the example, we see that the start

element is enabled, meaning that it has a token in input

(denoted by the dot within the start event in Fig. 2), and hence

it is allowed to initiate the process. The topology of the process

is defined by the edges specified as arguments of the process

components. In the example, the start node (operator start)

is connected via sequence edge e1 to the input of the task

(operator task), whose output is in turn connected to the

end node (operator end) via sequence edge o1. The number

0 associated to the sequence edges specifies that the sequence

edges do not have a token associated yet. In MAUDE, the

semantics is specified in terms of rewriting rules which are

exhaustively applied by pattern matching on each generated

state, until no new state can be generated. A rewriting rule

has the following form:

c r l [Label] : Term-1 => Term-2 i f Condition(s) .

The keyword crl stands for conditional rewriting rule, whose

optional name is specified in the square brackets. The body

of the rule, Term-1 => Term-2, specifies that if Term-1

can be matched on part of a state, then a new state will be

obtained by: (i) removing the matched part from the state, and

(ii) adding Term-2 to the remaining part of the state. In the

example, one of such terms can be the entire collaboration,

a pool, a process, or a BPMN element. The if defines a

220

guard that has to be satisfied by the considered state in order

to enable the application of the rule. In case no condition is

required, then the if clause is omitted, and the keyword rl

is used rather than crl.

c r l [SketchOfRuleForProcesses] :

el1 | RestOfProcess => el2 | RestOfProcess

i f el1 => el2 .

c r l [SketchOfRuleForPools] :

pool("Name",proc(proc1)) => pool("Name",proc(proc2))

i f proc1 => proc2 .

Listing 2. Sketch of rules for part of the semantics of processes and pools.

The BPMN semantics from [27] is multi-layer, in the sense

that it has rules for collaborations (layer 4) that depend on

rules for pools (layer 3), which in turns depend on rules

for processes (layer 2), triggered by rules for single BPMN

elements (layer 1). Roughly, the semantics is given in this

form: if a BPMN element el1 can evolve in an element

el2, then a process proc1 containing el1 can evolve in a

process proc2 containing el2, and similarly for the higher

layers, if necessary keeping into account interactions with

other processes or pools. This can be mimicked in MAUDE

using the condition if el1 => el2 shown in the abstract

sketch of rules for processes and pools provided in Listing 2.

For easiness of presentation, we just report simplified ver-

sions of the rewriting rules that are applied in order to let the

collaboration in Listing 1 evolve in the new collaboration (and

hence in the new state) in Listing 3, where the start element

consumed the input token propagating it to the sequence edge

e1, and consequently changed status from enabled to disabled.

The resulting state is depicted in Fig. 3.

Fig. 3. Minimal collaboration example after one step of execution.

collaboration(

pool("Customer" ,

proc(start(disabled , "e1" . 1) |

task(disabled , "e1" . 1 , "o1" . 0, "Check Offer")|

end("o1" . 0)

) , in: emptyMsgSet , out: emptyMsgSet)) .

Listing 3. A successor state of Listing 1, corresponding to Fig. 3.

First of all, we need a rule specifying the semantics of

start elements, shown in Listing 4.

r l [E-Start] :

start(enabled , IEName . IEToken)

=> {tUpd(IEName . IEToken)}

start(disabled , IEName . IEToken + 1) .

Listing 4. Sketch of rule for task elements.

In the rule, start(enabled, IEName . IEToken)

is the element on which the rule acts. It is a start element

with status set to enabled. The symbols IEName and

IEToken are variables that can be matched with any edge

name and value of token, respectively. The rule establishes that

the matched start element will change status to disabled,

and will increase the counter of its outgoing sequence edge.

The term tUpd(IEName . IEToken) is a label contain-

ing information on the executed action which will be used

by the rules of the higher layers. Intuitively, in the example

the label is used to propagate the update on the token to all

occurrences of the sequence edge appearing in other BPMN

elements. To give a hint on the strict relationship between

the MAUDE implementation of the BPMN semantics and its

formal presentation given in [27], just for this rewriting rule

we report below the corresponding SOS rule:

(E-Start) e.n +e.n
✲

e.n+ 1

The one-to-one correspondence between the rewriting rule and

the SOS one is clear, despite the different notation (which we

do not explain here).

The rule for tasks triggers the execution of the rule for the

processes sketched in Listing 5. Roughly, such rule propagates

the changes from a single BPMN element to the entire process:

(i) the label is associated to the entire process rather than

to the single BPMN element; and (ii) the token counter

in all copies of the interested sequence edge occurring in

other BPMN elements is updated using the auxiliary func-

tion markingUpdate. We do not present in details the

markingUpdate, as it just scans all BPMN elements within

RestOfProcess. Note that this rule can be applied only in

case the execution of the BPMN element creates a label tUpd.

Other rules at the process level, not shown here, are provided

in order to handle other kinds of labels.

c r l [N-MarkingUpd] :

ProcElem1 | RestOfProcess

=> {tUpd(Edges1)}

ProcElem1’ | markingUpdate(RestOfProcess,tUpd(Edges1))

i f ProcElem1 => {tUpd(Edges1)}ProcElem1’ .

Listing 5. Sketch of rule for processes that propagates token updates.

Listing 6 shows how the dynamics from lower layers

propagate at pool level. Essentially, as discussed above, the

rule in Listing 6 establishes that if the process ProcElem1

of the pool can evolve in the new process ProcElem1’ by

creating label Action1’, then the entire pool evolves in a

new pool where ProcElem1 is substituted by ProcElem1’,

generating a new label collab(OrgName1, Action1’)

(recording the organisation name) to be considered at the level

of collaboration. The condition internal(Action1’) im-

poses that this rule handles only actions internal to the pool,

while actions that regard communications with other pools are

handled by other rules, omitted here.

c r l [C-Internal] :

pool(OrgName1,proc({Action1}ProcElem1),

in:inputMsgSet ,out:outputMsgSet)

=>{collab(OrgName1 , Action1’)}

pool(OrgName1,proc({Action1’}ProcElem1’),

in:inputMsgSet ,out:outputMsgSet)

i f ProcElem1 => {Action1’}ProcElem1’ ∧ internal(Action1’)

Listing 6. Sketch of rule for pools.

Finally, the rule for collaboration level shown in Listing 7

propagates the updates at the level of collaboration. As in the

case of the layer of pools exemplified in Listing 6, this rule

221

focuses on action internal to the pool. Other rules are defined

to handle interactions between pools.

c r l [C-Interleaving] :

collaboration(Pool1 | Coll2)

=> collaboration(Pool1’ | Coll2)

i f Pool1 => {CollAction1} Pool1’∧ internal(CollAction1)

Listing 7. Sketch of rule for collaborations.

C. Verification

Verifying properties of BPMN collaborations is useful to

ensure their correct execution. Using our MAUDE implemen-

tation of BPMN we can verify those properties that can be

expressed in terms of LTL formulas [35], successively checked

using the MAUDE LTL model checker [34].

The formulas we show here are obtained as composition of

the following basic cases:

• <> φ, where the operator <> (corresponding to the LTL

operator F) is used to verify if a formula φ eventually

holds. That is, in any possible execution path we always

encounter a state where φ holds.

• [] φ, where the operator [] (corresponding to the LTL

operator G) is used to verify if a formula φ globally

holds. That is, φ holds in all states encountered in any

possible execution path.

• φ -> ϕ, where the operator -> is the standard boolean

implication.

In order to verify the properties mentioned above of a

model, say BPmodel, we have to execute the following

MAUDE command:

red modelCheck(BPmodel,φ) .

Listing 8. MAUDE command to run LTL model checking.

In our tool we focus on verifying the Soundness and

Safeness properties of BPMN models. In the rest of the section

we exemplify the formulas we used to study those properties.

As we know from Section II, the Soundness property can be

encoded in terms of three simpler ones: Option To Complete,

Proper Completion and No Dead Activities. Notably, as these

properties refer to a single pool, they have to be checked

for each pool in the collaboration. Anyway, such checks are

carried out over the overall collaboration model, in order to

take into account the message exchange among organisations.

Option To Complete. This property relies in turn on two

properties: aPoolCanStart and aPoolEnds. The former checks

if a token is present in a start element of a given pool. Instead,

the latter checks if a token is present in an end element of a

given pool, implying that the pool completed the execution.

The property is encoded has shown in Listing 9.

[](aPoolCanStart(poolName) -> <>aPoolEnds(poolName))

Listing 9. Property Option to Complete.

The above formula verifies that from any state ([]) in

which the pool can start (aPoolCanStart(poolName)),

we eventually reach a state (<>) where the pool com-

pletes its execution (aPoolEnds(poolName)). Interest-

ingly, this formula adheres to the well-known response

property pattern (see, e.g., http://patterns.projects.cs.ksu.edu/

documentation/patterns/response.shtml)

Proper Completion. This property checks that a pool always

correctly completes its execution. In particular, we check that

whenever a token reaches the end of the pool, then no other

token remains unused within the pool. To verify this property

we rely on two properties: aPoolEnds and NoDanglingToken.

The latter checks that the pool does not contain other tokens.

The property is encoded has shown in Listing 10.

[](aPoolEnds(poolName) -> NoDandlingToken(poolName)).

Listing 10. Property Proper Completion.

In words we verify that whenever a pool completes its execu-

tion, then no other token remains in the pool. Differently from

Listing 9, now the right-hand side of the implication does not

have a <> operator because we check the NoDanglingToken

condition on the same state that satisfied aPoolEnds. No

Dead Activities. This property relies on the verification of the

condition aTaskRunning, which establishes that a given task

can be set, at least once, in the status Running (meaning that

the task is currently being executed). If this property holds

for all the tasks in the model, then the model has No Dead

Activities. The property is encoded as shown in Listing 11.

<> aTaskRunning(taskName) .

Listing 11. Property No Dead Activities.

Safeness. This property can be encoded in terms of one

single condition only, safeState, as shown in Listing 12.

[] safeState(poolName) .

Listing 12. Property Safeness.

As shown in Listing 13, safeState evaluates to true in states

that satify the auxiliary function noMultipleToken, which ver-

ifies that on each sequence edge there is at most one token.

ceq collaboration(

pool(Org1Name ,

proc({Action1}ProcElements1),

in: inputMsgSet ,out: outputMsgSet) |

Coll1) |= safeness(Org1Name) = true

i f noMultipleToken(ProcElements1) = true .

Listing 13. Safeness Implementation

IV. BPROVE TOOL CHAIN

To better clarify the contribution of our Tool Chain, we

report in the Sequence Diagram of Fig. 4 a typical usage sce-

nario, while the interested reader can find further information

on the tool and its usage in [36]. The considered scenario

shows all the interactions between a User and the tool chain

main components.

The user, after designing a BPMN model with the Modelling

Environment, requests a check on the designed model (see

screenshot in Fig. 5). Then, the Modelling Environment sends

a request to the BProVe WebService asking for a parsing of the

BPMN model. The BProVe WebService evaluates the model,

verifying that in the model are not present BPMN elements

that cannot be handled by the considered BPMN operational

semantics. Based on the evaluation result, the sequence of

222

Fig. 4. BProVe Sequence Diagram.

interaction may differ. This is represented in the Sequence

Diagram by an alternative block (delimited by the horizontal

dashed line).

The part labeled “Ok” contains all the interactions that

normally occur if the result of the Model Evaluation is

positive, which means that the BPMN model contains only

elements that are supported by our framework. In this case, the

model is parsed and sent back to the Modelling Environment

which asks the User to specify a property he/she wants to

verify over the model. After the User specifies a property,

the Modelling Environment sends a verification request to

the BProVe WebService, which transforms the property in

an LTL formula compatible with the MAUDE LTL model

checker and it passes the property together with the models

to the BProVe Framework. This latter component starts an

instance of MAUDE loaded with the LTL MAUDE model

checker and the MAUDE modules containing the semantic

rules. Then, it verifies the property and sends the result back

to the BProVe WebService, which properly formats the result

and sends it to the Modelling Environment that will display it

to the User. When the property verification result is negative,

it means that the property is not verified over that BPMN

model; if a counterexample is present, this is shown to the

user. This information is visualised directly on the BPMN

model (see the elements coloured in magenta in the screenshot

shown in Fig. 5), thus facilitating the interpretation of the

verification result to users, especially for those not familiar

with the underlying formal verification technique. Instead, if

the property verification result is positive, it means that the

property is verified and a message stating this is displayed to

the User.

The part labeled “Ko” contains the interactions that occur

if the model presents elements that are not supported by our

framework. In this case, the BProVe WebService informs the

Modelling Environment on the model ineligibility for parsing,

and, in turn, the Modelling Environment informs the User.

V. VALIDATION

This section presents the experimentation we ran using

our BProVe verification framework. The set-up and the re-

sults of the performed experiments are described below. The

experiments can be replicated using a VirtualBox virtual

machine containing an installation of our framework, available

at http://pros.unicam.it/tools/bprove. Our validation has been

shaped considering the following research questions:

• Are soundness and safeness already correctly handled

by modellers, or instead modellers do release models

violating such properties?

• Can BProVe actually and effectively support modellers in

the verification of their models, specifically in relation to

soundness and safeness properties?

A. Experimentation Set-Up

In order to validate our verification framework against real-

word processes, we consider BPMN collaboration models

provided by the BPM Academic Initiative (http://bpmai.org/)

[16]. This is a collection including almost thirty thousand

models codified using various process modelling languages.

We chose it because it is particularly suited to investigate

modelling practices thanks to its heterogeneity [37].

The raw dataset consists of 16 032 BPMN models, but we

restricted to the latest revision of the models with 100% of

connectedness2. A model without this level of connectedness

includes disconnected fragments, which typically means that

the model has not been finalized. Including such models in

our validation would have resulted in verification data difficult

to interpret. This gave us a dataset of 7 639 models with

reasonable quality assurances. From these models we selected

1 245 models with more than 5 BPMN elements. This is

because our focus is on collaboration, and 5 is the minimum

number to have a pool exchanging a message with another.

Considering our reference dataset, we perform a preliminary

transformation step from .json (the repository format) to .bpmn

(the format we manage), and then we check soundness and

safeness. Verification has been carried out on the above men-

tioned Virtual Machine located into the GARR cloud platform

(https://cloud.garr.it/). The machine runs Ubuntu 16.04.2 LTS

64 bits and it has 4 VCPU, and 8 GB of RAM.

B. Experimentation Results

To collect data we ran a massive analysis, checking if the

models satisfy the properties discussed in Section III-C. From

the 1 245 models, 1 026 (more than 82%) pass the parsing

phase, meaning that they include elements we consider in our

framework. This confirms that the selection of elements we

did allows to deal with most practical cases.

The main analysis outcome is described in Table I. The table

shows that only 55% of the considered models are sound.

In particular, this is mainly due to the fact that Option To

Complete and Proper Completion are satisfied by two different

sets, each containing 57% of the models, while the percentage

of models without dead activities is higher and accounts to

75%. In addition, we found that about 75% of the models

is safe. These results are emblematic in proving the need of

formal analysis techniques to verify the correctness of BPMN

models.

2Connectedness evaluates the size of the largest connected sub-graph
against the size of the overall model.

223

Fig. 5. BProVe User Interface.

TABLE I
FRACTION OF MODELS SATISFYING SOUNDNESS AND SAFENESS.

Property Models satisfying it

Soundness 566 (55%)
- Option To Complete 584 (57%)
- Proper Completion 584 (57%)
- No Dead Activities 772 (75%)

Safeness 772 (75%)

Table II provides more insights on the complexity of the

considered models, and on the time necessary to parse them.

In particular, we classified the models in terms of the number

of BPMN elements they contain (column Class). Column AVG

Elements provides the average number of elements of models

in the class, while column Time provides the average time

in milliseconds necessary to parse each model in order to

derive the format needed by MAUDE. As it can be observed,

the parsing time slightly increases with the dimension of the

model.

TABLE II
COMPLEXITY OF THE CONSIDERED MODELS AND PARSING TIME.

Class AVG Elements Models Time (ms)

05–10 7 487 244
11–20 15 366 277
21–30 24 120 326
31–40 34 42 388
41–70 50 11 925

Table III provides more information on the complexity of

the verification in terms of the time needed to check the

considered properties. In particular, for each class of models

the columns of the table report minimum, maximum, average,

and median time as well as standard deviation. Time values

are indicated as milliseconds needed to verify each property.

It is worth mentioning that the values observed for class

TABLE III
EXPERIMENTAL RESULTS (IN MS.)

(a) Option to Complete.

Class Min Max Avg Median Std Dev.

05–10 0 21 524 71 3 976
11–20 0 53 878 419 41 3 833
21–30 0 42 721 1 221 124 5 213
31–40 0 54 907 4 817 219 12 319
41–70 0 66 613 6 738 155 18 969

(b) Proper Completion.

Class Min Max Avg Median Std Dev.

05–10 0 25 496 218 19 1 620
11–20 0 63 741 1 666 150 6 083
21–30 0 41 461 3 661 786 7 913
31–40 0 77 605 9 068 742 18 089
41–70 0 240 035 22 578 588 68 775

(c) No Dead Activities.

Class Min Max Avg Median Std Dev.

05–10 0 5 802 61 2 295
11–20 0 523 742 5 473 225 39 921
21–30 0 477 232 13 647 1 554 52 296
31–40 0 877 553 59 765 1 860 159 123
41–70 0 303 632 29 555 606 86 744

(d) Safeness.

Class Min Max Avg Median Std Dev.

05–10 0 25 569 207 5 1 364
11–20 0 587 756 9 913 127 68 316
21–30 0 519 712 25 752 937 103 418
31–40 0 685 198 42 505 1 157 130 045
41–70 0 144 513 15 256 890 40 985

41–70 are not fully significant given the small number of

models belonging to such a class. Overall the observed data

shows that properties can be verified in reasonable time and

we were able to assess the properties on all the models in

less than 15 minutes. We also report the trend related to

the time needed to check soundness (Fig. 6(a)-6(c)), and

safeness (Fig. 6(d)). In the diagrams the time required by the

tool to verify properties is on the Y-Axis, while the class

of the models is on the X-Axis. The diagrams provide a

224

(a) Option to Complete. (b) Proper Completion.

(c) No Dead Activities. (d) Safeness.

Fig. 6. Experimental Results

visual representation of some of the data reported in Table

III. Overall, we can observe that, as it can be expected, times

increase with the dimension of the models. There is also a

high variability justified by the rather high values assumed by

the standard deviations. This is not a surprise since, it is well-

known that verification activities are particularly affected by

the presence of notation elements leading to the interleaving

of activities, such as parallel or pool statements, that are

not always included in models. Nonetheless, the tool was

able to provide an answer in reasonable time also for the

most complex models in the repository. The analysis of the

maximum values observed for each class somehow tell us that

the maximum complexity of models, in terms of checking, is

rather independent from dimensional characteristics. Indeed,

as we also observed looking at the models associated to the

maximum values, modellers tend to reach a sort of maximum

complexity in the usage of elements leading to interleaving,

and such complexity can be easily reached defining a model

including 20 elements. Finally, considering the median values,

we discover that the used repository includes, for a large

fraction, very simple models. The value of the median is

indeed much smaller (up to 20 times) than the average. This

tells us that most of the considered models are rather simple

and that few models present real issues for checking.

Summing up and answering the research questions posed

at the beginning of this section, the usage of an open and

widely used repository confirmed that it is not seldom to

find models that violate relevant behavioral properties, also

after their release. In addition the experiments show that our

approach seems to be applicable in practice to realistic BP

models.

VI. RELATED WORK

Much effort has been devoted to the formalisation and

verification of Business Processes [24], [38], [39]. Neverthe-

less, none of the cited works takes into account at the same

time all the following key requirements: (i) enabling a direct

formalisation being close to the BPMN standard, thus avoiding

abstraction issues given by use of encodings; (ii) taking into

account the collaboration aspects as key features of BPMN

in large software development; (iii) providing a tool chain

suitable to enable soundness and safeness verification on real

scenarios.

In this section we refer to the most relevant tool-supported

approaches available in the literature that inspired our work.

We first consider the other direct formalisations enabling

formal verification, and then we discuss those approaches

supporting verification via encodings from BPMN to other

well-known formalisms.

A. BPMN Direct Formalisations

With regard to direct formalisations, our contribution was

mainly inspired by the one presented in [40]. The authors

propose a BPMN formalisation based on in-place graph

transformation rules; these rules are defined to be passed as

input to the GrGen.NET tool, and are documented visually

using BPMN syntax. With respect to our work, the used

formalisation techniques are different, since we consider an

operational semantics in terms of LTS, which allows us to

apply verification techniques well-established for this under-

lying model, such as model checking. The definition of an

operational semantics gives us the possibility to be tool inter-

dependent rather than be constrained to tools specific for graph

transformation rules. This is confirmed by the same authors

that, for using their BPMN formalisation in the compliance

verification between global and local process models, need

a further transformation [41]. Focusing on verification the

GrGen.NET tool aims to be used to verify workflow engines

and service orchestration/choreography engines using BPMN

[41]. The benefits of the solution are illustrated by means of

a simple scenario that showcases the approach.

Other approaches are also proposed considering direct for-

malisations. El-Saber and Boronat proposed in [42] a formal

characterisation of well-formed BPMN processes in terms

of rewriting logic, using MAUDE as supporting tool. They

discuss soundness of the well-formed BPMN models without

introducing verification into practice, which is postponed as

future work. This formalisation refers to a subset of the BPMN

specification considering elements that are used regularly,

such as flow nodes, data elements, connecting flow elements,

artefacts, and swimlanes. Differently from our approach, it can

be only applied to well-structured processes. Another direct

formalisation is that proposed by Borger and Thalheim in [43].

They define an extensible semantical framework for BPMN

using Abstract State Machines. It is based on the version 1.0

of BPMN, which does not include notation meta-model and

gives more freedom to the authors in the interpretation of

the language. Few years later, Kossak et al. [44] proposed

a semantics based on Abstract State Machines for BPMN

single process diagrams; differently from our proposal where

collaboration aspects, such as pools and message exchange,

play a key role, in [44] they are overlooked.

It is worth noticing that none of the approaches and sup-

porting tools mentioned above has been properly validated, so

225

it is not clear which advantages and contributions they provide

on real scenarios.

B. BPMN Formalisation via Encodings

The most common formalisations of BPMN are given via

encodings to various formalisms, such as Petri Nets [9], [45],

[46], [47], [48], or their extensions such as YAWL [49], [50]

and ECATNets [51] [52], and process calculi [10], [53], [11],

[54], [12], [55], [56], [57].

Regarding the encodings from BPMN to Petri Nets, the one

proposed by Dijkman et al. in [9] is probably the most relevant

contribution. The Petri Net resulting from the encoding of

a BPMN model can serve as input to a Petri Net based

verification tool for the static analysis of the model. The

main contribution of the proposed tool is the transformation

rather than the verification. Indeed the tool has been validated

focusing on the transformation of only 13 models. The authors

just state that they detected errors in some of the analysed

models without giving details on effectiveness of the approach.

Moreover, the approach proposed by Dijkman et al. is based on

the version 1.1 of BPMN and, as the authors stated, it suffers

from deficiencies that impact on the proposed formalisation.

Moreover, differently from our approach, even if the encoding

deals with messages, it does not properly consider multiple

organisation scenarios.

Other relevant encodings are those from BPMN to YAWL, a

language with a strictly defined execution semantics inspired

by Petri Nets and able to support verification [19]. Among

the proposed encodings, we would like to mention the ones

by Ye and Song [49] and Dumas et al. [50]. The former

is defined under the well-formedness assumption, which in-

stead we do not rely on. Moreover, although messages are

taken into account in the mapping, pools and lanes are not

considered; thus it is not possible to identify who is the

sender and who is the receiver in the communication. This

results in the lack of capability to introduce verification at

message level considering the involved organisations. The

latter encoding, instead, formalises a very small portion of

BPMN elements. In particular, limitations about pools and

messages are similar to the previous approach: pools are

treated as separate Business Process, while messages flow is

not covered by the encoding. Focusing on supporting tools,

the two solutions permit to transform BPMN to YAWL Nets

enabling verification. Ye and Son implemented an open-source

plug-in called BPMN2YAWL that uses ILog BPMN Modeler

as a graphical editor to create BPMN models, and implements

transformation and verification as ProM 5.0 plug-in [49]. As

a proof of concept the tool has been tested using simple

models. Decker et al. also consider BPMN as source language

and YAWL as target language [50]. In this case, both the

transformer and the modeller are Eclipse plugins, while the

verification is supported by ProM 5.0. Again, as a proof of

concept the tool has been tested to a limited number of models.

More recently, Kheldoun et al. [51], [52] proposed an

encoding from BPMN to Recursive ECATNets, which can be

expressed in term of conditional rewriting logic and given in

input to the MAUDE LTL model checker. Even if we use the

same model checker, the approach in [51] suffers from the en-

coding problems discussed above and, in particular, it does not

consider messages in the encoding as well as the event-based

gateway. Moreover, the authors illustrate the approach through

three simple examples only, without extensively validating it.

Process calculi have been also considered as means for

formalising BPMN. Among the others, Wong and Gibbons

presented in [53], [10] a translation from a subset of BPMN

process diagrams, under the assumption of well-formedness,

to a CSP-like language based on Z notation using Haskell.

This enables the introduction of a formal verification to check

properties based on the notion of messages, like consistency

between BPMN diagrams with different levels of abstraction

and compatibility between participants within a Business Pro-

cess collaboration [58]. Benefits of the solution are illustrated

by means of a simple scenario.

Even if our proposal differs from the above ones, as it relies

on a direct semantics rather than on an encoding, it has drawn

inspiration from those based on process calculi for the use of

a compositional approach in the SOS style.

VII. CONCLUDING REMARKS AND FUTURE WORKS

Thanks to the wide adoption of BPMN, Business Process

modelling has acquired increasing relevance in the develop-

ment of software systems. This is mainly due to the capability

of BPMN to fill the communication gap between domain

experts and IT specialists. However, the lack of a formal

semantics prevents its full adoption, making unavailable the

automatic verification of relevant properties impacting on the

behavior of Business Processes.

Several approaches are available in the literature providing a

formalisation to the BPMN standard. In this paper we rely on

a native formal semantics for BPMN models, avoiding typical

problems due to the encoding in different formalisms, such as

the low accessibility of the analysis results.

Regarding verification of Business Processes, although the

research community provided many proposals, only few of

them are tool supported. Most of such tools are prototypes

resulting from research projects, developed just for demon-

stration purposes, and hence are rarely used in practice.

Validations on real case studies or wide model sets are also

not available. In addition some of the prototypes are not even

anymore maintained. In this paper, we presented a framework

provided with a mature and easy-to-use tool-support, which we

validated against more than one thousand models available on

a publicly accessible repository. The results of the validation

are reported and discussed in detail. Validation proves practical

benefits and effectiveness of the approach.

In the future, we plan to extend our framework to other

BPMN relevant characteristics, such as data management,

time constraints and resource allocation, so to enable also a

quantitative analysis for BPMN models. Finally, we intend

to evolve the prototype, now implemented in MAUDE, using

a “classic” programming language, so to further improve its

performance.

226

REFERENCES

[1] A. Lindsay, D. Downs, and K. Lunn, “Business processes attempts to
find a definition,” Information and Software Technology, vol. 45, no. 15,
pp. 1015–1019, 2003.

[2] M. Reichert and B. Weber, “Business process compliance,” in Enabling

Flexibility in Process-Aware Information Systems. Springer, 2012, pp.
297–320.

[3] O. Pastor, “Model-Driven Development in Practice: From Requirements
to Code,” in SOFSEM 2017: Theory and Practice of Computer Science,
ser. LNCS. Springer, 2017, vol. 10139, pp. 405–410.

[4] J. Li, R. Jeffery, K. H. Fung, L. Zhu, Q. Wang, H. Zhang, and X. Xu,
“A Business Process-Driven Approach for Requirements Dependency
Analysis,” in Business Process Management, ser. LNCS. Springer,
2012, vol. 7481, pp. 200–215.

[5] A. M. de Vasconcelos, J. L. de la Vara, J. Sanchez, and O. Pastor,
“Towards CMMI-compliant Business Process-Driven Requirements En-
gineering,” in Quality of Information and Communications Technology.
IEEE, 2012, pp. 193–198.

[6] A. Aldazabal, T. Baily, F. Nanclares, A. Sadovykh, C. Hein, and T. Ritter,
“Automated model driven development processes,” in ECMDA workshop

on Model Driven Tool and Process Integration, 2008, pp. 361 – 375.

[7] OASIS WSBPEL TC, “Web Services Business Process Execution
Language Version 2.0,” OASIS, Tech. Rep., April 2007, available at
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[8] OMG, “Business Process Model and Notation (BPMN V 2.0),” 2011.

[9] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis
of business process models in BPMN,” Information and Software

Technology, vol. 50, no. 12, pp. 1281–1294, 2008.

[10] P. Y. Wong and J. Gibbons, “Formalisations and applications of BPMN,”
Science of Computer Programming, vol. 76, no. 8, pp. 633–650, 2011.

[11] D. Prandi, P. Quaglia, and N. Zannone, “Formal Analysis of BPMN Via
a Translation into COWS,” in Coordination Models and Languages, ser.
LNCS. Springer, 2008, vol. 5052, pp. 249–263.

[12] F. Puhlmann, “Soundness Verification of Business Processes Specified in
the Pi-Calculus,” in On the Move to Meaningful Internet Systems 2007:

CoopIS, DOA, ODBASE, GADA, and IS, ser. LNCS. Springer, 2007,
vol. 4803, pp. 6–23.

[13] G. D. Plotkin, “A structural approach to operational semantics,” J. Log.

Algebr. Program., vol. 60, no. 61, pp. 17–139, 2004.

[14] A. Polyvyanyy and C. Bussler, “The structured phase of concurrency,” in
Seminal Contributions to Information Systems Engineering. Springer,
2013, pp. 257–263.

[15] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, All about maude-a high-performance logical framework:

how to specify, program and verify systems in rewriting logic. Springer,
2007.

[16] M. Kunze, P. Berger, and M. Weske, “BPM Academic Initiative -
Fostering Empirical Research,” in Demonstration Track of the 10th

International Conference on Business Process Management, vol. 940,
2012, pp. 1 – 5.

[17] M. Weske, Business Process Management. Springer, 2012.

[18] M. Muehlen and J. Recker, “How Much Language Is Enough? Theo-
retical and Practical Use of the Business Process Modeling Notation,”
in Advanced Information Systems Engineering, ser. LNCS. Springer,
2008, vol. 5074, pp. 465–479.

[19] M. T. Wynn, H. M. W. Verbeek, W. M. van der Aalst, A. H. ter
Hofstede, and D. Edmond, “Business process verification-finally a
reality!” Business Process Management Journal, vol. 15, no. 1, pp. 74–
92, 2009.

[20] R. Laue and J. Mendling, “The Impact of Structuredness on Error
Probability of Process Models,” in Information Systems and e-Business

Technologies, ser. LNBIP. Springer, 2008, vol. 5, pp. 585–590.

[21] B. Kiepuszewski, A. H. M. ter Hofstede, and C. J. Bussler, “On struc-
tured workflow modelling,” in International Conference on Advanced

Information Systems Engineering, ser. LNCS, vol. 1789. Springer,
2000, pp. 431–445.

[22] A. Polyvyanyy, L. Garcı́a-Bañuelos, and M. Dumas, “Structuring acyclic
process models,” Information Systems, vol. 37, no. 6, pp. 518–538, 2012.

[23] A. Polyvyanyy, L. Garcia-Banuelos, D. Fahland, and M. Weske, “Max-
imal Structuring of Acyclic Process Models,” The Computer Journal,
vol. 57, no. 1, pp. 12–35, 2014.

[24] S. Morimoto, “A Survey of Formal Verification for Business Process
Modeling,” in International Conference on Computational Science, ser.
LNCS. Springer, 2008, vol. 5102, pp. 514–522.

[25] R. Breu, S. Dustdar, J. Eder, C. Huemer, G. Kappel, J. Kopke, P. Langer,
J. Mangler, J. Mendling, G. Neumann, S. Rinderle-Ma, S. Schulte,
S. Sobernig, and B. Weber, “Towards Living Inter-organizational Pro-
cesses,” in 15th Conference on Business Informatics. IEEE, 2013, pp.
363–366.

[26] W. M. van der Aalst, “Structural characterizations of sound workflow
nets,” Computing Science Reports, vol. 96, no. 23, pp. 18–22, 1996.

[27] F. Corradini, A. Polini, B. Re, and F. Tiezzi, “An operational semantics of
BPMN collaboration,” in 12th International Conference Formal Aspects

of Component Software, ser. LNCS, vol. 9539. Springer, 2015, pp.
161–180.

[28] J. Meseguer, “Conditional rewriting logic as a unified model of concur-
rency,” Theoretical computer science, vol. 96, no. 1, pp. 73–155, 1992.

[29] ——, “Twenty years of rewriting logic,” J. Log. Algebr. Program.,
vol. 81, no. 7-8, pp. 721–781, 2012.

[30] C. Ellison and G. Rosu, “An executable formal semantics of C with
applications,” in 39th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, 2012, pp. 533–544.

[31] C. Hathhorn, C. Ellison, and G. Rosu, “Defining the undefinedness of C,”
in 36th ACM SIGPLAN Conference on Programming Language Design

and Implementation, 2015, pp. 336–345.

[32] D. Bogdanas and G. Rosu, “K-java: A complete semantics of java,”
in 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, 2015, pp. 445–456.

[33] D. Park, A. Stefanescu, and G. Rosu, “KJS: a complete formal semantics
of javascript,” in 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2015, pp. 346–356.

[34] S. Eker, J. Meseguer, and A. Sridharanarayanan, “The Maude LTL model
checker,” Electronic Notes in Theoretical Computer Science, vol. 71, pp.
162–187, 2004.

[35] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium

on Foundations of Computer Science. IEEE, 1977, pp. 46–57.

[36] F. Corradini, F. Fornari, A. Polini, B. Re, F. Tiezzi, and A. Vandin,
“BProVe: Tool Support for Business Process Verification,” in 32nd

IEEE/ACM International Conference on Automated Software Engineer-

ing, 2017.

[37] M. Kunze, A. Luebbe, M. Weidlich, and M. Weske, “Towards under-
standing process modeling the case of the BPM academic initiative,”
in Business Process Model and Notation, ser. LNBIP. Springer, 2011,
vol. 95, pp. 44–58.

[38] H. Groefsema and D. Bucur, “A survey of formal business process
verification: From soundness to variability,” in International Symposium

on Business Modeling and Software Design, 2013, pp. 198–203.

[39] M. Fellman and A. Zasada, “State-of-the-Art of Business Process
Compliance Approaches: A Survey,” in 7th International Workshop on

Enterprise Modeling and Information Systems Architectures, 2016, pp.
60–63.

[40] P. Van Gorp and R. Dijkman, “A visual token-based formalization of
BPMN 2.0 based on in-place transformations,” Information and Software

Technology, vol. 55, no. 2, pp. 365–394, 2013.

[41] P. M. Kwantes, P. Van Gorp, J. Kleijn, and A. Rensink, “Towards
Compliance Verification Between Global and Local Process Models,”
in Graph Transformation, ser. LNCS. Springer, 2015, vol. 9151, pp.
221–236.

[42] N. El-Saber and A. Boronat, “BPMN Formalization and Verification
Using Maude,” in Workshop on Behaviour Modelling-Foundations and

Applications. ACM, 2014, pp. 1–12.

[43] E. Börger and B. Thalheim, “A Method for Verifiable and Validatable
Business Process Modeling,” in Advances in Software Engineering, ser.
LNCS. Springer, 2008, vol. 5316, pp. 59–115.

[44] F. Kossak, C. Illibauer, V. Geist, J. Kubovy, C. Natschlager, T. Zieber-
mayr, T. Kopetzky, B. Freudenthaler, and K. D. Schewe, A Rigorous

Semantics for BPMN 2.0 Process Diagrams. Springer, 2014.

[45] W. Huai, X. Liu, and H. Sun, “Towards Trustworthy Composite Service
Through Business Process Model Verification,” in 7th International Con-

ference on Ubiquitous Intelligence & Computing and 7th International

Conference on Autonomic & Trusted Computing. IEEE, 2010, pp. 422–
427.

[46] R. Koniewski, A. Dzielinski, and K. Amborski, “Use of Petri Nets and
Business Processes Management Notation in Modelling and Simulation

227

of Multimodal Logistics Chains,” in 20th European Conference on

Modeling and Simulation, 2006, pp. 28–31.
[47] M. Ramadan, H. G. Elmongui, and R. Hassan, “BPMN formalisation

using coloured petri nets,” in International Conference on Software

Engineering & Applications. ACTA, 2011.
[48] A. Awad, G. Decker, and N. Lohmann, “Diagnosing and Repairing

Data Anomalies in Process Models,” in Business Process Management

Workshops, ser. LNBIP. Springer, 2010, vol. 43, pp. 5–16.
[49] J. Ye and W. Song, “Transformation of BPMN Diagrams to YAWL

Nets,” Journal of Software, vol. 5, no. 4, 2010.
[50] G. Decker, R. Dijkman, M. Dumas, and L. Garcı́a-Bañuelos, “Trans-

forming BPMN diagrams into YAWL nets,” in Business Process Man-

agement, ser. LNCS. Springer, 2008, vol. 5240, pp. 386–389.
[51] A. Kheldoun, K. Barkaoui, and M. Ioualalen, “Specification and Verifi-

cation of Complex Business Processes - A High-Level Petri Net-Based
Approach,” in Business Process Management, ser. LNCS. Springer,
2015, vol. 9253, pp. 55–71.

[52] ——, “Formal verification of complex business processes based on high-
level Petri nets,” Information Sciences, vol. 385-386, pp. 39–54, 2017.

[53] P. Y. H. Wong and J. Gibbons, “A Process Semantics for BPMN,” in
Formal Methods and Software Engineering, ser. LNCS. Springer, 2008,
vol. 5256, pp. 355–374.

[54] F. Puhlmann and M. Weske, “Investigations on Soundness Regard-
ing Lazy Activities,” in Business Process Management, ser. LNCS.
Springer, 2006, vol. 4102, pp. 145–160.

[55] F. Corradini, A. Polini, A. Polzonetti, and B. Re, “Business Processes
Verification for e-Government Service Delivery,” Information Systems

Management, vol. 27, no. 4, pp. 293–308, Oct. 2010.
[56] A. Polini, A. Polzonetti, and B. Re, “Formal methods to improve public

administration business processes,” RAIRO - Theor. Inf. and Applic.,
vol. 46, no. 2, pp. 203–229, 2012.

[57] F. Corradini, A. Polzonetti, B. Re, and D. Falcioni, “An eclipse plug-in
for formal verification of BPMN processes,” in 3rd International Con-

ference on Communication Theory, Reliability, and Quality of Service,
June 2010, pp. 144–149.

[58] P. Y. H. Wong and J. Gibbons, “Verifying Business Process Compatibil-
ity (Short Paper),” in 8th International Conference on Quality Software.
IEEE, 2008, pp. 126–131.

228

