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BR-dependent phosphorylation modulates
PIF4 transcriptional activity and shapes
diurnal hypocotyl growth
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Signaling by the hormones brassinosteroid (BR) and gibberellin (GA) is critical to normal plant growth and
development and is required for hypocotyl elongation in response to dark and elevated temperatures. Active BR
signaling is essential for GA promotion of hypocotyl growth and suppresses the dwarf phenotype of GA mutants.
Cross-talk between these hormones occurs downstream from the DELLASs, as GA-induced destabilization of these
GA signaling repressors is not affected by BRs. Here we show that the light-regulated PIF4 (phytochrome-
interacting factor 4) factor is a phosphorylation target of the BR signaling kinase BRASSINOSTEROID-
INSENSITIVE 2 (BIN2), which marks this transcriptional regulator for proteasome degradation. Expression of

a mutated PIF41A protein lacking a conserved BIN2 phosphorylation consensus causes a severe elongated
phenotype and strongly up-regulated expression of the gene targets. However, PIF41A is not able to suppress the
dwarf phenotype of the bin2-1 mutant with constitutive activation of this kinase. PIFs were shown to be required
for the constitutive BR response of bes1-D and bzr1-1D mutants, these factors acting in an interdependent manner
to promote cell elongation. Here, we show that bes1-D seedlings are still repressed by the inhibitor BRZ in the

light and that expression of the nonphosphorylatable PIF41A protein makes this mutant fully insensitive to
brassinazole (BRZ). PIF41A is preferentially stabilized at dawn, coinciding with the diurnal time of maximal
growth. These results uncover a main role of BRs in antagonizing light signaling by inhibiting BIN2-mediated
destabilization of the PIF4 factor. This regulation plays a prevalent role in timing hypocotyl elongation to late
night, before light activation of phytochrome B (PHYB) and accumulation of DELLAS restricts PIF4 transcriptional

activity.
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De-etiolation involves a drastic change in plant morphol-
ogy as germinating seedlings shift from dark to the light.
In darkness, hypocotyl growth is rapidly induced at the
expense of the cotyledons that remain folded, whereas
the upper part of the hypocotyl forms an apical hook that
protects the shoot apical meristem during rapid elonga-
tion in soil. Light arrests hypocotyl elongation and pro-
motes opening and expansion of the cotyledons at the
time that induces the differentiation of chloroplasts to
start photosynthetic life. This photomorphogenic response
is mediated through the activation of different families of
photoreceptors, of which the red/far-red-absorbing phyto-
chromes (PHYs) are the best characterized (Quail 2010).
PHYs regulate light responses by inhibiting the PIFs (PHY-
interacting factors), a family of basic helix-loop-helix
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(bHLH) transcriptional regulators that promote etiolated
growth in the dark (Leivar and Quail 2011). Although
initially regarded as negative regulators of PHYB signaling,
these factors are now recognized to function as main
regulators of cell elongation and shade avoidance re-
sponses (Castillon et al. 2007; Nozue et al. 2007; De Lucas
et al. 2008; Feng et al. 2008; Oh et al. 2009) by binding to
G-box elements (CACGTG) and directly activate the
expression of a large number of genes (Hornitschek et al.
2012; Zhang et al. 2013). Interaction with the Pfr form of
PHYs induces phosphorylation of PIFs and marks these
factors for proteolytic degradation, thus reversing PIF
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transcriptional activity and promoting light-regulated
gene expression (Shen et al. 2007; Lorrain et al. 2008).
Consistent with this model of action, piflpif3pifdpif5
quadruple mutants (pifg) display a constitutive photo-
morphogenic response in the dark and ectopic expression
of chloroplast-related genes (Leivar et al. 2008).

Isolation of mutants with a de-etiolated response in the
dark has also evidenced a role of the plant hormones
gibberellin (GA) and brassinosteroid (BR) in suppressing
light signaling. Mutants impaired in biosynthesis or sig-
naling of these hormones have a characteristic dwarf
phenotype and, in darkness, display short hypocotyls, an
open apical hook, and activated expression of light-regu-
lated genes as if they had received light (Alabadi et al. 2004;
Nembhauser and Chory 2004). Loss-of-function muta-
tions in the DELLA RGA and GAI genes suppress the
de-etiolated phenotype of gal-3 seedlings, thus demon-
strating that constitutive photomorphogenesis in these
GA-deficient mutants is caused by the accumulation of
DELLAs (Alabadi et al. 2004). This family of nuclear
repressors plays a central role in inhibiting GA-regulated
gene expression (Fleet and Sun 2004) and is destabilized
in the dark (Achard et al. 2007). GA sensing by the cytosolic
receptor GID1 changes the receptor conformation and pro-
motes the interaction of the GA-GID1 complex with the
DELLAs (Murase et al. 2008; Shimada et al. 2008). Forma-
tion of a GA-GID1-DELLA complex favors ubiquitination
of these repressors by the E3 ligase SCFSYY (Dill et al.
2004; Fu et al. 2004) and marks them for proteasomal
degradation, allowing GA-induced hypocotyl growth.
Work by our group and other groups has established that
DELLAs bind the bHLH DNA recognition domain of PIFs,
sequestering these factors into an inactive complex unable
to bind to DNA (De Lucas et al. 2008; Feng et al. 2008;
Gallego-Bartolomé et al. 2010). Nuclear balance of PIFs
and DELLAs is therefore crucial to sustain the etiolated
state of dark-grown seedlings and light-mediated degrada-
tion of PIFs together with the stabilization of DELLAs,
providing a rapid mechanism to repress transcriptional
activity of these factors during photomorphogenesis.

Etiolated growth also involves a prominent role of BR
signaling, since BR synthesis and response mutants display
a stronger de-etiolated phenotype in the dark than GA
mutants (Clouse 2011). BR application rescues the germi-
nation phenotype of GA-insensitive mutants (Steber and
McCourt 2001) and has a synergistic effect with GAs on
hypocotyl elongation (Tanaka et al. 2003), suggestive of a
cross-talk interaction of these hormones. In Arabidopsis,
the BR signal transduction cascade is by now well un-
derstood, thanks to extensive molecular and genetic
studies that contributed to the identification of all major
signaling components in the pathway (Wang et al. 2012).
BR’s perception by the membrane receptor kinase
BRASSINOSTEROID-INSENSITIVE]1 (BRI1) (Kinoshita
et al. 2005; She et al. 2011; Santiago et al. 2013) promotes
association of this receptor kinase with the coreceptor
BRI1-ASSOCIATED KINASE 1 (BAK1) (Nam and Li 2002;
Wang et al. 2008) and induces a phosphorylation cascade
that leads to activation of BRIl SUPPRESSOR 1 (BSU1)
(Mora-Garcia et al. 2004; Kim et al. 2009). This PP1-type

1682 GENES & DEVELOPMENT

phosphatase dephosphorylates the GSK3-like kinase
BRASSINOSTEROID-INSENSITIVE 2 (BIN2) and inacti-
vates this enzyme (Li and Nam 2002; Kim and Wang
2010). BIN2 has a negative regulatory function in BR
signaling by phosphorylating two homologous tran-
scription factors, BRI1-EMS SUPPRESSOR 1 (BES1) and
BRASSINAZOLE-RESISTANT 1 (BZR1), to inhibit their
transcriptional activity (He et al. 2002; Yin et al. 2002).
When BR levels are elevated, BIN2 is inactivated, and
BES1 and BZR1 are dephosphorylated by PP2A (Tang et al.
2011), the nonphosphorylated forms of these factors being
shown to be more stable and to accumulate in the
nucleus, where they bind the promoters of multiple genes
and regulate their expression in a BR-dependent fashion
(He et al. 2005; Yin et al. 2005; Sun et al. 2010).

Although BZR1 was originally identified as a repressor
of BR synthesis (He et al. 2002; Wang et al. 2002) and BES1
was reported to heterodimerize with the BIM1 factor to
activate gene expression (Yin et al. 2002, 2005), more
recent studies showed that these factors bind similar BRRE
and E-box elements and act as both activators and re-
pressors, depending on the gene target (Sun et al. 2010; Yu
et al. 2011). BZR1 has been recently shown to bind PIF4
and function as a PIF4 coactivator, with the BZR1-PIF4
complex binding a G-box motif identical to that bound by
the PIF4 factor and synergistically activating a common
set of genes (Oh et al. 2012). BES1 and BZR1 also interact
with the DELLAs, these repressors blocking BES1 and
BZR1 DNA-binding activity in a manner similar to that
reported for PIF4 (Bai et al. 2012; Gallego-Bartolomé et al.
2012; Li et al. 2012). Interestingly, BZR1-dependent GA-
regulated genes largely overlap with the BZR1-PIF4 coac-
tivated genes (Bai et al. 2012; Oh et al. 2012), suggesting
that DELLASs’ interaction with the BES1/BZR1 phosphor-
ylation domain may compete for BZR1-PIF4 complex
formation. Here, we show that the GSK3-like kinase
BIN?2, besides inactivating the BES1/BZR1 factors, phos-
phorylates PIF4/PIF5 to mark these transcription factors
for proteasome degradation. This regulation is especially
relevant late in the night, when PIF4 transcription is up-
regulated and the protein is stable. Although BES1 and
BZR1 were reported to not be significantly affected by light
(Luo et al. 2010), the active nonphosphorylated forms of
the PIF4 and BES1/BZR1 factors overlap only during late
night, BES1/BZR1 coactivator function thus having a rele-
vant role in timing PIF4 transcriptional activity and in
rhythmic hypocotyl growth. These results confirm a main
function of the PIFs and BES1/BZR1 factors in cell elon-
gation and highlight a role of these two families of bPHLH
factors as main integrators of light, BR, and GA signals by
means of PHYB- and BIN2-induced destabilization and
inactive complex formation with the DELLAs.

Results

Active BR signaling is required for GA promotion
of hypocotyl growth

GA-insensitive sly1-10 and gail mutants exhibit seed
germination defects, a phenotype that is alleviated by
treatment with brassinolide (BL) (Steber and McCourt
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2001). Remarkably, we observed that BL application also
rescues the short hypocotyl phenotype of these seedlings,
suggesting that BR signaling overcomes the growth-
repressing effects of DELLAs. Likewise, application of
BL restores growth of gal-3 GA-deficient seedlings and
that of plants treated with the GA synthesis inhibitor
paclobutrazol (PAC) (Supplemental Fig. S1). However, GAs
are ineffective in promoting growth of det2-1 seedlings,
deficient in BRs (Li et al. 1996), or that of wild-type seedlings
treated with the BR synthesis inhibitor brassinazole
(BRZ) (Nagata et al. 2000). These results are similar to
those recently reported by Bai et al. (2012) and indicate that
active BR signaling is required for the growth-promoting
effects of GAs (Fig. 1A).

To investigate at which level of the GA signaling
cascade BL exerts this cross-regulation, we examined
whether BL application affects accumulation of the GA
receptor GID1a by using GID1a-GFP transgenic lines
(Willige et al. 2007). We also generated pRGA: :GFP-RGA
det2.1 lines to test whether destabilization of this re-
pressor is compromised in the BR-deficient background.
As shown in Supplemental Figure S2A, neither hormone
nor inhibitor treatments modified the levels of the GID1a-
GFP protein, indicating that BR signaling does not affect
GID1 stability. Moreover, destabilization of the GFP-
RGA protein was similar in det2-1 lines to that in the
wild-type controls (Fig. 1B), demonstrating that BRs do
not affect GA-induced degradation of this repressor.
Identical results were obtained by Western blot detection
with an antibody raised against the RGA protein, thus
excluding an anomalous response of the GFP-RGA fusion
construct (Supplemental Fig. S2B). Destabilization of
DELLAs in the det2-1 background, however, does not
restore hypocotyl growth (Fig. 1B), supporting a regulatory
role of BR signaling downstream from the DELLAs.
Consistent with these results, we found that BRZ re-
presses growth of the constitutive GA response tetra and
global mutants, with knockout mutations in four or all
five DELLA genes. These mutants show a dwarf pheno-
type when grown on BRZ (Supplemental Fig. S3), pointing
to a role of a signaling component downstream from the
DELLAs in GA and BR signaling cross-talk.

BRs promote accumulation of a faster-migrating
form of the PIF4 factor

DELLAs repress growth by binding the bHLH DNA
recognition domain of PIFs, which blocks the DNA-
binding ability of these factors (De Lucas et al. 2008;
Feng et al. 2008). The finding that BL promotes growth of
mutants overaccumulating DELLAs and that these re-
pressors are destabilized in det2-1 plants suggested that
BRs may act at the level of PIFs. To test this hypothesis,
we treated transgenic 35S:.PIF4-HA plants with BL or
BRZ to assess for changes in PIF4 protein levels. As
shown in Figure 1C, a rapid accumulation of the PIF4-
HA protein was in fact observed in dark-grown seedlings
after the application of BL, indicating that stabilization of
this factor is a primary response to BRs. Consistent with
this observation, BRZ treatment reduced PIF4 levels, and

BRs regulation of diurnal PIF4 levels

this effect was abolished by pretreatment with the
proteasome inhibitor MG132. Stabilization of the PIF4-
HA protein correlates also with a shift to a faster electro-
phoretic mobility band that may correspond to a non-
phosphorylated form of this factor (Fig. 1C). Indeed, when
plant extracts of mock-, BL-, and BRZ-treated seedlings
were incubated with calf intestinal phosphatase (CIP),
only the fastest PIF4-HA mobility band was observed (Fig.
1C), demonstrating that the slower-migrating forms cor-
respond to phosphorylated isoforms of the protein. There-
fore, these findings are suggestive of a role of BRs in PIF4
stabilization by inhibiting a protein kinase that tags this
factor for proteasomal degradation.

PIF4-OE lines show a hyposensitive response to BRZ
and activated levels of expression of BR-regulated
genes

If BRs act through the PIFs, higher levels of PIF4 activity
should phenocopy BL effects. Indeed, PIF4-OE seedlings
grown on BRZ are taller than wild-type controls, and these
plants show a saturated response to BL (Supplemental Fig.
S4). pifdpif5 seedlings, in contrast, display a hyposensitive
response to this hormone and increased sensitivity to the
inhibitor BRZ. An altered response toward BRZ was also
observed after combined application of GA and BRZ.
Pretreatment with this inhibitor blocks GA-induced elon-
gation of wild-type and det2-1 seedlings but not that of the
PIF4-OE or phyB mutant lines, which accumulate higher
PIF levels due to impaired destabilization of these factors
(Fig. 1D). Hence, in response to BRZ+GA application,
higher levels of accumulation of the PIF4 factor lead to an
elongation response similar to that observed for the
constitutive BR response bes1-D mutant (Yin et al. 2002).

In line with such a BR-related phenotype, a signifi-
cant overlap is observed between the genes differentially
expressed in PIF4-OE lines grown in red light (De Lucas
et al. 2008) and in dark-grown pifq seedlings (for dark data
set, see Leivar et al. 2009; for pifg data set, see Zhang et al.
2013) and those induced by BL treatment (Goda et al.
2004, 2008; Nemhauser et al. 2004, 2006; Vert et al. 2005)
or down-regulated in bril-116 seedlings (Sun et al. 2010).
As shown in Figure 1E, 24.9% of the up-regulated genes in
PIF4-OE seedlings and 21.1% of the genes down-regulated
in dark-grown pifq seedlings are positively regulated by BL
(4.8% expected randomly). Notably, genes involved in cell
wall modification (pectinesterases, XTHs, and expansins)
and auxin response (SAURs and Aux/IAA) are highly
enriched among the coregulated genes, in agreement with
recent studies establishing that PIF4 and BZR1 coopera-
tively regulate these gene targets (Oh et al. 2012).

PIF4 interacts with the BR signaling kinase BIN2

The GSK3-like kinase BIN2 negatively regulates BR
signaling by inhibiting BES1/BZR1 transcriptional activ-
ity. BIN2-mediated phosphorylation of these factors in-
hibits DNA binding and promotes BES1/BZR1 interac-
tion with cytosolic 14-3-3 proteins in addition to induce
their degradation by the proteasome (Zhao et al. 2002;
Vert and Chory 2006; Gampala et al. 2007). BR signaling
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Figure 1. BR signaling overcomes the growth-repressing effects of DELLAs. (A) Hypocotyl lengths of 5-d-old wild-type (Col-0) and
det2-1 seedlings grown on MS medium supplemented with mock solution (mock), 0.5 .M BRZ, 0.5 .M BRZ + 25 pM GA; (BRZ+GA),
25 uM GA; (GA), 1 uM epi-BL + 25 pM GA; (BL+GA), and 1uM epi-BL + 0.5 M PAC (BL+PAC). BRZ-treated wild-type seedlings and
the BR-deficient det2-1 mutants are insensitive to GA application. Combined application of GA+BL leads to exaggerated hypocotyl
growth of wild-type and det2-1 seedlings. (B) GA-induced destabilization of the GFP-RGA fusion in 5-d-old det2-1 pRGA:.GFP-RGA
seedlings. Application of the inhibitor PAC leads to increased levels of accumulation of this DELLA and additional growth inhibition of
these plants. GA induces degradation of the RGA repressor but does not promote growth of the BR-deficient seedlings. (C) BL-induced
stabilization of the PIF4-HA protein. An anti-HA antibody was used for Western immunoblot detection of the PIF4-HA protein. (Top
panel|Five-day-old dark-grown 35S::PIF4-HA seedlings were kept on MS medium (mock) or treated with 1 wM BL (BL), 0.5 uM BRZ
(BRZ), or 0.5 oM BRZ + 10 pM MG132 (BRZ+MG132) for the indicated times. A faster-migrating band of the protein is found to be
enriched in the BL-treated plant. (Bottom panel) Five-day-old dark-grown seedlings were treated overnight with mock solution (mock),
1 wM BL (BL), or 0.5 .M BRZ (BRZ), and total protein extracts were incubated for 1 h with (+) or without (—) calf intestinal phosphatase
(CIP). A fraction of the extract was sampled before incubation (T0). Slower-migrating forms of the protein disappear after CIP treatment,
indicating that they correspond to phosphorylated forms of PIF4. (D) BL response phenotype of PIF4OX and phyB plants. Seedlings were
grown in the light on vertical MS plates supplemented with mock solution (mock), 0.5 uM BRZ (BRZ), 0.5 .M BRZ + 25 uM GA; (BRZ+GA),
or 25 uM GA; (GA), and hypocotyl lengths were measured (n = 20) at day 5 after germination. Error bars are =SEM. (E) PIF4-induced
genes are positively regulated by BRs. Venn diagram showing the overlap among genes induced in PIF4OX transgenic plants or
repressed in the pifg mutant and BR-regulated genes (induced by BL treatment or repressed in the bril-116 mutant). Clustering analysis
of FC expression of the genes coregulated in PIF4OX plants grown in red light (PIF40X) with 3 h of BL treatment (BL) and the bril-116
mutant (bri1-116) and pifq seedlings grown in the dark (pifq) ([yellow] up; [purple] down).
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inactivates BIN2 kinase activity via BSUl-mediated de-
phosphorylation at Tyr200, enabling nuclear accumula-
tion of the nonphosphorylated BES1/BZR1 factors and
BR-activated gene expression (Kim and Wang 2010).
Thus, BIN2 is a good candidate to regulate PIF4 levels,
as inactivation of this kinase by BL may result in the
fastest-migrating form of this factor seen in BL-treated
seedlings (Fig. 1C). A direct interaction of the full-length
BIN2 protein and PIF4 was actually observed in yeast
two-hybrid assays (Fig. 2A). Deleted versions of the PIF4
protein mapped the BIN2 interaction domain to a frag-
ment immediately C-terminal to the bHLH dimerization
domain, as a PIF4 truncated version from Val312 to the C-
terminal end still interacts with BIN2 (Fig. 3D). Deletion
of this C-terminal end, however, does not abrogate
binding, suggesting that an additional interacting domain
located between residues 107 and 312 cooperates with the
C-terminal region to enhance BIN2-binding affinity
(Fig. 3D).

Direct interaction of these proteins was confirmed by
in vitro pull-down assays in which the 3**Met-labeled PIF4
and BES1 were found to be retained with similar affinities
by agarose beads with the immobilized GST-BIN2 protein
(Fig. 2B). Bimolecular fluorescence complementation (BiFC)
and coimmunoprecipitation (co-IP) studies in Nicotiana
benthamiana leaves further confirmed this interaction in
vivo. Nuclear fluorescence of reconstituted split YFP was
observed in leaves cotransfected with the BIN2-eYFC and
PIF4-eYFN fusions but not in control leaves expressing
the eYFC-BIN2 and eYFN or the eYFC and PIF4-eYFN
proteins (Fig. 2C). The PIF4-GFP protein was also pulled
down out of plant extracts coexpressing the BIN2-HA and
PIF4-GFP proteins after immunoprecipitation of BIN2-
HA (Fig. 2D), confirming interaction of these proteins in
plant cells.

BRs regulation of diurnal PIF4 levels

BIN2 phosphorylates PIF4 in vitro

In vitro kinase assays using the purified GST-BIN2, PIF4-
6xHis, and MBP-BES1 proteins showed that BIN2 is able
to phosphorylate both BES1 and PIF4 (Fig. 3A). Labeling of
these factors is only observed when BIN2 is added to the
reaction mix. Also, although in pull-down assays BIN2
bound with similar affinities the BES1 and PIF4 proteins,
labeling of PIF4 was weaker than that of the BES] protein.
This would suggest that PIF4 has fewer phosphorylation
sites than BES]1, reported to be modified by this kinase in
at least 10 independent Ser/Thr residues (Ryu et al. 2010).
Incubation with the specific inhibitor bikinin (De Rybel
et al. 2009) blocked PIF4 phosphorylation as well as
autophosphorylation of BIN2, confirming that labeling
of this protein is mediated by the BIN2 kinase (Fig. 3C).
Therefore, we can conclude that PIF4 is a bona fide
substrate for the BR signaling kinase BIN2.

Mutation of a conserved BIN2 phosphorylation
consensus leads to strong PIF4 stabilization

GSK3-kinases phosphorylate Ser/Thr residues in the
short consensus motif (S/T)-X-X-X-(S/T). Identification
of the BES1/BZRI1 factors as main BIN2 phosphorylation
substrates revealed that this plant kinase phosphorylates
Ser/Thr residues within the same motif (Ryu et al. 2010).
However, in contrast to animal GSK3-kinases, it does not
require a priming phosphorylation event to act on these
proteins (Peng et al. 2010). In a search for residues that
match this consensus motif in the PIF4 protein, we
identified >10 putative phosphorylation sites (Supplemen-
tal Fig. S5). We reasoned that if these sites are important to
modulate PIF4 stability, they should be conserved in all
PIF4 orthologs. Alignment of the Arabidopsis protein
with its closest homologs in other species actually
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phosphorylation reduces labeling efficiency.
The BESI protein has multiple phosphoryla-
tion sites and is more efficiently labeled in
these assays. Positions of the BIN2, BES1, and
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@  Dbeling by the kinase BIN2 (shown in A). (C)

Inhibition of PIF4 phosphorylation by the BIN2

kinase inhibitor bikinin. Addition of 2 uM and 20 uM bikinin to the phosphorylation mix represses PIF4 phosphorylation and the
autophosphorylation activity of BIN2. (D) Mapping of the BIN2-interacting domain. Schematic representation of the PIF4 domains and
the deletions used in the yeast two-hybrid assay are shown. (E) Deletions of the PIF4 protein were cotransformed into yeast cells with
the BIN2-BD construct to map the interacting domain. A C-terminal fragment lacking the bHLH domain binds the BIN2 protein,
although with lower affinity. Removal of this C-terminal region does not abrogate binding, indicating that the HLH region contributes

to this interaction.

identified two consensus motifs that are conserved in all
PIF4/PIF5 proteins across evolutionarily divergent spe-
cies (Supplemental Fig. S5). Site-directed mutagenesis of
the conserved T!®°*VGPS'**HCGS!®® motif to replace the
three Ser/Thr residues by Ala, hence generating a non-
phosphorylatable PIF41 A mutant protein (Fig. 3B), led to
a strong stabilization of this factor (Fig. 4B,D) and reduced
the efficiency of in vitro labeling by BIN2 (Fig. 3A),
although it did not fully abolish phosphorylation. Re-
sidual labeling by this kinase is likely to be due to
phosphorylation of the second conserved motif or sec-
ondary modification of the nonconserved sites found
in the protein. However, further mutation of Ser’** to
Ala to disrupt this second conserved motif did not lead to
protein stabilization, indicating that this motif is less
relevant for PIF4 function.

Consistent with these results, lines overexpressing the
PIF41A-GFP protein fusion were severely elongated and
showed extremely early flowering (Fig. 4A), as anticipated
for a strong stabilization of this factor. Confocal GFP
fluorescence and Western blot studies confirmed higher
levels of accumulation of this mutant protein fusion in
the light (Fig. 4B,D), as compared with 35S: PIF4-GFP
lines showing equivalent transcript levels for the wild-
type protein fusion (Fig. 4C). In dark-grown seedlings,
differences in protein levels were smaller due to additional
stabilization of the wild-type protein (Fig. 4D). However,
subcellular localization of the PIF41A-GFP protein was not
altered with respect to PIF4-GFP. Both the PIF4-GFP and
PIF41A-GFP fusions show a diffuse nuclear expression and
form similar nuclear speckles upon red light irradiation
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(Bauer et al. 2004; Leivar et al. 2008), with a pulse of far-red
light reversing speckle formation in both proteins (Supple-
mental Fig. 6). BL treatment, on the other hand, did not
alter their subcellular localization (Supplemental Fig. 6).

358 :PIF41A-GFP lines display up-regulated expression
of the PIL1 transcript and respond to BL by enhanced
levels of activation of this gene (Fig. 4E). When treated
with BRZ, PIL1 gene expression was also found to be less
suppressed in these plants than in 35S::PIF4-GFP lines
(Fig. 4E), suggestive of a stabilization of the PIF41A
protein irrespective of BIN2 kinase activation.

PIF41A expression partially suppresses the dwarf
phenotype of bin2-1 mutants

To further assess constitutive activation of this mutant
protein, we analyzed whether PIF41A overexpression
suppresses the severe dwarf phenotype of bin2-1 mutants,
impaired in BR signaling due to constitutive BIN2 activa-
tion (Peng et al. 2008). As shown in Supplemental Figures
S9 and S10, PIF41A expression rescued the semidwarf
phenotype of heterozygous bin2-1*/~ mutants but did not
suppress the more severe phenotype of homozygous
plants. PIF41A bin2-1 seedlings are slightly taller than
the bin2-1 mutant (Supplemental Fig. S10) but still display
the characteristic curled leaf and severe dwarf phenotype
of these mutants. Such dosage complementation effects
indicate that, in addition to PIF4, other BIN2-regulated
factors are required for hypocotyl growth, in agreement
with the recent finding that BZR1 binds G-box elements
identical to those bound by PIF4 in the promoters of cell
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Figure 4. PIF41A overexpression causes a se-
verely elongated phenotype and activated PIL1
gene expression in the presence of BRZ. (A)
Overexpression of the PIF41A mutant protein
causes severe elongation of the petioles and
stem and an extremely early flowering pheno-
type. Plants were grown for 3 wk. (B) Detection
of the PIF1A-GFP protein in roots of 5-d-old
plants. Nuclear fluorescence in PIF41A-GFP
plants is stronger than in PIF4-GFP seedlings,
indicating a higher stability of the PIF41A
protein. (C) Quantification of PIF4 transcript
- levels in the PIF4-GFP and PIF41A-GFP over-

expression lines. Plants were grown in con-
tinuous light for 5 d. Transcript levels were
equivalent in both lines. (D) Western blot
detection of the PIF4-GFP and PIF41A-GFP
proteins. Plants were grown for 5 d under
light or dark conditions. Higher levels of
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elongation genes (Oh et al. 2012). PIFs are actually required
for BZR1-induced cell elongation, with loss-of-function
mutations of the PIF1, PIF3, PIF4, and PIF5 genes in the
pifqg mutant suppressing the elongated phenotype of the
constitutive bzrl-1D mutant (Oh et al. 2012). Hence,
concurrent activity of the BZR1 and PIF4 factors is essen-
tial for cell elongation. The observation that bzri-1D
suppresses the dwarf phenotype of bril-116 seedlings in
the dark but not in the light and that light-grown PIF40X
bzr1-1D bril-116 seedlings are shorter than PIF4OX lines
indeed supports this regulatory model and demonstrates
that phosphorylation by the BR signaling kinase BIN2
plays an important role in modulating PIF4 stability and
in BR promotion of cell elongation in the light.

BIN2 phosphorylation plays a main role
in destabilizing the PIF4 protein at dawn

Growth of young seedlings follows a rhythmic elongation
pattern such that, in short days, rapid hypocotyl growth
occurs at dawn and alternates with an interval of reduced
elongation during daytime and early night (Nozue and
Maloof 2006). Thus, we wanted to test whether PIF4
phosphorylation plays a role in defining this window of
active cell elongation. To this aim, we generated transgenic
pifdpif5 lines that expressed the wild-type PIF4-HA and
mutant PIF41A-HA proteins under the control of its native

PIF4-GFP PIF41A-GFP

PIF41A are detected in light-grown seedlings,
implicating that phosphorylation by BIN2
mediates destabilization of this factor in the
light. (E) Quantitative real-time PCR analysis
of PIL1 transcript levels in Col-0 and in lines
% overexpressing the PIF4 and PIF41A proteins.
Plants were grown in continuous light for 5 d.
An enhanced activation of PILI in response to
BL was observed in PIF41A seedlings. (*) P <
0.05 by Student’s t-test. Error bars are =SD.

*

" Col-0 PIF4-GFP__ #4 #9

PIF41A-GFP

promoter. We selected lines in which the levels of expres-
sion of these transgenes were similar to Col-0 and verified
that transcript accumulation in these plants (Fig. 5D) fol-
lowed the diurnal expression pattern reported for the
endogenous PIF4 gene (Nozue et al. 2007; Yamashino
et al. 2013). Lines generated for the wild-type PIF4-HA
protein actually had hypocotyl lengths similar to those of
Col-0 plants and showed a wild-type response to PAC
(Supplemental Fig. S12) and BRZ treatments (Fig. 7A,B,
below). When grown at 28°C, these plants also showed an
elongation growth similar to that observed for Col-0 seed-
lings (Supplemental Fig. S7). PIF41A-HA lines, in contrast,
had taller hypocotyls and showed the characteristic
elongated petioles and narrower leaves of plants grown
in the shade (Figs. 5A, 7A [below]; Supplemental Fig. S7),
indicative of an increased stability of this mutant protein.
Indeed, PIF41A-HA was found to accumulate to higher
levels than wild-type PIF4-HA, with differences in protein
levels being greatest at Zeitgeber time 22 (ZT22) and ZT2,
coinciding with the interval of maximal hypocotyl growth
(Fig. 5B,C). PIF41A levels, in addition, did not change in
response to BL or BRZ treatments, demonstrating that
this mutation results in a stabilization of the protein
irrespective of BR signaling (Supplemental Fig. S8).
Notably, although PIFs are accepted to be destabilized
by PHYB in the light, both PIF4 and PIF41A proteins were
detected to significant levels during daytime and rapidly
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Figure 5. BIN2 modulates PIF4 stability at dawn. (A) Phenotype of pifdpif5 and transgenic pifdpif5 lines expressing the wild-type PIF4-
HA and mutant PIF41A-HA proteins under the control of its native promoter. pPIF4: PIF41A-HA pifdpif5 lines show elongated petioles
and narrow leaves, characteristic of plants grown in the shade. Plants were grown for 3 wk. (B) Levels of accumulation of the PIF4-HA and
PIF41A-HA proteins. Plants were grown in short-day conditions for 6 d, and samples were collected every 2 h during a cycle of 24 h. Levels
of the proteins were analyzed by Western blot using an antibody against HA. PIF4-HA and PIF41A-HA accumulated at the end of the night
and during daytime and dropped after dusk, with PIF41A found to be more stable than the wild-type PIF4-HA protein. An antibody against
RPT5 was used as a loading control. (C) To compare stability of these proteins, samples corresponding to selected points were run in the
same gel. (D) Analysis of PIF4 transcript levels in these plants. Plants were grown in short-day conditions for 5 d. Samples were collected
every 3 h during a cycle of 24 h. Error bars represent +SEM of two independent biological replicates. (E) Quantification of the PIF4-HA and
PIF41A-HA proteins in the Western blots shown in B. Intensities of the detected bands were quantified using the Image] program. PIF41 A
accumulates to higher levels than PIF4, particularly during late night (ZT22) and early morning (ZT0-ZT2).

dropped after dusk, when PIF4 transcription is repressed proteins (Fig. 5B), suggesting that PIF4 is subjected to
(Fig. 5B,D; Nusinow et al. 2011). A related daytime phosphorylation by a PHYB-regulated kinase, as reported
pattern of protein accumulation was also recently for PIF3 (Ni et al. 2013).

reported for a PIF4-citrine-HA construct (Yamashino et al. To estimate the stabilization of this mutant protein, we
2013), although the taller phenotype of these plants did treated PIF4 and PIF41A seedlings with cycloheximide
not exclude an additional stabilization of the protein due (CHX) and with CHX and BL (Fig. 6A). In these studies,
to the C-terminal citrine tag. Our HA-tagged lines display PIF4 is destabilized by 30 min of CHX application, while
a hypocotyl length similar to that of Col-0, and relatively PIF41A is still detectable after 90 min of CHX treatment.
high levels of the protein were detected during daytime. Also, upon BL application, PIF4 half-life was similar to
Furthermore, in lines expressing the same PIF4-HA fusion that of the PIF41A protein, whereas this hormone did
under the control of the 35S promoter (Supplemental not have any effect on PIF41A protein levels (Fig. 6A).
Figure S11), a preferential accumulation of the protein Consistent with these results, when PIF4 and PIF41A
was seen at night, as previously reported (Nozue et al. lines were crossed to the bin2.1 mutant, we observed that
2007). This indicates that although stability of PIF4 is constitutive activation of BIN2 in these seedlings leads to
higher in darkness, active transcription of this gene may a strong reduction in PIF4 protein levels but has only
lead to substantial levels of accumulation of this factor a minor effect on PIF41A protein stability (Fig. 6B).
during daytime, depending on light irradiance. How- We also assessed whether this mutation affects rhyth-
ever, during this phase of the day, PIF4 is repressed by mic plant growth by continuously measuring the growth

the DELLAs, which were reported to accumulate in the of Col-0, PIF4-HA, PIF41A-HA, and PIF40X seedlings
light (Achard et al. 2007). It is also noteworthy that during 2 d (Fig. 6C). Under short days, growth of Col-0 and
increased PIF41A stability during late night correlates PIF4-HA was maximal at dawn, while PIF40X seedlings

with preferential accumulation as a faster-migrating form showed an increased growth rate during early night, as
of the protein (Figs. 5B, 1C), although this mutation does previously described (Nozue et al. 2007). Remarkably,
not preclude formation of slower isoforms, suggesting PIF41A seedlings elongated also during daytime (Fig. 6C),
that PIF4 is phosphorylated by other kinases in addition indicating that BL-dependent phosphorylation of the PIF4
to BIN2. Indeed, upon light exposure, slower-migrating factor plays an important role in modulating rhythmic

forms are observed for both the wild-type and PIF41A hypocotyl growth.
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PIF41A besl-D seedlings are insensitive to BRZ
in the light

The gain-of-function bes1-D and bzr1-1D mutations cause
constitutive BES1 and BZR1 activation due to identical
mutations in the PEST domain, which enhance PP2A-
binding affinity and lead to increased dephosphorylation of
these factors (Tang et al. 2011). These mutants show a BRZ-
insensitive response in the dark but opposite phenotypes in
the light, although the BES1 and BZR1 proteins share 88%
overall identity. While the bzr1-1D mutant displays a weak
dwarf phenotype and a hypersensitive response to BRZ in
the light, light-grown bes1-D seedlings are largely insensi-
tive to this inhibitor. This phenotype is at present not well
understood, as light does not seem to affect levels of these
proteins (Luo et al. 2010). Since BES1 and BZR1 promote
cell elongation by formation of a coactivator complex with
PIF4 (Oh et al. 2012), it is possible that the hypersensitive
response to BRZ of bzri-1D seedlings results from an
increased phosphorylation and destabilization of the PIF4
factor in the light. However, the BRZ-insensitive response
of light-grown bes1-D mutants does not fit well with this
model, unless these plants still show a reduction in
hypocotyl growth on BRZ. As shown in Figure 7, A and
B, bes1-D seedlings are in fact shorter on BRZ than in mock
medium and display reduced levels of expression of the
PIL1 and PRES5 target genes (Fig. 7C). Also, they are only
slightly taller than Col-0, although BES1 is constitutively
activated in this mutant. PIF41A lines, in contrast, show
a much elongated phenotype but still respond to BRZ by
a reduction in hypocotyl growth, indicating that the non-
phosphorylatable PIF41A protein requires BESI/BZR1
function to promote cell elongation. Therefore, we in-
troduced the besI-D gain-of-function mutation into the
DPIF4: PTIF41A lines to test whether combined expression
of these two mutant proteins confers a BRZ-insensitive
response in the light. Light-grown PIF41A besI-D seedlings
actually show elongated hypocotyls on BRZ similar to
those in mock treatments (Fig. 7B), demonstrating that the
BIN2-insensitive forms of PIF4 and BESI are required for
hypocotyl growth in the light. Gene expression quantita-
tive PCR (qPCR| studies confirmed that expression of both
PIF41A and besl-D proteins leads to constitutive up-
regulated levels of expression of the PIL1, XTR7, and
PRE5 target genes on BRZ (Fig. 7C). Taken together, these
results demonstrate that BR signaling plays a prevalent role
in hypocotyl elongation by suppressing BIN2 kinase activ-
ity, with inactivation of this kinase allowing stabilization
of the PIF4 factor and BES1/BZR1 nuclear accumulation,
with a concerted activation of these two families of
regulators being essential for growth.

Discussion

PIFs play a pivotal role in cell elongation by directly
activating the expression of genes with a role in cell wall
loosening and auxin-related signaling (Leivar and Quail
2011). Members of this gene family play a redundant role
in seedling etiolation and loss of function of the PIF1, PIF3,
PIF4, and PIF5 genes in the pifg mutant, leading to a dwarf
de-etiolated phenotype in the dark (Leivar et al. 2009). PIF4

BRs regulation of diurnal PIF4 levels

was recently shown to interact with BES1/BZR1 and act in
an interdependent way with these factors to activate
expression of multiple BR-regulated genes (Oh et al. 2012).
In this study, we disclose a role of BIN2 in destabilization of
the PIF4 factor and show that this modification plays a key
role in timing seedling elongation to the end of the night.
We show that active BR signaling is required for growth
promotion in response to DELLA destabilization and that
BR application promotes accumulation of a faster-migrating
form of the PIF4 protein, suggestive of a role of BRs in
modulating phosphorylation of this factor. PIF4 binds the
negative BR signaling kinase BIN2 in yeast cells, and
interaction of these proteins was confirmed in vivo by BiFC
and co-IP assays. BIN2 phosphorylates the PIF4 protein in
vitro, and we show that this modification plays an impor-
tant role in modulating stability of this factor.

BR signaling stabilizes the PIF4 factor

Expression of the PIF41 A mutant protein lacking a con-
served BIN2 phosphorylation consensus leads to an
elongated phenotype and reduced sensitivity to the BR
biosynthetic inhibitor BRZ. However, this mutation
suppresses only in part the dwarf phenotype of the BR-
insensitive bin2-1 mutant, indicating that other BIN2-
regulated factors also play an essential role in hypocotyl
growth. BIN2 phosphorylates the HLH BES1/BZR1 fac-
tors at multiple sites, the modified BES1/BZR1 proteins
being unable to bind to DNA and be retained in the
cytosol via interaction with the 14-3-3 phosphopeptide-
binding proteins, where they are degraded by the protea-
some (Zhao et al. 2002; Vert and Chory 2006; Gampala
et al. 2007). BZR1 was shown to interact with PIF4 and
bind as a complex with this factor to the promoters of
several genes (Oh et al. 2012). Activation of these gene
targets needs PIF function, as the quadruple pifg mutant
suppresses the BRZ-insensitive phenotype of bzrl-1D
mutants and leads to short hypocotyls, as in pifq plants.
Constitutive bzrl-1D mutants are insensitive to BRZ in
darkness but show a hypersensitive response to this in-
hibitor in the light, in contrast to bes1-D mutants, reported
to display also a BRZ-insensitive response in the light. Here
we show that light-grown bes1-D seedlings still respond to
BRZ by an inhibition of hypocotyl elongation and reduced
PIL1 and PRE5 gene expression, suggesting that BIN2
phosphorylation and destabilization of PIF4 mediates this
additional response to BRZ. In line with this model,
expression of the PIF41A mutant protein in besI-D plants
resulted in tall plants that are fully insensitive to BRZ and
show elevated levels of expression of the PIL1, XTR7, and
PRES5 genes in the presence of this inhibitor. These results
demonstrate that BR signaling not only activates BES1 and
BZR1 but also promotes stabilization of the PIF4 factor,
a concerted action of these two families of regulators being
required for elongation growth.

PIF4 and BES1/BZR1 accumulation is required for cell
elongation

Consistent with a role of BIN2 in regulating PIF4 stabil-
ity, the bzrl-1D mutation was shown to suppress the
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dwarf phenotype of bril-116 seedlings in the dark but not
in the light. Likewise, overexpression of the wild-type
PIF4 protein increases the hypocotyl length of bzr1-1D
bri1-116 plants (Oh et al. 2012), but these seedlings are
still much shorter than the PIF40X lines. Enhanced PP2A
activity in PP2A B subunit overexpressers, on the other
hand, leads to a reduced sensitivity to BRZ similar to that
of the bzrl-1D mutation but is unable to suppress the
weak bril-5 allele even though these plants accumulate
the dephosphorylated BZR1 protein (Tang et al. 2011).
The BZR1-BIN2 interaction is mediated by a small
docking motif (DM) located near the C-terminal end of the
BZR1 protein (Peng et al. 2010). DM deletion completely
eliminates BZR1 phosphorylation and leads to increased
levels of accumulation of the BZR1(ADM)-GFP protein.
However, as we observed for the PIF41 A mutation, BZR1
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(ADM) suppresses only the weaker phenotype of bin2-1
heterozygote mutants (Peng et al. 2010). Thus, these
findings support a role of BIN2 in PIF4 and BES1/BZR1
phosphorylation, nuclear accumulation of the nonphos-
phorylated forms of both proteins being required for growth.

The concerted action of PIFs and BES1/BZR1
modulates rhythmic hypocotyl growth

Although it is widely accepted that PIFs accumulate only
in darkness, we show that the PIF4 protein follows
a pattern of accumulation similar to that of its transcript.
We generated pifdpif5 lines expressing the PIF4-HA or
PIF41A-HA proteins under the control of its native pro-
moter and selected lines with wild-type levels of these
transgenes. pPIF4: PIF4-HA lines had a hypocotyl length
and expressed the PIL1 and PRES genes to levels similar
to those of the Col-0 plants (Fig. 7; Supplemental Figs. S7,
S12). pPIF4: PIF41A-HA lines, in contrast, were much
taller and showed increased levels of expression of these
genes (Fig. 7). pPIF4: PIFA1A plants are actually taller
than the besi-D mutant and, in the presence of BRZ,
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Figure 6. Mutation of the conserved BIN2 phosphorylation motif
increases the half-life of the PIF41A protein and leads to contin-
uous growth. (A) Analysis of the half-life of the PIF4 and PIF41A
proteins. Transgenic pPIF4: PIF4-HA pifdpif5 and pPIF4: PIF41A-
HA pifdpif5 seedlings were grown in SD for 5 d and treated for 12 h
with 0.5 wM BRZ before starting the assay. Three hours before
lights on, seedlings were changed to 0.5 uM BRZ (mock) or 1 uM
BL (BL) medium, and 50 pM CHX was added 1 h later. Seedlings
were kept in darkness and harvested at different times after CHX
application, as indicated. Western blot analyses of these samples
showed that the wild-type PIF4 protein is destabilized after 30
min of CHX treatment, in contrast to PIF41A, which is still
detected by 90 min of CHX application. BL treatment increased
PIF4 stability but did not have any effect on the PIF1A protein.
Note that in BL-treated seedlings, the half-life of PIF4 becomes
similar to that of PIF41A. (B) Stability of the PIF4 and PIF41A
protein in the bin2.1 mutant background. pPIF4: :PIF4-HA pifdpif5
and pPIF4: PIF41A-HA pifdpif5 lines were crossed with the bin2.1
mutant, and the accumulation levels and half-lives of these pro-
teins were analyzed in 5-d-old plants as before. Before lights on,
seedlings were transferred to MS medium with (+) or without (—)
50 pM CHX and incubated in darkness for 30 min. Western blot
analysis showed that the wild-type PIF4 protein is destabilized in
the bin2.1 mutant background but that constitutive activation of
the BIN2 kinase does not affect PIF41A levels. (C) Diurnal growth
patterns of Col-0, pPIF4 PIFA-HA pifdpif5, pPIF4: PIF41A-HA
pifdpif5, and PIF40X plants. Seedlings were grown in SD, and
images were captured 3 d after germination at 1-h intervals. Five
seedlings were measured for each genotype, and the growth rate
was plotted as a function of time. Growth of pPIF4::PIF4-HA
Difdpif5 lines was similar to the wild type, with maximal hypocotyl
elongation observed at dawn (Col-0). 35S: PIF4-HA lines (PIF40X)
elongated during the whole-night period, as previously described
(Nozue et al. 2007). pPIF4: PIFA1A-HA pifdpif5 lines displayed
continuous growth, with the hypocotyls of these plants elongating
also during daytime. Measurements were done twice with similar
results. Light and dark hours are indicated by white and gray bars,
respectively.
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Figure 7. PIF41A besl-d seedlings are insensitive to BRZ in the light. (A) Seedlings were grown for 5 d in continuous red light in
a medium containing mock solution (top panel) or 2 puM BRZ (bottom panel). bes1-D pPIF4: PIF41A seedlings are insensitive to BRZ,
while bes1-D and pPIF4:PIF4-HA plants still show a reduction in hypocotyl growth in the presence of this inhibitor. (B) Hypocotyl lengths
of seedlings grown on mock or BRZ medium. Seedlings were grown in vertical plates for 5 d in continuous red light on MS medium
supplemented with mock solution or 0.2 uM and 0.5 wuM BRZ. Error bars indicate the SD (n = 20 plants). (C) Quantitative real-time PCR
analysis of PIL1, XTR7, and PRE5 transcript levels in Col-0, bes1-D, pPIF4: PIF4-HA, and pPIF4: PIF41 A-HA lines and double besi-D
pPPIF4:: PIF41A-HA (bes1-D PIF41A) plants. Seedlings were grown for 5 d in continuous red light as before. Constitutively elevated levels
of expression of the PIL1, XTR7, and PRE5 transcripts are observed in the double besi-D PIF41A lines, demonstrating a fully
BRZ-resistant response of these plants. Gene expression levels were normalized to that of PP2A and are shown relative to the expression
levels of Col-0. (**) P < 0.01; (*) P < 0.05 by Student’s t-test. (ns) Not significant. Error bars are the =SEM of two biological replicates.

show increased levels of expression of the PIL1 and PRE5
transcripts, suggesting that PIF4 destabilization plays an
important role in BRZ repression of hypocotyl growth.
Time-course studies to analyze diurnal levels of accumu-
lation of the PIF4 and PIF41A proteins showed that the
wild-type PIF4 protein starts to accumulate at the end of
the night, peaks during the day, and is reduced after
transition to dark. PIF41A protein levels were higher than
those of the wild-type protein, particularly during late
night (ZT22) and immediately after lights on (ZT0-ZT2)
(Fig. 5B). Strikingly, PIF41A plants displayed arrhythmic
growth and, in contrast to PIF4 seedlings, elongated
during daytime (Fig. 6C). This response is conferred by a
mutation that makes PIF4 insensitive to BIN2-mediated
destabilization, suggesting that diurnal oscillations in BR
levels or signaling play a relevant role in setting the diurnal
phase of hypocotyl growth. BR synthesis and response
genes were shown to oscillate in short days, with a peak
of expression that coincides with dawn (Michael et al.
2008; Yamashino et al. 2013). This time-of-day-specific

expression plays a relevant role in setting the phase of
maximal hypocotyl growth, as complementation of the
bri1-116 mutant with the AtML1::BRI1 construct led to
taller hypocotyls than the wild-type due to misexpression
of the BRI1 gene during early night (Michael et al. 2008).
This indicates that BR signaling plays an important role in
hypocotyl elongation by providing robustness to the rhyth-
mic growth pattern. Our data demonstrate that BIN2
redundantly regulates nuclear accumulation of BES1/
BZR1 and the stability of PIF4, coactivator function of
these factors thereby serving as a highly sensitive and
robust mechanism for external cue integration, enabling
the plant to adapt its growth and development to envi-
ronmental changes.

Materials and methods

Plant materials and growth conditions

All of the plants used in this study were in the Col-0 ecotype.
To generate the pPIF4: PIF4-HA pifdpif5 transgenic lines, a geno-

GENES & DEVELOPMENT 1691


http://genesdev.cshlp.org/
http://www.cshlpress.com

Downloaded from genesdev.cshlp.org on August 25, 2022 - Published by Cold Spring Harbor Laboratory Press

Bernardo-Garcia et al.

mic fragment, including a 2.4-kb promoter region and the full-
length PIF4 coding sequence without stop codon, was amplified
with the PIF4promoter-f and PIF4_YFPr primers and cloned into
the pENTRY S/D-TOPO (Invitrogen) vector. The pPIF4: PIF41A
construct was obtained by substituting the Ncol-Agel fragment
of the pPIF4: PIF4 TOPO plasmid with the corresponding frag-
ment, including the PIF41A mutation. These genomic regions
were mobilized by LR clonase into the pPGWB13-pPZP destina-
tion vector and transformed via Agrobacterium into the pifdpif5
mutant. bes1-D PIF41A plants were generated by crossing the
pPIF4: PIF41A-HA plants into the bes1-D pif4pif5 mutants.

Seeds were transferred to vertical MS plates supplemented
with the different chemical treatments and grown in darkness or
continuous red light for 5-7 d, as specified. Plates were photo-
graphed, and the Image] software was used to measure the
seedlings’ hypocotyl length. Diurnal growth and protein accu-
mulation studies were performed in plants grown in short days
(8 h light/16 h dark).

Protein interaction assays

The full-length BIN2, PIF4, and BESI1 coding regions were
cloned into the pENTRY S/D-TOPO vector for recombination
into the yeast and plant expression vectors. Yeast two-hybrid
assays were performed with the GATEWAY-modified pGBKT7
and pGADT?7 vectors (Clontech). Both bait and prey constructs
were transformed into AH109 cells and selected on SD-LTHA
medium. For pull-down assays, 3°S-Met-radiolabeled PIF4 and
BES proteins were synthesized with the TNT T7-coupled
reticulocyte lysate system (Promega) and incubated with
glutathione-Sepharose beads (GE Healthcare) with the bound
GST and GST-BIN2 proteins. For co-IP studies, extracts of
N. benthamiana leaves expressing the BIN2-HA and PIF4-
GFP proteins were incubated with anti-HA magnetic beads
(WMACS epitope tag, Miltenyi Biotec), and 15 pL (anti-HA)
and 35 pL (anti-GFP) of the immunoprecipitated fraction were
used for detection of the proteins. The BIN2 and PIF4 coding
regions were fused to the N-terminal and C-terminal YFP
fragments of the YEN43 and YFC43 vectors and coinfiltrated
into N. benthamiana leaves. Leaves were observed 2 d after
infiltration.

In vitro kinase and phosphorylation assays

PIF4-His, PIF41A-His, MBP-BES1, and BIN2-GST fusion proteins
were purified using glutathione agarose (Clontech), amylose
agarose (New England Biolabs), or Ni-NTA agarose (Qiagen)
beads. For in vitro kinase assays, PIF4-His, MBP-BES1, and
GST-BIN2 proteins were coincubated with 3?Py-ATP for 40
min at 37°C. Two micromolar and 20 uM of the BIN2 kinase
inhibitor bikinin (Calbiochem) were added to the incubation
mix for specific inhibition. Extracts of mock-, BL-, and BRZ-
treated seedlings were incubated for 1 h at 37°C with or
without CIP (New England Biolabs) to assay for in vivo protein
phosphorylation.

gRT-PCR gene expression analysis

Total RNA was extracted by using the high pure RNA isolation
kit (Roche). The SuperScript II reverse transcriptase (Invitrogen)
was used for cDNA synthesis, and quantitative real-time RT-
PCR amplification wasperformed in the 7500 real-time PCR
system (Applied Biosystems), following the manufacture’s rec-
ommendations. PP2A was used as an internal control. Gene-
specific primers are listed in Supplemental Table 1.
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Confocal microscopy

GFP fluorescence of the split YFP in BiFC-infiltrated N. ben-
thamiana leaves or in roots of the transgenic 35S: :PIF4-GFP and
358: :PIF41A-GFP lines was imaged using an inverted Leica TCS
SP5 spectral confocal microscope. Fluorescence was excited with
a 488-nm ion argon laser, and emission images were collected in
the 500- to 600-nm range.
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