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Abstract We derive Lr (μ)-bracketing metric and sup-norm metric entropy rates of
bounded subsets of general function spaces defined over R

d or, more generally, over
Borel subsets thereof, by adapting results of Haroske and Triebel (Math. Nachr. 167,
131–156, 1994; 278, 108–132, 2005). The function spaces covered are of (weighted)
Besov, Sobolev, Hölder, and Triebel type. Applications to the theory of empirical
processes are discussed. In particular, we show that (norm-)bounded subsets of the
above mentioned spaces are Donsker classes uniformly in various sets of probability
measures.

Keywords Metric entropy with bracketing · Uniform metric entropy · Sobolev,
Besov, Hölder, Triebel, and Bessel potential spaces · Uniform Donsker class ·
Glivenko-Cantelli

1 Introduction

In the theory of empirical processes and its applications (see, e.g., [11, 36]), the size
of the function class indexing the empirical process plays a central role. The size,
more precisely, the degree of compactness of the function class in some relevant
topology, is measured by concepts like metric entropy (with or without bracketing).
For example, many limit theorems for empirical processes (e.g., Glivenko-Cantelli
and Donsker type results) are based on entropy conditions. The bracketing metric
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entropy concept has proved to be particularly useful in this context; see Dudley [9],
Alexander [2], Ossiander [25], Andersen, Giné, Ossiander, and Zinn [3]. Another
prototypical application of bracketing metric entropy is in the study of convergence
rates and lower risk bounds of statistical estimators (e.g., [5, 32, 33, 37]).

Classical results on (sup-norm) metric entropy bounds for ‘smooth’ function
classes on bounded subsets of Euclidean space can be found in Kolmogorov and
Tihomirov [21] and Birman and Solomyak [7]; see also Birgé and Massart [6]. [For
a general exposition we refer to Chap. 15 in Lorentz, v.Golitschek, Makovoz [22] and
Chap. 8 in Dudley [11].] Bracketing metric entropy bounds for such function classes
can then immediately be obtained from these sup-norm metric entropy bounds. The
only result regarding bracketing metric entropy bounds for classes of ‘smooth’ func-
tions with unbounded support we are aware of is given in van der Vaart [30], which
covers only a specific class of functions obtained from suitably pasting together func-
tions that are of Lipschitz-type on bounded convex subsets; see Remark 5 for fur-
ther discussion. Also note that bracketing metric entropy bounds for classes of func-
tions of bounded variation that are defined on the real line are available; see van de
Geer [31] and Remark 4 below.

In the present paper we provide bounds for the bracketing metric entropy of a large
variety of ‘smooth’ function classes such as subsets of (weighted) Besov, Sobolev,
Hölder, and Triebel spaces defined on R

d or on arbitrary Borel subsets thereof. We
exploit results from the Fourier-analysis of such spaces [14, 19, 20]. In Sect. 3 we ob-
tain sup-norm metric entropy, Lr (μ)-bracketing metric entropy, and uniform metric
entropy bounds for (norm-)bounded subsets of the aforementioned spaces. Here the
measure μ is not necessarily a finite measure. The entropy rates obtained are always
of order ε−α for some positive α, where α depends on the ‘degree of smoothness’
as well as on the behavior at infinity of the function class (and is connected to the
measure μ via a suitable integrability condition in the bracketing case). These results
also allow for classes of unbounded functions.

In Sect. 4 we provide sufficient conditions for any (norm-)bounded subset in
a (weighted) Besov, Sobolev, Hölder, or Triebel space to be a Glivenko-Cantelli or
Donsker class (uniformly in various sets of probability measures). These results are
based on the bracketing bounds obtained in Sect. 3 on the one hand, and on a com-
bination of embedding theorems for Besov spaces with results in Marcus [23] and
Dudley [10] on the other hand. In Nickl [24] it is shown that these sufficient condi-
tions are essentially sharp (at least in the unweighted case).

The focus of the paper is on real (weighted) Besov spaces. As discussed in
Sect. 3.3, the results for Besov spaces immediately imply corresponding results for
(weighted) Sobolev, Hölder, and Triebel spaces by using well-known embedding the-
orems.

2 Besov Spaces: Definition and Basic Properties

Let � be a (non-empty) Borel set in R
d , d ∈ N, and denote by L0(�) the set

of real-valued B�-measurable functions on �, where B� represents the σ -field of
Borel sets of �. For h ∈ L0(�) and μ a (nonnegative) Borel measure on �, we
set ‖h‖r,μ := (

∫
�

|h|rdμ)1/r for 1 ≤ r ≤ ∞ where ‖h‖∞,μ denotes the μ-essential
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supremum of |h|. [We always use the term Borel measure to mean a nonnegative
Borel measure, not necessarily finite or σ -finite.] As usual, we denote by Lr (�,μ),
or sometimes only Lr (μ), the vector space of all h ∈ L0(�) that satisfy ‖h‖r,μ < ∞.
Furthermore, Lr(�,μ) (or Lr(μ)) denotes the corresponding Banach space of equiv-
alence classes [h]μ, h ∈ Lr (�,μ), modulo equality μ-almost everywhere. The sym-
bol λ will be used to denote Lebesgue-measure on the Borel sets of R

d , and λ|� will
denote the restriction of λ to �.

Furthermore, let C(Rd) be the vector space of bounded continuous real-valued
functions on R

d normed by the sup-norm ‖ · ‖∞. Also, let UC(Rd) be the closed sub-
space of C(Rd) that consists of all uniformly continuous functions, again equipped
with the sup-norm. Attaching the subscript 0 to any of these two spaces denotes the
respective closed subspace of functions satisfying lim‖x‖→∞ f (x) = 0 where ‖ · ‖
always denotes the Euclidean norm. [Clearly, UC0(R

d) = C0(R
d).]

We follow Edmunds and Triebel ([14] 2.2.1) in defining Besov spaces: Let ϕ0 be
a complex-valued C∞-function on R

d with ϕ0(x) = 1 if ‖x‖ ≤ 1 and ϕ0(x) = 0 if
‖x‖ ≥ 3/2. Define ϕ1(x) = ϕ0(x/2) − ϕ0(x) and ϕk(x) = ϕ1(2−k+1x) for k ∈ N.
Then the functions ϕk form a dyadic resolution of unity. Let S ′(Rd) denote the space
of complex tempered distributions on R

d and let F denote the Fourier transform
acting on this space (with scaling constant (2π)−d/2). Since any f ∈ Lp(Rd , λ) gives
rise to an element of S ′(Rd), the quantity F−1(ϕkFf ) is well-defined (for any k) as
an element of S ′(Rd). [In fact, more is true: F−1(ϕkFT ) is an entire analytic function
on R

d for any T ∈ S ′(Rd) and any k by the Paley-Wiener-Schwartz theorem.]

Definition 1 (Besov spaces) Let 0 ≤ s < ∞, 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞, with q = 1
in case s = 0. For f ∈ Lp(Rd , λ) define

‖f ‖s,p,q,λ :=
( ∞∑

k=0

2ksq
∥
∥F−1(ϕkFf )

∥
∥q

p,λ

)1/q

with the modification in case q = ∞
‖f ‖s,p,∞,λ := sup

0≤k<∞
2ks

∥
∥F−1(ϕkFf )

∥
∥

p,λ
.

Define further

Bs
pq(Rd) := {

f ∈ Lp(Rd , λ) : ‖f ‖s,p,q,λ < ∞}
.

The Besov space (Bs
pq(Rd),‖ · ‖s,p,q,λ) is a semi-normed vector space (over R).

Note that with each element f ∈ Bs
pq(Rd) any f ∗ ∈ [f ]λ also belongs to Bs

pq(Rd).
By taking the quotient w.r.t. the set {f : ‖f ‖s,p,q,λ = 0} one obtains the Banach space
(Bs

pq(Rd),‖ · ‖s,p,q,λ). The Besov spaces are independent of the choice of ϕ0, and,
in particular, different ϕ0 result in equivalent norms, cf. Edmunds and Triebel ([14],
2.2.1).

Remark 1 (i) The norm symbol in Definition 1 is in fact well-defined for arbitrary
complex tempered distributions T ∈ S ′(Rd), and {T ∈ S ′(Rd) : ‖T ‖s,p,q,λ < ∞} de-
fines the complex Besov space (for −∞ < s < ∞, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞); see
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Edmunds and Triebel [14, 2.2.1]. Restricting attention to real-valued tempered dis-
tributions T (i.e., T = T̄ , where T̄ denotes the conjugate complex of T ) leads to the
real Besov space {T ∈ S ′(Rd) : T = T̄ ,‖T ‖s,p,q,λ < ∞}. Furthermore, in the case
s > 0 or s = 0 but q = 1, it follows from Triebel [28, 2.3.2/7,2.5.7/1,2], that the so-
defined real Besov space coincides with the space Bs

pq(Rd) defined above; hence, the
restriction to Lp(Rd , λ) in the definition of Bs

pq(Rd) above is natural.

(ii) We note that ‖T ‖s,p,q,λ < ∞ if and only if ‖T̄ ‖s,p,q,λ < ∞ for any T ∈
S ′(Rd). This shows that T is an element of the complex Besov space if and only
if the real part as well as the imaginary part of T belong to the corresponding real
Besov space. In fact,

‖T ‖s,p,q,λ ≤ ‖ReT ‖s,p,q,λ + ‖ ImT ‖s,p,q,λ ≤ c‖T ‖s,p,q,λ

holds for some 1 ≤ c < ∞ and for every T ∈ S ′(Rd). [To see this, recall first that
different choices of ϕ0 result in equivalent norms. Then, choosing ϕ0 real-valued and
symmetric gives F−1(ϕkF T̄ ) = F−1(ϕkFT ), and hence ‖T ‖s,p,q,λ = ‖T̄ ‖s,p,q,λ.]
In particular, the real Besov space is a closed subset of the corresponding complex
Besov space. As a consequence of these facts, one can easily carry over results for
complex Besov spaces to real ones and vice versa. [We shall use this tacitly when
using results for complex Besov spaces from the literature.]

Remark 2 There are many equivalent definitions of Besov spaces, see, e.g., Triebel
[28, 2.5.3, 2.5.7, 2.5.12]. We mention only one of them: Let α = (α1, . . . , αd)

be a multi-index of nonnegative integers αi , set |α| = ∑d
i=1 αi , and let Dα =

∂ |α|
(∂x1)

α1 ...(∂xd )αd
denote the partial differential operator of order |α| in the sense of

distributions. Furthermore, for a function f : R
d → R, the difference operator 
z

is defined by 
zf (·) = f (· + z) − f (·) and 
2
zf (·) = 
z(
zf (·)) for z ∈ R

d . Let
0 < s < ∞ and decompose s as s = [s]− + {s}+ with [s]− integer and 0 < {s}+ ≤ 1.
Let further 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. For f ∈ Lp(Rd) with ‖Dαf ‖p,λ < ∞ for
0 ≤ |α| ≤ [s]−, define

‖f ‖∗
s,p,q,λ :=

∑

0≤|α|≤[s]−
‖Dαf ‖p,λ +

∑

|α|=[s]−

(∫

Rd

|z|−{s}+q−d
∥
∥
2

zD
αf

∥
∥q

p,λ
dz

)1/q

with the modification in case q = ∞

‖f ‖∗
s,p,∞,λ :=

∑

0≤|α|≤[s]−
‖Dαf ‖p,λ +

∑

|α|=[s]−
sup

0
=z∈Rd

|z|−{s}+∥
∥
2

zD
αf

∥
∥

p,λ
.

Then {f ∈ Lp(Rd) : ‖f ‖∗
s,p,q,λ < ∞} coincides with Bs

pq(Rd), and the (semi)norms

‖ · ‖s,p,q,λ and ‖ · ‖∗
s,p,q,λ are equivalent on Bs

pq(Rd).

In case s > d/p, it is well-known that each equivalence class [f ]λ, f ∈ Bs
pq(Rd),

contains a (unique) continuous representative. [This representative possesses in fact
classical partial derivatives of order (at least) s − d/p, hence s − d/p is called the
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differential dimension of the Besov space.] Consequently, in case s > d/p, we can
define the (closely related) Banach space

Bs
pq(Rd) = Bs

pq(Rd) ∩ C(Rd),

again equipped with the norm ‖ · ‖s,p,q,λ; that is Bs
pq(Rd) is obtained by collecting

the continuous representatives. We note that any f ∈ Bs
pq(Rd) is also bounded. Fur-

thermore, if additionally p < ∞, any f ∈ Bs
pq(Rd) satisfies lim‖x‖→∞ f (x) = 0. For

convenience of the reader these well-known properties are summarized in Proposi-
tion 3 in the Appendix. In this proposition it is also shown that the aforementioned
properties continue to hold in case s = d/p and q = 1.

To control tail behavior, we introduce weighted Besov spaces, again following
Edmunds and Triebel [14, 4.2]. Define the polynomial weighting function 〈x〉β =
(1 + ‖x‖2)β/2 parameterized by β ∈ R, where x is an element of R

d .

Definition 2 (Weighted Besov spaces) Let 0 ≤ s < ∞, 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞,
with q = 1 in case s = 0. For β ∈ R define

Bs
pq(Rd, 〈x〉β) := {

f : ‖f · 〈x〉β‖s,p,q,λ < ∞}
.

Again, the pair
(
Bs

pq(Rd , 〈x〉β),‖(·)〈x〉β‖s,p,q,λ

)

is a semi-normed vector space and Bs
pq(Rd, 〈x〉β) denotes the corresponding quotient

space. In the case s > d/p or s = d/p and q = 1 we also define

Bs
pq(Rd , 〈x〉β) = Bs

pq(Rd , 〈x〉β) ∩ {f : f · 〈x〉β ∈ C(Rd)}.

Since 〈x〉β = (1 + ‖x‖2)β/2 is continuous and positive, Bs
pq(Rd, 〈x〉β) is a Ba-

nach space of continuous functions. Note that elements of Bs
pq(Rd , 〈x〉β) are always

bounded functions if β ≥ 0, but not necessarily if β < 0.

3 Bracketing Metric Entropy Bounds

Definition 3 For a (non-empty) subset J of a normed space (X,‖ · ‖X), let
N(ε,J ,‖ · ‖X) denote the minimal covering number, i.e., the minimal number of
closed balls of radius ε, 0 < ε < ∞, (w.r.t. ‖ · ‖X) needed to cover J . In accordance,
let H(ε,J ,‖ · ‖X) = logN(ε,J ,‖ · ‖X) be the metric entropy of the set J , where
log denotes the natural logarithm.

Definition 4 Let � be a (non-empty) Borel subset of R
d . Given two Borel-

measurable functions l, u : � → R, the bracket [l, u] is the set of all functions
f ∈ L0(�) with l ≤ f ≤ u. Given a Borel-measure μ on � and 1 ≤ r ≤ ∞, the
Lr (μ)-size of the bracket [l, u] is defined as ‖u − l‖r,μ. The Lr (μ)-bracketing num-
ber N[](ε,F ,‖ · ‖r,μ) of a (non-empty) set F ⊆ L0(�) is the minimal number of
brackets of Lr (μ)-size less than or equal to ε, 0 < ε < ∞, necessary to cover F . The
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logarithm of the bracketing number is called the Lr (μ)-bracketing metric entropy
H[](ε,F ,‖ · ‖r,μ).

In the above definitions it is implicitly understood that N(ε,J ,‖ · ‖X) and
N[](ε,F ,‖ · ‖r,μ) are finite. For two real-valued functions a(·) and b(·), we write
a(ε) � b(ε) if there exists a positive (finite) constant c not depending on ε such that
a(ε) ≤ cb(ε) holds for every ε > 0. If a(ε) � b(ε) and b(ε) � a(ε) both hold we
write a(ε) ∼ b(ε). [In abuse of notation, we shall also use this notation for sequences
ak and bk , k ∈ N.] Furthermore, for two (semi)norms ‖ · ‖X,1 and ‖ · ‖X,2 on a vec-
tor space X, we write ‖ · ‖X,1 � ‖ · ‖X,2 if ‖ · ‖X,1 ≤ c‖ · ‖X,2 for a (finite) positive
constant c, and we write ‖ · ‖X,1 ∼ ‖ · ‖X,2 if the (semi)norms are equivalent.

3.1 Bracketing Metric Entropy in Weighted Besov Spaces

We now give one of the main results of the paper. Note that the second part of this the-
orem, in case β < 0, also allows for function classes F that may contain unbounded
functions.

Theorem 1 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, β ∈ R, and s − d/p > 0. Suppose F is
a (non-empty) bounded subset of Bs

pq(Rd, 〈x〉β). Then the following holds:

1. Suppose β > 0. Then F is a relatively compact subset of UC0(R
d). Furthermore,

for β > s − d/p we have

H(ε,F ,‖ · ‖∞) � ε−d/s,

and for β < s − d/p we have

H(ε,F ,‖ · ‖∞) � ε−(β/d+1/p)−1
.

2. Suppose that for some Borel measure μ on R
d and some 1 ≤ r ≤ ∞ the moment

condition ‖〈x〉γ−β‖r,μ < ∞ holds for some γ > 0. If γ > s − d/p, we have

H[](ε,F ,‖ · ‖r,μ) � ε−d/s;
if γ < s − d/p, we have

H[](ε,F ,‖ · ‖r,μ) � ε−(γ /d+1/p)−1
.

Proof Without loss of generality, we may assume that F is the closed unit ball in
Bs

pq(Rd , 〈x〉β). To prove the first claim in Part 1 of the theorem, apply Proposition 2
with γ = β > 0 and Proposition 3, both in the Appendix, to obtain

Bs
pq(Rd , 〈x〉β) ↪→ B0

∞1(R
d) ↪→ UC(Rd),

where the first, and hence the composite embedding, are compact. [For the definition
of the embedding symbol ↪→ see the Appendix.] Consequently, F is a precompact
and hence a relatively compact subset of UC(Rd); by the second part of Proposition 3
it even belongs to the closed subspace UC0(R

d). This proves the first claim in Part 1.
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To prove the remaining assertions of the theorem we first establish a bound for
the weighted sup-norm metric entropy of F . Proposition 2 in the Appendix (and
an obvious selection-of-continuous-representatives argument) gives the rate of the
entropy number

ek = e
(
k,F ,‖(·)〈x〉β−γ ‖0,∞,1,λ

)

of F in the space B0
∞1(R

d , 〈x〉β−γ ) for arbitrary β ∈ R and γ > 0. Observe that the
sequence ek is nonincreasing, converges to zero, and satisfies 0 < ek < ∞. Therefore,
for every k ∈ N there exists a unique non-negative integer l(k) such that ek = ek+l(k)

and ek > ek+l(k)+1 hold. From the definition of the covering numbers it follows for
every η > ek+l(k)+1 that

log2 N
(
η,F ,‖(·)〈x〉β−γ ‖0,∞,1,λ

) ≤ k + l(k)

and thus

log2 N
(
ek,F ,‖(·)〈x〉β−γ ‖0,∞,1,λ

) ≤ k + l(k).

Fix 0 < ε ≤ e1. Then there exists a unique index k = k(ε) ≥ 2 such that ek < ε ≤
ek−1. Consequently,

log2 N
(
ε,F ,‖(·)〈x〉β−γ ‖0,∞,1,λ

) ≤ log2 N
(
ek,F ,‖(·)〈x〉β−γ ‖0,∞,1,λ

) ≤ k + l(k).

By Proposition 2 in the Appendix, there exists a positive and finite constant c such
that ek = ek+l(k) ≤ c(k + l(k))−α holds, where either α = s/d or α = γ /d + 1/p.
Consequently,

log2 N
(
ε,F ,‖(·)〈x〉β−γ ‖0,∞,1,λ

) ≤ k + l(k) ≤ c1/αe
−1/α
k .

Similarly, there exists a positive finite constant c′ such that c′k−α ≤ ek . Hence,

log2 N
(
ε,F ,‖(·)〈x〉β−γ ‖0,∞,1,λ

) ≤ (c/c′)1/αk = (c/c′)1/α[k − 1 + 1]
≤ (c/c′)1/α

[
c1/αe

−1/α

k−1 + 1
]

≤ (c/c′)1/α
[
c1/αε−1/α + 1

]
,

where in the final two steps we have used the relations ek−1 ≤ c(k − 1)−α and
ek−1 ≥ ε. This establishes

H
(
ε,F ,‖(·)〈x〉β−γ ‖0,∞,1,λ

) ≤ C1ε
−1/α (1)

for 0 < ε ≤ e1 and a suitable real number C1. In fact (1) holds for every ε > 0, since
the metric entropy is zero for ε > e1 as e1 is the operator norm of the embedding.

By Part 1 of Proposition 3 in the Appendix we have, in particular, the embedding
(
B0

∞1(R
d),‖ · ‖0,∞,1,λ

)
↪→ (

C(Rd),‖ · ‖∞
)
. (2)

Hence, the inequality

‖(·)〈x〉β−γ ‖∞ � ‖(·)〈x〉β−γ ‖0,∞,1,λ
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holds on the space B0
∞1(R

d, 〈x〉β−γ ). Lemma 2 in the Appendix now gives the bound

H
(
ε,F ,‖(·)〈x〉β−γ ‖∞

) ≤ C2ε
−1/α (3)

for every ε > 0 and a suitable real number C2. [In the above, F is viewed as
a subset of the linear space C(Rd, 〈x〉β−γ ) = {f : f · 〈x〉β−γ ∈ C(Rd)} normed by
‖(·)〈x〉β−γ ‖∞.]

The bound (3) immediately implies the remaining claims in the first part of the
theorem upon noting that we may set γ = β under the assumptions of Part 1.

For the proof of the second part, let Bi denote closed balls in C(Rd , 〈x〉β−γ ) of
radius ε covering F , where i = 1, . . . ,N(ε,F ,‖(·)〈x〉β−γ ‖∞). Observe that each
such ball Bi (with center fi ) contains all (continuous) functions f for which

sup
x∈Rd

|f (x) − fi(x)|〈x〉β−γ ≤ ε.

These balls induce brackets

[
fi − ε〈x〉γ−β, fi + ε〈x〉γ−β

]

which obviously cover F . The Lr (μ)-size of such a bracket is given by

‖2ε〈x〉γ−β‖r,μ

which is finite by assumption. Thus, using (3),

H[]
(
ε‖2〈x〉γ−β‖r,μ,F ,‖ · ‖r,μ

) ≤ H
(
ε,F ,‖(·)〈x〉β−γ ‖∞

)
� ε−1/α (4)

for every ε > 0 (provided μ(Rd) > 0). Inserting the definition of α and rescaling by
‖2〈x〉γ−β‖r,μ delivers the desired result. [If μ(Rd) = 0, the result is trivial since by
Proposition 3 in the Appendix the single bracket [−K〈x〉−β,K〈x〉−β ] covers F and
has size zero.] �

The proof has in fact established a bound for the weighted sup-norm metric en-
tropy, cf. (3), for arbitrary β ∈ R. This bound delivers the first part of the theorem as
a special case upon setting γ = β > 0, and provides Lr (μ)-bracketing metric entropy
bounds for general β . We furthermore note that the upper bound (3) is best possible
in the sense that a lower bound of the same polynomial order can be established for
the unit ball in Bs

pq(Rd, 〈x〉β) by a variation of the above proof.
Note that F possesses an envelope K〈x〉−β (cf. Proposition 3 in the Appendix).

The moment condition in the second part of the theorem constitutes a trade-off be-
tween the behavior of the envelope K〈x〉−β for large ‖x‖ and the tail-behavior of
the measure μ. While the moment condition becomes more lenient the smaller γ is,
the rate bound deteriorates as γ becomes smaller. If β > 0 and μ is a finite measure
or r = ∞, the moment condition is always satisfied at least for γ = β . If μ has an
exponential moment, the condition ‖〈x〉γ−β‖r,μ < ∞ is of course satisfied for any γ

and β (and r < ∞). If μ is Lebesgue-measure, the moment condition holds for any
γ satisfying 0 < γ < β − d/r .
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A direct metric entropy bound for the case β = s − d/p is possible, but involved.
However, a simple (and only marginally worse) metric entropy bound for F in this
case can be obtained by viewing F as a bounded subset of Bt

pq(Rd, 〈x〉β) with t < s,
and by applying the above theorem with t in place of s. A similar remark applies to
the case γ = s − d/p in the second part of the theorem.

If Bs
pq(Rd , 〈x〉β) is reflexive (see 2.6.1/2 in Triebel [30]), if β > 0, and if F in

Theorem 1 is not only bounded but also weakly closed, then F is not only relatively
compact but even compact in UC0(R

d). This follows from reflexivity, Alaoglu’s the-
orem, and the observation that the set of evaluation functionals {δx : x ∈ R

d} is con-
tained in the dual space of Bs

pq(Rd , 〈x〉β) for s > d/p and β > 0.
Finally, as a corollary to Theorem 1, we obtain uniform (bracketing) metric en-

tropy bounds.

Corollary 1 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, β ∈ R, and s − d/p > 0. Let F be a (non-
empty) bounded subset of Bs

pq(Rd, 〈x〉β). Let furthermore M be a (non-empty) family

of Borel measures on R
d such that the condition supμ∈M ‖〈x〉γ−β‖r,μ < ∞ holds for

some γ > 0 and for some 1 ≤ r ≤ ∞. Then

sup
μ∈M

H(ε,F ,‖ · ‖r,μ) ≤ sup
μ∈M

H[](2ε,F ,‖ · ‖r,μ)

�
{

ε−d/s for γ > s − d/p,
ε−(γ /d+1/p)−1

for γ < s − d/p.

Proof The first inequality is obvious. Inspection of (4) in the proof of the second part
of Theorem 1 immediately gives the second inequality. �

In particular, if β > 0, we may set γ = β in which case the uniform moment
condition is satisfied, e.g., for M the set of all probability measures.

3.2 Besov Spaces on Subsets of R
d

Often classes of ‘smooth’ functions defined on Borel subsets � of R
d are of interest.

If these function classes are defined through restricting elements of Bs
pq(Rd , 〈x〉β) to

the set �, the results in Sect. 3.1 can immediately be used to deliver the following re-
sult for bracketing metric entropy. [A corresponding sup-norm metric entropy bound
can similarly be obtained from Theorem 1.]

Corollary 2 Let � be a (non-empty) Borel subset of R
d , let 1 ≤ p ≤ ∞, 1 ≤

q ≤ ∞, β ∈ R, and s − d/p > 0. Suppose F is a (non-empty) bounded subset of
Bs

pq(Rd , 〈x〉β). Let F |� be the set of restrictions f |� of elements f ∈ F to the
set �. Let M be a (non-empty) family of Borel measures on �.

1. Suppose that supμ∈M ‖〈x〉γ−β‖r,μ < ∞ holds for some γ > 0 and for some 1 ≤
r ≤ ∞. Then

sup
μ∈M

H[](ε,F |�,‖ · ‖r,μ) �
{

ε−d/s for γ > s − d/p,
ε−(γ /d+1/p)−1

for γ < s − d/p.
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2. Suppose � is a bounded set. If 1 ≤ r < ∞ and supμ∈M μ(�) < ∞, or if r = ∞
then

sup
μ∈M

H[](ε,F |�,‖ · ‖r,μ) � ε−d/s .

Proof To prove the first part, identify F |� with F1� = {f 1� : f ∈ F} and view the
measures μ ∈ M as Borel measures on R

d with μ(Rd\�) = 0. Clearly,

H[](ε,F |�,‖ · ‖r,μ) = H[](ε,F1�,‖ · ‖r,μ) ≤ H[](ε,F ,‖ · ‖r,μ)

holds. The first part now follows from Corollary 1. For the proof of the second part
of the corollary choose β ′ > s − d/p. Since � is a bounded set we have that F |� ⊆
F ′|�, for a suitable bounded subset F ′ of Bs

pq(Rd , 〈x〉β ′
). [E.g., choose F ′ = Fh

where h : R
d → R is an infinitely differentiable function with compact support that

satisfies h(x) = 1 for x ∈ �, and use the fact that Bs
pq(Rd) is a multiplication algebra,

cf. [28, 2.8.3].] Set γ = β ′ and apply the first part of the corollary to the set F ′|�.
Note that the moment condition

sup
μ∈M

‖〈x〉γ−β ′ ‖r,μ = sup
μ∈M

‖1‖r,μ < ∞

is now always satisfied. �

We note that the set F |� can be viewed as a bounded subset of Bs
pq(Rd, 〈x〉β)|�,

the “factor space” obtained by restriction to �, which is normed by

‖f · 〈x〉β‖s,p,q,|� := inf
{‖g · 〈x〉β‖s,p,q,λ : g ∈ Bs

pq(Rd, 〈x〉β), g|� = f
}
.

However, for � a domain, i.e., an open subset of R
d , the “intrinsic” definition

of a (weighted) Besov space on � is not given via restricting the elements of
Bs

pq(Rd , 〈x〉β) to the domain �. Rather, a norm similar in spirit to the one men-
tioned in Remark 2, but only involving the values of f (x) for x ∈ �, is typically
used (cf. 3.4.2/6 in [28] and 1.10.3-4 in [29]) resulting in a (weighted) Besov space
Bs

pq(�, 〈x〉β) on �. Passing from Bs
pq(�, 〈x〉β) to Bs

pq(�, 〈x〉β) is then analogously
possible if s > d/p and � has a sufficiently regular boundary.

Clearly, if the factor space Bs
pq(Rd , 〈x〉β)|� coincides (with equivalent norms)

with the intrinsically defined space Bs
pq(�, 〈x〉β), then Corollary 2 immediately ap-

plies: If F(�) is a bounded subset of Bs
pq(�, 〈x〉β) then

H[](ε,F(�),‖ · ‖r,μ) ≤ H[](ε,F |�,‖ · ‖r,μ)

holds for a suitable F that satisfies the conditions of Corollary 2. This inequality
together with Corollary 2 can then immediately be used to deliver rates for the (uni-
form) bracketing metric entropy of F(�). Sufficient geometrical conditions on �

such that Bs
pq(�, 〈x〉β) and Bs

pq(Rd, 〈x〉β)|� coincide are available in the literature;
see, e.g., [28, 3.4.2] and [30, 2.9.3, 4.2.2, 4.2.3] for results covering, in particular, the
case of open half-spaces as well as of bounded C∞-domains.
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Remark 3 (‘Besov’ classes on not necessarily open subsets of R
d ) So far Besov

spaces have been defined on open sets. In applications often ‘smooth’ function classes
defined on a non-open Borel set �̃ are of interest. If such function classes are de-
fined via restriction from Bs

pq(Rd , 〈x〉β) to �̃, Corollary 2 can of course be directly
applied. Alternatively, if one insists upon defining such function classes in a more
‘intrinsic’ fashion, one can proceed as follows (for s > d/p): Suppose one can find
a (sufficiently regular) domain � such that � ⊆ �̃ ⊆ cl(�), where cl(·) denotes the
closure, and such that Bs

pq(�, 〈x〉β) and Bs
pq(Rd, 〈x〉β)|� coincide. Then one can

define Bs
pq(�̃, 〈x〉β) simply as the set of all continuous functions f : �̃ → R the re-

strictions f |� of which belong to Bs
pq(�, 〈x〉β), where the norm of f is given by

the intrinsic (weighted) Besov norm of f |�. We then immediately have for every
bounded subset F(�̃) of Bs

pq(�̃, 〈x〉β), for every 1 ≤ r ≤ ∞, and for any Borel mea-

sure μ on �̃ that

H[](ε,F(�̃),‖ · ‖r,μ) ≤ H[](ε,F |�̃,‖ · ‖r,μ)

holds for a suitable F ⊆ Bs
pq(Rd , 〈x〉β) that satisfies the conditions of Corollary 2

(with �̃ in place of �). The r.h.s. of the above inequality can then directly be bounded
by Corollary 2.

3.3 Hölder, Sobolev, Triebel, and Related Spaces

3.3.1 Hölder Spaces

We define for integer s > 0 the space Cs(Rd) as the set of all real-valued functions f

on R
d for which

‖f ‖s,∞ :=
∑

0≤|α|≤s

‖Dαf ‖∞

is finite and the classical partial derivatives Dαf are uniformly continuous for
|α| = s; for a definition of the multi-index α see Remark 2 above. For real but non-
integer s > 0 we define Cs(Rd) as the set of all real-valued functions f on R

d for
which

‖f ‖s,∞ :=
∑

0≤|α|≤[s]
‖Dαf ‖∞ +

∑

|α|=[s]
sup
x 
=y

|Dαf (x) − Dαf (y)|
|x − y|s−[s]

is finite. Here [s] denotes the integer part of s and the derivatives are again to be
understood in the classical sense. [For non-integer s we refer to Cs(Rd) as a Hölder
space, but we prefer to avoid this terminology in case s is integer, because there seems
to be no universally accepted notion of a Hölder space in this case.] For β ∈ R define
the weighted space

Cs(Rd, 〈x〉β) = {f : f · 〈x〉β ∈ Cs(Rd)}
equipped with the norm ‖(·)〈x〉β‖s,∞. The results in Sect. 3.1 then imply the follow-
ing corollary (for a discussion of a related result in [34], see Remark 5 below).
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Corollary 3 Let β ∈ R, and s > 0. Let F be a (non-empty) bounded subset of
Cs(Rd , 〈x〉β). Then the following statements hold:

1. Suppose β > 0 and β 
= s. Then F is a relatively compact subset of UC0(R
d)

satisfying

H(ε,F ,‖ · ‖∞) � ε−d/min(s,β).

2. Suppose M is a (non-empty) family of Borel measures on R
d such that the con-

dition supμ∈M ‖〈x〉γ−β‖r,μ < ∞ holds for some 1 ≤ r ≤ ∞ and for some γ > 0
satisfying γ 
= s. Then

sup
μ∈M

H[](ε,F ,‖ · ‖r,μ) � ε−d/min(s,γ ).

Proof The set F is a bounded subset of Bs∞∞(Rd , 〈x〉β) by either 2.5.7/9, 2.5.7/6
(s non-integer) or 2.5.7/11 (s integer) of Triebel [28]. The result now follows from
Theorem 1 and Corollary 1. �

3.3.2 Sobolev Spaces

For 1 < p < ∞ and real s ≥ 0, let

Hs
p(Rd) = {

f ∈ Lp(Rd) : ‖f ‖s,p,λ := ‖F−1(〈x〉s · Ff )‖p,λ < ∞}

be the (real) Sobolev space, also known as Bessel-Potential space. [Recall that F rep-
resents the Fourier-transform acting on the space of complex tempered distributions.]
We recall the well-known fact that for integer s ≥ 0 an equivalent (semi)norm on
Hs

p(Rd) is given by

‖f ‖ =
∑

0≤|α|≤s

‖Dαf ‖p,λ, (5)

where Dα here denotes partial derivatives in the sense of distributions. [We note here
that for fractional s a different definition of a Sobolev space is sometimes in use in the
literature. This definition is less common nowadays as these spaces are just special
cases of Besov spaces, see, e.g., Adams and Fournier [1, 7.30–7.34].] Similarly as
in Sect. 2, one can now define the Banach spaces Hs

p(Rd) consisting of continuous
functions in case s > d/p. Furthermore, define for s −d/p > 0 the weighted Sobolev
space

Hs
p(Rd , 〈x〉β) = {

f : f · 〈x〉β ∈ Hs
p(Rd)

}
.

Corollary 4 Let 1 < p < ∞, β ∈ R, and s − d/p > 0. Let F be a (non-empty)
bounded subset of Hs

p(Rd , 〈x〉β).

1. Suppose β > 0. Then F is a relatively compact subset of UC0(R
d) satisfying

H(ε,F ,‖ · ‖∞) �
{

ε−d/s for β > s − d/p,
ε−(β/d+1/p)−1

for β < s − d/p.
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2. Suppose M is a (non-empty) family of Borel measures on R
d such that the con-

dition supμ∈M ‖〈x〉γ−β‖r,μ < ∞ holds for some 1 ≤ r ≤ ∞ and for some γ > 0.
Then

sup
μ∈M

H[](ε,F ,‖ · ‖r,μ) �
{

ε−d/s for γ > s − d/p,
ε−(γ /d+1/p)−1

for γ < s − d/p.

Proof Observe that F is a bounded subset of Bs
p∞(Rd , 〈x〉β) by Triebel [28, 2.5.6/2

and 2.3.2/9, 5]. The result now follows from Theorem 1 and Corollary 1. �

Remark 4 (i) As common in the literature, the definition of Hs
p(Rd) via the Fourier-

transform excludes the case p = 1. For integer s ≥ 0 and p = 1, the definition via the
norm (5) gives rise to the well-known spaces

Gs(Rd) =
{

f ∈ L0(Rd) :
∑

0≤|α|≤s

‖Dαf ‖1,λ < ∞
}

,

also sometimes subsumed under the scale of Sobolev spaces. Since these spaces
(and their weighted extensions) are continuously injected into Bs

1∞(Rd, 〈x〉β) [28,
2.5.7/10], the results in Sect. 3.1 immediately apply whenever s > d .

(ii) In the particular case s ≥ p = d = 1, any [f ]λ with f ∈ Gs(R) contains an ab-
solutely continuous representative, and hence Gs(R) is—up to a section—embedded
into the Banach space V1(R) of real-valued functions of bounded variation. An
L2(μ)-bracketing metric entropy bound of order ε−1 for bounded subsets of V1(R)

is given in [31] for μ an arbitrary probability measure.

3.3.3 Further Spaces

Our general results for (weighted) Besov spaces immediately imply similar en-
tropy bounds for bounded subsets of many other (weighted) function spaces. This
is so for Triebel spaces F s

pq(Rd), since they can be embedded into a Besov space
Bs

p max(p,q)(R
d) ([28, 2.3.2/9]). Hölder-Zygmund space are also covered as they are

identical (up to an equivalent norm) to the Besov spaces Bs∞∞(Rd) (see [28, 2.5.7/6]).

3.3.4 Function Classes on Subsets of R
d

Clearly, entropy bounds for function classes defined on Borel subsets � of R
d that

are obtained by restriction from the function spaces discussed in 3.3.1–3.3.3 above
can be derived similarly; cf. Sect. 3.2.

4 Applications to Empirical Process Theory

In this section the Borel measures will always be probability measures on a Borel
set � ⊆ R

d . Given F ⊆ L0(�), the empirical measure Pn = 1/n
∑n

i=1 δXi
of n in-

dependent random variables X1, . . . ,Xn distributed according to a law P induces
a map from F → R given by f �−→ Pnf = 1/n

∑n
i=1 f (Xi). With Pf := ∫

�
f dP,



190 J Theor Probab (2007) 20: 177–199

the centered and scaled version of this map is the F -indexed empirical process νn

given by

f �−→ νn(f ) = √
n(Pn − P)f = 1√

n

n∑

i=1

(f (Xi) − Pf ).

A function class F ⊆ L2(P) is said to be P-Donsker if it is pregaussian and if νn con-
verges in law in �∞(F) to a zero-mean Gaussian process G with covariance function
P((f − Pf )(g − Pg)) where f , g ∈ F ; see p. 94 in [11]. Here �∞(F) denotes the
Banach space of all bounded real valued functions on F . [As on p. 91 in [11], we
always assume the standard model.]

Given a (non-empty) family P of probability measures, a function class F is said
to be P-universal Donsker if F is P-Donsker for all P ∈ P. The class F is said to be
a P-uniform Donsker class if the convergence of νn to G in �∞(F) is uniform in P

in a sense made precise in Giné and Zinn [18]; see also Sheehy and Wellner [26] and
Talagrand [27]. The P-uniform Donsker property obviously implies the P-universal
Donsker property. We shall omit the prefix P in both of these concepts if P is the set
of all probability measures on the underlying set �.

4.1 Uniform Limit Theorems for Besov Classes

Before we discuss the (uniform) empirical central limit theorem for Besov classes
in detail, we shortly outline the ramifications of our entropy bounds for Glivenko-
Cantelli results. The bracketing metric entropy bounds for bounded subsets F of
Besov (and related) spaces obtained in Sect. 3 together with Theorem 7.1.5 in [11]
immediately imply such results for F . Furthermore, Corollary 1 implies P-uniform
Glivenko-Cantelli results for F by using Theorem 6 in [13]. Finally, the entropy
bounds in the present paper also allow one to derive rates of convergence in Glivenko-
Cantelli results, e.g., by using results in [38, 39].

The following results provide a comprehensive description of Donsker properties
of bounded subsets of (weighted) Besov spaces Bs

pq(Rd, 〈x〉β). These results imme-
diately carry over to bounded subsets of the function spaces treated in Sect. 3.3.

Corollary 5 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, β ∈ R, and s − d/p > 0. Let F be a (non-
empty) bounded subset of Bs

pq(Rd, 〈x〉β). Let P be a (non-empty) family of probabil-

ity measures on R
d such that

sup
P∈P

‖〈x〉γ−β‖2,P < ∞ (6)

holds for some γ > 0. If γ /d + 1/p > 1/2 and s/d > 1/2, then F is a P-uniform
Donsker class.

Proof Consider first the case where γ /d + 1/p 
= s/d . Then Corollary 1 implies that
there exists a finite constant C > 0 such that

sup
P∈P

H[](ε,F ,‖ · ‖2,P) ≤ Cε−1/α,
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where α = s/d if γ /d + 1/p > s/d and α = γ /d + 1/p if γ /d + 1/p < s/d . Hence,
the condition on the convergence of the bracketing integral in Theorem 2.8.4 of van
der Vaart and Wellner [36] is satisfied in both cases. Observe that (6) implies for the
envelope K〈x〉−β of F (cf. Part 3 of Proposition 3 in the Appendix)

lim
M→∞ sup

P∈P

∥
∥
∥
∥K〈x〉−β · 1[K〈x〉−β>M]

∥
∥
∥
∥

2,P

= 0,

which verifies the envelope condition in Theorem 2.8.4 of van der Vaart and Well-
ner [36].

In the case where γ /d + 1/p = s/d we reduce this to the case just established:
Choose 0 < γ ′ < γ such that γ ′/d + 1/p > 1/2 still holds, and observe that (6)
a fortiori holds with γ ′ replacing γ . �

An analogous result for bounded subsets of (weighted) Besov spaces defined over
Borel subsets � of R

d can similarly be obtained from the results in Sect. 3.2.
We note that the moment condition (6) is trivially satisfied irrespective of the par-

ticular choice of P in case γ ≤ β . Therefore, if s > d/p, β > 0, and min(β/d +
1/p, s/d) > 1/2, the set F is in fact a uniform Donsker class. In particular, if s > d/p

and p ≤ 2, F is a uniform Donsker class for every β > 0.
In contrast, in case p ≤ 2 but β = 0, Corollary 5 requires a moment condition,

albeit of arbitrary small order. The reason for this is that the bracketing methods used
in the present paper prohibit the case γ = 0 in the above corollary. Nevertheless, at
least the universal Donsker property can be proved by different methods. For this we
use a result of Marcus [23], which in turn builds on Giné [15].

Proposition 1 Suppose 1 ≤ p ≤ 2, 1 ≤ q ≤ ∞, and s − d/p > 0. Then any (non-
empty) bounded subset F of Bs

pq(Rd) is a universal Donsker class.

Proof Note that F is a bounded subset of Br
2q(Rd) for some r > d/2 by Triebel [28,

2.7.1/1], and hence of Bt
22(R

d) for some t , r > t > d/2, by Triebel [28, 2.3.2/7]. Now,
Bt

22(R
d) is equal to the Sobolev space Ht

2(R
d) by Triebel [29, 1.3.2/7]. Bounded

subsets of Ht
2(R

d) with t > d/2 are universally Donsker by Theorem 1.3 in Mar-
cus [23]. �

At least for d = 1 and p < 2, even the uniform Donsker property can be proved.
This is done in the following theorem, which in fact establishes the uniform Donsker
property also for the limiting case s = 1/p and q = 1, not covered by any of the
preceding results.

Theorem 2 Suppose 1 ≤ p < 2 and d = 1. If either 1 ≤ q ≤ ∞ and s − 1/p > 0, or
q = 1 and s = 1/p, then any (non-empty) bounded subset F of Bs

pq(R) is a uniform
Donsker class.

Proof First observe that Bs
pq(R) for s − 1/p > 0 is embedded into B

1/p

p1 (R), see
Triebel [28, 2.3.2/7]. Hence, it suffices to give the proof for the case q = 1 and s =
1/p.
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For a measurable function f : R → R its π -variation (1 ≤ π < ∞) is defined as

vπ(f ) = sup

{
n∑

i=1

|f (xi) − f (xi−1)|π : −∞ < x0 < x1 < · · · < xn < ∞, n ∈ N

}

and Vπ (R) denotes the Banach space of functions for which vπ(f ) < ∞, endowed
with the norm ‖f ‖vπ := ‖f ‖∞ + (vπ (f ))1/π . We next show that B

1/p

p1 (R) is embed-
ded into Vp(R). Given this, the proof will then be complete since bounded subsets of
Vp(R) with 1 ≤ p < 2 are uniform Donsker classes in view of Theorem 2.2 in [10].

To prove the embedding consider first the case p = 1. Note that B1
11(R) is con-

tained in the linear space of continuous functions f with a Lebesgue-integrable gen-
eralized derivative (i.e., the space of absolutely continuous functions), see Triebel
[28, 2.5.7/10]. Hence, by Theorem 5.3.5 in [40], the essential total variation of every
such f is finite. Since f is continuous, this implies that v1(f ) is finite, and hence
so is ‖f ‖v1 < ∞. This establishes the set-inclusion B1

11(R) ⊆ V1(R). That this in-
clusion is in fact an embedding now follows from the closed graph theorem (cf. the
first paragraph in the Appendix). [In view of Part 1 of Proposition 3 in the Appendix
and the definition of V1(R), it follows that norm convergence in both spaces implies
convergence everywhere.]

In case 1 < p < 2, consider the following chain of embeddings

B
1/p

p1 (R) ↪→ Ḃ1/p

p1 (R) ∩ C0(R) ↪→ Vp(R), (7)

where Ḃ1/p

p1 (R) is the homogeneous Besov space defined in Sect. 4.1 of Bourdaud,

de Cristoforis and Sickel [8]. The intersection Ḃ1/p

p1 (R) ∩ C0(R) in the above dis-

play is endowed with the restriction of the (semi)norm on Ḃ1/p

p1 (R) and is a Banach
space (Proposition 10 in Bourdaud, de Cristoforis and Sickel [8]). The space Vp(R)

is defined in Sect. 2.2 of the same reference (where it is denoted by BVp(R)).
To prove the first embedding in (7) observe that

B
1/p

p1 (R) = Lp(R, λ) ∩ Ḃ1/p

p1 (R) ∩ C0(R)

(cf. Definition 4 in Bourdaud, de Cristoforis and Sickel [8], Remark 2 in Sect. 2, and
Proposition 3 in the Appendix), and hence

B
1/p

p1 (R) ⊆ Ḃ1/p

p1 (R) ∩ C0(R)

holds. Both spaces are Banach spaces. In view of Part 1 of Proposition 3 in the
Appendix and of the first part of Proposition 10 in Bourdaud, de Cristoforis and
Sickel [8], it follows that norm convergence in both spaces implies convergence
everywhere. The first embedding in (7) now follows from the closed graph theorem
(cf. the Appendix).

The second embedding in (7) is to be understood as a continuous quotient map
(i.e., it associates to each function f ∈ Ḃ1/p

p1 (R) ∩ C0(R) the equivalence class [g]λ
such that f ∈ [g]λ ∈ Vp(R)). The existence of this embedding follows from a mod-
ification of a theorem of Peetre given as Theorem 5 in Bourdaud, de Cristoforis and
Sickel [8]. This establishes the chain of embeddings (7).
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Now, by definition of the space Vp(R), it follows that every f ∈ B
1/p

p1 (R) coincides
with a function g in Vp(R) outside of a Lebesgue null-set N . Fix ε > 0 and a grid
of points such that −∞ < x0 < x1 < · · · < xn < ∞. Since f is uniformly continuous
by Part 1 of Proposition 3 in the Appendix and, since R\N is dense in R, we can
find x∗

i ∈ R\N such that |f (xi) − f (x∗
i )| < (ε/n)1/p . Observing that f and g agree

outside of N we obtain

n∑

i=1

|f (xi) − f (xi−1)|p

≤
n∑

i=1

(|f (xi) − f (x∗
i )| + |f (x∗

i ) − f (x∗
i−1)| + |f (x∗

i−1) − f (xi−1)|)p

≤ 22p−2

[
n∑

i=1

|f (xi) − f (x∗
i )|p + |f (x∗

i ) − f (x∗
i−1)|p + |f (x∗

i−1) − f (xi−1)|p
]

≤ 22p−1ε + 22p−2
n∑

i=1

|g(x∗
i ) − g(x∗

i−1)|p ≤ 22p−1ε + 22p−2vp(g).

This shows that vp(f ) is finite. Since also ‖f ‖∞ < ∞ holds by Proposition 3 in
the Appendix, we have ‖f ‖vp < ∞. Summarizing, we have established the set-

inclusion B
1/p

p1 (R) ⊆ Vp(R) for 1 < p < 2. That this inclusion is in fact an embedding
now follows from the closed graph theorem (cf. the Appendix). �

The above result is proved by showing that the set F is of bounded p-variation
on R under the particular conditions of Theorem 2 and by a subsequent application
of a theorem due to Dudley [10] which establishes the uniform Donsker property
for function classes of bounded p-variation, p < 2, on R. Whether the unit ball in
Bs

2q(R) with s > 1/2, which is universally Donsker by the proposition above, is also
a uniform Donsker class is an open question. We conjecture that the answer is in the
negative.

In case β = 0 and p > 2, the unit ball in Bs
pq(Rd) can be shown not to be a uni-

versal Donsker class (even if s/d > 1/2 > 1/p) although it is uniformly sup-norm
bounded, cf. [24]. [A similar result is true for the unit ball in Bs

pq(Rd , 〈x〉β) in case
β > 0, p > 2, s > d/p and min(β/d + 1/p, s/d) < 1/2 (even if s/d > 1/2 > 1/p).]

Finally, in case β < 0, the moment condition in Corollary 5 can be expressed as
an integrability condition on the envelope F = K〈x〉−β of F , i.e., (6) amounts to

sup
P∈P

∫

Rd

F 2+δdP < ∞ (8)

for δ = −2γ /β > 0. [Note that in case p ≤ 2 the constant γ , and hence δ, can be cho-
sen arbitrarily close to, but not equal to zero in Corollary 5.] This clearly shows that
more than just F ∈ L2(P) is required to obtain the P-Donsker property from Corol-
lary 5. A similar phenomenon has been observed by Dudley and Koltchinskii [12]
for VC major classes; see also Corollary 3.1 in [35] and Theorems 9.5.4 and 9.5.5
in [11].
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A message of the preceding two paragraphs is the following: The typical suffi-
cient conditions for P-Donsker theorems, namely L2(P)-integrability of the envelope
together with convergence of the entropy integral, are not independent but are in-
tertwined (at least if the sample space is R

d ). The point here is that a sufficiently
fast decay at infinity of the envelope F beyond F ∈ L2(P) is sometimes required to
guarantee a convergent entropy integral. This is related to the fact that the bracketing
metric entropy bounds obtained in Theorem 1 depend on the parameters β and p

(governing the decay of the function class F ) on the one hand and on γ (governing
the tail behavior of the probability measure P) on the other hand; cf. also [24].

Remark 5 Extending results by Giné and Zinn [16, 17] and Arcones [4], van der
Vaart [34] considers Lipschitz-type classes on R

d and obtains bounds for their Lr (P)-
bracketing metric entropy for r < ∞. [His function classes are such that the re-
strictions of each element to convex uniformly bounded subsets Ij partitioning R

d

belong to a ball of radius Mj in the Lipschitz space over Ij .] His envelope condi-
tions for these function classes to be P-Donsker are similar to the moment condi-
tion in Corollary 5 for p = q = ∞, which covers bounded subsets of the closely
related Hölder spaces as a special case; cf. Sect. 3.3. [It follows from this corol-
lary that a bounded subset of the space Cs(Rd , 〈x〉β) is P-Donsker, if s > d/2 and
‖〈x〉γ−β‖2,P < ∞ holds for some γ > d/2.] Clearly, the “partitioning” idea under-
lying van der Vaart [34, 35] can also be combined with our results in Sect. 3.2 to
construct further Donsker classes.
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Appendix

A normed space (X,‖ · ‖X) is said to be embedded into the normed space (Y,‖ · ‖Y )

if X is a linear subspace of Y and if the identity map id : X → Y is continuous. We
shall write

(X,‖ · ‖X) ↪→ (Y,‖ · ‖Y )

to denote such an embedding. We shall also use the symbol ↪→ more generally if the
embedding of X in Y includes a quotient or section map. [In this case the identity map
is to be replaced by the appropriate linear map.] The embedding is said to be compact
if the image (under the embedding operator) of the unit ball of X is precompact
(i.e., totally bounded) in Y . Furthermore, we note here the following well-known
consequence of the closed graph theorem: Let X and Y be linear subspaces of the
vector space of real-valued functions on a (non-empty) set � ⊆ R

d satisfying X ⊆
Y . Let X and Y be equipped with norms ‖ · ‖X and ‖ · ‖Y , respectively, such that
they become Banach spaces. Furthermore, suppose that each of this norm-topologies
has the property that any norm-convergent sequence possesses a subsequence that
converges everywhere. Then the map id : X → Y has a closed graph, and is thus
continuous.

We recall the following definition of the entropy numbers:
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Definition 5 Let J be a subset of the normed space (Y,‖ · ‖Y ), and let UY = {y ∈
Y : ‖y‖Y ≤ 1} be the closed unit ball in Y . Then, for all natural numbers k, the k-th
entropy number of J is defined as

e(k,J ,‖ · ‖Y ) = inf

{

ε > 0 : J ⊆
2k−1
⋃

j=1

(yj + εUY ) for some y1, . . . , y2k−1 ∈ Y

}

,

with the convention that the infimum equals +∞ if the set over which it is taken is
empty.

Suppose (X,‖ · ‖X) and (Y,‖ · ‖Y ) are normed spaces such that X is a lin-
ear subspace of Y . Let UX denote the closed unit ball in X. Then, e(k, id(UX),

‖ · ‖Y ) is called the k-th entropy number of the operator id : X → Y . Clearly,
e(k, id(UX),‖ · ‖Y ) is finite for all k if and only if X is embedded into Y , and the
entropy numbers converge to zero as k → ∞ if and only if the embedding is com-
pact.

We next state a special case of more general results due to Haroske and
Triebel [19, 20].

Proposition 2 (Haroske and Triebel) Suppose 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s − d/p > 0,
β ∈ R, and γ > 0 hold. Then Bs

pq(Rd, 〈x〉β) is compactly embedded into B0
∞1(R

d ,

〈x〉β−γ ). Furthermore, the entropy numbers of this embedding satisfy

e
(
k, id(UBs

pq(Rd ,〈x〉β )),‖(·)〈x〉β−γ ‖0,∞,1,λ

) ∼
{

k−s/d for γ > s − d/p,
k−(γ /d+1/p) for γ < s − d/p

for all k ∈ N.

Proof Clearly, it suffices to consider the case β = γ > 0 since Bs
pq(Rd, 〈x〉δ) and

Bs
pq(Rd , 〈x〉ϑ) are isometrically isomorphic via the map [f ]λ �−→ [f 〈x〉δ−ϑ ]λ. For

complex Besov spaces the result now follows as a special case of Theorem 4.1 in [20],
noting that the norms used in that reference are equivalent to the weighted norms used
here; cf. Theorem 4.2.2 in [14]. In view of Remark 1 we may apply Lemma 1 given
below with X = B0

∞1(R
d),

Y = {
T ∈ S ′(Rd) : ‖T ‖0,∞,1,λ < ∞} = B0

∞1(R
d) + iB0

∞1(R
d),

A = id
({

T ∈ S ′(Rd) : ‖〈x〉βT ‖s,p,q,λ ≤ 1
})

,

B = id(UBs
pq(Rd ,〈x〉β )), and D = cB , where c was defined in Remark 1(ii). This now

shows that Theorem 4.1 in [20] carries over to the case of real Besov spaces. �

For a discussion of the case γ = s − d/p, see Sect. 4.2 in [20].
We next summarize some properties of weighted Besov spaces which have been

used in the paper. In particular, the first part justifies the definition of Bs
pq(Rd, 〈x〉β)

in Sect. 2.



196 J Theor Probab (2007) 20: 177–199

Proposition 3 Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and β ∈ R. Suppose either s − d/p > 0,
or s − d/p = 0 and q = 1.

1. If β ≥ 0, we have that Bs
pq(Rd , 〈x〉β) is embedded (up to a section) in the Hölder

space Cs−d/p(Rd) (with the convention that C0(Rd) = UC(Rd)).
2. If β > 0, or β = 0 and p < ∞, we have that lim‖x‖→∞ f (x) = 0 for all f ∈

Bs
pq(Rd , 〈x〉β).

3. Let F be a (non-empty) bounded subset of Bs
pq(Rd , 〈x〉β). Then supf ∈F |f (x)| ≤

K〈x〉−β holds for some real number K ≥ 0.

Proof Since Bs
pq(Rd , 〈x〉β) ↪→ Bs

pq(Rd) for β ≥ 0 (Sect. 4.2.3 in [14]), it is sufficient
to prove Part 1 only for the case β = 0. Under the conditions of the proposition we
have the following embedding (up to a section)

Bs
pq(Rd) ↪→ Cs−d/p(Rd) ↪→ UC(Rd) (9)

[28, 2.7.1/12-13, 2.2.2/18], which then implies the first part. To prove the third part,
observe that (9) implies the existence of a real number c such that for all f ∈F

sup
x∈Rd

|f (x) · 〈x〉β | = ‖f · 〈x〉β‖∞ ≤ c‖f · 〈x〉β‖s,p,q,λ ≤ cb

holds, where b < ∞ is a Besov-norm bound for F . This then gives |f | ≤ K〈x〉−β for
K = cb ≥ 0 and all f ∈ F . For β > 0, the second part now follows immediately.

It remains to prove the second part for β = 0 and p < ∞. Let S be the Schwartz
space of rapidly decreasing infinitely differentiable complex-valued functions on R

d .
The set SR = {f ∈ S : f = f̄ } is dense in the Banach space Bs

pq(Rd) for p < ∞
and q < ∞ as a consequence of Theorem 2.3.3 in [28] (and Remark 1(ii)). Since
‖ · ‖∞ � ‖ · ‖s,p,q,λ on Bs

pq(Rd) by (9) above and since C0(R
d) is the ‖ · ‖∞-

completion of SR, the conclusion of the proposition follows for q < ∞. If q = ∞,
under the assumptions of the proposition s − d/p > 0 follows, and hence Bs

p∞(Rd)

is embedded into B
d/p

p1 (Rd) in view of Triebel [28, 2.3.2/7], thus reducing the case
q = ∞ to the case q = 1 < ∞ just established. �

We finally state two auxiliary results (for the second one cf. also [36, Theo-
rem 2.7.11]).

Lemma 1 Let (X,‖ · ‖X) be a normed space over R and let Y = X + iX be its
complexification. [That is, Y is a vector space over C where each y ∈ Y can be
written uniquely as y = x1 + ix2 with x1 =: Rey ∈ X and x2 =: Imy ∈ X.] Let Y be
equipped with a norm ‖ · ‖Y such that for some 0 < C1 ≤ C2 < ∞

C1‖y‖Y ≤ ‖Rey‖X + ‖ Imy‖X ≤ C2‖y‖Y (10)

holds for all y ∈ Y . Furthermore, let A be a (non-empty) subset of Y .

(i) If B ⊆ ReA := {Rey : y ∈ A} ⊆ X then for every k ∈ N

e(k,B,‖ · ‖X) ≤ C2e(k,A,‖ · ‖Y ).
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(ii) If D ⊆ X is such that A ⊆ D + iD (e.g., D = ReA ∪ ImA) then for every k ∈ N

e(2k − 1,A,‖ · ‖Y ) ≤ 2C−1
1 e(k,D,‖ · ‖X).

Proof If e(k,A,‖ · ‖Y ) = ∞, Part (i) is trivial. For every ε > e(k,A,‖ · ‖Y ), every
covering of A by 2k−1 closed balls in Y of radius ε induces (via the projection Re(·))
a covering of ReA, and hence of B , by at most 2k−1 closed balls in X of radius
C2ε in view of (10). This immediately proves (i). To prove (ii) we may assume that
e(k,D,‖ · ‖X) < ∞. Let ε > e(k,D,‖ · ‖X) be arbitrary. Observe that any covering
of D by 2k−1 closed balls Kj in X with center xj and of radius ε induces a covering
of D + iD ⊇ A by 22k−2 closed balls in Y of radius 2C−1

1 ε with centers xj + ixl ,
1 ≤ i, l ≤ 2k−1. This completes the proof. �

Lemma 2 Let (X,‖ · ‖X) and (Y,‖ · ‖Y ) be normed spaces and let F be a (non-
empty) subset of X with finite metric entropy H(ε,F ,‖ · ‖X) for all ε, 0 < ε < ∞.
Let the map A : F → (Y,‖ · ‖Y ) satisfy ‖A(x1) − A(x2)‖Y ≤ C‖x1 − x2‖σ

X for all
x1, x2 ∈F and for some σ > 0, 0 < C < ∞. We then have for the image A(F) that

H(ε,A(F),‖ · ‖Y ) ≤ H
(
2−1C−1/σ ε1/σ ,F ,‖ · ‖X

)

for every ε, 0 < ε < ∞. [If C = 0, then H(ε,A(F),‖ · ‖Y ) = 0 for every ε,
0 < ε < ∞.]

Proof Let Bi , i = 1, . . . ,N(2−1C−1/σ ε1/σ ,F ,‖ · ‖X) be closed balls of radius
2−1C−1/σ ε1/σ covering F . For each i choose xi from Bi ∩ F , which obviously is
non-empty. Then

B∗
i =

{
y ∈ Y : ‖y − A(xi)‖Y ≤ sup

x∈Bi∩F
‖A(x) − A(xi)‖Y

}

is a closed ball in Y containing A(Bi ∩ F), hence the union of all balls B∗
i covers

A(F). The radius of B∗
i is less than or equal to ε since

sup
x∈Bi∩F

‖A(x) − A(xi)‖Y ≤ sup
x∈Bi∩F

C‖x − xi‖σ
X ≤ ε.

Thus H(ε,A(F),‖ · ‖Y ) ≤ H(2−1C−1/σ ε1/σ ,F ,‖ · ‖X). The claim in parentheses is
obvious. �
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