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Abstract

This paper introduces BRADSHAW (Biological Response Analysis and Design System using an Heterogenous, Automated 

Workflow), a system for automated molecular design which integrates methods for chemical structure generation, experi-

mental design, active learning and cheminformatics tools. The simple user interface is designed to facilitate access to large 

scale automated design whilst minimising software development required to introduce new algorithms, a critical requirement 

in what is a very fast moving field. The system embodies a philosophy of automation, best practice, experimental design and 

the use of both traditional cheminformatics and modern machine learning algorithms.
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Introduction

The search for efficient and effective drug design strate-

gies has been a constant feature of the scientific literature 

since the concept of rational discovery was introduced by 

Elion and Hitchings [1–3]. The field of quantitative struc-

ture–activity relationship (QSAR) analysis [4–6] developed 

alongside the rational approach, with the goal of being 

able to use chemical structures and biological response to 

develop hypotheses, predictions and design experiments 

which would provide an efficient path to optimise chemi-

cal series into promising drug candidates. Pertinent to this 

paper, the QSAR community even provided the first example 

of an automated molecular design system [7], using sim-

plex optimisation and Hansch parameters. Limitations to 

the—generally-linear statistical techniques employed, use 

of parameters that were often derived from experiment and 

insufficient computational power to cope with the combina-

torial nature of the chemical space to be interrogated were 

enough to inhibit the utility of classical QSAR approaches 

and researchers looked for different approaches to solve their 

drug design problems.

Protein structure based design techniques have featured 

heavily in the computer aided drug discovery toolset for 

more than 30 years, and have had some notable successes 

in delivering marketed drugs [8, 9]. However, utilising the 

knowledge of protein–ligand binding interactions to drive 

the creation of novel, bioactive chemical structures, so-called 

de novo design [10, 11], has not been straight forward even 

after 25 years of intense effort. Although 3D methods for 

design may have dominated, ligand-based QSAR approaches 

mirrored some of the capabilities [12, 13], for example de 

novo design from QSAR models (also sometimes known as 

“inverse QSAR”), and even the first AI-based drug design 

support system [14]!

In order to establish an efficient and effective computa-

tional drug design system, there are a number of fundamen-

tal elements that must be constructed:
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(1) Molecule ideation. The generation of chemical struc-

tures which are relevant to the problem at hand (i.e. 

lead optimisation), are synthetically tractable and do 

not contain structural liabilities.

(2) Prediction. The generation and application of computa-

tional models which cover the entire Target Compound 

Profile (TCP: primary target, selectivity, ADMET, 

physicochemical attributes). It is likely that the suite 

of models will include both statistical/QSAR models 

and physics-based models [15].

(3) Selection. From the list of ideas generated and evalu-

ated with the model suite, which ones should be made 

next in order to meet the TCP, or more likely, to gener-

ate knowledge that will best enable the project to design 

a molecule which does meet the TCP.

(4) An infrastructure that will enable these elements to be 

coupled together in a robust, efficient manner and can 

handle the likely large numbers of chemical structures 

produced.

Fortunately, the science of cheminformatics [if this is 

broadly defined to encompass chemical databases, chemi-

cal structure generation (Q)SAR modelling, experimental 

design and the application of machine learning methods to 

all three of those areas] has advanced to the point where 

credible solutions exist for all of the fundamentals and it 

may be possible to join them together. That this was indeed 

possible was illustrated by the first example of a fully auto-

mated design project, which started with an approved ace-

tylcholinesterase inhibitor drug and created brain-penetrable 

ligands with either specific polypharmacology or selectivity 

profiles for different G-protein-coupled receptors [16]. Sev-

eral groups have published examples of automated design 

[17, 18], often coupled with automated synthesis/test sys-

tems [19] which are well suited to pilot this new design 

paradigm [20].

The emergence of Deep Learning methods has quickly 

added a variety of techniques for QSAR modelling [21–25], 

molecule ideation [26–31] and synthetic tractability [32, 33]. 

The rapid rise of publication volume in this field indicates 

that more is to be expected and recent suggestions for stand-

ard benchmarks [34, 35] are welcome.

It is not only Deep Learning methods that can effectively 

utilise large SAR datasets. Knowledge based cheminformat-

ics methods are able to mine and reapply chemical trans-

formations in the form of Matched Molecular Pairs, MMPs 

[36–42], and automatically discover SAR patterns and 

suggest new substituents to optimise a biological response 

[43–45].

From the perspective of an industrial group, the rapid 

development of new algorithms and capabilities may pro-

vide a step change in our ability to generate and evaluate 

large numbers of novel chemical structures. The challenge 

is to build a system which can integrate multiple approaches 

from disparate disciplines, make it robust enough to be used 

by multiple people across a portfolio of projects, make it 

simple to add or remove algorithms and make the tools 

accessible without repeated training as new code is added. 

Because the new algorithms are capable of generating very 

large numbers of ideas that will overwhelm a “selection 

by visual inspection” approach, a different way of work-

ing must be adopted. Here there are opportunities beyond 

just using new algorithms: to build in best practices (e.g. 

safety alerts [46–48], physicochemical properties [49–51], 

multi parameter optimisation), to automate the expert so 

they might spend more time on harder problems or work 

on more projects simultaneously and to greatly reduce the 

time and resources expended on end-user tools and train-

ing. This last point, to reduce the amount of time medicinal 

chemists spend using tailored computational software, might 

be considered controversial. However, a recent study from 

the banking sector [52] found that return on investment to 

corporations from end-user software development is often 

marginal, whilst there was significant value derived from 

investments in automation, and in a modern world where a 

virtual assistant can order your shopping via speech recogni-

tion, it is surely reasonable to be able to ask “Alexa, which 

are my best R groups?”.

In this paper we describe a solution to this challenge: 

BRADSHAW (Biological Response Analysis and Design 

System using an Heterogenous, Automated Workflow), a 

system for automated molecular design which integrates 

methods for chemical structure generation, experimental 

design, active learning and cheminformatics tools. The pro-

ject was inspired by a paper [53] which describes a system 

through which “A computer language, ALEMBIC, is used 

to collate the ideas of the scientists. The resulting list of 

potential molecules is then parametrised using whole mol-

ecule descriptors. Based on these descriptors, appropriate 

statistical techniques are used to generate sets of molecules 

retaining the maximum amount of the information inher-

ent in all possible combinations of the scientists ideas”. If 

an algorithm can be considered as an additional scientist, 

BRADSHAW can be considered as a direct descendant of 

that heritage Glaxo system.

System Architecture

The BRADSHAW system is an integration between a 

number of external components. Its primary purpose is to 

orchestrate the running of data pipelines over compound sets 

(“Tasks”) and chaining the inputs/outputs of these Tasks to 

form designs.

The BRADSHAW system uses Docker containers to inte-

grate various data management Tasks and the UI. The User 
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Interface is implemented using Angular CLI (version 1.1.1) 

[54].

The Tasks are described by an interface to a web service 

with a set of parameters, with the expected columns in input 

and output files also defined. This means that an administra-

tor can easily create new Tasks without redeployment of the 

system. The administrator defines the parameters for a Task 

using a form in the user interface. This generates a form 

from which users can use these Tasks to build their design 

workflows for lead optimization with their chosen parameter 

values. An API interface is then imposed on web services 

when implementing the Tasks in order to integrate with 

BRADSHAW. The choice of technology for the web ser-

vices is not imposed by the system; however typically these 

are built in Pipeline Pilot [55]. However, the BRADSHAW 

system itself knows nothing about Pipeline Pilot and any 

web-service could be used. Request parameters are passed in 

a single JSON object so that other web-services can be writ-

ten if desired. We have developed utility components to read 

and validate the request JSON and to make it straightforward 

for developers to integrate with the call-back functions. The 

requirements for any protocol are minimal. Essentially the 

protocol must interpret the request JSON and send a call-

back message to a defined url once complete. Status updates 

can also be sent using the call-back. This provides a way to 

give users feedback in the UI for long running Tasks.

The input of compound sets is from integration with 

either with LiveDesign [56] or via a file upload. Users can 

view the content of any files whether inputs or intermedi-

ate results in a design to review the work as they go along. 

This includes the handling of large compound sets via file 

streaming.

A user constructs a design by sequential addition of 

Tasks to a workflow and therefore can deploy as few or 

as many computational steps as they require. Some Tasks 

have restricted connectivity, which is governed through the 

required inputs/outputs of the files of each strategy. This 

enables us to impose best practice where we feel it is justi-

fied (for example, the Molecule Generator must always be 

followed by a Filter step to remove structures which do not 

meet agreed standards). Design workflows then, by defini-

tion, are validated. For simplicity, the designs are made up of 

a linear chain of Tasks. However, when a user wants to reuse 

the output of one part of a design they can use that as the 

input to multiple new designs, this permits branching flows.

Once a user runs a design there is immediate feedback to 

the user via web sockets allowing them to view the progress 

and logs from strategies and see the intermediate results 

as they are produced. There is also constant feedback on 

the health of running strategies via a beating heart in the 

user interface. The active feedback is enabled via a message 

queue in the system to push the status updates back to the 

user (Fig. 1).

A number of Tasks have been implemented and these are 

described in the next section.

Tasks

In BRADSHAW a Task is the term used to identify a par-

ticular scientific process. A Task may be complex and long 

running or relatively simple and fast. However, it performs 

one particular function, for example generating molecules 

from a lead compound, filtering generated molecules on 

properties, filtering molecules on substructure, selecting a 

subset of compounds using experimental design, preparing a 

file for analysis. The options for running a Task are configur-

able through the BRADSHAW UI (Fig. 2). However, one of 

the main design criteria is that the Task should encapsulate 

“best practice” by default. Extensive user configuration is 

not a primary design goal, for example, the Compound Mol-

ecule Filter contains defined settings for Oral and Inhaled 

drug-like properties. The user can provide their own XML 

configuration file to override these defaults but that should 

be manipulated outside of BRADSHAW. 

All Tasks are implemented as Pipeline Pilot protocols 

and many are run standalone in other applications with 

the BRADSHAW protocol wrapping existing protocols or 

components.

The system is designed to make the deployment and inte-

gration of new scientific Tasks as easy as possible. Because 

the area of molecule design and machine learning algo-

rithms is in a period of rapid change, we fully expect our 

current range of Tasks to have a high rate of turnover, or at 

least be modified to reflect progress in the scientific litera-

ture and experience of application in real projects. BRAD-

SHAW will enable us to make cutting edge science acces-

sible and integrated with other necessary workflows, with 

minimal software development or end user re-training. We 

have both test and production systems, so new Tasks can be 

thoroughly evaluated before being pushed to the production 

environment.

Molecule generation

The main purpose of this Task is to generate compounds 

from one or several lead molecules. At present this Task 

is focussed on lead optimisation, with relatively modest 

changes made to the lead molecules (a future goal is to add 

a “lead-hop” molecule generator, which may include addi-

tional generative methods). The methods implemented at 

the moment are a combination of established cheminfor-

matics methods and more recent deep generative models. 

However, this Task is the poster child for a fast moving area 

of research, and we expect to add or replace methods on a 

regular basis.
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Fig. 1  Overview of the BRAD-

SHAW system

Fig. 2  The BRADSHAW User Interface. Available Tasks are on the left, and are coloured if they can be added to the current workflow
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The user does not control which methods are run. How-

ever, there is an option to limit the output by similarity to 

a user-defined pool of compounds either by excluding or 

including generated molecules that are similar. Different 

criteria are defined for either case as explained below.

Molecule generation methods available currently are:

(A) MMP transforms. We have an extensive collection of 

molecular transforms captured in the GSK BioDig sys-

tem constructed using the algorithm of Hussain and 

Rea [37]. The input molecule is fragmented according 

to the fragmentation rules and BioDig is searched for 

relevant transforms. These transforms are then applied 

to the input molecule in a sequential fashion. For exam-

ple a phenyl ring may be changed to a heterocycle or 

substituted with a methyl group.

(B) BRICS. BRICS is a methodology developed to frag-

ment molecules at defined chemically labile bonds 

[57]. This extends the well known RECAP approach 

[58, 59] with some additional disconnections and has 

been implemented in RDkit [59]. As implemented in 

RDkit BRICS works by fragmenting molecules and 

then recombining the fragments in an iterative fash-

ion. As the fragments are recombined randomly and 

only to a predefined depth the output molecules can 

bear little resemblance to the input molecules. For 

our use case we prefer to modify the input molecules 

in a systematic fashion. Thus the RDkit implemen-

tation has been extended in Python to provide addi-

tional methods that provide greater control over the 

generation phase, removing the random combinations 

in BRICS and imposing a sequence of recombination 

which ensures that application of the procedure will 

generate molecules with similar topology to the input 

(and has the reassuring feature that a fragmented input 

molecule will always regenerate the input molecule!). 

In a separate process the BRICS fragmentation has 

been applied to the GSK collection. The fragments are 

collected into a pool according to the atom labels that 

indicate possible recombinations with frequency and 

molecular properties (heavy atoms, molecular weight). 

The modified algorithm is used to generate structures 

by randomly or exhaustively replacing a particular 

fragment in the input molecule with fragments from 

the pool that share the same labels, so generating new 

molecules for further evaluation. The BRICS bond defi-

nitions are very specific for certain atom types, ring 

types and substitution patterns so options are given to 

allow some flexibility when recombining. For example, 

BRICS differentiates bonds to aromatic and aliphatic 

rings. An option has been added to remove this restric-

tion when combining fragments thus allowing a phenyl 

to be replaced by cyclohexyl. Fragments can also be 

inserted (allowing for compound growth) or null frag-

ments used to remove a fragment.

(C) Similarity searching. Input molecules are searched 

against a number of internal and externally sourced 

datasets of available compounds, GSK collection, 

eMolecules [60], EnamineREAL [61]. Searches are 

performed using the MadFast application from Che-

mAxon [62] which provides results in seconds even 

for the largest databases. Two different fingerprints are 

used: ChemAxon path-based fingerprint 2048 bits, path 

7, 4 bits per feature (CFP7) and the ChemAxon imple-

mentation of ECFP4 [63] with appropriately defined 

cutoffs [38].

(D) RG2SMI. A deep generative model that generates mol-

ecules that have the same Reduced Graph as the input 

molecule [27]. Up to 1000 molecules are generated per 

input molecule.

As mentioned above there is an option to filter com-

pounds according to similarity to an external pool of com-

pounds or the input molecules. If the desire is to filter to 

similar compounds then a number of similarity measures are 

used: Tanimoto similarity using CFP7 and ECFP4 finger-

prints and identical Reduced Graph [64]. The use of multiple 

techniques is to ensure all molecules of potential interest are 

carried forward. Where the user wishes to exclude similar 

compounds just the CFP7 is used at a tighter threshold, to 

ensure that only close analogues are excluded.

Compound profile filter

Multi parameter design is built in to the system. Compounds 

are filtered according to a set of property criteria as appro-

priate to the program objectives. The default options are 

preconfigured for Oral or Inhaled compounds. The user 

can provide a custom configuration by supplying their own 

XML file. A large range of molecular properties, predic-

tive models for ADMET liabilities, permeability, solubility 

are available through GSK internal web-services, QSAR 

Workbench models [65] or as native Pipeline Pilot descrip-

tors. The Task also runs GSK specific substructural filters to 

identify undesirable chemotypes [66]. It is a requirement of 

the system that the molecule generator output be processed 

by this Task. The intention is that the system never designs a 

molecule that is not predicted to be compatible with the pro-

gram objectives, and does not produce molecules that con-

tain chemical structure liabilities known to the organisation.

Compound rank

Compounds are ranked according to a user-defined multi 

parameter scoring algorithm. The properties and applica-

ble ranges are defined via an XML file (an example file is 
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provided in the Supplementary Material). The ideal score 

for any property is 1 and decreases linearly from the defined 

min/max according to the gradient. Scores for all properties 

are summed and compounds are ranked according to the 

score. Alternatively the compounds are ranked according to 

the Pareto rank of the scores. Optionally the output can be 

limited to the top N compounds (with Pareto this will return 

all compounds from the appropriate Pareto front so more 

compounds may be returned).

SMARTS filtering

The program may be interested in particular chemotypes 

or indeed in avoiding particular substructures. This Task 

allows user-defined SMARTS to be entered and used to 

either include or exclude matched compounds. SMARTS 

filtering is implemented using the ChemAxon java toolkit.

Merge

A relatively simple and important Task. This allows addition 

of chemical structures which have been generated outside of 

BRADSHAW [for example, an enumeration of compounds 

that can be made using an available intermediate and acces-

sible building blocks, or a LiveReport (the LiveDesign term 

for a user defined set of molecules and data) which is the 

result of a medicinal chemistry brainstorm session]. In this 

way, the machine and human generated ideas can be pro-

cessed with the same workflow and subjected to exactly the 

same selection methods. All ideas are still equal and human 

creativity is added to the machine.

Active learning

A key component of the system is the ability to incorpo-

rate knowledge from previous rounds of screening and to 

suggest the most appropriate compounds for the next itera-

tion. Active learning [67] provides a framework for such an 

approach. We have implemented an Active Learning pro-

tocol based on the modAL Python library [68]. A set of 

molecules, most likely derived from the molecule generation 

and filtering Tasks described above is used as the pool and 

a second set of molecules with measured activity data is 

defined for model building. The Task automatically builds 

and validates a QSAR model and uses it to predict the activ-

ity of the molecule pool. The output is a list of suggested 

molecules for synthesis at the next chemistry iteration, anno-

tated as to whether the molecule was selected to “Explore” 

or “Exploit” from the QSAR model. The current Task uses 

Random Forests or the XGBoost variant, where the uncer-

tainty in voting patterns in the trees is used to define if a 

molecule is in the “Explore” or “Exploit” category. The user 

has control over how much Exploration is performed in the 

design step, as at present we do not have sufficient experi-

ence to set these automatically. Ideally this balance between 

Explore and Exploit would be set algorithmically and is the 

subject of current research.

Experimental design

At the start of a program or when exploring a new series 

there may be insufficient data to initiate an Active Learning 

cycle. We have implemented an experimental design Task 

that provides an efficient and informative mechanism for 

selecting compounds for a first iteration of lead expansion.

BRADSHAW utilises Design of Experiments (DOEs) 

based approaches for exploratory chemical array scenarios 

where the full (M × N) array cannot be synthesized for prac-

tical reasons. By treating each monomer in the array as a 

categorical factor of the design, a balanced fractional array 

design can be generated. Once synthesized and measured, 

the results can be statistically analyzed to assess the addi-

tivity of SAR and then determine the contribution of the 

monomers to potency, selectivity and other properties of 

interest. This novel approach can be successfully used to 

understand and exploit the SAR of a late stage lead optimi-

zation program.

The approach combines well established experimental 

design techniques as a first step to achieve a well balanced 

design scheme. The appropriate scheme is utilized in a sec-

ond library optimization step that allows the incorporation 

of whole molecule properties or other considerations into 

the choice of final products. In the standard workflow the 

user defines a combinatorial array of molecules for synthesis 

from available building blocks using design tools outside of 

BRADSHAW such as LiveDesign. LiveDesign is used to 

define the scaffold(s) and R-group definitions and the anno-

tated LiveReport used as input to the Task.

To create an experimental design each R Group position 

must be treated as a categorical factor and each monomer at 

that position as a categorical level of that factor. The objec-

tive of the Design generation is to sample across this cat-

egorical feature space in such a manner that a robust and 

objective assessment of the monomers’ contribution to the 

response can be made. For the purposes of a Medicinal 

Chemistry Lead Optimization problem we only need two or 

three factors but the ability to specify large numbers of levels 

per factor is required. The experimental design that produced 

by BRADSHAW is an equally sampled, incomplete bal-

anced block design (colloquially known as a “sparse” array) 

in which each monomer at a particular position is treated 

equally, i.e. it is sampled the same number of times as oth-

ers in that position. The sampling rate will be different at 

different R-Groups unless the number of levels is identical.

Once the number of levels has been specified at each R 

Group position the only decision that needs to be made is 
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the size of the fraction to be sampled in order to explore 

the categorical feature space. For example, if RG1 has 24 

monomer levels and RG2 has 32 monomer levels then it 

is possible to extract a 1/8th fraction in which each RG1 

monomer is chosen 4 times and each RG2 monomer is 

chosen 3 times. The number of compounds sampled is 96. 

This is shown visually in Fig. 3 where each spot represents 

a compound to be synthesized from this virtual array.

The Pipeline Pilot protocol uses R to build either an 

equal sampling design (two R-group positions) or a fac-

torial design for the defined number of compounds. The 

output from the design is essentially a list of coordinates 

in the dimension of the virtual library. The designs them-

selves are agnostic to the actual characteristics of the indi-

vidual reagents. They only know the dimensionality of 

the problem and the number of items in each dimension. 

Thus, the user needs to assign actual physical reagents 

to each position in the final design. This problem has 

been addressed in keeping with the automated philoso-

phy behind BRADSHAW. We have developed and imple-

mented a novel library design algorithm that is completely 

generic in nature in that the algorithm makes no assump-

tions about the shape of the design, combinatorial or non-

combinatorial. The user defines the product map as a set 

of coordinates within the virtual library based upon the 

chosen experimental design, specifying which points of 

the virtual library should be included in the design. The 

algorithm assigns reagents to these positions in such a way 

as to optimize user-supplied product-based properties for 

the resultant library, starting with random assignment fol-

lowed by a steepest descent optimiser.

Fit and Predict

The SAR generated from a Sparse Array is ideally suited 

for a classical Free-Wilson analysis [69]. In keeping with 

the automated philosophy, the Fit and Predict Task is used 

to both build the QSAR model and predict the activity of all 

combinations of R groups in the data set.

Results annotation

A lesson learned in our pilot projects is that it is most impor-

tant to annotate the selected compounds in order to facilitate 

a smooth project team discussion:

• What parts of the structure are being modified? Anno-

tating in this way can integrate the output of a machine-

driven process back into the thought process of a medici-

nal chemist and therefore aid assimilation and acceptance 

of the ideas.

• What are the predictions and what is the confidence?

• What is the likely synthetic tractability? Note that at 

this score is used as an annotation, rather than a filter, 

because none of the published methods perform well 

enough on our in-house data for them to be considered 

predictive. The current implementation uses the SCScore 

[33] algorithm. At some stage in the future we expect that 

this will change, and at that point the synthetic tractabil-

ity would be moved further up in the design workflow, 

either within the molecular generators or as a compound 

filter.

• More general annotation is based on the GSK SIV frame-

work [70]. Compounds are clustered using several meth-

ods: sphere exclusion clustering, framework clustering 

[64] at different levels. Compound properties are com-

puted such as PFI [51].

Examples

Molecule generation of adenosine A2A antagonists

The discovery and optimisation of Adenosine A2A antag-

onists [71, 72] is the first example of successful structure 

based design using crystal structures of a GPCR. The dis-

covery of the clinical candidate, AZD4635 (compound 

1), was based on an initial hit, the commercially available 

5,6-diphenyl-1,2,4-triazine-3-amine (compound 2). Opti-

misation was driven using crystallography, computational 

methods and state of the art medicinal chemistry thinking. 

176 Chemical structures are exemplified in the Heptares Pat-

ent [73], as retrieved from SureChembl [74]. BRADSHAW 

was fed 5,6-diphenyl-1,2,4-triazine-3-amine as an input and 

using a single pass of molecule generation (only making 

Sparse array

A:R1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
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27
28
29
30
31
32

B
:R

2

Fig. 3  Example of a sparse array design for a two component library
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changes to the one starting structure), filtered according 

to our Oral Drug protocol and keeping the 1,2,4-triazine-

3-amine headgroup, produced 10,675 structures. 72/176 of 

the exemplified structures were generated and a further 63 

close analogues (ECFP4 Tanimoto > 0.8) generated which 

were not exemplified in the patent (Scheme 1). The BioDig 

molecular generator produced a minority of the ideas (317 

structures), but these were very efficient in mapping to the 

patented structures (29 exact matches). In a real-world appli-

cation, this set would be added to by further molecular gen-

eration after the first SAR is generated. However, we believe 

this small example is a good demonstration that BRAD-

SHAW generates the “right” kind of molecules, which are 

both relevant to the project and synthetically tractable.

Experimental design of MMP‑12 inhibitors

A recent publication [18] disclosed a full 2500 member com-

binatorial library with associate biological data. The dataset 

is particularly relevant as there are a number of compounds 

that could not be synthesized successfully. The library was 

based on a core template as shown in Scheme 2.

With such a complete array it is straightforward to iden-

tify the most potent compounds and the key monomers 

which are contributing to improved assay performance. The 

question that one could ask is whether the key findings from 

this particular chemical array could be obtained from only a 

fraction of the compounds?

Using BRADSHAW, an incomplete balanced block 

design is generated where by each of the 50 monomers 

in each position was selected twice and only twice in the 

Scheme 1  Molecule generation 

for Adenosine A2A antagonists

Scheme 2  The core template for a 50 × 50 array targeted against 

MMP12
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design. This produced a design in which 100 compounds 

were sampled from the 2500 array set. The balanced nature 

of the design meant that each monomer was equally lever-

aged and would thus in theory allow an unbiased assessment 

of the monomers potential to add or subtract value in terms 

of the assay response.

The created design pairs up monomers in R1 and R2 but 

the assignment of which monomer is allocated to which 

labelled Level can either be done randomly or by using 

an algorithmic approach to optimise the final assignment 

so as to produce a sampled set of compounds which are 

more optimally selected against a chosen property, e.g. 

lipophilicity, predicted permeability etc. For the purposes 

of this exercise we optimised the final selection to meet the 

design constraints (each monomer chosen twice and only 

twice) and also to maximise the leadlikeness of the mol-

ecules using a desirability function which combines counts 

of hydrogen bond acceptors, donors and rotatable bonds, 

clogP, PFI, polar surface area and predictions of hERG and 

p450 inhibition.

Once the final compound set had been identified their 

respective potency values were retrieved from the full 2500 

array data set. 64 Data records were found with measured 

potency data from the 100 compounds identified for syn-

thesis. This is in line with the overall attrition rate in the 

completed array. A selection of the more interesting com-

pounds is shown in Table 1, with the full list available in the 

Supplementary Material.

Using the Fit and Predict Task, a Free-Wilson QSAR 

model was built and the MMP12 activity of the non-selected 

members of the full array were predicted. The top 10 predic-

tions are shown in Table 2.

The designed sparse array represents just 2.5% of the 

full array and the Free-Wilson model is built on just two 

Table 1  Compounds selected 

from the MMP12 Sparse 

Array design along with their 

biological data

Compound Structure ID R1-smiles R2-smiles R0-smiles MMP12_pIC50

MOL1 7.8

MOL4 7.3

 

MOL5 

   

7.1 

 

MOL7 

   

6.9 
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Table 1  (continued)

 

MOL14 

   

6.4 

 

MOL33 

   

5.1 

MOL38 5

MOL58 4.3

MOL59 4.2

MOL68
Could not be 

synthesized
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exemplars per monomer position. From this design, 8/10 

of the top predicted molecules (that could be synthesized) 

have a pIC50 > 7. A comparison of the MMP12 activity for 

the whole data set, the sparse design and the Fit and Predict 

selections is shown in Fig. 4.

Active Learning of MMP12 inhibitors

Active learning is a powerful technique which is suitable 

to guide iteration experimentation such as Lead Opti-

misation and is a natural follow on to an initial Sparse 

Array design. As a demonstrator and comparator to the 

Fit and Predict example, the output of the MMP12 Sparse 

Array was used as a seed for a BRADSHAW Molecule 

Generation and Active Learning workflow. The top 5 

most active compounds from the Sparse Array were used 

as seeds for the Molecule Generator. 53,707 molecules 

were generated, filtered using the Oral molecule profile 

and a SMARTS query to only consider molecules with 

the phenyl-sulphonamide-acid core. Those molecules 

from the full MMP12 set that were not part of the sparse 

array were Merged, giving a total of 7385 compounds. 

These were fed as the selection pool to an Active Learn-

ing Task, which used the MMP12 pIC50s from Sparse 

Array design as the training set. An XGBoost model was 

built with 100 trees, and the Active Learning was asked to 

select 50 molecules, with 80% Exploit and 20% Explore 

(chosen because the QSAR model from a spare design 

Table 2  Compounds from the 

MMP12 set predicted to be the 

best actives using the Fit & 

Predict Task, along with their 

MMP12 activity

Compound Structure ID MMP12_PIC50

MOL101 7.5

MOL102 7.3

MOL103 7.3

MOL104 7.2

MOL105 7.2

MOL106 7.2
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is generally good, favouring Exploit, and our experience 

with Active Learning is that some Explore is always a 

good idea). A selection of the resulting molecules are 

shown in Tables 3 and 4. 26 of the compounds selected 

are present in the experimental MMP12 data, including 

one of the most potent compounds at pIC50 of 8. For the 

generated structures, the best biphenyl substituents (CS- 

and propyl-) are selected amongst the molecules and the 

SAR around alkyl amino-acids is sampled in some detail.

Table 2  (continued)

MOL107 7

MOL108 7

MOL109 6.9

MOL110 6.8

Fig. 4  MMP12 activity distribu-

tion across the MMP12 data set 

(yellow), the sparse design (red) 

and the Fit and Predict selec-

tions (blue)
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Table 3  Molecules from the full 

MMP12 data set selected by the 

Active Learning Task

MOL111 8 Exploit

MOL112 7.8 Exploit

MOL113 7.2 Exploit

Compound Structure ID MMP12_IC50 Selec�on 

 

MOL114 6.9 Exploit 

 

MOL115 6.5 Exploit 
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The future

In the current implementation, BRADSHAW is limited to 

cheminformatics and machine learning models. There are 

no 3D or docking methods, partly because it is difficult 

to produce a standard Task that can cater for the more 

bespoke models typically required in that domain, and 

partly because the predictivity and uncertainty quantifi-

cation is not yet at level that we are comfortable including 

these as scoring functions. Those physics-based methods 

that are more rigorous, for example FEP+ [75], require an 

element of specialist control that, again, is not yet suitable 

for inclusion in the BRADSHAW framework, but may be 

included in a design workflow as an additional step [76].

As we hope to have demonstrated, BRADSHAW is at a 

respectable level of competency in the combined processes 

that comprise molecule design. The aforementioned rapid 

pace of innovation and improvement in the field of mol-

ecule generation, model building and optimisation algo-

rithms means that systems like BRADSHAW will improve 

from this level. The potential level of capability that can 

be reached is difficult to predict. However, even the current 

level of performance raises questions about how the system 

should best be integrated into the work practice of a lead 

optimisation team e.g. is it as a complement to the creativ-

ity of the team, or should the automated system become the 

fundamental workhorse for the team which is complemented 

by suggestions and decisions by the human supervisors? We 

feel these answers will become clearer as the platform is 

Table 3  (continued)

 

MOL116 6.3 Exploit 

 

MOL117 5 Exploit 

MOL118 4.5 Exploit

MOL119
Could not be 

synthesized
Explore
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Table 4   Molecules generated 

by BRADSHAW and selected 

by the Active Learning Task

 

MOL119 Exploit 

 

MOL120 Exploit 

Compound Structure ID Selec�on Method

MOL121 Exploit

MOL122 Exploit
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Table 4  (continued)

MOL123 Exploit

MOL124 Exploit

MOL125 Exploit

MOL126 Exploit

MOL127 Exploit
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further tested in prospective applied scenarios, which will 

be the subject of a future publication.
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