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Abstract The sensitivity of a OD travel cost to changes in a flow through a new branch in the user optimizing 

assignment problem for a single commodity two-terminal transportation network is studied. The assignment 

problem and its dual are formulated as convex programming problems. Using these formulations, an intuitive 

characterization is derived for such paradoxical phenomenon that the creation of a new branch has the effect of 

increasing the OD travel cost. 

1 . I ntroducti on 

There are the following two broad principles, which are first enunciated 

by Wardrop [8J, for determining the distribution of traffic in a transporta

tion network. The first principle, which we call system optimization, is 

(i) "the total travel eost is a minimwn. " 

And the second principle, which we call user optimization, is 

(ii) "the travel cost on all OD paths joining the origin and the destina

tion actually used are equal, and less that those which would be 

experienced by a s{ngle user on any unused OD path." 

The second principle is usually used to solve the traffic assignment problem. 

It is well known that the user optimized flow does not always minimize 

the total travel cost. One of the most remarkable examples of this fact is 

the one presented by Braess in 1968 [lJ and picked up by Murch1and in 1970 [5J: 

Increasing the network capacity by inserting a directed branch between two 

initial OD paths has the effect of increasing the OD travel cost for every 

user on the network, which is called "Braess' paradox". 

Previous studies on "llraess' paradox" (Murch1and [5J, Fisk [2J, Stewart 
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Braess' Paradox 377 

[7], Frank [3]) have been concerned with the specific network presented by 

Braess, where the user optimization network assignment problem was formulated 

as the network equilibrium conditions. But as is pointed out by Murch1and, 

"Braess' paradox" is not paradoxical in the sense that the problem can be 

formulated as a minimization problem whose objective function is different 

from the total travel cost. In this paper, we formulate the problem and its 

dual of a single commodity two-terminal network as convex programming problems. 

Using these formulations, the dual form of "Braess' paradox" is derived. And 

when a travel cost per unit flow associated to each branch is linear, an intu

itive characterization is obtained by comparing the potential distribution of 

the given network and that of the linear resister network whose topological 

structure is the same as that of the given network and each of whose branches 

has resistance equal to the increase in travel cost through it resulting from 

a unit increase of flow in it. Another example of "Braess' paradox" is pres

ented, where the creation of the additional branch strictly decreases the 

total travel cost, which is not the case in Braess' example. 

2. Notations and Formulations of Flow Problems 

We consider a transportation network G composed of the set of nodes 

N=:{vala=:l, ... ,n} and the set of directed branches E=:{b
k

!k=:l, ... ,mL The 

incidence relation is represented by 

d =: 
ak 

\ 

1 if branch b
k 

starts from node 

-1 if branch b
k 

ends at node 

0 otherwise. 

We denote by ~k (~O) the flow through 

branch b
k

, and by the tension across 

b
k

• Each of the branches of G is endovl'ed 

with the branch characteristic represented as 

for b
k 

(k=:l, ... ,m), 

where ~k is a continuous function of ~k 

from [0,00) to real numbers R, and is differ

entiable and monotone increasing (Fig. 1): 

(2.1) for ~k > O. 

v , 
a 

o 

va ' 

~k(~k) can be interpreted as a travel cost Fig. 1. Branch characteristic 
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per unit flow through branch b
k

. 

The flows in G satisfy the continuity condition 

o for a=l •.••• n. 

and the tensions in G satisfy the continuity condition 

n 

I d k~ = n
k 

for k=l •..•• m. 
a=l a a 

where ~a is a potential at node va' 

In the following. as is illustrated in Fig. 2. we will consider flow 

problems in a two-terminal network with entrance node vI and exit node 

Let b
l 

be an extra branch connecting the exit node directly to the entrance 

node. 

- ( 

-( =F 
1 

Fig. 2. 

Two-terminal network 

In system optimization. the problem is to determine flows ~k's so as to 

minimize the total travel cost in G which we call the system optimized cost: 

[PS] Minimize 

subject to the constraints: 

m 

I d k~k = 0 
k=l a 

~k ~ 0 

~l F 

for a=l •..•• n. 

for k=2 •...• m. 

where F is a given input-output flow rate and is a positive number. We call 
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Braess' Paradox 379 

this problem Cl system optimization problem. We assume that PS has a feasible 

solution. 

In user optimization, as shown in Zangwill [9], the problem can be also 

formulated as a minimization problem of minimizing the sum of the integral of 

the travel cost per unit flow of each branch of G which we call the user 

optimized cost. The problem is to deteI~ine flows 

[p] minimize 

subject to the constraints: 

m 

L d kt;k = 0 
k=l a 

t;k .~ 0 

t;l F 

for a=l, ..• ,n, 

for k=2, ... ,m, 

t; 's so as to 
k 

We call this problem a user optimization problem. We denote by ); the travel 

cost per unit flow of a solution of P along any OD path which is a connected 

sequence of branches joining vI and "n' 

The problem dual to P is the problem to determine 

as to 

[P*] minimize 

subject to the constraints: 

n 

I d k S = nk a=l a a 
for k=l, ..• ,m. 

is the inverse of <Pk defined as 

-1 
<Pk (nk ) for 

o 

n 's 
k 

and S 's 
a 

From (2.1), W
k 

is a continuous function from (_00, 00) to Rand satisftes 

the relation 

(2.2) 

so 

It ts easily verified from (2.1) and (2.2) that the objective functions 

of P and p* are convex functtons of t; and D, respectively. Therefore, 
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from the duality theorem (Theorems 15.1, 15.2, 15.3 and 15.4 in [4]) , for a 

solution ~ there exists a and 
-

of p* which satisfies of P, solution Tl 1;; 

[wj 
Tlk <Pk (~k) if sk > 0 and 

-
Tlk .$ <Pk(O) if sk 0 for k=2, .•. ,m. 

It follows from the relation W that is equal to the OD travel cost A 

so that the relation W is equivalent to Wardrop's principle of user opti

mization. 
-

Let b
m

+
l 

be a braneh added to network G and G be the augmented 

network. The user optimil:ation flow problem P and its dual p* of network 
-
G can be formulated by simply changing m by m+l in P and P*, respec-

tively. Let Tl and 1;; be a solution of p* and A=-Tl
l

. Since the OD 

travel cost is the negative value of the tension across branch b "Braess' 
l' 

paradox" occurs if 

(2.3) A > X. 

We will derive the dual 

form of (2.3). In problem 

we put and denote 

by 'I'(A) the optimal value 

of the objective function for 

a given value \. Since 

'I'(A) is a convex function of 

A, it follows that (2.3) 

holds if and only if the 

following relation holds 

(see Fig. 3): 

(2.4) d'l'(>:) < o. 
dA 

The problem dual to this 

problem is to determine 

flows 

(2.5) 

s 's so as to 
k 

minimize 

subject to the constraints: 

o \ 
\ 

\{f(X)\ 

of P* \ 
, I 

'_.L.." 

Fig. 3. Illustration of (2.4) 
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~l J k~ldak~k 0 for a=l, •.. ,n, 

~k ~ 0 for k=2, ... ,m+l. 

~---~-
We denote by ~(A) the optimal value of (2.5) and by F the optimal flow in 

b
l 

when A=X. 

Since the relation 

~(A) + 'I'(A) = 0 

holds from the duality theorem, and the differentiation of ~(A) with resp(~ct 

to A yields 

d~(X) :: F - F, 
dA 

it follows that the relation (2.3) is equivalent to the relation 

(2.6) F - F > 0, 

which is the dual form of (2.3). 

3. An Example of Braess' Paradox 

Let us consider the flow problems of the original network of Fig. 4. The 

travel cost per unit flow through a branch is written beside each branch, and 

an input-output: flow rate is 5. Because of the symmetry, the solution of the 

system optimization problem is a flow of 2.5 units on each of the four branch

es and the system optimized cost is 87.5. The solution of the user opti

mization problem is the same as that of the system optimization problem and 

Fig. 4. Two-terminal network 

for an example of "Braess' 

paradox". The original 

network G is composed of 

branches b
l

, ... ,b
5

, and the 

augmented network is GU{b
6

}. 
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the user optimized cost is 68.75, and the OD travel cost is 17.5 per unit flow. 

Suppose branch b
6 

is inserted between v
2 

and v3 of the original net

work of Fig. 4. The flows of the solution of the system optimization problem 

of the augmented network and each OD travel cost along possible three OD paths 

are shown in Fig. 5. The system optimized cost in this case is 85. Therefore 

the addition of Branch b
6 

decreases the total travel cost so that it increases 

the network capacity. 

Fig. 5. Flows of the 

solution of the system 

optimization problem of 

the augmented network of 

Fig. 4. 

The flows of the solution of the user optimization problem of the augment

ed network are shown in ]<'ig. 6. The user optimized cost is 57.5 and the OD 
-

travel cost).. is 19 per unit flow. "Braess' paradox" occurs in this example, 

since the addition of branch b
6 

increases the OD travel cost. 

Fig. 6. Flows of the 

solution of the user 

optimization problem of 

the augmented network of 

Fig. 4. 
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4. A Characterization of Braess' Paradox 

Let b
m

+
1 

be a branch added to network G defined in section 2 and G 

be an augmented network. From the duality theorem, flows, tensions and poten

tia1s satisfying the following relations are solutions of P and P*, and 

vice versa. 

[e] 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

n
k <Pk (l;k) 

nk 
:s <Pk (0) 

m 

kI
1

dakl;k 
0 

1;1 F, 

I;k ~ 0 

n 

I daksa 
a=l 

= n
k 

- -

if I;k > 0 and 

if I;k 0 for 

for a=l, ... ,n, 

for k=2, ... ,m, 

for k=l, ... ,m. 

k=2, ... ,m, 

Solutions (1;, n, s) of P and P* also satisfy the relation e which is 

obtained by changing m by m+1 in e. In the following, we may set sn 0 

without loss of generality, because the corresponding flow continuity equation 

at exit node vn is redundant and can be dropped in C and C. "Braess' 

paradox" occurs if 

(4.6) 

It is easily understood that when the additional branch 
-

used, a solution of P (or P*) is also a solution of P (or 

~m+1 is not 

P*) so that 

n
1

=n
1

. Therefore, it is necessary to (4.6) occur that <Pm+1 satisfy the 

relation 

(4.7) 

n 

I d m+1~a > <Pm+1 (0). 
a=l a 

We now derive such characterization of "Braess' paradox" that the addi

tion of a new branch in the opposite direction to the potential configuration 

of the linear resister network CL whose topological structure is the same as 

that of the original network G, and whose branches have resistances <Pk(~k)= 

d<Pk(~k)/dl;k' 

We consider the case when the flow in branch b
m

+
1 

is sufficiently small: 

(4.8) I;k+1 = E « 1. 

From the nonamp1ification theorem (Theorem 16.3 in [4]), we have 
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(4.9) I ~k - ~k I ~ E for k=l, ..• ,m+1. 

Subtracting the continuity equations (4.2) from the corresponding equations in 
-
C and using (4.3) we have 

(4.10) Dl'>~ + d lE = 0, 
m+ 

and subtracting (4.5) from the corresponding equations in C gives 

(4.11) 

where ~~ and ~n are (m-I)-vectors, d
k 

and ~s are (n-l)-vectors and D 

is an (n-l)x(m-l)-matrix defined as 

- - - - - - t 
(~2-~2'~3-~3'···'~m-~m) , 

- - - - - - t 
(n2-n2,n3-n3,···,nm-nm) , 

- - - - - - t 
(sl-sl,s2-s2,···,sn_l-sn_l) , 

(dlk,d2k, .•. ,dn_l k)t for k=l, ... ,m+l, 

D 

It is easily verified that matrix D defined above is of rank n-l, if graph 

G is connected. 

Now, we assume that 

(4.12) the flows ~ 's of P and ~ 's of P are all positive. 
k k 

Under this assumption, (4.1) and the corresponding equations in C hold in 

equality. Therefore, using (4.9), we have 

(4.13) for k=2, ... ,m. 

Neglecting O(E) term in (4.13) and from (4.11), we have 

(4.14) 

where A is an (m-l)x(m-l) diagonal matrix whose (k-l)st diagonal element is 

l/$k(~k). It follows from (2.1) that A is a positive definite matrix. 

Substituting (4.14) into (4.10) yields 

DADt~s = -dm+lE. 

and since DADt is a positive definite matrix, we have 

(4.15) 
t -1 

~~ = -(DAD) dm+lE. 

Using the relation 

only if 

(4.16) 

t 
dl~s = nl-n

l
, we have from (4.15) that (4.6) holds if and 
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Theorem 1. Under the assumptions (4.7), (4.8) and (4.12), "Braess' 

paradox" occurs if and only if (4.16) holds. 

385 

Condition (4.16) has the following intuitive meaning. Consider the rela

tion L of flows, tensions and potentials of the linear resister network G
L

. 

[L] 

nk = <Pk(~k)/;k 

m 

I d k/;k = 0 
k=l a 

/;1 = 1, 

n 

aIldakSa = nk 

for k=2, ... ,m, 

for a=l, ... ,n, 

for k=l, ... ,m. 

It is easily shown that the potential at the node which should be positively 

incident to b
m

+
l 

minus the potential at the node negatively incident to b
m

+
l 

is equal to 
t t -1 

_odm+l(DAD) d
l

. Therefore, (4.16) means that the addition of a 

new branch opposite to the direction in which a current will flow in the linear 

resister network G
L 

causes "Braess' paradox". 

The assumption (4.12) was essentially used to obtain Theorem 1, which can 

not be guaranteed before a user optimize.d flow configuration of G is obtained. 

When (4.12) is weakened to 

(4.17) the fZows ~ 's of P are all positive, 
k 

we obtain the following theorem: 

Theorem ;~. Under the assumptions (4.7), (4.8) and (4.17), and if we 

assume 

(4.18) dl(DADt)-lD ~ 0, 

(4.16) holds if "Braess' paradox" occurs. 

-
Proof: Since the flow-tension relations in C (corresponding to (4.1» 

hold in inequality, we have in place of (4.14), 

(4.19) 

Multiplying ('+.19) by d~(DADt) -ID yields 

(4. 20) d~ (DADt) -lDll/; S; d~ (DAD t) -lDAD t llI:; 

Substituting (4.10) into the left-hand side of (4.20), we have 

and 
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then 

It is easily understood that Theorems 1 and 2 remain valid assuming the. branch 

characteristic functions ~k's being linear in ~k for k=2 •... ,m, instead of 

the assumption (4.8). 

But (4.16) is not a necessary nor sufficient condition for "Braess' 

paradox" to occur even if (4.7) and (4.lZ) hold, when the flow in b
m

+
1 

is 

not small and ~k's are not linear. The networks of Figs. 7 and 8 are exam

ples which show this situation. The topological structure of the original 

network and the augmented network are the same as those of Fig. 4. and 

branches b
Z 

and b
S

' b] and b
4 

have the same branch characteristi.c 

functions which are illusl~rated beside the branches, respectively, in Figs. 7 

and 8. The. solution of the user optimization problem of the original network 

is the same. as that of Fig. 4 for each of the networks of Figs. 7 and 8. 

Both (4.7) and (4.16) are 

satisfied in the network of 

Fig. 7, but the solution of 

the problem of the augmented 

network is flows of 3 units 

on b
Z 

and b
S

' flows of 2 

units on b
3 

and b
4

, a flow 

of 1 unit on b
6 

and the OD 

travel cost is 17 so that 

"Braess' paradox" does not 

occur. On the other hand" 

(4.7) is satisfied but (4.16) 

is not in the network of 

Fig. 8, but the solution of 

the problem of the augmented 

network is the same as which 

is illustrated in Fig. 6 and 

"Braess' paradox" occurs. 

We conclude from these 

examples as follows. When a 

branch characteristic func

tion ~k is nonlinear, there 

exist infinitely many curves 

satisfying (2.1) and connect-

j
~ ~ / 

12.5 1P"(2.5)=1 

5.: $l2.SY V

2 

1 
f (&11.5 ( 

YI r r V i - ~~--.--
2.5 3 I 6 2 2.5 

'O'l- I ~ 

I 
b616~ 

I 

I 
I 

Fig. 7. Two-terminal network, where (4.7) 

and (4.16) are satisfied but "Braess' 

paradox" does not occur. 0 denotes the 

solution of the original network and 

• denotes the solution of the augmented 

network. 
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ing a
k

, n
k

) of the original network and (~k' Tl
k

) of the augmented network 

(see Fig. 9). Therefore, there is no test generally efficient to forecast the 

occurence of "Braess' paradox", which uses only the knowledge of branch char-

racteristics at the flow and tension configuration of the original network. 

Fig. 8. Two-terminal network, where (4.7) 

is satisfied but (4.16) is not, but 

"Braess' paradox" occurs. 0 denotes the 

solution of the original network and .. 

denotes the solution of the augmented 

network. 
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