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Abstract. Given the long-term survival of most patients with thyroid cancer, it is very important to distinguish patients who
need aggressive treatment from those who do not. Conventional clinicopathological prognostic parameters could not
completely predict the final outcome of each patient. Recently, molecular marker-based risk stratification of thyroid cancer
has been proposed to better estimate the cancer risk. Although BRAF mutation has drawn much attention based on its high
prevalence, its association with recurrence or mortality is not clear. Recently, telomerase reverse transcriptase (TERT)
promoter mutation has been identified in thyroid cancer. It increases telomerase activity, which allows cancer cells to
immortalize. It was found in 10 to 20% of differentiated thyroid carcinoma and 40% of dedifferentiated thyroid carcinoma. It
is highly prevalent in old age, large tumor, aggressive histology, advanced stages, and distant metastasis. It is associated with
increased recurrence and mortality. Concomitant BRAF and TERT promoter mutations worsen the survival rate. Inclusion of
TERT promoter mutation analysis with conventional clinicopathological evaluation can lead to better prognostication and
management for individual patients.
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Introduction

Papillary thyroid carcinoma (PTC) and follicular thyroid
carcinoma (FTC) referred together as differentiated thy‐
roid carcinoma (DTC). It accounts for more than 90% in
all thyroid cancers, and has a favorable prognosis [1-3].
Although the incidence of thyroid cancer has increased
with time, there has been no increase in mortality rate
and still remains low [4-7]. However, DTC patients who
present with advanced stage or distant metastasis and
patients with poorly-differentiated thyroid carcinoma
(PDTC) or anaplastic thyroid carcinoma (ATC) have
poor prognoses, although the number of these patients
are limited [8-12]. Considering the long-term survival of
most patients with DTC, it is very important to distin‐
guish patients who need aggressive treatment from those
who do not. Conventional clinicopathological parame‐
ters, such as age, histological type, tumor size, local
invasion, lymph node metastasis and distant metastasis,
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have been traditionally used to predict the prognosis [13,
14]. However, they could not completely predict the final
outcome of each patient [15]. Therefore, more precise
parameters for estimating the final outcome should be
required and they can make an optimal therapeutic strat‐
egy in each patient.

Two signaling pathways are involved in the develop‐
ment of thyroid cancer: mitogen-activated protein kinase
(MAPK) and phosphoinositide 3-kinases & protein ki‐
nase B (PI3K–AKT) pathways. Both signaling pathways
regulate cellular proliferation, differentiation and sur‐
vival. The MAPK pathway has been known as the Ras-
Raf-MEK-ERK pathway. It is frequently activated in
thyroid cancer through BRAF mutation, RAS mutation,
and RET/PTC rearrangement, which are the common ini‐
tiating events in DTC [16, 17]. A few of mutations in the
PI3K–AKT pathway are detected more frequently in
FTC, PDTC, and ATC [18, 19].

Molecular tests for genetic alterations in thyroid can‐
cer may enhance the diagnostic value of cytologic
examination and predictability of clinical outcomes [20].
Molecular changes precede histological changes. Gupta
et al. described heterogeneous histological changes in a
tumor: microfollicular areas with well-developed nuclear
features of PTC, large follicles with borderline nuclear
features of PTC, and large follicles lacking nuclear
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features of PTC. When tested separately, all three areas
were positive for the same NRAS61 mutation [21]. Much
progress has been made in elucidating the molecular
mechanisms involved in the pathogenesis of thyroid can‐
cer after the detection of RAS mutation and RET/PTC
rearrangement. Newly identified oncogenes have provi‐
ded the basic information upon which new diagnostic
tools, new prognostic markers, and new targeted agents
have been developed. The Cancer Genome Atlas
(TCGA) study presented integrated genomic characteri‐
zation of PTC in 2014 [22]. It described the low fre‐
quency of somatic alterations in 496 PTCs compared to
other cancers. It reduced the fraction of PTC cases with
unknown oncogenic driver from 25% to 3.5%. Genetic
alterations in thyroid cancer included point mutations
(75%), gene fusions (15%), and copy number variations
(7%). In patients with advanced stage, tumors may have
more than one mutation, therefore, the overall mutation
burden exceeds 100%. The frequency of the main drivers
(BRAF, RAS, and RET) sums to less than 100% because
in some cases the drivers are not known or they are
lower frequency events [23].

In this article, I would like to update a review article
published in 2018 by presenting the findings of some
additional studies that have been published subsequently
[24].

BRAF Mutation in Thyroid Cancer

BRAF mutations were firstly detected in human cancer
in 2002 [25]. Thereafter, more than 40 mutations of
BRAF gene have been identified. Most cases activating
BRAF mutation involve codon 600 and result in the
V600E mutation, and a few cases of other BRAF muta‐
tions occur as K601E mutation, small in-frame inser‐
tions, deletions, or rearrangement [16, 26]. The BRAF
mutations were frequently detected in thyroid cancer [16,
17, 27-30]. They have been reported in PTC and PDTC
or ATC arising from PTC, but not in FTC, medullary
thyroid cancer (MTC) and benign thyroid tumor [31, 32].
Exceptionally, there was a report that one case with FTC
carried a BRAFK601E mutation [33]. The thymine-to-
adenine transversion at nucleotide position 1799 in exon
15 of the BRAF gene results in a valine-to-glutamate
substitution at residue 600, which leads to constitutive
activation of MAPK signaling downstream resulting in
tumor development [17, 25, 34]. Small PTCs, less than
1 cm in diameter, have also been shown to harbor BRAF
mutations, which are considered to be the early stage of
PTCs or an inducing factor of oncogenesis [35-37]. The
prevalence of BRAF mutation in PTC ranges from 30%
to more than 80%, depending on the iodine intake and
geographic location [36, 38]. BRAF mutation is known to

be highly specific to PTC, but false-positive results have
been rarely reported [39]. In Korea, approximately 97%
of newly diagnosed thyroid cancer is PTC and more than
80% of PTC cases harbor BRAF mutation [3, 40, 41].
Therefore, molecular testing for the BRAF mutation in
cytological specimen increases diagnostic sensitivity
& accuracy in a BRAF mutation-prevalent population
[40, 41].

Molecular marker-based risk stratification of thyroid
cancer has been recently proposed for estimation of can‐
cer risk [42]. The BRAF mutation has drawn much atten‐
tion based on its high prevalence [40, 41, 43, 44]. Many
studies have demonstrated that BRAF mutation is signifi‐
cantly associated with the aggressive clinicopathological
characteristics of PTC, such as extrathyroidal extension,
lymph node metastasis and advanced stages [29, 31, 44,
45]. Lee et al. performed a meta-analysis from 12 studies
including 1,168 PTC patients [46]. They reported that
BRAF mutation was associated with histologic subtype,
the presence of extrathyroidal extension, and higher clin‐
ical stage, but not with age, sex, race, or tumor size.
Tufano et al. published a meta-analysis from 14 studies
including 2,470 PTC patients [47]. They demonstrated
that BRAF mutation in PTC was significantly associated
with the recurrence, lymph node metastasis, extrathyroi‐
dal extension, and advanced stages. Even in Korea, the
same results were initially published with the meta-
analysis of Tufano et al. [44, 45]. Xing et al. reported
the association of BRAF mutation with high recurrence
and mortality rate in a large multicenter study [48, 49].
Recently, Shen et al. also reported that there was a linear
association between patient age and mortality in patients
with BRAFV600E mutation, but not in patients with wild-
type BRAF [50]. They concluded that age was a strong,
continuous, and independent mortality risk factor in
patients with BRAFV600E mutation. However, it was no
longer significant after the adjustment of risk factors,
such as lymph node metastasis, extrathyroidal invasion
and distant metastasis. In addition, many studies from
East Asian countries including Taiwan, Korea, and Japan
demonstrated that the BRAF mutation was not associated
with disease-free survival as well as poor prognostic fac‐
tors [51-53]. Many physicians wonder why thyroid
cancer-related mortality is still low, although the BRAF
mutation is highly prevalent. These findings suggest that
the isolated BRAF mutation may be a sensitive, but not
specific marker of tumor recurrence and tumor-related
mortality. Recently, more specific markers predictive of
aggressive behavior have emerged. In patients with
advanced stage, tumors may have more than one muta‐
tion. Next generation sequencing-based analysis revealed
that some PTCs had more than one mutation, and these
have aggressive behavior [54].
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TERT Promoter Mutation in Thyroid
Cancer

Telomeres are located at the ends of linear chromo‐
somes. They are composed of hundreds to thousands of
tandem DNA repeat sequences: hexameric TTAGGG in
the leading strand and CCCTAA in the lagging strand in
humans [55]. They were coated by protective proteins
termed shelterin [56]. The 3' end of the telomeric leading
strand terminates as a single-stranded overhang, which
folds back and invades the double-stranded telomeric
helix, forming the T loop. Telomeres can be directly
visualized under the microscope at the ends of metaphase
chromosomes by fluorescence in situ hybridization
(FISH). Average telomere length can be measured by
several methods: a technique that combines flow cytom‐
etry and FISH, Southern blotting, and a quantitative
polymerase-chain-reaction assay. The average length of
telomeres in human leukocytes varies, ranging from
approximately 11 kb at birth (in umbilical-cord blood) to
6 kb at 90 years of age. Telomere loss is most rapid early
in life, and over a life span [57]. The normal cell will
divide 50 to 70 times before cell death (Hayflick limit).
As the cell divides, the telomeres get smaller. Because of
the telomeres shortening through each division, the telo‐
meres will eventually no longer be present on the chro‐
mosome. The cells finally become senescent and cell
division stops. Shortened telomeres impair immune func‐
tion that might also increase cancer susceptibility [58].
Therefore, telomere shortening can be related to the risk
of cancer. Telomerase is a reverse transcriptase that uti‐
lizes an RNA template to add telomeric repeats to the 3'
ends of chromosomes. Active telomerase enzyme com‐
plex is composed solely of two protein components, telo‐
merase reverse transcriptase (TERT) and dyskerin, and
the telomerase RNA component. It protects the telomere
repeats from erosion, such as DNA damage or fusion
with neighboring chromosomes. Therefore, it reverses
telomere shortening. Telomerase is not expressed in nor‐
mal cells, but is frequently activated in most cancer cells
as well as stem cells [59, 60].

Cancer cells are immortal because activated telomer‐
ase allows them to survive much longer than normal cell.
Therefore, maintenance of telomere length is very impor‐
tant for immortalization of cancer cells. In 2013, point
mutations of TERT promoter were firstly found in mela‐
noma, and these somatic mutations enhanced promoter
activity by two- to four-fold, which could immortalize
cancer cells by maintaining telomere length [61-63].
Somatic mutations in the TERT promoter have been
identified in over 50 human cancers including thyroid
cancer [64]. TERT promoter mutation has been shown to
increase telomerase activity, which protects the telomere

repeats from erosion and maintain telomere length. Two
mutations in the TERT promoter (chr5: 1295228C>T,
termed C228T, and chr5: 1295250C>T, termed C250T)
were found in melanoma [61, 62].

The C228T and C250T mutations were detected in
follicular cell-derived thyroid cancer but were absent in
benign tumors and MTC [64-68]. These two mutations
occurred in a mutually exclusive manner. C228T is far
more dominant than C250T. The mutual exclusivity of
the two mutations suggests that either may function suf‐
ficiently to play an important role in thyroid tumorigene‐
sis although which one is more powerful oncogenically
has not been established [66, 69, 70]. In meta-analysis,
TERT promoter mutation was found in approximately
10% of PTC, 17% of FTC, and 40% of PDTC/ATC [70,
71]. Among PTC, it was more prevalent in tall cell var‐
iant than conventional or follicular variants. The TERT
promoter mutation has a significantly higher prevalence
in old age, large tumor, aggressive histology, advanced
stages, and distant metastasis [70, 71]. Why it is more
prevalent in old age? Thyroid epithelial cells from young
age are telomerase proficient with longer telomere,
whereas those from later are telomerase deficient with
shorter telomere. When it is attacked by oncogenic
events, it undergoes active proliferation with further ero‐
sion of its telomere. In that case, telomere dysfunction or
even telomere crisis occurs in old age because of its ini‐
tial shorter telomere and deficient telomerase. Telomere
crisis triggers genomic instability and finally induces
telomerase activation. TERT promoter mutation is thus
the consequence of genomic instability, whereas in turn
contributes to derepressing TERT transcription and telom‐
erase activation [67]. TERT promoter mutation has not
been found in childhood thyroid cancer, except one in
Saudi Arabia [72-75]. TERT promoter mutations were
rarely found in small-sized thyroid cancer. de Biase et al.
reported that TERT promoter mutations were found in
4.7% of the analyzed 431 papillary thyroid microcarcino‐
mas [76]. Yang et al. suggested that TERT promoter
mutation closely associated with non-radioiodine avidity
in distant metastatic DTC [77]. BRAF mutation has been
known to be associated with iodine intake, but TERT
promoter mutation is not [78]. In a multivariate compari‐
son between the PTC with and without anaplastic trans‐
formation, TERT promoter mutation was independently
associated with anaplastic transformation [79]. Collec‐
tively, PTC-derived ATCs are characterized by BRAF
and TERT promoter mutations, and these mutations
occur prior to anaplastic transformation. Of note, a PTC
harboring TERT promoter mutation is at higher risk for
anaplastic transformation. Interestingly, TERT mutations
in some studies were found to be more common in
tumors with BRAF mutation, which may suggest a
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possible synergistic interplay between MAPK pathway
activation and telomerase activation to promote aggres‐
sive tumor behavior [65, 66]. TERT promoter mutation
as well as BRAF mutation is known to be associated with
tumor recurrence, but second recurrence rate is signifi‐
cantly high in patients with TERT promoter mutation, not
BRAF mutation [80]. In a meta-analysis including 11
studies with 3,911 patients, PTC with concurrent BRAF
and TERT promoter mutations were associated with
increased tumor aggressiveness and had worst prognosis
in comparison with PTCs harboring BRAF or TERT pro‐
moter mutation alone [81]. Recently, Song et al. sug‐
gested the potential mechanism of synergistic effect of
BRAF and TERT promoter mutations on cancer progres‐
sion [82]. They explained that BRAF mutation activated
MAPK pathway, and it upregulated E-twenty six (ETS)
transcription factors. ETS factors bound to mutant TERT
promoter, and it increased TERT promoter expression.
The genotype of primary tumors has high concordance
with the genotype of lymph node metastasis. However,
distant metastases show enrichment in TERT promoter
mutations and a decrease in BRAF mutations. Therefore,
TERT promoter mutations may play a role in distant
metastases [83]. The TERT promoter mutation is also
associated with increased mortality in PTC as well as
other thyroid cancer. Liu et al. reported that PTC with
concurrent BRAF and TERT promoter mutations were
associated with increased cancer-specific mortality in
comparison with PTCs harboring BRAF or TERT pro‐
moter mutation alone (TERT/BRAF 22.7% vs. TERT
6.3% vs. BRAF 2.4% vs. wild type 0.6%) [84]. Kim et al.
evaluated the association of TERT promoter mutation
with survival of 409 thyroid cancer patients followed for
median 13 years [71]. They reported that the TERT pro‐
moter mutation was independently associated with
poorer overall survival in patients with DTC (10-year
survival, TERT promoter mutation 66% vs. wild type
98%) and in patients with PTC (74% vs. 99%). Concom‐
itant BRAF and TERT promoter mutations worsened the
survival rate of patients with PTC (10-year survival, both
mutations 83% vs. wild type 99%; HR 5.62). Recently,
Liu et al. reported that coexisting BRAF and TERT pro‐
moter mutations are strongly associated with the loss of
RAI avidity in recurrent PTC, showing a robust predic‐
tive value for failure of RAI treatment of PTC [85].
Thereafter, several studies have supported the synergistic
effects of concomitant BRAF and TERT promoter muta‐
tions [78, 86-88].

Clinical Application of BRAF and TERT
Promoter Mutations in Thyroid Cancer

A few of studies investigated the association of BRAF

and TERT promoter mutations with ultrasonography
(USG) findings. Hahn et al. suggested that PTC with no
mutation, with BRAF mutation alone, and with both
BRAF and TERT promoter mutations linearly increased
in the probability of displaying malignant USG features
[89]. They also reported that PTC with BRAF mutation
tended to show a nonparallel orientation (taller-than-
wide) shape, but this finding was marginally significant
(p = 0.055). There were no significant differences in
tumor echogenicity, tumor margin, and calcification
between BRAF mutation and wild type. Kim et al. report‐
ed that nonparallel orientation and microlobulated mar‐
gin were independent USG findings for predicting TERT
promoter mutation in PTC, especially patients over 50
years [90]. Therefore, they suggested that tests for TERT
promoter mutation should be done when physicians met
the unique USG findings (nonparallel orientation and
microlobulated margin) in thyroid nodular patients, espe‐
cially over 50 years.

Wang et al. reported an interesting observation in
2014 [91]. They identified TERT promoter mutation
(C228T) in 1 of 58 follicular adenoma postoperatively.
The patient with C228T mutated follicular adenoma later
developed a scar recurrence and died of FTC, whereas
none of the remaining 57 patients with follicular ade‐
noma had recurrence. Therefore, they concluded that
TERT promoter mutation might occur as an early genetic
event in thyroid follicular tumors that have not devel‐
oped malignant features on routine histopathological
workup. According to this finding, it is advisable to
develop a more aggressive treatment strategy when a
physician sees a patient diagnosed with follicular neo‐
plasm after histological examination but has a TERT pro‐
moter mutation. In my personal opinion, at least total
thyroidectomy should be done in this patient with TERT
promoter mutation, even though they were diagnosed
with follicular neoplasm by histologic examination.

Xu et al. also reported an interesting finding in 2017
[92]. They observed 15 cases with low-risk histology
with distant metastases at present. The majority was
encapsulated follicular variant of PTC with capsular
invasion only. Among 8 tumors that were subjected to
next-generation sequencing analysis, TERT promoter
mutation occurred at a higher rate than that seen in PTC
in general and may help explain their aggressive behav‐
ior. DTC with low-risk histologic features and distant
metastasis was a rare occurrence, accounting for less
than 3% of metastatic non-ATC. When meet DTC cases
with low-risk histology together with distant metastasis,
distant metastasis is almost always found at presentation.
These tumors might have a high probability to have
TERT promoter mutations.

In 2015, the American Thyroid Association introduced
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new therapeutic guidelines for DTC included the reclas‐
sification of cancer recurrence risk after initial treatment
[93]. The new dynamic risk stratification (DRS) system
can predict the structural recurrence with higher accu‐
racy than traditional predictive system based on clinico‐
pathologic information [94]. Kim et al. aimed to refine risk
prediction for structural recurrence and cancer-specific
mortality using the TERT promoter mutation in 357 DTC
patients without initial distant metastasis with long-term
follow-up (median 14 years) [95]. They developed a new
integrative prognostic system that incorporates TERT
promoter mutation into the recently proposed DRS sys‐
tem after initial therapy to better categorize and predict
outcomes. Cox regression was used to calculate adjusted
hazard ratios (AHRs) to derive AHR groups. AHR was
adjusted by age, sex, histologic type, multifocality, size,
extrathyroidal invasion, node metastasis & RAI treat‐
ment. They compared AHR group with pre-existing DRS
system and TNM classification using proportion of var‐
iance explained (PVE). Larger numbers of PVE suggest
better predictability. Patients in higher AHR groups were
significantly at higher risk of recurrence and cancer-
related death. They suggested that the PVE of new AHR
system to predict recurrence was higher than the pre-
existing DRS system (22.4% vs. 18.5%). PVE of new
AHR system to predict cancer-related death was also
higher than pre-existing TNM system (11.5% vs. 7.4%).

Therefore, they concluded that inclusion of TERT pro‐
moter mutation analysis with conventional clinicopatho‐
logical evaluation could lead to better prognostication
and management for individual patients.

Conclusion

Although the BRAF mutation has drawn much atten‐
tion, it cannot predict the clinical outcome of each
patient. It was no longer significant after the adjustment
with other prognostic factors. The isolated BRAF muta‐
tion may be a sensitive, but not specific marker of recur‐
rence and mortality. TERT promoter mutation has been
found in 10–20% of DTC and 40% of dedifferentiated
thyroid cancer. Although it is highly prevalent in old age,
large tumor, aggressive histology, advanced stages, and
distant metastasis, it is strongly associated with tumor
recurrence and mortality in thyroid cancer. Therefore,
inclusion of TERT promoter mutation analysis with con‐
ventional clinicopathological evaluation could lead to bet‐
ter prognostication and management for individual patients.
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