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Bragg diffraction of interacting Bose-Einstein condensates
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We develop a theoretical model to investigate the Bragg diffraction of an elongated interacting Bose-Einstein
condensate which is illuminated by a pair of laser beams. We find that the mean-field effect resulting from the
atomic interaction plays an important role in modifying the atomic coherence. Our results show that both the
repulsive and attractive interactions would dampen the momentum oscillation of the condensate; they establish
surprisingly distinguishable equilibria for the atomic occupations among different diffraction orders. We also
give an experimental proposal to observe this phenomenon.
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I. INTRODUCTION

Atom optics is a fast-evolving field with exciting dis-
coveries reported on a daily basis [1]. Among the many
highly developed optical elements in atom optics, Bragg
diffraction is a versatile technique for manipulating atomic
samples [2–7]. With the experimental realization of Bose-
Einstein condensates (BECs) in dilute atomic gases [8], a
unique platform is provided for us in exploring qualitatively
interesting quantum phenomena in various light-atom systems
and interaction processes [9–13]. The major advantage of
BECs is that essentially all the atoms in the condensate are
in perfect coherence, occupying the same quantum state and
behaving identically. Thus microscopic quantum phenomena
of the atom-field system could be magnified and measured
as macroscopic observables. With BECs, light diffraction and
scattering have been studied in various contexts, including
Bragg spectroscopy [14], condensate coherence analysis [15],
matter-wave amplification [16], superfluid-to-Mott insulator
phase transition [17], and so on.

In typical matter-wave diffraction experiments, the BECs
interact with standing-wave light, which is formed by a pair
of countergoing laser beams; matter-wave Bragg diffraction
in this case is characterized by periodical oscillations of
the momentum distribution of the diffracted matter wave in
a time domain, like Pendellösung oscillation. Recently, Li
et al. [18] performed an experiment in which an elongated
BEC was illuminated by a pair of countergoing laser beams
of very different intensities. A similar periodical momentum
oscillation and matter-wave self-imaging induced by atomic
center-of-mass motion were observed. However, with the pres-
ence of atomic interaction, the well-defined orders established
in the atom-field system would be greatly modified; interesting
behaviors of the matter-wave diffraction would be expected in
the atom-field system.

In this article, we study the Bragg diffraction of an elongated
BEC which is exposed to a pair of laser beams from the
same source. The article is organized as follows. In Sec. II,
a schematic description of the experimental setup under
consideration is provided. We give a theoretical model to
describe the coupling of the BEC with electromagnetic fields.
Then, in Sec. III, we establish a mean-field treatment for the
atomic interaction. In Sec. IV, a detailed discussion is carried
out to analyze the different atomic-occupation behaviors at

equilibrium for different atomic interactions predicted in
Sec. III. Finally, in Sec. V, we give a summary of our
results.

II. EXPERIMENTAL SETUP AND THEORETICAL MODEL

We consider an experiment in which an elongated BEC
prepared with 87Rb atoms is illuminated by a pair of coun-
tergoing laser beams of the same frequency ωp, as shown
in Fig. 1. The light fields are detuned far below the atomic
transition frequency ωa . Absorption and stimulated emission
of photons dominate the scattering processes and scatter the
atoms into discrete momentum states.

The Hamiltonian which describes the coupling of the Bose
condensate with the electromagnetic fields can be written

Ĥ =
∫

d3r�̂†(r)

[
− h̄2

2M
∇2 + Ê(r) · D̂(r)

]
�̂(r)

+ 1

2

∫
d3rd3r ′�̂†(r)�̂†(r ′)Vinter(r − r ′)�̂(r ′)�̂(r),

(1)

where �̂†(r), �̂(r) are the creation and annihilation field
operators of the condensate, respectively. Ê(r) is the electric
field operator of the electromagnetic field, and D̂(r) is the
atomic dipole moment operator. Vinter(r − r ′) is the atomic
interaction potential. The BEC here is treated as an ensemble
of two-level atoms condensed to their stationary ground states.

For an elongated BEC, its transverse freedom is frozen by
the tightly bounded trapping potential, and thus its transverse
modes are much harder to excite than the longitudinal modes.
Therefore, it is reasonable to assume that the transverse
freedom of the system stays in its ground state, and the
atom-field system can be reduced to a quasi-one-dimensional
one. When the condensate is exposed to the laser beams for
a sufficiently long time, it will get Bragg diffracted by the
lights. The photon absorption and emission can change the
momentum of an atom in the condensate by 2nh̄kL each time
(n = 0, ± 1, ± 2 . . .; kL is the wave vector of the forward
beam). This suggests that we should expand the atomic
field operators onto the discrete quasi-modes {|pn〉} which
correspond to the states of different diffraction orders with
central momenta at {2nh̄kL}. Even though such an expansion
is not rigorously complete mathematically, it is helpful for us to
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FIG. 1. (Color online) Schematic of the experimental setup. An
elongated condensate is illuminated by a pair of oppositely directed
laser beams with the same frequency.

extract the main information from the matter-wave diffraction.
With this simplification, the atomic field operator can be
expanded as

�̂(x) =
∑

n

〈x|pn〉b̂n, (2)

where we approximate 〈x|pn〉 with plane wave 〈x|pn〉 =
1√
V

exp[(i/h̄)pn · x], with pn = 2nh̄kL, and where V is the
volume of the system. The particle number of the atoms is
normalized to unity.

Plugging Eq. (2) into Eq. (1), we arrive at the effective
Hamiltonian

Ĥ =
∑

h̄ωkb
†
kbk + J

∑
{b†k+1bk + b

†
kbk+1}

+ 1

2

∑
k1,k2,q

U (q)b†k1+qb
†
k2−qbk1bk2 , (3)

where b
†
k and bk are the atomic creation and annihilation

operators for the kth momentum state, respectively; h̄ωm =
2(h̄mkL)2/M is the energy of the corresponding state, J =
−h̄G = −h̄�1�2/� is the hopping energy for one atom
getting scattered from one momentum state to the adjacent
state, and G = �1�2/� is the two-photon Rabi frequency
with �1,�2 being the Rabi frequencies of the forward and
backward beams, respectively. Here we do not impose strict
constraints on the system that the pump fields should take
exactly equal intensity. A slight difference in the laser powers
can be permitted so that the uneven superradiance-induced
asymmetry in the matter-wave scattering would be negligible.
The excited internal state is adiabatically eliminated, which
is justified for large detuning, � = ωa − ωp. U (q) is the
Fourier transform of the interatomic potential, and the atomic
interaction conserves the total momentum of the particles
participating in collision. The indexes k,q,k1,k2 run over all
the discrete momentum states.

III. MEAN-FIELD EFFECT OF ATOMIC INTERACTION

In a real matter-wave diffraction experiment, the mean-field
effect resulting from the atomic interaction would influence the
momentum distribution of the matter wave among different
diffraction orders. Here we treat the atomic ensembles com-
posed of atoms within different diffraction orders as the basic
elements interacting with each other, neglecting their structural
details. This is a great simplification; and such treatment can
help us in understanding the dynamical behavior of diffracted
matter waves.

Utilizing the simplicity we introduced in the previous
section, we can further simplify the last interaction term
in Eq. (3) by rearranging the operators in the product and
transforming one pair of creation and annihilation operators

b
†
i bj via introducing the fluctuation term �(b†i bj ) = b

†
i bj −

〈b†i bj 〉. Then we are left with∑
k1,k2,q

U (q)b†k1+qb
†
k2−qbk1bk2

≈
∑

k1,k2,q

U (q)
[�(

b
†
k1+qbk2

)〈
b
†
k2−qbk1

〉

+ 〈
b
†
k1+qbk2

〉�(
b
†
k2−qbk1

) + 〈
b
†
k1+qbk1

〉�(
b
†
k2−qbk2

)
+�(

b
†
k1+qbk1

)〈
b
†
k2−qbk2

〉]
, (4)

in which we have omitted the c-number products on the
right side and have neglected high-order quantum fluctuations.
The shorthand 〈. . .〉 signifies taking the average over a
state of the atom-field system at some time. Thus we have
〈b†i bj 〉 = 〈b†i bi〉δi,j . Plugging into Eq. (4) and excluding the
self-interacting term, the interacting term [Eq. (4)] can be
reduced to

∑
k,q �=0{U (q) + U (0)}〈nk+q〉nk , with nk = b

†
kbk

being the atomic number operator of the kth momentum state.
Here we have assumed that the interatomic potential is an even
function of q. This is always true, if the atomic interaction
is isotropic in space, for example, if the Coulomb potential
UCoulomb(q) = 4πe2/q2 and the δ potential δ(q) = constant.

Finally, we arrive at an effective Hamiltonian

Ĥ =
∑

h̄ω̃b
†
kbk + J

∑
b
†
k+1bk + J

∑
b
†
kbk+1. (5)

The energy spectrum of the atoms is modified by the atomic
interaction with h̄ω̃k = h̄ωk + ∑

q �=0[U (q) + U (0)]〈nk+q〉.
Changing the Hamiltonian [Eq. (5)] into the interaction picture,
and using the probability amplitude method mentioned in [19],
the evolution equation of the probability magnitude for the nth
diffraction order of the matter wave can be obtained:

�̇n(t) = −i[Ge−iδ̃−t�n−1 + Ge−iδ̃+t�n+1], (6)

where the operators {bk} are replaced with c numbers
{�k}, δ̃± = ω̃n±1−ω̃n = ±16πνr (n ± 1

2 ) + 1/h̄
∑

q �=0[U (q)+
U (0)][〈nn+q±1〉 − 〈nn+q〉]; νr = h̄k2

L/(4πM) is the atomic
one-photon recoil frequency, and �n is a function of the pulse
duration t .

To see in detail how the atomic interaction can affect
the matter-wave diffraction, we introduce the typical contact
interaction

U (qn) = U0 = 4πh̄2ρa

M
. (7)

This is the Fourier transform of a short-range interaction taking
the form of a Dirac δ function in space; ρ is the particle density
of the condensate. It is directly related to the strength of the
atomic interaction, where a is the s-wave scattering length.

If the density of the condensate is very low, the atomic inter-
action can be neglected according to Eq. (7). Taking U (q) = 0,
the evolution equation [Eq. (6)] for the nth diffraction order
would then read as follows:

�̇n(t) = −i[Ge−iδ−t�n−1 + Ge−iδ+t�n+1], (8)

where δ± = ±16πνr (n ± 1/2). This equation is used by Li
et al. [18] in studying matter-wave self-imaging for the
noninteracting BEC.
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FIG. 2. (Color online) Probabilities of nth-order diffraction as
a function of pulse duration for the interacting and noninteracting
BECs. The two-photon Rabi frequency of the pulse fields is
chosen as G/νr = 23; νr = 3.77kHz. (a) Bragg diffraction for the
noninteracting BEC. Black solid curve, n = 0; red dashed curve,
n = ±1; blue dash-dotted curve, n = ±2; orange solid curve, n = ±3
(almost not visible). (b) Matter-wave diffraction with the presence of
repulsive atomic interaction. The interaction strength is chosen as
U0/(h̄νr ) = 1.0. [Line styles are same as those in (a)].

In the Bragg regime with long pulse durations, the atomic
center-of-mass motion contributes greatly to the matter-wave
diffraction. However, in general, Eq. (6) cannot be solved
analytically. Figure 2 shows the numerical simulations for
the probability amplitudes of the first few order diffractions
for the interacting and noninteracting BECs. In Fig. 2(a)
(the noninteracting case), the momentum distribution of the
diffracted matter-wave exhibits a steady oscillation in the
time domain. At t ≈ 26 µs, amplitudes of all the nonzero-th
orders get to their minima simultaneously; a full matter-wave
self-imaging is achieved. Figure 2(b) shows the momentum
distribution with a repulsive atomic interaction at present,
U0/(h̄νr ) = 1.0. The first matter-wave self-imaging is still
observable. However, the collective momentum oscillation
is dampened, implying that the atomic coherence within the
condensate is weakened by the atomic interaction. This agrees
with our understanding that interparticle interaction tends to
smear out the collective fine orders in the many-body systems.

With the interaction strength increasing, the collective
momentum oscillation of the system dies out more quickly.
Figure 3(a) shows the momentum distribution of the first few
order diffractions at a higher repulsive interaction strength,
U0/(h̄νr ) = 4.0. It can be seen that matter-wave self-imaging

FIG. 3. (Color online) Probabilities of nth-order diffraction as a
function of pulse duration for interacting BECs. The two-photon Rabi
frequency is the same as that in Fig. 2. (a) Matter-wave diffraction
with repulsive atomic interaction: U0/(h̄νr ) = 4.0. (b) Matter-wave
diffraction with attractive interaction: U0/(h̄νr ) = −1.0. (c) Matter-
wave diffraction with attractive interaction: U0/(h̄νr ) = −4.0. [Line
styles are the same as those in Fig. 2(a)].

is abandoned. In Figs. 3(b) and 3(c), we show the momentum
distribution of the scattered matter wave with attractive
interactions. Like the cases for repulsive interactions, the
collective momentum oscillation of the diffracted matter wave
is suppressed. Furthermore, comparing the results in Figs. 3(a)
and 3(c), we find that the repulsive interaction tends to make
the n = 0, ± 1 diffraction orders become equally occupied,
while the attractive interaction would establish an equilibrium
in which the atomic numbers on n = 0, ± 1 orders deviate
greatly from each other. We will dive into the physics of such
interesting phenomena in the following section.

IV. DISCUSSION

Introducing the reduced interaction strength Rin =
U0/(h̄νr ), we define the contrast ratio of nth-order diffrac-
tion as Cn(t) = |(ρmax

n − ρmin
n )/(ρmax

n + ρmin
n )|, with ρmax

n ,ρmin
n
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FIG. 4. (Color online) Contrast ratios of 0th-order diffraction for
different kinds of interactions. The reduced interaction strength Rin =
U0/(h̄νr ) is chosen to be ±1.0 and ±4.0, respectively. For Rin > 0,
the interaction is repulsive; for Rin < 0, the interaction is attractive.

being the two adjacent probability extrema in the time domain.
Figure 4 shows the contrast ratio for the zeroth-order diffrac-
tion at different interaction strengths. We find that the contrast
ratio for the repulsive interaction is larger and decreases more
slowly than that for the attractive one of the same strength,
whereas in the noninteracting cases, the atoms in the conden-
sate are in perfect coherence with each other and the contrast
ratio for the zeroth order remains at a high constant value
[this is implied in Fig. 2(a)]. Thus the repulsive interaction can
maintain the atomic coherence longer than the attractive one.

The physics behind the phenomena mentioned previously
can be tracked by analyzing the dynamical behaviors of
the atoms. When the matter wave is getting scattered, the
atoms within different diffraction orders will feel different
forces, depending on the particle number distribution among
different momentum states. The atomic occupation difference
at equilibrium, as shown in Figs. 3(a) and 3(c) for the repulsive
and attractive interactions, respectively, can be understood
in such a way: In the matter-wave diffraction processes,
the hopping term and the two-body interacting term in the
Hamiltonian [Eq. (3)] compete with each other. We treat the
atoms in each momentum state as a whole, so by Newton’s
third law, the different atomic ensembles would mutually exert
force on each other. For the repulsive interaction, atoms exert
repulsive force on each another. The condensate is initially
prepared in the stationary state (i.e., zeroth momentum state);
once there is a single atom getting scattered to the +1th or
−1th momentum state, it will feel a greater repulsive force,
F01/N±1, than the force felt by a single atom in the original
stationary state, F10/N0, because at this time, the particle
number in the zeroth momentum state, N0, is much greater
than that in the ±1th momentum states, N±1; here Fij is the
mutual force exerted by the ensemble of atoms from the ith
diffraction order to the ensemble of atoms in the j th order,
|Fij | = |Fji |. Such a force will prevent the hopped atom from
going back to its original state. This situation will not change
until the 0, ± 1th momentum states get equally occupied; at
that time, the repulsive force each particle feels in these states
is nearly the same; dynamical balance is achieved. This is the
reason why the atoms with repulsive interaction tend to equally

occupy the 0, ± 1th diffraction orders at equilibrium, whereas
for the attractive interaction, the situation is similar to that in
the repulsive case, except that the forces between the atoms are
attractive. When a small number of atoms are scattered from
the zeroth momentum state to the ±1th diffraction orders, each
will feel a force trying to pull them back to their original states;
this force is greater than for a single atom staying in the zeroth
momentum state, so the hopped atoms tend to go back to their
original stationary states. Thus, at last, the hopping mechanism
and the pull-back effect resulting from the attractive atomic
interaction will achieve a dynamical balance at which the
zeroth diffraction order is better occupied. Thus we find that
compared to the attractive interaction, the repulsive interaction
is less in conflict with the atomic transportation between differ-
ent diffraction orders. Therefore the strength of the momentum
oscillation is less weakened by the repulsive force, which leads
to a higher contrast ratio (i.e., a better atomic coherence).

The detection of the mean-field effect from the atomic
interaction can be broken down into the following stages:
First, one can prepare a BEC of 87Rb atoms in the |1,1〉
state trapped in an optical dipole trap, using a similar method
adopted by Marte et al. [20]. Second, the BEC is illuminated
by a pair of far-red-detuned laser beams from the same source
as shown in Fig. 1 (� = −1.5 GHz; here we use the D2 line for
the proposed experiment, and the laser power can be chosen
as IR = IL ≈ 17.6 mW/cm2, νr = 3.77 kHz, λ = 780 nm).
One can adjust the strength of the atomic interaction by
changing the particle density of the condensate. Before the
pulse fields are turned on, let the condensate expand for
different durations (e.g., 1 ms, 2 ms, . . . ; the particle number
density can be measured experimentally at the same condition
for each time of matter-wave expansion). Another way to
change the atomic interaction strength is to use the Feshbach
resonance [21], in which a magnetic field is applied to the
system to alter the atomic s-wave scattering length. The
broadest resonance for the 87Rb atoms in the |1,1〉 state is
centered around B0 = 1007 G, with a width �B = 170 mG.
At a typical particle number density of 1014/cm3 [22], when
B = B0 − 69.2 mG, the corresponding interaction strength
is Rin ≈ 4νr ; when B = B0 + 38.1 mG, the corresponding
interaction strength is Rin = −4νr . The applied magnetic field
should not be too close to the resonance point to avoid the
interaction strength fluctuation. All through the experiment,
the magnetic field should be ramped adiabatically, except that
when the interaction is changed from repulsive to attractive,
the magnetic field should be scanned quickly through the
resonance point to avoid giant atomic loss. After the pulse field
has been turned on for different durations (0.5,1.0,1.5, . . . µs),
the trapping field and the applied magnetic field should be
turned off quickly to let the BEC freely expand for about 30 ms.
The momentum distribution of the diffracted matter wave can
be measured by optical imaging. Repeating these steps, full
information on the matter-wave momentum distribution in the
time domain can be obtained.

V. CONCLUSION

We have investigated the Bragg diffraction of an elongated
BEC exposed to a pair of laser beams from the same source.
It is found that the full-amplitude momentum oscillation of
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the diffracted matter wave in a time domain, which should be
established within a noninteracting BEC, would be dampened
by the atomic interactions. The atomic interaction sensitively
modifies the atomic coherence of the condensate, which
provides us with a brilliant laboratory with tunable atomic
coherence for further investigations of light-atom systems. It
is further found that the repulsive and attractive interactions
would establish surprisingly distinguishable equilibria for the
atomic occupations among different diffraction orders; the
repulsive interaction tends to make the n = 0, ± 1 diffraction
orders become equally occupied, while the attractive inter-
action would establish an equilibrium at which the atomic
numbers at n = 0, ± 1 orders deviate from each other. This
interesting phenomenon can help us in enabling investigations
in quantum many-body systems. The notions and methods

demonstrated here have great potential in the fields of atom
optics, atomic interferometers, and precision measurements.
They can be extended to investigate other physical systems
with complicated interactions.
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