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ABSTRACT

We propose to use onion-like resonators to approximate spherically symmetric Bragg resonators. Such Bragg
onion resonators have been realized in silicon based material systems. We develop an analytical theory that
calculates the resonant frequencies and the quality factors of the onion cavity modes. We demonstrate that it is
possible to achieve Q factors exceeding 5 × 106 in a cavity of a few microns in dimension. The onion resonators
allow full control over the spontaneous emission process, which may lead to the thresholdless lasers. The onion
resonators may also find many other applications in cavity quantum electrodynamics.
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1. INTRODUCTION

It has been known for some time that spontaneous emission can be significantly modified by the presence of an
optical microcavity.1 With advancements in microfabrication techniques, there has been considerable interest in
creating an optical cavity with a small modal volume and a large Q factor. In such a cavity, it is possible to
funnel a significant portion of the spontaneous emission into a desired cavity mode, which can be characterized by
the spontaneous emission factor β, defined as the fraction of spontaneous emission radiated into a given optical
mode. In the extreme case of β approaching unity, we can achieve “thresholdless” lasing in such a cavity.2

An optical cavity with a large spontaneous emission factor β is also critical for realizing single photon devices.3

Furthermore, an optical cavity that combines a small modal volume with a large Q factor, which can significantly
enhance the coupling between the atom and the cavity mode, is also of great interest to the community of cavity
quantum electrodynamics (QED).4

Some potential candidates in the literature that can be useful for spontaneous emission engineering are silica
microspheres,5 semiconductor microdisks,6 semiconductor pillars,3 and defect cavities in photonic crystals.7 The
whispering-gallery modes in silica microspheres can achieve extremely high quality factors of up to 109. However,
the radius of the silica microsphere is limited to be above 10µm, and can not be decreased much further without
suffering a rapidly decreasing cavity Q factor. In the case of semiconductor micropillars or photonic crystal
defect cavities, the modal volume can become very small (of the order of (λ/n)3). Yet fabrication imprecision
would limit the Q factors to a much lower value of a few thousands.3 Recently, a few theoretical discussions
of Bragg resonators with perfect spherical symmetry have been presented.8–10 Such resonators, however, are
difficult to realize. In this paper, we propose to approximate such spherically symmetric Bragg resonators with
an onion-like geometry (as shown in Fig. 1). In following sections, we shall demonstrate that the Bragg onion
resonators can combine a high Q factor with a cavity spatial dimension of a few microns, and as a result, allows
dramatic modification of the spontaneous emission process in such cavities.

As shown in Fig. 1, the Bragg onion resonator consists of a spherical low index core (possibly air) surrounded
by alternating concentric dielectric layers with different refractive indices. We notice that the Bragg onion
resonator can be regarded as a three-dimensional analog of a Bragg fiber, which was first proposed in 1978,11

and has recently attracted much attention.12–14
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Figure 1. Schematics of a Bragg onion resonator.

The Bragg onion resonators have been realized in silicon based materials. A scanning electron microscope
(SEM) image of a Bragg onion resonator is shown in Fig. 2. The fabrication process of the Bragg onion resonator
begins with the introduction of a cylindrical opening in a silicon wafer, which also defines the onion stem in Fig.
1. Subsequently, isotropic etching is used to create a hollow spherical cavity at the end of the stem section.
Finally, with chemical vapor deposition, the Bragg mirror stacks can be constructed by the deposition of Si from
silane, Si3N4 from dichlorosilane and ammonia, and SiO2 from the thermal oxidation of silicon. A particular
appealing advantage of the onion design is that we can introduce a wide range of light emitters into the hollow
cavity. Additionally, by choosing a Bragg cladding composed of Si/SiO2 pairs, which have a large index contrast,
we can construct an omnidirectional reflector cladding, which is important for engineering spontaneous emission,
as we shall see later.

2. TRANSFER MATRIX FORMALISM

In the following analysis, we assume a time dependence of e−iωt and allow the frequency ω to be a complex
number, whose imaginary part accounts for the modal loss. In spherical coordinates, we can express the general
solution to the Maxwell equations in the nth concentric dielectric layer as a superposition of various multipole
components, each characterized by the angular quantum number l and m:15

�H =
∑

l

l∑

m=−l

[
fl(knr) �Xlm − i

kn
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]
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where εn is the relative dielectric constant of the nth layer, Zn =
√
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√
εnω/c. The angular dependence of the solution is described by �Xlm:
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+ êφ

∂

∂θ

]
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where Ylm(θ, φ) is the (l,m) spherical harmonic. Since �Xlm has no êr component, the first term on the right
hand side of Eq. (1) and Eq. (2) represents the transverse magnetic (TM) component, whereas the second term
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Figure 2. (a) A SEM image of an air core Bragg onion resonator with Si/SiO2 cladding pairs. (b) A SEM image of the
onion resonator cladding, which corresponds to the region within the dashed circle in (a).

represents the transverse electric (TE) component. In Eqs. (1) and (2), the radial dependence of the solution is
given by15

fl(knr) = Anh
(1)
l (knr) + Bnh

(2)
l (knr) , (4)

gl(knr) = Cnh
(1)
l (knr) + Dnh

(2)
l (knr) , (5)

where h
(1)
l and h

(2)
l are, respectively, the first and second kind of spherical Hankel function. The coefficients An,

Bn, Cn, and Dn are constant within the nth dielectric layer. The coefficients in the n + 1th layer can be related
to those in the nth layer via the continuity of Eθ, Eφ, Hθ, and Hφ at r = rn, the interface between the adjacent
layers . Combining Eqs. (1) to (5) and applying the orthogonality of the spherical harmonics, we find that for a
given multipole component, the following matrix relation holds
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From Eq. (6) and Eq. (7) it follows that: (i) multipole components with different l and m are independent of
each other, a direct result of the spherical symmetry of the onion structure, and (ii) TE components and TM
components decouple from each other. Consequently, we can denote various optical modes in the onion structure
as TElm or TMlm, according to their angular quantum number l and m, and the polarization state (i.e. TE or
TM).

For a Bragg onion resonator with a finite number of cladding layers, we can apply Eqs. (6) and (7) iteratively
to relate the coefficients within the onion core (Aco, Bco, Cco, and Dco) to those outside of the onion (Aout, Bout,
Cout, and Dout). For a TM mode, this leads to

[
Aout

Bout

]
=

[
T11 T12

T21 T22

] [
Aco

Bco

]
. (8)

The onion cavity modes should satisfy the following boundary conditions: (i) the core electromagnetic must be
finite, therefore Aco = Bco and Cco = Dco, (ii) only the outgoing wave exists outside of the onion, which gives
Bout = 0 and Dout = 0. Substituting these two condition into Eq. (8), we find that

T21 + T22 = 0 , (9)

must be satisfied for the onion cavity mode. Thus the search for the resonant mode of the onion cavity is
mathematically equivalent to finding the complex ω that satisfies Eq. (9). The real part of the solution is the
modal frequency, and the imaginary part gives the cavity Q factor via Q = Re(ω)/[2Im(ω)].

One immediate result of this theoretical framework is that for any given angular momentum l, there are
2l+1 degenerate high Q modes in the onion cavity, with not only identical resonant frequency but also the same
quality factor. This follows directly from the full SO(3) rotational symmetry of the onion structure. Another
interesting result is that the lowest order of “angular momentum” allowed is l = 1 rather than l = 0, since
Y00(θ, φ) is a constant, which leads to a null vector �X00 (see Eq. (3)). This comes from the fact that the lowest
order of electromagnetic radiation is dipole radiation.

3. RESULTS AND DISCUSSIONS

We now apply this formalism to investigate the modal spectrum of a specific onion structure. Our example has
an air core (radius rco = 3.47µm) surrounded by 8 Bragg cladding pairs. Each cladding pair is composed of
a polysilicon layer with refractive index nSi = 3.5 and thickness LSi = 0.111µm, followed by a layer of SiO2

with refractive index nSiO2 = 1.5 and thickness LSiO2 = 0.258µm. In this design, the cladding layers form
quarter wave stack at λ ≈ 1.55µm. In Fig. (3a) and (3b), we show the quality factor of the onion modes with
l ≤ 7, in the wavelength range of 1.35µm ≤ λ ≤ 1.70µm. Notice that with only 8 pairs of Bragg cladding
layers, we can achieve cavity Q values exceeding 5 × 106. In Fig. (3c), we plot the Q factors of TM20 modes
as a function of Bragg cladding pair number Nclad and find a excellent exponential dependence of Q ∝ DNclad .
Fitting the numerical results, we find a constant of DTM20 = 5.41 for the TM20 mode. This factor is very close
to (nSi/nSiO2)

2, which equals to 5.44. This similarity can be attributed to the fact that the “leakage” through
the quarter wave stack of the onion cladding is reduced by a factor of (nSi/nSiO2)

2 with each additional Si/SiO2

pair,16 which improves the quality factor by the same amount.

In Fig. 4, we show the radial dependence of the TE50 and TE70 modes. For both modes, we observe
that the electric field is zero at the air-Si interface, similar to the case of a hollow spherical metallic cavity.
This is not a coincidence, since the onion cladding forms an omnidirectional reflector around λ = 1.55µm
and behaves like a perfect metal.17 The bandgap of the onion cladding layer is shown in Fig. 5, where the
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Figure 3. (a), (b) Wavelength and quality factor of the onion resonator modes. (c) Quality factor of the TM20 modes
as a function of the Bragg cladding pair number. The circles represents the analytical results, whereas the solid lines are
given by the numerical fit of Q ∝ DNclad .

existence of an omnidirectional bandgap is clearly shown. The frequency range of the omnidirectional gap is
1.23µm < λ < 1.62µm.

There is, however, an important difference between the metallic cavity and the omnidirectional cavity: metals
have finite conductivity. For a hollow spherical metallic cavity with a finite skin depth δ and core radius rco, the
cavity Q factor is roughly given by rco/δ.15 If we use rco = 3.47µm and take δ to be that of gold (about a few
nanometers in the infrared range), we find that the Q factor of a metallic cavity is limited to about 1000, much
less than what is possible in a dielectric onion cavity. From another point of view, if we take the onion cavity
Q to be 3 × 106 and back-calculate the effective skin depth of the Bragg cladding, we find that it behaves as a
metallic material with the skin depth of 0.01Å, far less than the radius of an atom! A further consequence of the
perfect metal analogy is that the Bragg cladding completely isolates the onion core from the outside free space,
and can greatly enhance or inhibit the spontaneous emission, depending on whether the light emitter is on or
off the cavity resonance.

As shown in Fig. 2, the Bragg onion resonator has one stem. The presence of the stem breaks the spherical
symmetry and lifts the degeneracy of the cavity modes. To characterize the impact of the stems on the cavity
loss, we introduce the quantity Qstem, defined as ωEcavity/Pstem, where Ecavity is the electromagnetic energy
stored in the onion core and Pstem is the power leakage through the onion stem. If Qstem is much larger than
the Q factor of the onion without the stem, we can ignore the presence of the stem in Fig. 1 and Fig. 2, and
treat it as a perfectly spherical onion. Whereas if the opposite is true, then the cavity loss is dominated by the
photon “leakage” through the onion stem.
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Figure 4. The radial dependence of the TE10 and TE50 field.

From the previous analysis, we can picture the optical fields within the onion core as composed of an incoming
and an outgoing spherical wave with equal amplitude but in opposite directions, whose angular radiation pattern
is given by | �Xlm(θ, φ)|2.15 For onions with core size comparable to the photon wavelength, we can estimate
Qstem as 1/[| �Xlm(θ0, φ)|2∆Ωstem], where θ0 is defined in Fig. 1 and ∆Ωstem is the solid angle spanned by the
stems. From this expression, we find that among the “dipole” modes (l = 1), the one with m = 0 has the lowest
stem loss, with Qstem = 4/(3θ4

0) (assuming θ0 � π/2). Whereas for l ≥ 2, those with m = ±l have the highest
Qstem, which is given by

Qstem =
(l + 1)(2ll!)2

(2l + 1)! l
1

θ2l
0

. (10)

Assuming a stem radius of 0.5µm, a core radius of 3.47µm, we find that for the resonant modes with l > 4 and
m = ±l, the Qstem exceeds 107, which means that the presence of the onion stem has little impact on the cavity
Q factors.

A particular appealing advantage of the onion structure shown in Fig. 1 and Fig. 2 is that we can introduce
a wide range of light emitters, such as gas-phase neutral atoms and organic molecules, into the onion core. If
the light emission wavelength coincides with the cavity resonance, the light emitters will experience enhanced
spontaneous emission. Under some general assumptions, it can be shown that the spontaneous emission rate
into the cavity mode γsp

cav can be approximated by18

γsp
cav =

[ 1
4π2

λ3

Vcav

1
1
Q + γa

ω

]
γsp

free , (11)

where λ is the optical wavelength, ω is the optical frequency, Vcav is the cavity volume, γa is the dephasing rate
of the light emitter, and γsp

free is the free space spontaneous emission rate. In the regime of “field dominated
decay” (γa � ω/Q, such as the case of atomic transition), the onion structure analyzed in Fig. 3 can lead to
a 3000-fold cavity enhancement of the spontaneous emission rate and, correspondingly, a spontaneous emission
factor approaching unity. In contrast, the state of the art in spontaneous emission enhancement is about a factor
of 5 in the optical frequency range.3, 6 If, on the other hand, the light emission wavelength is outside any of
the cavity resonances, the only other possible modes are the cladding modes, which are mainly confined in the
onion cladding via total internal reflection and have little intensity in the core region. Consequently, a large
spontaneous emission inhibition would occur in this off-resonance case. In this aspect, the onion cavity resembles
more a defect cavity in a three-dimensional photonic crystal,19 which can also significantly enhance or inhibit
spontaneous emission. However, the onion structures enjoy considerable advantage in its design simplicity and
a fabrication process that is relatively easier and more controllable.
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Figure 5. Band diagram of the Si/SiO2 cladding layers of the Bragg onion resonator. The parameters of the cladding
layers correspond to the values given in the text. The shaded region indicates the existence of propagating modes in
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omnidirectional bandgap. The parameter a is the thickness of the Si/SiO2 cladding pair.
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