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Bragg Reflection and Conversion Between Helical
Bloch Modes in Chiral Three-Core

Photonic Crystal Fiber
Sébastien Loranger , Yang Chen, Paul Roth, Michael H. Frosz , Gordon K. L. Wong , and Philip St. J. Russell

Abstract—Optical fiber modes carrying orbital angular mo-
mentum (OAM) have many applications, for example in mode-
division-multiplexing for optical communications. The natural
guided modes of N-fold rotationally symmetric optical fibers, such
as most photonic crystal fibers, are helical Bloch modes (HBMs).
HBMs consist of a superposition of azimuthal harmonics (order m)

of order ℓ
(m)
A = ℓ

(0)
A + mN . When such fibers are twisted, these

modes become circularly and azimuthally birefringent, that is to

say HBMs with equal and opposite values of ℓ
(0)
A and spin s are

non-degenerate. In this article we report the use of Bragg mirrors
to reflect and convert HBMs in a twisted three-core photonic crystal
fiber, and show that by writing a tilted fiber Bragg grating (FBG),
reflection between HBMs of different orders becomes possible, with
high wavelength-selectivity. We measure the near-field phase and
amplitude distribution of the reflected HBMs interferometrically,
and demonstrate good agreement with theory. This new type of
FBG has potential applications in fiber lasers, sensing, quantum
optics, and in any situation where creation, conversion, and reflec-
tion of OAM-carrying modes is required.

Index Terms—Fiber bragg gratings, helical bloch modes, orbital
angular momentum, twisted fiber.

I. INTRODUCTION

L
AGUERRE or Hermite Gaussian beams with different or-
ders of orbital angular momentum (OAM) can be superim-

posed and used as orthogonal channels for transmitting quantum
and classical information [1]. This has been explored both in
free-space [2] and in optical fibers with circularly symmetric
cylindrical or annular cores [3]. In recent years it has been shown
that optical fibers with N-fold rotationally symmetric structures
(such as most photonic crystal fibers - PCFs) support helical

Manuscript received January 8, 2020; revised February 18, 2020 and March
24, 2020; accepted March 26, 2020. Date of publication April 2, 2020; date of
current version July 23, 2020. This work was supported by the Max-Planck-
Gesellschaft (MPG). (Corresponding author: Sébastien Loranger.)

Sébastien Loranger, Yang Chen, Paul Roth, Michael H. Frosz, and Gor-
don K. L. Wong are with the Max Planck Institute for the Science of Light, 91058
Erlangen, Germany (e-mail: sebastien.loranger@mpl.mpg.de; yang.chen@mpl.
mpg.de; paul.roth@mpl.mpg.de; michael.frosz@mpl.mpg.de; gordon.wong@
mpl.mpg.de).

Philip St. J. Russell is with the Max Planck Institute for the Science
of Light, 91058 Erlangen, Germany, and also with Department of Physics,
Friedrich-Alexander-Universität, 91058 Erlangen, Germany (e-mail: philip.
russell@mpl.mpg.de).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2020.2984464

Bloch modes (HBMs) that consist of superpositions of Bessel
beams with azimuthal order ℓA

(m) = ℓA
(0) + mN where m is an

integer [4]. These may be viewed as HBM harmonics that are
coupled together by Bragg scattering in the azimuthally periodic
fiber structure. When such a PCF is produced with a permanent
helical twist (for example by spinning the preform during the
draw), translational symmetry is broken and left- and right-
handed versions of the same HBM become non-degenerate.
Twisted PCFs are also circularly birefringent [5], making them
of interest in Faraday-effect current sensing when preservation
of circular polarization state is highly desirable [6]. They can
also provide strong circular dichroism [4], allow generation of
broad-band circularly polarized supercontinuum light [7] and
even permit guidance of light in the absence of any structural
core [8], [9].

Although OAM modes can be readily synthesized and inter-
converted in free space, this is not so easy to achieve directly in
fiber, useful though this would be in many applications, such as
mode-division-multiplexing in telecommunications [2], [3].

Here we report that a fiber Bragg grating (FBG), inscribed at a
small angle to the fiber axis, permits narrow-band reflection and
interconversion of OAM-carrying HBMs in a twisted three-core
PCF (preliminary results were presented in [10]). There have
been previous reports of FBGs written into twisted single-mode
fiber (SMF) [11], [12], when the accidental non-centricity of the
core causes the FBG to be sampled periodically — a superlattice
effect that is related to the results reported here, although SMF
does not support OAM-carrying HBMs. Untilted FBGs written
in untwisted multi-mode fibers can reflect OAM [13], although
the lack of chirality means that it is not possible to distinguish
between modes with equal and opposite OAM order. We report
here that a tilted FBG written into three-core twisted PCF
permits wavelength-selective interconversion between HBMs of
arbitrary order.

II. THEORY

In this section we describe the characteristics of the backward
and forward HBMs in a twisted three-fold rotationally symmet-
ric fiber consisting of three cores arranged symmetrically around
the axis (Fig. 1a) and analyze their reflection at a slanted FBG.
This new model clarifies the preliminary results in [10], where
the origins of the observed reflection peaks were not yet well
understood.
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Fig. 1. (a) 3D sketch of the twisted 3-core PCF. (b) Cylindrical coordinate
system used in the theory, depicting the radial and azimuthal components of the
electric field in each core. (c) Side-view of the core structure (in gray) with the
grating planes (slanted at a small angle γ) marked in.

A. The HBMs

It is known that the HBMs in N-fold symmetric twisted PCFs
are almost perfectly circularly polarized [4], which permits us
to write the monochromatic field phasors of forward (+) and
backward (−) HBMs in the general form:

E+(ρ, φ, z) =
(1,+is+)√

2
a+(ρ, φ− αz)exp

(

iβ+z + iℓ
(0)
A+φ

)

E−(ρ, φ, z)=
(1,−is−)√

2
a−(ρ, φ− αz)exp

(

−iβ+z − iℓ
(0)
A+φ

)

(1)

with E± = (eρ, eφ)± expressed in cylindrical (ρ, φ) compo-
nents, where α is the twist rate in rad/m, si = ±1 the spin and
the time variation e−iωt is assumed. Note that the expressions in
(1) satisfy the requirement that E+ and E− for the same mode
(i.e., s+ = s− and ℓA+

(0) = ℓA−(0)) are complex conjugates. The
transverse field profile ai (for the i-th HBM, whether forward
(+) or backward (−)) is azimuthally periodic, following the twist
of the fiber and sharing its N-fold symmetry at all points along
the axis. It can be expressed as a Fourier series:

ai(ρ, φ− αz) = ai(ρ, φ− αz + 2π/N)

=
∑

m

a
(m)
i (ρ)eimN(φ−αz). (2)

The integer ℓ
(0)
Ai is the azimuthal order of the m = 0 harmonic

of the i-th HBM, or the number of complete periods of phase
progression around the azimuth, for transverse field compo-
nents evaluated in cylindrical coordinates (ρ, φ), as sketched
in Fig. 1(b). Equations (1) and (2) show that the m-th harmonic

in the Fourier series has azimuthal order ℓ
(m)
Ai = ℓ

(0)
Ai +mN .

The propagation constant βi of the m = 0 harmonic of the
i-th HBM can be expressed, to a good approximation, in the
analytical form [4]:

β(ℓ
(0)
Ai ) = βi = β0

√

1 + α2ρ2 − αℓ
(0)
Ai

+ 2κC cos

(

2π

N
(ℓ

(0)
Ai − si − β0αρ

2)

)

(3)

where κC is the coupling constant between neighboring cores,
β0 = 2πn0/λ is the propagation constant and n0 the effective

Fig. 2. Dispersion diagram of the modes in the system in the forward and
backward direction from (3). The backward direction is a 180° rotation of the
forward diagram (note the reversed axes). Two Bragg reflections are shown.
At λ1 conversion is between forward and backward modes with zero azimuthal
order and opposite spins (scattering from A to B). At λ2 conversion is between an
ℓA = 0 forward mode and an ℓA =+1 backward mode, i.e., ϑℓ =+1 (scattering
from A to C). The sum of the backward and forward refractive indices adds up
to λi/Λ in each case, where Λ is the grating pitch.

index of the mode in an isolated core, and λ is the wavelength.
Equations (2) and (3) reveal that the m-th HBM harmonic has
a discrete propagation constant given by βi +mNα. Note also
that since OAM is measured in the Cartesian laboratory frame,

the OAM order of the m-th harmonic is given by ℓ
(m)
OAM = ℓ

(m)
Ai −

si. This has the interesting consequence that the harmonics of

two different HBMs, one with ℓ
(0)
Ai = q and s = −1 and the

other with ℓ
(0)
Ai = q + 2 and s = +1, will share the same value

of OAM.
The HBM model can be generalized to multi-core single-ring

structures [14], [15] by choosing appropriate values of κc, ρ, N

and β0. The modal refractive indices n± = β±λ/2π from (3)
are plotted versus azimuthal order in Fig. 2. HBMs form only at

integer values of ℓ
(0)
Ai (marked by thin vertical lines and encircled

points). The best fit to a series of experimentally measured Bragg
peaks was found for κC = 3570 m−1. The radial position of the
cores (estimated from an optical micrograph) was 2.5 µm, and
n0 = 1.457 was calculated by finite element modeling (FEM).

B. Bragg Reflection

To analyze the Bragg reflection of HBMs, we introduce slowly
varying, complex-valued, scalar envelope functions V+ and V−
for the backward and forward modes, writing the total electric
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field with the Ansatz:

Etot = V+(z)E+ + V−(z)e
iϑz

E− (4)

where ϑ = β+ + β− −Kz is a parameter describing detuning
from the Bragg condition caused by changes in average index
and wavelength, and Kz is the z-component of the grating
vectorK = (Kx,Ky,Kz) = (0, sin γ, cos γ)2π/Λ, where γ the
slant angle of the grating planes, assumed without loss of gen-
erality to be tilted about the x-axis. Introducing ϑ in this way
makes the final coupled mode equations easier to understand
and manipulate [16]. Substituting (4) into the wave equation,
and following a standard coupled mode analysis, yields the
equations:

∂V+

∂z
= iκ+(z)V−,

∂V−
∂z

= −iκ−(z)V+ + iϑV− (5)

where the coupling constants are given by:

κ+(z) =
π(1− s+s−)

√

1 + ρ2α2

4λn+

∫∫

A Q(ρ, ψ)e−iϑℓ φ dA
∫∫

A a2+dA

Q(ρ, ψ) = a+(ρ, ψ)a−(ρ, ψ)nG(ρ, ψ)e
iKρ sin γ sin φ (6)

where κ+ ≃ κ∗
−, ψ = φ− αz, ϑℓ = ℓA+ + ℓA− is the dephas-

ing of the azimuthal order,n± = β±λ/2π are the effective modal
indices of the HBMs, and nG is the refractive index modulation
depth of the FBG, which is assumed to be non-zero only in
the cores. It is calculated from the relative dielectric constant
as n = (ε0 + ε1 cos K · r)1/2, which approximates to n0 + nG
cos(K�r),

with n0 = �ε0 and nG = ε1/2n0, assuming ε1 << ε0, as is
typical for FBGs. Equation (6) shows that for non-zero reflection
the spin must always reverse sign. To simplify the analysis we
now approximate Q in separable form as:

Q(ρ, φ− αz) = nGR(ρ)F (φ− αz)exp(iKρco sin γ sin φ)
(7)

where ρco is the radial position of the core centers and α z is
the position-dependent phase offset between the grating and the
twisting fiber structure. This permits the integral in the numer-
ator in (6) to be interpreted as the angular Fourier transform of
the non-sinusoidal quantity:

F (φ− αz)exp(iKρco sin γ sin φ) (8)

yielding azimuthal harmonics. Assuming circular cores (diame-
ter 2.7µm, centered at ρco = 2.5µm) and Gaussian mode shapes
in each core (full-width-half-maximum 2.4 µm, based on finite
element modelling), the relative strengths of these harmonics,
normalized to the values at zero tilt angle, can be calculated.
They are plotted in Fig. 3 for three different tilt angles and
normalized to the highest values of κ+, which occurs when ϑℓ
= 0 and there is no tilt.

At zero grating tilt the Fourier transform of (8) is independent
of αz because F(φ− αz) is has exactly three periods around the
azimuth, so that the coupling constant is non-zero only when
ϑℓ is a multiple of 3 and F(φ − αz) is non-sinusoidal. For a
tilted grating, however, the three-fold rotational symmetry of
F(φ − αz) is broken, and the coupling can in general take non-
zero for all values of ϑℓ. In addition, because the cores rotate

Fig. 3. Values of |κ+ |, normalized to its value at zero tilt, with increasing tilt
angle, as functions of ϑℓ and superlattice sideband order p.

axially relative to the grating, the coupling constant oscillates
with z with period 2π/3α. This creates an optical superlattice
[17], resulting in the appearance of reflection sidebands on either
side of the main Bragg peak (at ϑ= 0), each p-th spatial harmonic
of κi(z) producing sidebands at ϑ = ±3pα. For a weak FBG,
these sidebands are spectrally narrow and so can be viewed as
independent FBGs. For strong FBGs, however, this is no longer
true because the bandwidths for conversion between different
modes widen and overlap spectrally, requiring a more accurate
model by solving all the coupled mode equations simultaneously
(see Appendix).

The coupling constant for each p-th superlattice sideband can
be estimated by taking the Fourier transform of κi(z), and the
results are plotted in Fig. 3 as functions of ϑℓ and p for γ =
0°, 4°, 8° and 12° normalized to the value at zero tilt. The plot
illustrates how the sidebands increase in strength and number as
the tilt angle rises. The parameters used in the calculation were
α = 2480 rad/m, ρco = 2.5 µm, n0 = 1.45 (neglecting material
dispersion) and K = 2π/Λ = 2π/(535.3 nm).

III. METHOD

A. The Optical Fiber

The three-core twisted PCF was made by stacking circular
rods of silica glass into a hexagonal lattice, the three central
ones, arranged in an equilateral triangle, being doped with
Ge (16 mol%, yielding an NA of 0.26). The preform stack
was continuously spun while the fiber was drawn, producing
a built-in chiral twist. The germanosilicate glass, having a lower
melting temperature than silica, flowed in between the silica
rods, forming cogwheel-shaped cores, as seen in the optical
micrograph in Fig. 4(a). In the drawn fiber, the diameter of the
cores was 2.7 µm and their distance from the fiber axis was
2.5µm. The individual cores are single-mode at 1550 nm with an
LP11-mode cut-off at 920 nm. Note that the multi-core system is
multi-mode, since each individual core couples to its neighbors,
thereby generating family of “super-modes” (HBMs) carrying
OAM [9].
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Fig. 4. (a) Optical micrograph of the end-face of the fiber used in the ex-
periment. (b) Sketch (not to scale) of the UV interference fringes at the tilted,
twisted 3-core fiber (twist rate greatly exaggerated). (c) Interferometric set-up
for measuring the phase. The reflection spectrum was measured by sweeping
the laser wavelength. BS: beam-splitter, PBS: polarizing beam-splitter, PC:
polarization controller, HWP: half-wave plate, Q-plate: vortex wave-plate. The
last two components were removable depending on the experiment.

B. FBG Writing

FBGs were written into the fiber using a Talbot interferometer
(Photonova Inc.) and light from a 213 nm Q-switched laser
(Xiton Photonics) [18], [19]. A sketch of the interference fringes
and the twisted three-core PCF is shown in Fig. 4(b). The fiber
could be tilted in the interferometer, resulting in slanted fringes,
as depicted. The intrinsically high UV photosensitivity of the
cores meant that FBGs could be written directly without need
of H2 loading. The system was adjusted so that, after exposure
to 130 mW of UV power for between for 20 and 50 minutes, a
Bragg reflection appeared at ∼1550 nm. We note that, although
the overlap integral in (6) decreases with increased tilt, causing
a drop in FBG reflectivity, this can easily be compensated for
by writing a stronger FBG (we are far from saturating the
photo-induced index change).

C. Measuring the Reflection Spectrum & Modes

Interferometry was used to measure the phase of the reflected
mode (Fig. 4(c)). Light from a tunable laser source (wavelength
resolution 1 pm) was split 5:95 at a thin-film beam-splitter.
The 5% reflection was polarized horizontally and used as the
reference phase, and the transmitted 95% was launched into
the twisted fiber. A Q-plate was optionally placed to synthesize
OAM beams [20], and a half-wave plate was available to switch
the state of circular polarization. It was set to right circular (RC,
s = −1) or left circular (LC, s = +1) using a fiber polarization
controller. The Bragg reflection was separated out using a beam-
splitter cube, and a lens with focal length 300 mm used to form
a magnified image on the camera. The polarization state was
monitored with a Thorlabs polarimeter, using flip mirrors placed

Fig. 5. (a) Upper: Reflection spectrum measured for injection of a LCP TEM00

mode (ℓOAM = 0, ℓA = +1, s = +1) into a 10-mm-long FBG written in a
fiber with twist period 2.5 mm and tilt angle ∼3.2°. The change in azimuthal
order associated with each RCP peak is marked along the top of the plot
(ϑℓ = 0 and −1). The order p of each superlattice sideband is also marked
in. Middle: Reflection spectrum calculated using vector coupled multi-mode
theory, assuming that only the LCP TEM00 mode is launched (individual modal
intensities are color-coded). Lower: Calculated reflection spectrum assuming
incidence of 88% of ℓA = +1, 8% of ℓA = 0 and 4% of ℓA = −1 (all three
modes in phase), showing excellent agreement with experiment. (b) Measured
near-field amplitude and phase of the launched beam (left) and the three strongest
reflected modes (right).

before the Q-plate and before the 300 mm lens. By introducing
an angular mismatch between the reference and the image beam,
interference patterns could be seen and used to retrieve the phase
distribution.

Some of the Bragg reflections had quite low reflectivity,
so that interference with Fresnel reflections from the cleaved
fiber-end deformed the phase patterns or made them unreadable.
To circumvent this problem, we used optical frequency domain
reflectometry (OFDR) [21] in all the measurements of phase and
amplitude.

IV. EXPERIMENTAL RESULTS

In all the experiments reported here, the fibers had a twist
period 2.5 mm, corresponding to α = 2513 rad/m, which is
a factor of two higher than in previously reported [10]. The
higher twist rate results in more distinct reflection peaks, thus
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Fig. 6. (a) Upper: Reflection spectrum measured on the same FBG as in Fig. 5,
for incidence of a LCP beam with ℓOAM = −1, ℓA = 0, s = +1. (a) The
change in azimuthal order associated with each RCP peak is marked along
the top of the plot (ϑℓ = 0, −1 and −2). The order m of each superlattice
sideband is also marked in. Middle: Reflection spectrum calculated using vector
coupled multi-mode theory, assuming that only the LCP mode with ℓA = 0
is launched (individual modal intensities are color-coded). Lower: Calculated
reflection spectrum assuming incidence of 20% of ℓA = +1, 70% of ℓA = 0
and 10% of ℓA = −1 (all three modes in phase), showing excellent agreement
with experiment. (b) Measured near-field amplitude and phase of the launched
beam (left) and the three strongest reflected modes (right).

allowing more precise characterization of the FBG reflections.
The theoretical calculation in Figs. 5–6 comes from solving the
full coupled mode theory of equations (5) (see Appendix for
more details). The modulation depth of the FBGs, estimated by
comparing with the theory, was nG = 0.0002.

To explore the ability of slanted FBGs in multi-core twisted
fibers to reflect between OAM modes of different order, a
saturated FBG (50 minute exposure) was fabricated a tilt angle
of ∼3.2°, optimized to yield the highest reflections at ϑℓ = ±1,
±2 for an LCP TEM00 incident beam (ℓA =+1, s =+1, ℓOAM

= 0) that was positioned so as to excite all three cores equally.
Three main reflection peaks were observed, corresponding to ϑℓ
= 0, ϑℓ =+1 and ϑℓ =−1, as confirmed by the measured phase
distributions in Fig. 5(b). In each case the circular polarization
state was reversed, as expected. The smaller peaks correspond to
superlattice side-bands of order p = ±1. They are spaced from
the main Bragg peak (at λB0) by ∆λ ≈ λ

2
B03α/(4πn) ≈ 1 nm,

whereα= 2500 rad/m and n is the average index of the backward
and forward coupled modes.

Fig. 7. Effect of increasing tilt on the reflection spectrum when a (ℓOAM =

+1, ℓA = 0, s = −1) mode is launched into the twisted fiber. The azimuthal
dephasing parameter ϑℓ and the order p of the superlattice sidebands are labelled
above each peak. The dashed lines indicate peaks where the signal was too low
to allow the phase to be mapped (the given values of ϑℓ and p are inferred from
theory). In the upper plot, the additional weak peaks are caused by the tilt angle
not being exactly zero. Some of the peaks are caused by accidental excitation of
other modes.

In a second measurement with the same sample, a beam
with ℓOAM = −1 (ℓA = 0, s = +1) was launched (Fig. 6).
As expected, a reflected peak (green under-shaded) appears,
corresponding to a backward travelling mode with the opposite
chirality, i.e., ℓOAM = +1 (ℓA = 0, s = −1) and ϑℓ = 0. A
stronger peak (orange under-shaded, accompanied by a weak p

=−1 superlattice sideband) appears for which ℓOAM = 0 (ℓA =
−1, s = −1) and ϑℓ = −1. Its wavelength exactly matches that
of the ϑℓ = −1 strong peak in Fig. 5, as expected. Two peaks
(purple under-shaded) appear for which ℓOAM =−1 (ℓA =−2,
s = −1) and ϑℓ = −2, the stronger of them being caused by
the p = −1 superlattice sideband, as confirmed by the overlap
integrals in Fig. 3. This reflection peak has a similar origin to the
side-band observed in [10] for half the twist rate. The additional
peaks we attribute to contamination of the launched ℓOAM =−1
mode by modes of different OAM order. Assuming this, we can
get an excellent agreement between theory and experiment, as
shown in Fig. 6(a) in the lower spectrum.

As the tilt angle increases, the periodic function κ+(z) be-
comes weaker and more anharmonic, resulting weaker Bragg
peaks and more superlattice sidebands (see Fig. 3). Fig. 7 shows
three spectra measured at different tilt angles for a launched
mode with ℓA = 0 and s = −1 (Fig. 6). The near-field phase
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profiles at reflection were used to identify the reflected mode.
At γ = 0° there is only one strong peak, corresponding to ϑℓ
= 0 (the weak peaks are present as the tilt angle is not exactly
0° in the experiment). As γ is increased, more and more Bragg
peaks appear at different values of ϑℓ. Reflections at superlattice
sidebands also grow in strength and number, sometimes exceed-
ing the strength of the fundamental. At very high tilt angles, the
number of Bragg peaks becomes unmanageably high, leading
to overlap between different reflections and loss of selectivity.
The optimal tilt angle for the three-core structure studied lay
between 2° and 4°, where the reflections for ϑℓ = ±1 and ±2
were strongest.

V. CONCLUSION

Slanted FBGs, written in twisted fibers with N-fold rota-
tionally symmetric arrangements of cores, can convert between
forward and backward modes of different OAM order. This is
possible because the N-fold symmetry is broken by the tilted
Bragg planes. Although in the experiments the reflection effi-
ciencies reached only 46%, despite long exposure times, much
higher efficiencies could be obtained, if required, by hydrogen
loading the fibers before exposure. The twisted FBGs provide
high wavelength and OAM selectivity, due to non-degeneracy
between modes with the same OAM order but opposite circular
polarization state. Certain reflections are unique for a given
launched mode (e.g., for ϑℓ = ±2) and could potentially be
used in a laser cavity to allow oscillation in a single OAM state,
or in robust all-fiber OAM mode conversion/selection for mode
division multiplexing. Although the transmission of doughnut-
shaped OAM beams is rather low for the 3-core configuration
(the overlap integral gives ∼80% maximum launch efficiency),
this can be optimized by improving the fiber design, for instance
by increasing the number of cores. Note that the direction of spin
cannot, however, be selected, since it is always reversed upon
reflection.

APPENDIX

Here we provide details of the multi-wave coupled mode
theory used to model reflections from a slanted Bragg grating in
a twisted N-fold symmetric fiber.

A. Coupling Constant

The results of a numerical calculation of the coupling constant
(using Eq. (6)), assuming Gaussian mode field profiles across
each core and plotted over one period, are shown in Fig. 8.
When the tilt angle γ is non-zero, the angle between the twisting
three-core structure and the FBG planes oscillates, causing κ+

to oscillate periodically along the fiber, repeating every 2π/3α.
A useful simplification can be made by approximating

Q(ρ, φ − α z) in Eq. (6) the product of functions only of ρ
and φ:

Q(ρ, φ− αz) = nGR(ρ)F (φ− αz)eiKρco sinγ sinφ (9)

Fig. 8. Amplitude (normalized) (in blue) and phase (in red) of the coupling
constant as a function of position over one period (i.e., one third of the helical
pitch LH = 2π/α) for (a) ϑℓ = −2, (b) ϑℓ = −1 and (c) ϑℓ = 0 and a tilt angle
of 10°, assuming Gaussian field intensity distributions (FWHM 2.3 µm) across
the cores, core diameter 2.7 µm and core center to axis distance 2.5 µm. z0
corresponds to one of the cores aligned on the positive y-axis with the tilt being
in the y-z plane as shown in Fig. 1 in the manuscript.

Fig. 9. Schematic representation of the fields in the multi-wave calculation.

The ratio of integrals in Eq. (6) can then be written, after
canceling out the radial integrals:

nG

∫

φ F (φ− αz)ei(Kρco sinγ sinφ−ϑℓ φ) dφ
∫

φ F (φ− αz)dφ
. (10)

If we assume that F(φ − αz) = 1 in each core and zero
outside, and that the cores subtend an angle φco, this expression
simplifies to:

nG

∫

φ F (φ− αz)ei(Kρco sinγ sinφ−ϑℓ φ) dφ

Nφco
(11)

where N is the number of cores and φco < 2π/N . The integral
can be evaluated analytically for zero tilt, when it takes the form:

nG
sinc(φcoϑℓ/2)

N

sinπϑℓ

sin(πϑℓ/N)
e−iπϑℓ(N−1)/N (12)

which is in general non-zero only when ϑℓ is a multiple of N..

B. Multi-Wave Coupled-Mode Equations

To properly model FBG reflections in the twisted fiber, mul-
timode coupled-wave theory must be applied, including both
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in-phase and out-of-phase Bragg reflections. The requirement
that the circular polarization state reverses upon reflection means
that only 3 modes need be considered in each direction: (ℓA, s)
= (−2,−1), (−1,−1), (0,−1) in the forward direction (noted as
F−1, F0 and F1 respectively) and (ℓA, s) = (+2, +1), (+1, +1),
(0, +1) in the backward direction (noted as B−1, B0 and B1

respectively), or the opposite set in which the signs of all the
azimuthal orders and spin are reversed.

1) Multi-Wave Bragg Scattering: When there is more than
one mode propagating in each direction, they are all potentially
coupled together by Bragg scattering and the analysis gets
complicated. This is the case for a three-core twisted PCF with an
inscribed tilted Bragg grating. Although the multiwave coupled
mode equations are easy to set up, their solution requires a
special procedure, as we now explain.

We first solve the coupled mode equations three times, first
for F1L = 1 and F0L = F−1L = 0, then for F1L = F−1L = 0 and
F0L = 1, and finally for F1L = F0L = 0 and F−1L = 1. Each
solution yields three matrix elements in the equations:

⎡

⎢

⎣

B10

B00

B1̄0

⎤

⎥

⎦
=

⎡

⎢

⎣

m11 m10 m11̄

m01 m00 m01̄

m1̄1 m1̄0 m1̄1̄

⎤

⎥

⎦

⎡

⎢

⎣

F1L

F0L

F1̄L

⎤

⎥

⎦
(13)

and

⎡

⎢

⎣

F10

F00

F1̄0

⎤

⎥

⎦
=

⎡

⎢

⎣

r11 r10 r11̄
r01 r00 r01̄
r1̄1 r1̄0 r1̄1̄

⎤

⎥

⎦

⎡

⎢

⎣

F1L

F0L

F1̄L

⎤

⎥

⎦
(14)

Equations (13) and (14) can be written as:

B0 = [M] · FL and F0 = [R] · FL (15)

and manipulated to yield:

B0 = [M][R]−1 · F0 and FL = [R]−1 · F0 (16)

where [M][R]−1 is the reflection matrix and [R]−1 the transmis-
sion matrix for an arbitrary input field.

2) Coupled Mode Equations: Before solving the coupled
mode equations we need first to numerically integrate Eq. (6) to
calculate the coupling constant for each pair of coupled modes
over one period 2π/3α, and then find the amplitude and phase
of its p-th spatial harmonic by expressing it as a Fourier series
(reconstructing the coupling constant from its Fourier harmonics
ensures that it is exactly periodic). Next the parameters describ-
ing dephasing from the Bragg condition are calculated for each
interaction:

ϑij = βi + βj −Kz = 2β0

√

1 + α2ρ2 − α
(

ℓ
(0)
Ai + ℓ

(0)
Aj

)

−Kz + 2κC

⎡

⎣

cos
(

2π(ℓ
(0)
Ai − si − β0αρ

2)/N
)

+cos
(

2π(ℓ
(0)
Aj + si − β0αρ

2)/N
)

⎤

⎦ .

(17)

We are now in a position to set up the coupled equations. An
appropriate field Ansatz is:

Etot =
(1,+is+)√

2

∑

q=1,0,1̄

aq(ρ, φ− αz)

·
(

Fq(z)e
i(β̄z+ℓ

(0)
Aq

φ) + Bq(z)e
i[(β̄−Kz)z−ℓ

(0)
Aq

φ]
)

(18)

where the z-dependent phase progression is expressed relative to
a reference wavevector β̄ (which can be freely chosen, provided
it is within the range of values for the three HBMs) for forward-
propagating modes and β̄ −Kz for backward modes. Note that
sj has been replaced with −si in (17) and (18), as required for
non-zero field overlap. The coupled mode equations then take
the form:

Ḟ1 = i(κ11̄B1̄ + κ10B0 + κ11B1) + iϕ1F1

Ḟ0 = i(κ01̄B1̄ + κ00B0 + κ01B1) + iϕ0F0

Ḟ1̄ = i(κ1̄1̄B1̄ + κ1̄0B0 + κ1̄1B1) + iϕ1̄F1̄

Ḃ1 = −i(κ∗
11̄F1̄ + κ∗

10F0 + κ∗
11F1) + iϑ1B1

Ḃ0 = −i(κ∗
01̄F1̄ + κ∗

00F0 + κ∗
01F1) + iϑ0B0

Ḃ1̄ = −i(κ∗
1̄1̄F1̄ + κ∗

1̄0F0 + κ∗
1̄1F1) + iϑ1̄B1̄ (19)

where

ϕq = βq − β̄, ϑq = Kz − (βq + β̄) (20)

are dephasing parameters that adjust the value of to match the
propagation constants of each mode. Note again that all the
coupling constants are (potentially) periodically modulated with
spatial period 2π/3α.

That (19) conserves power can be proven by multiplying each
equation by the conjugate of the amplitude in the derivative, and
adding the resulting equations to their complex conjugate. After
some manipulation and noting that:

naκab = nbκba (21)

we arrive at the final result:

d

dz

∑

i

ni(|Fi|2 − |Bi|2) = 0 (22)

that is,
∑

i ni(|Fi|2 − |Bi|2) = constant.
Once the scattering matrix has been found, it can be used to

calculate the spectral response of the FBG for incidence of an
arbitrary combination of forward-travelling modes.
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