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Abstract: It is demonstrated that Bragg reflection waveguides, either
planar or cylindrical, can be designed to support a symmetric mode with a
specified core field distribution, by adjusting the first layer width. Analytic
expressions are given for thismatching layer, which matches between the
electromagnetic field in the core, and a Bragg mirror optimally designed
for the mode. This adjustment may change significantly the characteristics
of the waveguide. At the particular wavelength for which the waveguide
is designed, the electromagnetic field is identical to that of a partially
dielectric loaded metallic or perfect magnetic waveguide, rather than a pure
metallic waveguide. Either a planar or coaxial Bragg waveguide is shown to
support a mode that has a TEM field distribution in the hollow region.
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1. Introduction

Bragg reflection waveguides are one-dimensional photonic band-gap structures, designed to
guide light in a low refractive index region surrounded by high refractive index alternating
dielectric layers. Two possible configurations are depicted in Fig. 1, one is the planar Bragg re-
flection waveguide, and the other is the cylindrical, which is also known as theBragg Fiber. The
theory of Bragg reflection waveguides was developed by Yehet al. [1, 2], and recently there has
been a growing interest in using such hollow cylindrical structures as low-loss optical fibers in
long distance communications. Fabrication of such fibers was demonstrated [3, 4]. The propa-

Fig. 1. Planar and cylindrical Bragg reflection waveguides.

gation characteristics were investigated and compared with those of metallic waveguides [5, 6].
In general, for large radii, there is a resemblance between the cylindrical and the planar struc-
tures, enabling asymptotic analysis methods [7, 8, 9]. For dispersion compensation purposes it
was shown that high dispersion values can be achieved in small-core Bragg fibers [10]. A vari-
ation of the Bragg fiber is the dielectric coaxial fiber which has dielectric core and cladding,
and a hollow region between them [11, 12, 13]. While most of the studies carried out on Bragg
reflection waveguides dealt with configurations where all the dielectric layers are transverse
quarter-wave thick, it was demonstrated that by creating a defect in the form of changing one
or more of the layer widths, it is possible to influence the dispersion properties of the fiber [14].

In a recent study, the planar and cylindrical Bragg reflection waveguides with a vacuum core
were suggested as future optical particle accelerators driven by high power lasers [15]. For a
waveguide to serve as a particle accelerator, it is necessary that a TM mode with phase velocity
that equals the speed of light (vph = c) is supported. As discussed in other studies, when all the
layers are taken to be transverse quarter-wavelength thick, the supported mode resembles that
of a metallic waveguide. Obviously, the phase velocity in this case is greater thanc. In Ref. [15]
it was shown that by changing the width of the layer adjacent to the vacuum core, a mode with
vph = c is supported. In the present study we generalize the concept of thismatching layerto any
given phase velocity (or field distribution) and to both TE and TM modes. Analytic expressions
are given for the width of the matching layer as part of a design procedure that achieves two
goalssimultaneously: (1) the specified core field distribution at a given wavelength and a given
core dimension is an eigen-mode of the structure (2) the transverse exponential decay in the
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Table 1. Hollow core symmetric modes. The transverse wavenumbers are

kx,r =
√

ω2/c2−k2
z.

General symmetric mode Special casevph = c
Ez = E0cos(kxx)e− jkzz Ez = E0e− j ω

c z

Planar TM Ex = j kz
kx

E0sin(kxx)e− jkzz Ex = j ω
c xE0e− j ω

c z

Hy = j ω
c

1
η0kx

E0sin(kxx)e− jkzz Hy = j
η0

ω
c xE0e− j ω

c z

Hz = H0cos(kxx)e− jkzz Hz = H0e− j ω
c z

Planar TE Hx = j kz
kx

H0sin(kxx)e− jkzz Hx = j ω
c xH0e− j ω

c z

Ey = − j ω
c

η0
kx

H0sin(kxx)e− jkzz Ey = − jη0
ω
c xH0e− j ω

c z

Ez = E0J0(kr r)e− jkzz Ez = E0e− j ω
c z

Cylindrical TM Er = j kz
kr

E0J1(kr r)e− jkzz Er = j
2

ω
c rE0e− j ω

c z

Hφ = j ω
c

1
η0kr

E0J1(kr r)e− jkzz Hφ = j
2η0

ω
c rE0e− j ω

c z

Hz = H0J0(kr r)e− jkzz Hz = H0e− j ω
c z

Cylindrical TE Hr = j kz
kr

H0J1(kr r)e− jkzz Hr = j
2

ω
c rH0e− j ω

c z

Eφ = − j ω
c

η0
kr

H0J1(kr r)e− jkzz Eφ = − jη0
2

ω
c rH0e− j ω

c z

Bragg mirror is the strongest possible. Hence, the first layer matches between the core mode
and the Bragg mirror mode. The core dimension itself may be dictated by other considerations,
such as the maximum field which is allowed to develop at the vacuum-dielectric interface to
prevent breakdown, and interaction efficiency constraints [15].

The ability to design the waveguide to support specified field profiles in the core may be
useful in applications other than particle accelerators, such as high power laser waveguides or
dielectric particle levitation [16]. The basic modes of interest are the symmetric modes, TM
and TE, the hollow core field distributions of which are summarized in Table 1. As a special
case which receives relatively little attention in waveguide literature, the fields ofvph = c are
written explicitly. Demonstration of the principles presented here will be on waveguides made
from dielectric materials with refractive indices 1.6 and 4.6, as was used in Refs. [5, 6, 3, 7].
Throughout this study we neglect the losses due to the finite cladding; a discussion of this loss
effect may be found in Refs. [2, 17, 18, 5].

In Section 2 a general method for the design of a Bragg reflection waveguide, either planar
or cylindrical is presented, in which the layer adjacent to the core is adjusted. Section 3 deals
with the effect of the matching layer on the properties of the waveguide. Section 4 presents an
extension of the previous formulation to planar odd modes, which enables the design of useful
power profiles in the core. Section 5 discusses the possibility of guiding a mode which has a
TEM field distribution within the hollow core, in both planar waveguides and coaxial dielectric
waveguides.

2. Formulation

2.1. Matching layer in a planar waveguide

We first consider aplanarBragg reflection waveguide (∂/∂y= 0), with core half-widthDint, as
depicted in the left frame of Fig. 1. Let us assume that at some specific wavelengthλ0 with a cor-
responding angular frequencyω0, this waveguide is required to support a symmetric TM mode
with a specific phase velocityvph = ω0/kz, kz being the longitudinal wavenumber. Equivalently,
a specific field distribution in the hollow core may be required, determined by the transverse
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wavenumberkx =
√

ω2/c2−k2
z, as shown in Table 1. Expressing the phase velocity in terms of

the transverse wavenumber in the core, we obtainvph = c/
√

1− (kxλ0/2π)2. The longitudinal
electric field in the layer adjacent to the core, which has a dielectric coefficientε1, is given by
Ez =

(
A1e− jk1x +B1e+ jk1x

)
e− jkzz, where the transverse wavenumber isk1 =

√
ω2/c2ε1−k2

z,
and the transverse impedance isZ1 = k1/(ωε0ε1). The required electromagnetic field in the
vacuum core dictates by virtue of the boundary conditions onEz andHy at the interface be-
tween the core and the adjacent dielectric layer, the amplitudes in the first layer. Imposing the
boundary conditions onEz andHy atx = Dint, the amplitudes are found to be given by

A1/E0 = (B1/E0)∗ =
1
2

ejk1Dint cos(kxDint)− j
k1

2ε1kx
ejk1Dint sin(kxDint) ; (1)

the asterik denotes complex conjugate, andE0 is defined in Table 1. It is now our purpose to
ensure that the complete structure including the Bragg reflector indeed supports the required
field at the given wavelength as an eigen-mode.

The Bragg reflector can be analyzed from the perspective of a pure periodic structure accord-
ing to the Floquet theorem [1]. This analysis gives the eigen-values and the eigen-vectors of the
periodic structure, and determines the band-gaps of the system, where the two eigen-values
absolute values are different than unity, leading to a decay or growth in the waves amplitudes.
The strongest exponential decay is found to be when each material of the two is chosen to be
a quarter of wavelength thick. In case of a Bragg reflection waveguide it is a quarter of the
transverse wavelength, meaning that this thickness of layerν with dielectric coefficientεν is
given by

∆ν =
π

2

√
ω2

0

c2 εν −k2
z

. (2)

The eigen-values in this optimal decay case are given by the ratios of the two transverse
impedances in the two materials. The corresponding eigen-vectors indicate that at every in-
terface between two dielectrics, each one of the electromagnetic field components either peaks
or vanishes, according to the type of transition, high to low, or low to high impedance. This
condition was originally mentioned in Ref. [2], and is more recently emphasized in Ref. [15].

Going back to the Bragg reflection waveguide, since the amplitudes in the first dielectric
layer are already known, the interface between the first and the second dielectric layers may be
considered as an entrance to a periodic structure, to which the wave must enter in one of the
eigen-vectors for the mode to be supported, or in other words, a perfect reflection must occur
at the interface between the first and the second layers. Explicitly, this condition is given by


Ez(x = Dint +∆1) = 0 Z1 > Z2

∂Ez

∂x
(x = Dint +∆1) = 0 Z1 < Z2 ,

(3)

where∆1 is the first layer width, andZ1, Z2 are the transverse impedances of the first and second
layers respectively. Setting the first layer width according to the above condition will ensure
that the required mode at the given wavelength will indeed be supported by the waveguide. The
first layer may therefore be conceived as amatching layerbetween the vacuum region and the
subsequent periodic structure, as it rotates the amplitude vector dictated by the vacuum mode,
to overlap the eigen-vector of the periodic structure.

Given the amplitudes, as required by Eq. (1), it is now straightforward to determine the points
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Fig. 2. First layer width forvph = c, normalized by∆q � λ0/(4
√

ε1−1). The layer adjacent
to the core has a refractive index ofn1 = 1.6 and the other material hasn2 = 4.6.

whereEz peaks or vanishes. The resulting expression for the first layer width reads

∆(TM)
1 =




1
k1

arctan

[
ε1kx

k1
cot(kxDint)

]
Z1 > Z2

1
k1

arctan

[
− k1

ε1kx
tan(kxDint)

]
Z1 < Z2 .

(4)

In the above expression, the smallest positive value of the arctan function is chosen. It should
be noted thatkx may be purely imaginary, meaning that the transverse waves in the core are
evanescent, and the expression still holds, as long as the transverse wavenumbers in the di-
electric layers are real. A special case of this expression is whenkxDint = π,π/2, and then the
matching layer is transverse quarter-wavelength thick similarly to the outer layers. For the spe-
cial case where the phase velocity equals the speed of light (kz = ω0/c), the expression for the
first layer width simplifies to read

∆(TM)
1 =




1
k1

arctan

[(
Z1

η0

ω0

c
Dint

)−1
]

Z1 > Z2

1
k1

arctan

(
−Z1

η0

ω0

c
Dint

)
Z1 < Z2 .

(5)

Figure 2 illustrates at the bottom curve the planar TM first layer width as a function of the core
half-widthDint, for the requirement thatvph = c. The first layer was set to have a refractive index
of n1 =

√
ε1 = 1.6, and the other material was taken to be of refractive indexn2 =

√
ε2 = 4.6.

The first layer width is normalized by∆q � λ0/(4
√

ε1−1), which is the transverse quarter-
wavelength width in thevph = c case. The choice of placing the lower refractive index first
entails that the first case of Eq. (5) is used in the calculation of the planar TM first layer width.

The same principles can easily be implemented for TE modes, planar and cylindrical. From
the requirement thatHz either peaks or vanishes, the planar TE matching layer width is found
to be

∆(TE)
1 =




1
k1

arctan

[
kx

k1
cot(kxDint)

]
Y1 > Y2

1
k1

arctan

[
−k1

kx
tan(kxDint)

]
Y1 < Y2 ,

(6)
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whereY1,2 = k1,2/(ω0µ0) are the transverse admittances, andk1,2 are the transverse wavenum-
bers in the first and second layers. The difference between the above expression and the TM
expression is aε1 factor in the arctan argument. The second curve from the top of Fig. 2 illus-
trates the planar TE case. It is seen that the TM curve approaches zero, whereas the TE curve is
above the∆1/∆q = 1 line and approaches unity for large core widths. This situation is reversed
according to the given analytical expressions, should the material of the layer adjacent to the
core is chosen to be of the higher refractive index of the two mentioned.

To summarize, the design procedure described here is as follows. According to the required
kz, a Bragg mirror is designed so that all layers are transverse quarter-wavelength thick. In
order to match the mirror to the desired core field, the layer adjacent to the core is adjusted to
the width given above by analytic expressions.

2.2. Matching layer in a cylindrical waveguide

Although the periodic structure approach utilized for the planar Bragg reflection waveguide is
not suitable for the cylindrical case, some of the results still hold. As shown in Ref. [2], the
condition given by Eq. (3) can be obtained for the cylindrical case in a process of minimization
of the average energy density, when designing the structure from the inside out. Explicitly, at
the interface between an inner layerν to an outer layerν + 1, the longitudinal electric field
should satisfy the condition 


Ez = 0 Zν > Zν+1

∂Ez

∂ r
= 0 Zν < Zν+1 .

(7)

Asymptotically, this condition is equivalent to the transverse quarter-wavelength widths, but
once again it has an implication on the width of the layer adjacent to the core. Imposing the
boundary conditions from the inside out around a desired field distribution in the core, and
setting the interfaces between the dielectrics to fulfill the above condition, constitutes a design
procedure. In practice, only the first layer may differ significantly from the transverse quarter-
wavelength, and the outer layers will have a difference of a few percent at most. The approach
of designing the structure from the inside out is more general than the one presented in the last
section, and it holds for both the planar and the cylindrical case.

Following the same formulation as for the planar case, the longitudinal electric field in the

first layer, assuming TM mode, must take the formEz =
[
A1H(2)

0 (k1r)+B1H(1)
0 (k1r)

]
e− jkzz.

The core fields given in Table 1 are used to compute the amplitudes of the fields in the first
layer, and the points of zeros and peaks are then obtained. Defining a Bessel-tangent function
of orderm by Besstanm(·) � Ym(·)/Jm(·), and defining the quantity,

U (TM) �

ε1

k1
Y1(k1Rint)J0(krRint)− 1

kr
Y0(k1Rint)J1(krRint)

ε1

k1
J1(k1Rint)J0(krRint)− 1

kr
J0(k1Rint)J1(krRint)

, (8)

the result for the cylindrical TM case is given by

∆(TM)
1 =




1
k1

arcBesstan0
(
U (TM)

)
−Rint Z1 > Z2

1
k1

arcBesstan1
(
U (TM)

)
−Rint Z1 < Z2 .

(9)
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Here the smallest value for which∆(TM)
1 is positive is chosen. For the special case ofvph = c,

U (TM) simplifies to read

U (TM) =

ε1

k1
Y1(k1Rint)− Rint

2
Y0(k1Rint)

ε1

k1
J1(k1Rint)− Rint

2
J0(k1Rint)

. (10)

For the TE mode,U (TM) is replaced by

U (TE) �

1
k1

Y1(k1Rint)J0(krRint)− 1
kr

Y0(k1Rint)J1(krRint)

1
k1

J1(k1Rint)J0(krRint)− 1
kr

J0(k1Rint)J1(krRint)
(11)

and the condition on the impedances turns into a condition on the admittances, similarly to the
planar case. The second curve from the bottom of Fig. 2 corresponds to the cylindrical TM first
layer width, and the first curve from the top to the TE case.

3. Effect of matching layer on waveguide characteristics

3.1. Field distribution

With the same given set of two dielectric materials and a given core dimension, the design
procedure described above makes it possible to achieve different phase velocities, and corre-
spondingly, different field distributions across the core. As a demonstration of the ability to
control the field behavior in the core, the symmetric planar TM mode will next be considered.
Figure 3 presents different configurations, where in all cases the core half-width isDint = 1λ0,
and the two materials used have refractive indices of 1.6 and 4.6. In all cases the longitudinal
electric field across the waveguideEz is indicated by a solid blue line, and the transverse mag-
netic fieldHy is indicated by a dashed red line. The dielectric layers are depicted in gray, where
the higher refractive index layers are indicated by the darker gray.

As a first example, let us consider the casevph = c (kz = ω0/c), in which the trans-
verse impedance for the first layer, which is given byZ1 = k1/(ωε0ε1), takes the form
Z1 = η0

√
ε1−1/ε1. For the materials chosen here, this entails that the higher refractive in-

dex material has the lower transverse impedance and vice versa. Placing the material with the
lower refractive index adjacent to the hollow core, and setting the matching layer width ac-
cording to Eq. (5), the field profile ofEz depicted in Fig. 3(a) is uniform across the core. As
indicated by Eq. (3) the longitudinal electric field vanishes and the transverse magnetic field
peaks at the interface between the first and the second dielectric layers, identically to the case
of a metallic wall located at that interface. Maintaining the same field distribution in the core
itself, Fig. 3(b) illustrates the case where forvph = c, the material with the higher refractive
index borders the core. Here the second case of Eq. (5) is considered, and the profile obtained
is as if a perfect magnetic wall is placed at the interface between the first and the second layers.

As examples of arbitrary field profiles that can be achieved setting the matching layer width
according to Eq.(4), Fig. 3(c) and Fig. 3(d), where the transverse wavenumbers were chosen
to be kxDint = π/3 andkxDint = 3π/4 respectively, are shown. Finally, as a special case of
Eq.(4), the field distributions when all the layers are transverse quarter-wave thick, are shown.
Figure 3(e) illustrates the casekxDint = π/2, in which the field in the core behaves as if the core
boundary is a metallic wall. Figure 3(f) illustrates the casekxDint = π, which has an identical
field to a perfect magnetic wall at the core boundary. It is important to reiterate that common to
all cases presented is that at every interface between any two dielectrics, each one of the fields
either peaks or vanishes.
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Fig. 3. Planar TM profiles. (a)kxDint = 0 low refractive index first (b)kxDint = 0 high
refractive index first (c)kxDint = π/3 (d) kxDint = 3π/4 (e) kxDint = π/2 (metallic-like
walls) (f) kxDint = π (magnetic-like walls).

3.2. Dissipation losses, confined power, and group velocity

Changing the field distribution inside the core is expected to influence the dissipation losses
in the dielectrics. The flowing powerP in the waveguide may be written in the form
P(z) = P(0)e−2αz, where the decay coefficientα is given by

α =
2ω0 tanδ WE,clad(z)

P(z)
. (12)

In the above expression it is assumed for simplicity that both materials have the same loss
tangent tanδ, andWE,clad represents the electromagnetic energy per unit length (per unit area
for the planar case where∂/∂y = 0) within the dielectric materials. The normalized decay
coefficientα ′ � αλ0/ tanδ is indicated on every frame of Fig. 3. Another parameter of interest
from the perspective of high power waveguides is the ratio of the power flowing in the core to
the total power, denoted byξ , and is also given for each case of Fig. 3. Although for all cases,
ξ is above 90%,α ′ exhibits more significant variations. It is evident that the best performance
is achieved for the metallic-like case (Fig. 3(e)), and the worse is in the magnetic-like case
(Fig. 3(f)). The dissipation coefficient in the magnetic-like case is almost 2.5 times greater than
that of the metallic-like. In addition to the two parameters discussed above, the normalized
group velocityβgr � vgr/c is indicated on every frame of Fig. 3. This quantity may be computed
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by the ratio of the total flowing power to the electromagnetic energy per unit length, i.e., the
energy velocity, which is known to be equal to the group velocity if the dielectric material is
frequency independent [19].

In Table 2 a comparison is made between the TM cases of Fig. 3 and the analogous TE
cases1. The analogy is in the sense thatHz in the TE case has a similar profile toEz in the TM
case. As expected, the TE(f) profile, which has metallic-like core boundary has the smallest
dissipation losses, and the highest percentage of confined power. All the other TE profiles have
higher losses and less confined power than all the TM profiles. It should be noted that having
over 90% of the power confined in the core for the TM and TE(f) cases is a result of the choice
of the refractive indices. The large difference between the materials’ indices results in a high
ratio between the transverse wave impedances, which are different for the TM and TE cases. It
can also be seen that for the TE profiles the group velocity has a greater variance than for the
TM profiles.

Table 2. Comparison between the waveguide parameters that correspond to the field dis-
tributions of Fig. 3 and the analogous TE cases.

(a) (b) (c) (d) (e) (f)
TM TE TM TE TM TE TM TE TM TE TM TE

α ′ 0.71 2.50 0.86 2.54 0.55 2.20 0.87 3.56 0.36 1.73 0.88 0.08
ξ [%] 92.1 74.8 94.8 72.1 96.7 76.5 93.1 88.3 98.0 82.1 92.5 99.7
βgr 0.82 0.65 0.77 0.65 0.84 0.68 0.81 0.48 0.89 0.72 0.74 0.85

3.3. Dispersion curves

So far we have considered only the electromagnetic field behavior at the specific wavelengthλ0,
for which the waveguide was designed. As is demonstrated next, adjusting the first layer width,
may have a significant effect on the dispersion curve. The dispersion points are determined by
searching numerically for the zeros of the dispersion function, which has an analytical expres-
sion in the planar case. For the cylindrical case, the transfer matrix method of Ref. [2] is used
to determine the reflection coefficient from the outer layers. Taking a relatively large number
of layers, the reflection coefficient within the band-gap represents that of an infinite number of
layers, i.e., its absolute value is unity for all practical purposes.

First, we examine the symmetric TM mode of both planar and cylindrical Bragg reflection
waveguides withDint = 0.3λ0 andRint = 0.3λ0. For the layer adjacent to the core, the mate-
rial with the lower refractive index was chosen. In the left frame of Fig. 4, a band diagram is
shown, with the transverse pass-bands of the infinite periodic structure plotted in gray, and the
dispersion curves of the symmetric TM mode in the planar case are depicted for two configu-
rations. In the first configuration, plotted in red, all the layers areλ0/(4

√
ε −1) thick, meaning

that the Bragg mirror is designed forvph = c, but without using a matching layer to match be-
tween the mirror and the core field. The result is that the red line does not intersect the point
( ω

ω0
, kzc

ω0
) = (1,1), as is required. Nevertheless, this dispersion curve intersects the light-line at

a lower frequency. Operating the waveguide at that frequency is not desirable since the mirror
is not optimal, i.e., the transverse exponential decay is weaker than could be achieved. When
the first layer is adjusted according to the design procedure described above, the blue curve
is obtained. It is seen that changing the first layer thickness shifts the dispersion curve so that

1For the TE case (a),∆1 ∼ 10−3λ0, which is impractical and shown here for comparison purposes only.
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Fig. 4. Symmetric TM mode dispersion diagram for planar waveguide withDint = 0.3λ0
(left) and cylindrical waveguide withRint = 0.3λ0 (right). In both cases the red (dashed)
curves are obtained with no design procedure, and the blue (solid) curves correspond to a
vph = c design procedure.

there is an intersection with the point( ω
ω0

, kzc
ω0

) = (1,1). A similar picture is obtained for the
cylindrical case shown in the right frame of Fig. 4.

In Fig. 5 we repeat the simulations shown in Fig. 4 where the core dimension is now 1.0λ0

instead of 0.3λ0. In the left frame, the red curve, indicating the symmetric planar TM mode
without a matching layer does not intersect the light-line at the first band-gap. Only by creating
a matching layer, an intersection with the light-line at the correct frequency is obtained (blue
curve). Hence, the significance of the matching layer is evident.

3.4. Group velocity dispersion

A quantity of interest is the group velocity dispersion. For convenience we chooseλ0 = 1.55µm
as in Refs. [10, 14], and in Fig. 6 the group velocity dispersion is given for the symmetric TM
mode that intersects the light-line at this particular wavelngth, as a result of the design proce-
dure. The dotted red curve represents the caseRint = 0.3λ0. Adjusting, the internal radius, while
rearranging the layers around it so that the conditionvph = c still holds atλ0, it is seen that for
Rint = 0.422λ0 a zero group velocity dispersion point is obtained atλ0 = 1.55µm. From the
perspective of communication applications, the values shown here, being relatively large, may
be suitable for dispersion compensation purposes as discussed in Ref. [10], meaning that the
zero-dispersion point itself will not be used. On the other hand, considering that high power
waveguides, and in particular acceleration modules may be significantly shorter than optical
fibers for long distance communication, the zero group-velocity dispersion shown here may be
of use. To exemplify this dramatic difference, an estimation of the length of a future optical
acceleration module is of the order of a few millimeters, which is more than 6 orders of magni-
tude shorter than an optical fiber for communication purposes. Consequently, an adjustment of
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Fig. 5. Symmetric TM mode dispersion diagram for planar waveguide withDint = 1.0λ0
(left) and cylindrical waveguide withRint = 1.0λ0 (right). In both cases the red (dashed)
curves are obtained with no design procedure, and the blue (solid) curves correspond to a
vph = c design procedure.

the core dimension to achieve a zero group velocity dispersion may be valuable.

4. Planar odd modes

The core field distributions given in Table 1 for the planar case areevenmodes that have the
property that the longitudinal Poynting vectorSz vanishes on axis. In applications such as high
power waveguides or dielectric particle manipulation by light [16], this could be a major draw-
back. A way to overcome this problem is to use an odd mode (for example TM) of the form

Ez = E0sin(kxx)e− jkzz,

Ex = − j
kz

kx
E0cos(kxx)e− jkz ,

Hy = − j
ω0ε0

kx
E0cos(kxx)e− jkzz.

(13)

By the same method discussed above it is possible to confine the odd mode with a matching
layer with a width that has a similar expression to the even mode case

∆(TM)
1 =




1
k1

arctan

[
−ε1kx

k1
tan(kxDint)

]
Z1 > Z2

1
k1

arctan

[
k1

ε1kx
cot(kxDint)

]
Z1 < Z2 .

(14)

It is now possible to create a desired power profile within the core, with non-zero value on axis.
Two possibilities for this are presented in Fig. 7, in which the longitudinal Poynting vector nor-
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Fig. 6. Group velocity dispersion for thevph = c cylindrical waveguide.
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Fig. 7. Planar odd TM power profiles:kxDint = π/4 (solid blue) andkxDint = jπ/4 (dashed
red).

malized to its value on axis is depicted forkxDint = π/4 (solid blue) andkxDint = jπ/4 (dashed
red). In the first case the axis value is maximal, and in the second case the cosine function (in
Ex andHy) turns into a hyperbolic cosine, and therefore the axis value is the minimum. In each
one of the cases the locations of the layers are indicated, showing that the different width of the
matching layer enables the mode to be supported. In the application of dielectric particle lev-
itation, the transverse distribution of the “propelling” power may be crucial for the transverse
stability of the levitated body.

5. Hollow-region-TEM in planar and coaxial Bragg waveguides

In the previous section, we have shown for the planar waveguide that it is possible to create
a core power distribution with either monotonically increasing or monotonically decreasing
profile, and non-zero on axis. A special case is when the power profile is completely flat within
the core, meaning that inside the core the field is pure TEM (kx = 0, kz = ω0/c), having both
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Fig. 8. Planar TEM-TM profiles: higher refractive index first (top) and lower refractive
index first (bottom).

Ez≡ 0 andHz≡ 0. In the dielectric layers the field must be either TM or TE, and the waveguide
may be matched to either. By computing the amplitudes in the layer adjacent to the core, we
find for the TEM-TM that the first layer should either be transverse quarter-wavelength thick
for Z1 < Z2 (higher refractive index first for the materials chosen here), meaning that actually
no matching to the Bragg mirror is needed, or transverse half-wavelength thick forZ1 > Z2.
This conclusion is independent of the internal half-widthDint. All three fields,Ez, Ex, andHy

are plotted in Fig. 8 for both cases. A TEM-TE mode would haveHz, Hx, andEy, and no
matching to the mirror is needed if the higher TE admittance material is first, and a transverse
half-wavelength is required if lower admittance is first.

Creating a similar TEM mode in the cylindrical structure is possible only by adding a di-
electric material around the axis, turning the waveguide into a dielectric coaxial cable, a device
which was analyzed before [11, 12, 13]. The approach presented in this paper of tailoring the
waveguide discontinuities around a specified field distribution is applicable here as well. As an
example, let us consider a TEM-TM mode, entailingkz = ω0/c. The configuration considered is
of a dielectric rod with relative permittivityεr of radiusRint, a hollow region inRint < r < Rext,
and dielectric layers forr > Rext. The electromagnetic field within the dielectric rod are of the
form

Ez = E0J0(kr r)e− jkzz,

Er =
j

η0

εr√
εr −1

E0J1(kr r)e− jkzz,

Hφ =
j√

εr −1
E0J1(kr r)e− jkzz.

(15)

At the hollow region we require that the TEM mode will exist, i.e., the only field components
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Fig. 9. Coaxial TEM-TM profiles: the higher refractive index is first at the hollow region
outer boundary (top) and the lower refractive index first (bottom).

are

Er =
C
η0

1
r

e− jkzz,

Hφ =
C
r

e− jkzz.

(16)

SinceEz = 0 at the hollow part, the internal dielectric rod must be designed so thatEz vanishes
at the boundary, entailingkrRint = p1, wherep1 is the first zero of the Bessel functionJ0(·). Im-
posing the continuity ofHφ, we get for the coefficientC = j εr√

εr−1
J1(p1)RintE0. The dielectric

internal rod may be conceived as a matching layer between the field on axis to the TEM mode
in the hollow region. It is now possible to proceed as before to the next discontinuity located
at r = Rext, and impose the boundary conditions there with the TM mode at the first dielectric
layer. The next interfaces will be placed whereEz either peaks or vanishes, as before. In Fig. 9
the three field componentsEz, Er , andHφ are plotted. The dielectric rod was taken to have
εr = 4.62, as one of the dielectrics composing the Bragg mirror. Similarly to the planar case,
at the top frame, when the material with the lower impedance is first, virtually no matching is
required and the first layer is almost transverse quarter-wavelength thick. If the material with
the higher impedance is placed first, the first layer is required to be transverse half-wavelength
thick. Matching a TEM-TE mode is also possible, similarly to the way described in the planar
case, where the three field components would beHz, Hr andEφ, with zeroHz in the hollow
region. For the TEM-TM mode, as shown in Fig. 9, the longitudinal electric fieldEz vanishes
at the boundaries of the hollow region similarly to the metallic coaxial cable. In the TEM-TE
case the longitudinal magnetic field would vanish, similarly to a coaxial waveguide with perfect
magnetic walls. Obviously, the same design procedure can be carried out if the internal rod has
more than one dielectric layer.
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6. Conclusion

A general design procedure for supporting a specified symmetric mode, TM, TE or TEM, in
an either planar or cylindrical Bragg reflection waveguide was given. The locations of the in-
terfaces between the dielectric layers are placed so that the boundary conditions on the elec-
tromagnetic field are fulfilled. For that to occur, a matching layer is required between the elec-
tromagnetic field within the core, and the Bragg mirror designed for that specific transverse
wavelength. The matching layer provides an important tool for controlling the phase velocity,
the field distribution, and the power distribution within the core.

Analytical expressions for the first layer width in several configurations were given. As a
special case, the configuration where the layers are all transverse quarter-wavelength thick (no
matching layer), was obtained. It was shown that the Bragg reflection waveguide with a match-
ing layer behaves at the operation wavelength as a metallic dielectric loaded or perfect magnetic
dielectric loaded waveguide, since at the interface between the first and the second layers the
fields either peak or vanish. The case where all layers are transverse quarter-wavelength thick
results in a behavior of either a metallic wall or a perfect magnetic wall at the core boundary.

The effect of adjusting the first layer width on waveguide characteristics was discussed in
terms of the dissipation losses, confined power and the group velocity. Moreover, the matching
layer may change significantly the dispersion curves, to intersect with the specified point.

For planar Bragg reflection waveguides, it was shown that odd modes may be supported to
give power density profiles with non-zero power on axis and specified properties, and specifi-
cally the power density gradient may be controlled. This may be useful in high power waveg-
uides, or for dielectric particle manipulation. Furthermore, planar Bragg reflection waveguides
were shown to support TEM-TM, or TEM-TE modes, where the power profile inside the core
is flat. Similarly, a systematic design procedure for supporting a TEM-TM or TEM-TE mode
in a coaxial fiber was given.

It is possible to further generalize the concept of the matching layer to matching with more
than one layer or matching to a mirror which is not optimal for the given mode. In this last case,
the eigen-vectors of the periodic structure will entail that the fields do not peak or vanish at the
interface, but there is some phase between the outgoing and incoming transverse waves.
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