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Abstract

The main objective of the research described in this thesis is to probe the many-

body quantum effects in a strongly interacting Fermi gas using Bragg spectroscopy.

An enriched source of Lithium-6 atoms is used to probe these properties. The broad

Feshbach resonance of the two lowest hyperfine levels of 6Li at a magnetic field of 834G

is exploited to precisely control the interactions between the atoms.

In our experiments, a beam of hot 6Li atoms produced by an oven is cooled using

a σ− Zeeman slower in an ultra-high vacuum environment. From this slowed atomic

beam, 4% of the atoms are cooled and trapped in a magneto-optical trap (MOT)

created by six perpendicularly intersecting near-resonant laser beams. This Doppler

cooled MOT consists of 108 atoms at a temperature of 280 µK. A small fraction (1%)

of atoms is then transferred from the MOT to a single optical dipole trap created by a

100 W fibre laser. To obtain the temperatures of degeneracy (≈ 100 nK), the atomic

sample is further evaporatively cooled in the presence of Feshbach magnetic fields,

by reducing the intensity of the dipole trap laser with the help of a commercial PID

controller. Once the degenerate gas is formed, the dipole trap is switched off and the

gas is allowed to expand for a certain time of flight before taking an absorption image

on a CCD camera for analysis.

At magnetic fields below the Feshbach resonance, the collisional interactions become

repulsive and a bound molecular state exists for fermionic atoms with opposite spins.

These bound fermions form a composite boson which follows bosonic statistics to



form a molecular Bose-Einstein Condensate (BEC). At magnetic fields above the

Feshbach resonance, the interactions become attractive and no stable bound state

exists. However at ultracold temperatures, a Bardeen-Cooper-Schrieffer (BCS) state is

created through weak coupling between the fermions forming a ‘Cooper pair’. When

the field is tuned to the Feshbach resonance (unitarity), the scattering length of the

atoms diverges and the interactions in the gas become universal. Under such conditions,

correlated pairs are predicted to exist due to many-body quantum effects. The size of

these pairs becomes comparable to the inter-particle distances, making this system an

ideal test bed for studying superfluidity.

Bragg spectroscopy is designed and implemented to probe the composition of

the particles at unitarity as well as their correlation properties across the BEC-BCS

crossover. A comprehensive study of these properties across the Feshbach resonance

is presented for the first time via Bragg scattering of the strongly interacting Fermi

gas. The Bragg spectra are analysed in terms of the centre-of-mass displacement of

the cloud along the direction of the Bragg pulse. A smooth transition from molecular

to atomic spectra is observed with a clear signature of pairing at and above unitarity.

Furthermore, the two-body correlations are characterised and their density dependence

is measured across the broad Feshbach resonance.
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Chapter 1

Introduction

1.1 Background

Ever since the first experimental realisation of long-lived bosonic molecules comprised

of fermionic atoms [1, 2, 3, 4, 5] and the Bose-Einstein condensation of these

molecules [6, 7, 8], the novel properties of these strongly interacting quantum many-

body systems have attracted world-wide attention. These landmark experiments were

made possible by the availability of so-called Feshbach resonances [9, 10, 11, 12]

which allow the interactions between fermions with opposite spins to be tuned in a

very precisely controlled manner. In addition, the techniques of laser cooling and

trapping [13, 14, 15, 16] developed to achieve atomic BECs [17, 18, 19] have been

applied to create strongly interacting Fermi gases in the laboratory [20, 21, 22, 23,

24, 25, 26]. The behaviour of such many-body interacting Fermi systems have many

similarities to that of electrons in metals, superconductors [27], superfluids [28], white-

dwarfs and neutron-stars. The fact that strongly interacting Fermi systems can be

modelled and manipulated at will in an experimental laboratory makes the research of

such systems of great fundamental significance.

At ultracold temperatures, the collisional properties of two-component Fermi gases

1
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Figure 1.1: Phase diagram of interacting Fermi mixtures in a harmonic trap as a
function of temperature T/TF and interaction strength 1/kFa [29], where TF is the Fermi
temperature. The dashed line represents the characteristic temperature T ∗ for pair
formation and the continuous line represents the critical temperature Tc for superfluid
formation. (The plot is re-constructed from Fig. 14 of reference [30])

(spin-up and spin-down) are governed only by their s-wave scattering length a. With

the use of a Feshbach resonance, this length can be tuned from a positive to a negative

value, creating either a repulsive or an attractive interaction between the fermions.

The interaction strength is quantified in terms of the dimensionless quantity 1/kFa,

where kF is the Fermi wave vector. Figure 1.1 shows the phase space diagram across

this crossover in terms of 1/kFa. Fermions with opposite spins can form bosonic pairs

below the characteristic temperature T ∗ (dashed line) and can be further cooled below

the critical temperature Tc (solid line) to form a superfluid. Note that, except for

1/kFa > 0, isolated correlated pairs cannot be formed as they are produced purely

by many-body quantum effects. Also, it has been shown experimentally [23] that the

crossover across the Feshbach resonance is continuous and reversible.

At the crossover 1/kFa = 0, the scattering length diverges (a → ±∞) and

the properties of the system become universal [31, 32, 33, 34, 35, 36]. Under

such conditions, strongly correlated fermionic pairs are formed. The size of these

2



pairs is comparable to the inter-particle distances which facilitates the formation

of superfluidity at high temperatures. Thus, a system of strongly interacting

Fermi gas provides an ideal platform to probe and understand high-temperature

superconductivity in various types of materials [37]. This region (−1 < 1/kFa < +1)

of the Feshbach resonance is referred to as unitarity.

When the interactions are attractive 1/kFa < 0, weakly bound Cooper pairs are

formed. This is analogous to the formation of electron pairs in a superconductor,

first explained by Bardeen, Cooper and Schrieffer (BCS) using many-body mean-

field theory [38]. These pairs are correlated in momentum space at the surface of

the Fermi sea, whereas for momentum k < kF pair formation is suppressed by Pauli

blocking. In real space, these pairs are larger than the inter-particle separation making

it experimentally difficult to detect them. Superfluidity is also possible in such systems,

though at extremely low temperatures. This side of the Feshbach resonance is often

referred to as the BCS side.

When the interactions are repulsive 1/kFa > 0, a weakly bound molecular state

becomes energetically stable in the presence of a Feshbach resonance. When a gas of

two-component fermions is evaporatively cooled at a fixed value of a in a harmonic trap,

molecules can be produced via three-body recombination [39]. Experimentally [3, 4],

the lifetimes of these molecules are found to be of the order of tens of seconds, long

enough to perform evaporative cooling. Because these molecules are composite bosons

(consisting of two fermions), they can undergo a phase transition to form a molecular

BEC which is a superfluid. This side of the Feshbach resonance is called the BEC side.

1.2 Motivation

It is clear from the previous section, that with the help of Feshbach resonances, the

strength and type of interactions within a two-component Fermi gas can be varied

very precisely. Due to the presence of interactions in a Fermi gas, correlated pairs are

3



formed [26, 40]. This eventually leads to the production of superfluidity across the

BEC-BCS crossover [42, 43, 44]. The size of these pairs, however, varies from small

to large compared to the inter-particle distances depending on the strength of the

interaction [45]. One important step towards understanding the dynamic properties of

these many-body systems is to quantify these pair correlations in a strongly interacting

Fermi gas across the BEC-BCS crossover.

Experiments performed across the BEC-BCS crossover using radio-frequency (RF)

spectroscopy [46] have either measured pair sizes [45] or pairing gaps [47, 41], whereas

the experiment performed using photoemission spectroscopy has probed only single

particle excitations [48]. The first pair correlation measurements between the pair of

atoms dissociated from a bound molecule is performed by analysing the atom-shot

noise from the time of flight absorption images [49]. However, in order to probe

the pair correlations across the BEC-BCS crossover, Bragg spectroscopy has been

suggested by various theoretical studies [50, 51, 52] for the following reasons. Unlike

RF spectroscopy, during Bragg scattering the internal atomic states are unchanged, as

a result there are no final state interactions shifts. Also, the momentum imparted to

the gas in Bragg spectroscopy can be very large compared to the Fermi momentum

(ℏkF), giving more freedom to probe wide region of the excitation spectrum. Finally,

as shown in this work, the center-of-mass displacement of the cloud along the direction

of the Bragg beams can be easily used to probe the pair correlations, compared to

tedious numerical analysis of the atom-shot noise from the absorption images.

The experimentally measurable quantity that is related to the pair correlation

function, via a Fourier transform, is the dynamic structure factor (DSF). In an inelastic

scattering experiment, when the probe particle is weakly coupled to the many-body

system, the DSF provides information about the spectrum of collective excitations

at low momentum transfers [53, 54, 55]. At high momentum transfer, the DSF

gives details about the momentum distribution of the system, where the response

is dominated by single-particle effects. The DSF, for example, in superfluid liquid

4



He is measured through the differential scattering cross-section in neutron scattering

experiments [56, 57, 58, 59]. Fortunately, in atom optics, Bragg spectroscopy has

proven to be an equivalent technique to probe the dynamic [60] and static structure

factors [61] in atomic BECs. The static structure factor (SSF) is the effective line

strength of scattering at a particular momentum.

The main objective of this work is to implement Bragg spectroscopy to probe pair

correlations across the BEC-BCS crossover in terms of the interaction strength. To

probe the single-particle behaviour, the momentum imparted to the system is kept

maximum with respect to the Fermi wave vector kF. Since this is a mass-dependent

scattering process, it can also be used to probe the relative fraction of the constituent

particles in a strongly interacting Fermi gas at unitarity. In fact, on the BCS side,

Bragg spectroscopy has been theoretically proposed to detect Cooper pairs in a weakly

interacting Fermi gas [62]. In addition to this, on the BEC side, the effects of mean-field

interactions on the momentum distribution of a molecular BEC can be probed using

Bragg spectroscopy. The first Bragg scattering experiment performed on ultracold

sodium dimers [63] has shown a surprisingly large shift in the Bragg resonant frequency,

which could not be explained using only mean-field interactions. Further study is

anticipated in this direction.

1.3 Thesis outline

With the possibility of probing various dynamic properties of an interacting Fermi gas

using Bragg spectroscopy, this work started with setting up the experimental apparatus

in several stages, in collaboration with two other postgraduate students. At first,

a molecular BEC was created in a low power optical dipole trap, followed by the

production of a degenerate Fermi gas [64]. After this achievement, the experiment was

upgraded by including a tapered amplifier to create a six-beam magneto-optical trap

(MOT) and by setting up a high-power single optical dipole trap using a 100 W fibre
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laser. In order to study the strongly interacting properties of the fermions, all the

images presented in this thesis were obtained at high magnetic fields. This is achieved

by implementing a laser offset-locking technique [65], allowing one to take absorption

images at high magnetic fields.

The thesis is structured in the following way : Chapter-2 starts by highlighting the

effect of external harmonic confinement on non-interacting and interacting quantum

degenerate gases. In Chapter-3, the basic theory required to understand the BEC-

BCS crossover physics is described. The idea is to discuss briefly collisions at

ultracold temperatures, Feshbach resonances and the atomic structure of 6Li. Chapter-

4 describes the experimental set-up involved in performing the experiments. The

technical details of the apparatus are described, including the vacuum system, the

optical setup, the lasers and absorption imaging. The laser locking schemes and the

optical setups discussed here differ from those mentioned in reference [66], the first

Ph.D thesis from this group. In Chapter- 5, the results obtained from this new set-up

are presented. The experimental details about the production and observation of a

molecular BEC and a degenerate Fermi gas are also given.

Chapter-6 outlines the importance of inelastic scattering experiments to probe the

internal properties of the many-body system. The principles of Bragg scattering are

explained. An expression to relate the density correlation functions to the measured

Bragg signal (centre-of-mass displacement of the cloud) is derived. Following this, a

new way to analyze the Bragg signal is described in Chapter-7. This chapter also

includes the results obtained from Bragg scattering in the collionless regime (without

interactions). In this regime, the single-particle properties of atoms and molecules are

verified by observing two-photon Rabi oscillations. Chapter-8 presents the key results

of the thesis obtained through Bragg scattering in the strongly interacting regime. In

this regime, the static structure factor which is related to the pair correlation function

is evaluated from Bragg spectra for the first time. It is found to vary smoothly from the

BEC side to BCS side in qualitative agreement with the theoretical prediction [51]. In

6



addition, the measured density dependence of correlated pairs is presented. At the end

of this chapter, thermometry of a strongly interacting Fermi gas is briefly discussed.

Chapter-9 summarizes the main results from the thesis and also gives an outlook for

future experiments that can be performed with the same experimental set-up.
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Chapter 2

Trapped quantum degenerate gases

2.1 Introduction

In this chapter, the behaviour of degenerate quantum gases at ultracold temperatures

is first discussed briefly. This is followed by a discussion on the properties of trapped

degenerate gases. Since the particles are trapped in an optical dipole trap, which can

be approximated by a harmonic potential near the bottom of the trap, the properties

of the gas are discussed only in such a potential for both non-interacting (sec. 2.3) and

interacting (sec. 2.4) gases. A number of textbooks [67, 68] and review articles [30] can

provide a detailed discussion on this topic, and hence only the important results are

presented here. Physically measurable quantities such as particle number, temperature

and density distribution are described in each case. The last section explains the scaling

factors required for application to the width of an hydrodynamically expanding cloud.
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2.2 Quantum statistics

All fundamental particles are classified either as bosons or fermions owing to their

intrinsic angular momentum called spin. Bosons have integral spin quantum number

whereas fermions have half-integral spin quantum number. When these particles

combine to form a complex structure (like an atom or a molecule), the total spin

quantum number can be either an integer, making it a composite boson, or an odd

half-integer, making it a composite fermion. The basic difference between bosons

and fermions arises as a consequence of the Pauli principle which states that the

total wavefunction for a system must be symmetric (anti-symmetric) with respect to

exchange of any pair of bosons (fermions). As a result, the Pauli principle forbids two

identical fermions from occupying the same quantum state. This quantum behaviour

of the particles comes into play only at ultracold temperatures (< 1 mK), when their

de Broglie wavelength λdB =
√

2π~2

m kBT
becomes comparable to the spacing between the

particles, where m is the mass of the particle at temperature T . This is depicted for

particles in a harmonic trap in Fig. 2.1 where the phase-space density D = nλ3
dB at a

particle density n is used to differentiate various temperatures.

T = 0nλ3
dB & 1

nλ3
dB ≪ 1

Maxwell-Boltzmann

Bose-Einstein

Fermi-Dirac

Figure 2.1: Comparison of identical bosons (in blue) and fermions (in red), respectively,
at different temperatures. The phase-space density is written as D = nλ3

dB.

At sufficiently high temperatures, the mean occupation number for all the energy
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states is much less than one (nλ3
dB ≪ 1) and the particles’ behaviour is well described

by Maxwell-Boltzmann statistics (p = 0 in eq. 2.2). As the temperature is lowered

to the point of degeneracy (nλ3
dB & 1) quantum statistics becomes crucial. A gas of

identical bosons (in blue) begins to occupy the ground state macroscopically according

to Bose-Einstein statistics (p = −1 in eq. 2.2), whereas fermions (in red) fill up the

low-lying energy states following the Pauli principle, with at most one identical atom

per state according to Fermi-Dirac statistics (p = +1 in eq. 2.2). At T = 0 all the

bosons are condensed in the ground state while the fermions fill up all the states up to

the Fermi energy EF = kBTF, where TF is the Fermi temperature.

In our experiments, we use two spin states of fermionic 6Li atoms that can be

combined using a Feshbach resonance to make a diatomic bosonic molecule. Because

these molecules follow Bose-Einstein statistics, they can be cooled to form a molecular

BEC.

2.2.1 Distribution functions

As mentioned above, quantum statistics start to play a crucial role once the gas is

cooled below a certain critical temperature Tc. To obtain an expression for Tc, first

consider a gas with N particles trapped in a harmonic potential:

V (r) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 (2.1)

where ωx, ωy and ωz are the trapping frequencies in each direction. Then the mean

occupation number f(εi) of a single-particle ith state with energy εi is given by

f(εi) =
1

e
(εi−µ)

kBT + p
(2.2)
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where the chemical potential µ is obtained from the normalization condition

∑

i

f(εi) = N, (2.3)

and p = ±1 for quantum gases or 0 for a classical gas. When the temperature is

sufficiently large, the term with p becomes negligible and the gas is described by

classical Maxwell-Boltzmann statistics with p = 0. Below critical temperatures, the

gas is described by Bose-Einstein statistics for bosons (integer spin) with p = −1 and

by Fermi-Dirac statistics for fermions (odd half-integer spin) with p = +1.

The summation in eq. 2.3 can be approximated by an integration when the system

occupies many levels to give an almost continuous distribution (kBT ≫ ~ωi). Using

the density of states in a harmonic trap

g(ε) =
ε2

2(ℏω)3
, (2.4)

where ω = (ωxωyωz)
1/3 is the geometric mean of the three trapping frequencies, the

integration becomes

N =

∫

g(ε) f(ε) dε. (2.5)

and the total energy of the system E can be obtained from the relation

E =

∫

ε g(ε) f(ε) dε. (2.6)

All of the thermodynamic quantities like specific heat, entropy etc. can be obtained

once the total energy of the system is known.

2.3 Trapped non-interacting degenerate gases

Before discussing interacting degenerate gases, it is worthwhile to summarise the

properties of trapped non-interacting degenerate gases.
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2.3.1 Bosons

The Hamiltonian H for an ideal (non-interacting) Bose gas trapped in a harmonic

potential is

H = − ℏ

2m
∇2 + V (r). (2.7)

The wavefunction for a BEC is then given by the solution of the Schrödinger equation

for the above Hamiltonian. This has the same wavefunction as that of a single particle

in the ground state, except for the normalization constant

φ0(r) =
√
N

(

1√
πaho

)3/2

exp

(

− r2

2a2
ho

)

, (2.8)

where aho =
√

ℏ/mω̄ is the harmonic oscillator length, which gives the size of the

cloud. The density distribution of the condensed cloud then becomes n0(r) = |φ0(r)|2

which increases linearly with N , the total number of particles. Writing N as the sum

of condensed atoms N0 and thermal atoms NT, the critical temperature Tc and the

condensate fraction N0/N are evaluated using eq. 2.5 to be [68]

Tc = 0.94
ℏωN1/3

kB
, (2.9)

N0

N
= 1 −

( T

Tc

)3

. (2.10)

This relation gives a large condensate fraction of 90% even at a temperature T/Tc = 0.5.

The density distribution for the thermal cloud nT(r) is given by

nT(r) =
1

λdB
Li3/2 exp

(

−V (r)

kBT

)

(2.11)

where Li represents the poly-logarithmic function. Since the width RT = aho(kBT/ℏω̄)

associated with this thermal distribution is typically much larger than aho, a BEC in

a harmonic trap is revealed by the appearance of a sharp peak in the central region of

13



the density distribution. The mean energy per particle is obtained from eq. 2.6 [69]

E

N
= 2.7kBTc

(

T

Tc

)4

. (2.12)

2.3.2 Fermions

Consider a sample of N spin polarized fermions trapped in a harmonic potential. For

such a system, the chemical potential at T = 0 defines the energy of the highest

occupied state, also called the Fermi energy EF. It is obtained by integrating eq. 2.5

at T = 0

EF = ℏω(6N)1/3 = kBTF (2.13)

The Fermi temperature TF marks the crossover to a degenerate Fermi gas (similar to

Tc for a BEC) where the mean occupation number approaches unity. Note that both

temperatures, Tc and TF, have the same N1/3 dependence on the number of trapped

atoms.

The zero temperature density distribution at a position r can be obtained by first

evaluating the number of atoms that fit into a momentum sphere with radius ℏkF(r)

as

n(r) =
1

(2π~)3

4

3
π(ℏkF(r))3, (2.14)

where 1/(2πℏ)3 is the density of states. In the Thomas-Fermi approximation, where

the trapped gas can be described by a uniform gas, a local Fermi wave vector kF(r) is

defined for each point in space by

EF =
ℏ

2k2
F(r)

2m
+ V (r). (2.15)

Combining equations 2.14 and 2.15, the spatial profile of a non-interacting Fermi gas

is obtained as

n(r, T = 0) =
1

6π2

[2m

~2

(

EF − V (r)
)

]3/2

. (2.16)

14



which vanishes for V (r) > EF. Defining the Thomas-Fermi radius Ri
F as the width

at which the density goes to zero in direction i = x, y, z, by setting V (Ri
F) = EF, the

maximum extent of the fermionic cloud is obtained as

Ri
F =

√

2kBTF

mω2
i

or Ri
F =

√

ℏ

mω

(

48N
)1/6 ω

ωi

. (2.17)

The distribution function then becomes [30]

n(r, T = 0) =
8N

π2Rx
FR

y
FR

z
F

[

1 −
( x

Rx
F

)2

−
( y

Ry
F

)2

−
( z

Rz
F

)2]3/2

. (2.18)

The mean energy per particle is obtained from eq. 2.6 as [70]

E

N
=

3

4
kBTF. (2.19)

2.4 Trapped interacting degenerate gases

Interactions play a very important role in determining the dynamical behaviour of the

gas. They also contribute to modifying the density distributions of the clouds. In the

following sections, the main focus is on understanding the effects of interactions on the

shape of the clouds.

2.4.1 Bosons

Consider a gas with N interacting bosons trapped in a harmonic potential V (r) at

temperature T = 0. In a dilute gas, the interactions are dominated by low energy

two-body s-wave collisions (see chapter. 3). The interactions can then be treated as a

mean-field contact potential whose strength is characterized by the coupling constant

g = 4πℏ
2a/m, where a is the s-wave scattering length. This approximation allows

us to write the many-body Schrödinger equation for N bosons in terms of a single
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macroscopic order parameter Ψ(r) (the condensate wavefunction) [68]. In equilibrium,

the density distribution is obtained from the time-independent Gross-Pitaevskii (GP)

equation
(

− ℏ
2

2m
∇2 + V (r) + g |Ψ(r)|2

)

Ψ(r) = µΨ(r), (2.20)

where µ is the chemical potential which characterises the ground state energy of

the condensate. From the solution of this equation, the density distribution can be

calculated from n(r) = |Ψ(r)|2.

When the number of atoms is large and the interactions are repulsive, the ratio

of kinetic to potential (interaction) energy can become small. In this regime, the

first (kinetic) term in the GP equation can be neglected. This assumption is often

referred to as the Thomas-Fermi approximation. Then the density distribution is given

analytically by

n(r) =
1

g
(µ− V (r)). (2.21)

The chemical potential µ is determined by the normalising condition
∫

drn(r) = N

and the shape of the density distribution becomes an inverted parabola in 3D [30]

n(r, T = 0) =
15N

8RxRyRz

[

1 −
( x

Rx

)2

−
( y

Ry

)2

−
( z

Rz

)2]

, (2.22)

where the Thomas-Fermi radius Ri is defined by the width at which the density goes

to zero

Ri =

√

2µ

mω2
i

= aho
ω̄

ωi

(

15Na

aho

)1/5

. (2.23)

The mean energy per particle is obtained from eq. 2.6

E

N
=

5

7
µ. (2.24)

At finite temperature T , because the density of the thermal cloud is much lower

than that of the condensed component, the coupling between them can be ignored.

Therefore, the density distribution is given by eq. 2.22 with N replaced by N0. To a
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first-order correction, the condensate fraction is the same as that of an ideal gas, while

the critical temperature is reduced according to the relation [71]

Tc − T 0
c

T 0
c

= −1.32N1/6 a

aho
, (2.25)

where T 0
c is the critical temperature of a non-interacting gas.

2.4.2 Fermions

In the case of ultracold spin polarized fermions, interactions are suppressed due to the

Pauli exclusion principle. However, if atoms in two different spins are considered then

they can interact via s-wave collisions at ultracold temperatures. These interactions

give rise to pairing effects which can lead to superfluid properties. Consider a two-

component Fermi gas with equal numbers of atoms N/2 in each state, spin up (σ =↑)
and spin down (σ =↓). Because the interaction strength varies across the cloud, as

the density varies, there exists no exact analytic solution for the many-body problem

of trapped fermions across the BEC-BCS crossover. The results given below use the

local density approximation, which assumes that locally the system can be treated like

a uniform gas. Also, the results given below are strictly for a trapped interacting two-

component Fermi gas at temperature T = 0. For the case of an interacting uniform

Fermi gas, the reader is referred to the review article [70]. In general, the interaction

strength across the BEC-BCS crossover can be quantified by a dimensionless parameter

1/(kFa) which is the ratio of the interparticle spacing to the scattering length.

Weak repulsive interactions :

In the limit of weak repulsive interactions, the scattering length is small and positive

a > 0 and 1/(kFa) → +∞. For very small positive values of a, a repulsive interacting

Fermi gas is formed [30]. However, in the presence of a Feshbach resonance, a positive

scattering length is linked to the presence of a molecular bound state in the interparticle

potential. Since these molecules are composite bosons formed by two fermions, their
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behaviour can be described by standard BEC theory. This limit of the Feshbach

resonance is frequently referred to as the BEC-side or BEC-limit.

For a weakly interacting gas, the Thomas-Fermi limit, which requires the interaction

energy to dominate over the kinetic energy, can be easily satisfied. This gives the

following parabolic density profile

n(r, T = 0) =
15N

16RxRyRz

[

1 −
( x

Rx

)2

−
( y

Ry

)2

−
( z

Rz

)2]

(2.26)

Ri =

√

2µM

Mω2
i

= aho
ω̄

ωi

(

15NMaM

aho

)1/5

(2.27)

where NM = N/2 is the number of molecules with mass M = 2m and aM = 0.6a is the

molecular scattering length [39]. The interaction between the molecules is characterized

by the mean-field equation of state

µ(n) =
πℏ

2aMn

m
(2.28)

which depends linearly on the density n of the system.

Weak attractive interactions :

In the limit of weak attractive interactions, the scattering length is small and

negative a < 0 and 1/(kFa) → −∞. This limit of the Feshbach resonance is frequently

referred to as the BCS-side or BCS-limit. For this case (kF|a| ≪ 1), the many-body

problem can be solved both at T = 0 and at finite temperature using BCS theory,

which describes superconductivity in metals [38]. The interactions are added as a

perturbation to the non-interacting Fermi gas to obtain a first-order correction to the

Thomas-Fermi radius

Ri =

√

2µ0

mω2
i

= Ri
F

(

1 − 256

315π2
kF|a|

)

(2.29)

where kF is the Fermi wave vector of a non-interacting gas. This result shows that the
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width of the cloud is compressed due to attractive interactions. If kF|a| ≪ 1, then the

Thomas-Fermi radius becomes equal to that of a non-interacting gas

Ri
F =

√

2kBTF

mω2
i

, (2.30)

and the density distribution is given by

n(r, T = 0) =
4N

π2Rx
FR

y
FR

z
F

[

1 −
( x

Rx
F

)2

−
( y

Ry
F

)2

−
( z

Rz
F

)2]3/2

. (2.31)

The equation of state is approximated by that of an ideal Fermi gas, that is

µ(n) =
ℏ

2

2m
(3πn)2/3. (2.32)

Strong interactions :

In this limit, the scattering length diverges a→ ±∞ and 1/(kFa) → 0, leaving the

interparticle distance 1/kF as the only relevant length scale. This limit of the Feshbach

resonance is frequently referred to as the unitarity limit. At present an exact solution of

the many-body problem is not available for kF|a| ≫ 1. As the scattering length exceeds

the inter-particle separation, the properties of the gas become universal [36] and all the

thermodynamic quantities can be written as a function of the Fermi energy EF and

the inter-particle spacing characterized by a universal constant β. In this regime, the

density profile becomes [30]

n(r, T = 0) =
4N

π2Rx
UR

y
UR

z
U

[

1 −
( x

Rx
U

)2

−
( y

Ry
U

)2

−
( z

Rz
U

)2]3/2

. (2.33)

with Ri
U = (1 + β)

1
4Ri

F. Although the universal constant β has only a very weak

dependence on the radius, its value can be obtained by measuring the size of the cloud

at unitarity [23, 24, 31, 72]. In this limit, the chemical potential at T = 0 is given by

µ = (1 + β)EF = (1 + β)
ℏ

2

2m
(3πn)2/3 (2.34)
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which has the same power law as non-interacting fermions.

All the results given above are for interacting fermions at zero temperature.

Including finite temperature effects across the BEC-BCS crossover for interacting

trapped fermions is very difficult theoretically. However, experimentally, it is

found [73, 74] that the shape of finite temperature clouds at unitarity is not different

from that of a non-interacting Fermi gas. This has led to the practice of fitting density

profiles of a non-interacting gas to the observed data and quoting an effective/empirical

temperature T̃ with respect to the Fermi temperature TF [31](see sec 8.6) .

2.5 Hydrodynamic expansion of clouds

When elastic collisions rates in a trapped gas are higher than the trapping frequencies,

the gas is said to be in the hydrodynamic regime. Expansion of such a gas after

switching off the trap is then simply a re-scaling of the cloud widths. Since,

in our experiments, absorption imaging is performed at high magnetic fields, the

cloud experiences a saddle-shaped magnetic potential due to the presence of external

Feshbach fields. Such an anti-confining potential can be written as

V (r, t > 0) =
1

2
m
(

ω2
Sx
x2 + ω2

Sy
y2 + ω2

Sz
z2
)

(2.35)

with frequencies ωSi
. If the chemical potential has the power-law dependence µ ∝ nγ,

then the scaling ansatz

n(r, t) =
1

V(t)
n

(

x

bx(t)
,
y

by(t)
,
z

bz(t)
, t = 0

)

(2.36)

provides the exact solution, where the volume unit V(t) = bx(t)by(t)bz(t) [30]. The

scaling parameters bi follow the time-dependent equations

b̈i = −ω2
Si
bi +

ω2
i (0)

biVγ
, (2.37)
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which can be solved numerically. Here, ωi is the initial trapping frequency. In our

experiment, ωSx,y = ωx,y and ωSz = i
√

2 ωSx . As discussed in the previous section, for

a Fermi gas both at unitarity and in the non-interacting limit, µ ∝ n2/3 giving γ = 2/3.

2.6 Summary

The spin dependent behaviour of particles at ultracold temperatures is briefly discussed

in this chapter. The zero temperature properties of the non-interacting and interacting

trapped gases in a harmonic potential are presented. The main focus of the chapter

is to introduce the various parameters required to extract useful information from the

experimental results. In order to keep the contents relevant to the experiments reported

in the thesis, not all the superfluid properties of the degenerate gases are discussed. In

particular, the excitation spectrum across the BEC-BCS crossover and the appearance

of a pairing gap on the BCS side are excluded. For more details on this topic, the

reader is referred to the review paper [30]. However, single particle excitations and

pair correlations probed by Bragg scattering are described separately in chapter-6.
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Chapter 3

Ultracold collisions and interactions

3.1 Introduction

The collisional properties of degenerate quantum gases at ultracold temperatures are

discussed briefly in this chapter. First, the scattering process at low energies is

revisited highlighting the dependence of the interactions on the scattering length.

This is followed by quantifying the two-body interactions in terms of the scattering

length. After that, in section 3.3 the Feshbach resonance, which is an important tool

in manipulating ultracold atoms, is explained. Owing to the behaviour of fermionic

atoms across this resonance (sec. 3.4), either a molecular BEC or a degenerate Fermi

gas can be formed. Finally, in section 3.5, the 6Li energy levels are described in both

the absence and presence of external magnetic fields.

3.2 Scattering at ultracold temperatures

Elastic and inelastic collisions not only play a crucial role during evaporative cooling

(re-thermalization) of the gas but also control the dynamics of the gas depending on
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the particles (bosons or fermions) involved. For simplicity, elastic collisions between

two identical particles in their centre-of-mass frame are considered to highlight the

important results. The time-independent Schrödinger equation for such a system with

a spherical scattering potential V (r) is given as

(

ℏ
2

2mr

∇2 + V (r)
)

Ψ(r) = EΨ(r), (3.1)

where the energy of the incoming free particle with mass m is

E =
(ℏk)2

2mr

, (3.2)

mr = m/2 is the reduced mass and ℏk is the initial momentum. The wave function

Ψk(r) can be described as the sum of the incoming plane wave eik·r and the scattered

outgoing spherical wave eikr

r
for very large distances (r → ∞), that is

Ψk(r) = eik·r + f(k, θ)
eikr

r
(3.3)

where f(k, θ) is the scattering amplitude which depends on the initial momentum and

the angle between the directions of the relative momentum of the particles before and

after scattering. The differential cross section, which gives the cross section per unit

solid angle dΩ, is defined by
dσ

dΩ
= |f(k, θ)|2. (3.4)

An expression for f(k, θ) can be obtained by expanding the wavefunction in terms of

spherical harmonics and solving the radial equation before comparing it with eq. 3.31.

Finally, integrating eq. 3.4, the total cross section σ is obtained in terms of the phase

shifts δl as

σ(k) =
4π

k2

∞
∑

l=0

(2l + 1) sin2 δl(k). (3.5)

1This derivation is well documented in many standard textbooks, such as [75]
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For a finite-range potential which vanishes at large distances, the phase shifts vary as

δl ∝ k2l+1 for small values of k (low energies). Thus at ultracold temperatures, the

scattering cross section is dominated only by the l = 0 term, the s-wave scattering. In

this case, the phase shift is evaluated as δ0 = −ka where a is the scattering length,

giving

σ =
4π

k2
δ2
0 = 4πa2 (3.6)

This is an important result, which shows that for s-wave scattering the cross section

depends only on the scattering length.

Now, consider the scattering of identical particles in the same internal state

(both spins up or down). Then, by the Pauli principle, the wave function must

be symmetric (anti-symmetric) under exchange of the co-ordinates of the bosons

(fermions). Therefore, the differential cross section is written as

dσ

dΩ
= |f(k, θ) ± f(k, π − θ)|2, (3.7)

where the plus sign applies to bosons and the minus sign to fermions. In other words,

the cross section calculated above in eq. 3.6 are added for bosons, giving σ = 8πa2,

whereas the cross section vanishes for two identical fermions. However, these symmetry

arguments only apply to indistinguishable particles in the same internal quantum state,

while the scattering cross section in the case of two fermions in different internal states

(one spin up and the other spin down) is non-zero.

3.2.1 Mean field interaction

It is interesting to note that the low-energy scattering process does not depend on the

details of the microscopic potential. Hence, for a many-particle system, an effective

potential can be considered to treat the interactions. One such type of potential is a
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zero-range contact potential given by

Veff(r) = gδ(r)
∂

∂r
r, (3.8)

where δ(r) is the Dirac-delta function. Substituting this in eq. 3.1, the total cross

section for two identical particles is obtained as

σ =
4πa2

1 + k2a2
, (3.9)

giving the relation between the scattering length a and the coupling constant g as

a = gm
4πℏ2 . This relation is used to obtain the mean-field potential experienced by a

particle in a gas of density n due to scattering from all other particles as

Umf = gn =
4πaℏ2n

m
, (3.10)

where n and hence Umf can be functions of r.

The significance of eq. 3.9 can be understood by considering the two extreme

interacting limits. In the weakly interacting limit (ka ≪ 1) this equation gives

σ0(k) = 4πa2, recovering the low energy limit results (eq. 3.6), whereas in the strongly

interacting limit (ka ≫ 1) the scattering cross section σ0(k) = 4π/k2 becomes

independent of the scattering length giving the maximum possible cross section for

s-wave collisions. This is the unitarity regime which can be realised in a Fermi gas at

the BEC-BCS crossover.

3.3 Feshbach resonance

Consider a 6Li atom, a fermion, with a single valence electron in its ground state

(J=1/2). Together with a nuclear spin of I=1, the total angular momentum becomes

F=I±J, giving F=1/2 and F=3/2. When two such atoms interact, the different
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combinations of these hyperfine states give rise to three inter-atomic potential curves.

In the presence of magnetic fields, they are further split into several sub-level channels

depending on the projection quantum numbers mF . For a given collision energy, a

channel accessible at large interatomic distances (R = ∞) is described as an open

channel, while energetically detuned channels are called closed channels. Figure 3.1

shows closed and open channel potential curves for two interacting atoms. A Feshbach

resonance is said to occur whenever the threshold energy of the colliding atoms in an

open channel becomes equal to a bound energy state in the closed channel.

Bound
energy level

Threshold
energy level

Open channel

Closed channel

Atomic separation

E
n

er
g

y

∆E=∆µ B

Figure 3.1: Feshbach resonance. Closed and open channel potential curves are shown
for two interacting atoms.

Experimentally, the energy difference ∆E between the bound state and the

threshold energy level can be tuned by means of a magnetic or electric field, provided

the two channels have different magnetic/electric dipole moments. In our experiment,

a magnetic field generated by a pair of Helmholtz coils is used to precisely control the

scattering length across the Feshbach resonance according to the relation

a = abg

(

1 +
∆B

B −B0

)

(3.11)
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where abg is the background scattering length of the open channel, B is the strength

of the applied external magnetic field, B0 is the magnetic field at resonance, and ∆B

is the width of the resonance which depends on the magnetic moments of the closed

and open channels. The Feshbach resonance for the two lowest energy states of 6Li at

834G is plotted in Fig. 3.2.
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Figure 3.2: Calculated scattering length across the BEC-BCS crossover [76]. Only the
broad Feshbach resonance at 834 G (vertical line) is shown.

3.4 The BEC-BCS crossover

3.4.1 BEC side

On the lower-field side of the Feshbach resonance, the scattering length is positive

creating a repulsive interaction between fermions in two different spin states. This

corresponds to the energy of a weakly bound molecular state, available in the closed

channel, lying just below the open channel continuum, and using the Feshbach

resonance coupling to this bound state is achieved. The molecules are formed through

three-body recombination during the evaporative cooling stage. Although three-body
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collisions are expected to be suppressed, even in a two-component Fermi gas, it has

been shown theoretically [77] that they can occur near a Feshbach resonance. During

evaporation, if the atomic temperature (kinetic energy) decreases below the molecular

binding energy Eb, efficient production of molecules is favoured. These molecules are

formed in the highest ro-vibrational states. Due to inelastic collisions among themselves

or with atoms, they can relax into a deeper bound state. The size of these molecules

is of the order of a and their binding energy is given by Eb ≃ −ℏ
2/ma2 [70].

Such bosonic molecules composed of fermionic atoms are found to be much more

stable than those composed of two bosonic atoms [4]. This is because inelastic collision

rates are suppressed in the first case, due to the Pauli principle. During atom-molecule

collisions, since one atom in the molecule will have the same spin as that of the colliding

atom, Pauli blocking prevents the atom from colliding with the molecule. This process

is also same for molecule-molecule collisions as the size of the molecules is large. Since

the scattering lengths of molecule-molecule aM and atom-molecule aam collisions are

described in terms of the atomic scattering length a as [39, 78],

aM = 0.6a and aam = 1.2a, (3.12)

the inelastic collision rate is characterized in terms of the loss coefficient α evaluated [2,

24] for both the cases as

αM ∝ a−2.55 and αam ∝ a−3.33. (3.13)

These results show that as the scattering length increases, the inelastic collision rates

decrease leading to a stable molecular system near the Feshbach resonance. Also, it

has been shown theoretically [39] that the inelastic collision rate is significantly smaller

than the elastic scattering rate, allowing efficient evaporative cooling of molecules to

form a molecular BEC.
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3.4.2 BCS side

On the higher-field side of the Feshbach resonance the scattering length is negative

creating an attractive interaction between fermions in two different spin states.

Even for small attractive interactions, the formation of correlated Cooper pairs is

energetically favourable. These pairs are much larger than the inter-particle distance,

with constituent atoms correlated in momentum space rather than in real space. Unlike

the molecules formed on the BEC side, the pairing gap is smaller than the Fermi energy.

One of the long standing goals in ultracold Fermi gas experiments is to observe these

Cooper pairs explicitly. In this regard, Bragg scattering of Cooper pairs has been

theoretically proposed [62]: the theory predicts the scattering of these pairs spatially

half-way between the parent and the scattered atomic cloud, forming a ring structure

in momentum space.

3.4.3 Unitarity

Exactly at the Feshbach resonance, the scattering length diverges, and the inter-particle

separation becomes the only relevant length scale. In this regime, the size of the

pairs becomes comparable to the inter-particle distance. Under such conditions, the

properties of the gas become universal [36]. Note that although no bound molecular

state exists in this regime, correlated pairs are formed due to strong interactions. Also,

the crossover from the BEC side to the BCS side is found to be continuous and reversible

experimentally [23].

3.5 Energy levels of 6Li atom

Natural lithium consists of two isotopes, 6Li and 7Li. 6Li has a nuclear spin quantum

number of I=1 whereas 7Li has I=1/2. The ground state electronic configuration of
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Figure 3.3: Energy level diagram for 6Li (not to scale). Also shown are the trapping
and repumping transitions used for the experiment.

6Li is: 1s2; 2s1. Therefore, the total spin of 6Li is 3/2 (I=1 and J=1/2) making it a

fermion. With a single 2s1 electron outside the closed shell its first excited state is a

2p1 electron. Due to spin-orbit coupling, this excited state splits into 22P1/2 and 22P3/2

states. The separation of the 22S1/2 and the 22P3/2 states is 670.977 nm (D2 line), and

the separation of the 22S1/2 and 22P1/2 states is 670.979 nm (D1 line). These three

states further show hyperfine splitting due to magnetic dipole and electron quadrupole

interactions. The ground state 22S1/2 splits into two, F=1/2 and F=3/2, with a

separation of 228.2 MHz. Similarly, the excited state 22P1/2 splits into two, F′=1/2

and F′=3/2, with a separation of 26.1 MHz. The 22P3/2 excited state splits into three

with a total separation of 4.4 MHz. Although these states are shown schematically in

Fig. 3.3, they are not resolved experimentally as their separation is less than the natural
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Figure 3.4: Calculated hyperfine energy shifts for the 22S1/2 and 22P3/2 states in the
presence of an external magnetic field. Only the F=1/2 state energy shifts are shown
for the ground state 22S1/2. This is obtained from the Breit-Rabi formula whereas the
energy shifts for 22P3/2 state are obtained in the Paschen-Bach limit. ∆ is the detuning
of the Bragg beam from |J ′ = 3/2, mJ ′ = −1/2;mI = −1, 0, 1〉 state.

linewidth (Γ/2π=5.9 MHz) of the atomic transitions. For the same reason, sub-Doppler

polarization gradient cooling [79] is not possible with 6Li atoms and the temperature

of a MOT is limited to Doppler cooling. Figure 3.3 also shows the transitions used for

the trapping and repumping beams in the D2 line. For efficient cooling, the intensity

of both the trapping and repumping beams should be close to equal.

All the energy levels discussed above are for an atom in the absence of external
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fields. Figure 3.4 shows the numerically calculated2 energy shifts for 22S1/2 and 22P3/2

states in the presence of a magnetic field. Energy splitting of 22S1/2 is plotted just

for F=1/2 state as all our experiments are performed using the two Zeeman sub-

levels from this state. These states |J = 1/2, mJ = 1/2;mS = −1/2, mI = 1〉 and

|J = 1/2, mJ = −1/2;mS = −1/2, mI = 0〉 will hereafter be referred to as state |1〉
and |2〉 respectively, representing spin up and spin down states. Owing to the small

hyperfine splitting, the 22P3/2 the atom enters the Paschen-Bach regime at relatively

low magnetic fields, whereas the 22S1/2 energy levels follow the anomalous Zeeman

effect (Briet-Rabi formula). Also shown in the figure are the transitions used for high

field imaging (|1〉 → |J ′ = 3/2, mJ ′ = −3/2;mI = −1, 0, 1〉) and Bragg scattering

(|2〉 → |J ′ = 3/2, mJ ′ = −1/2;mI = −1, 0, 1〉).
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Figure 3.5: Frequency detuning of the Bragg beams from |2〉 → |J ′ = 3/2, mJ ′ =
−1/2;mI = −1, 0, 1〉.

The transition used in our Bragg scattering experiments is selected by setting the

Bragg laser polarization parallel to the external Feshbach magnetic fields. Note that,

in our experiments, the Bragg frequency is always red shifted by 280 MHz with respect

to the imaging beam (see sec. 4.4). However, since the Bragg transition is from the

state |2〉, which is 80 MHz blue detuned from the state |1〉, the difference becomes only

2Mathematica code published in reference [80] is used
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200 MHz. The Bragg detuning is then calculated as the frequency difference between

the |J ′ = 3/2, mJ ′ = −3/2;mI = −1, 0, 1〉 and |J ′ = 3/2, mJ ′ = −1/2;mI = −1, 0, 1〉
excited states plus 200 MHz. This final Bragg detuning is plotted in Fig. 3.5 in terms

of the external magnetic field. The Bragg beams are red-detuned from the |J ′ =

3/2, mJ ′ = −1/2;mI = −1, 0, 1〉 state by a range ∆/2π =1.5 GHz to 2.0 GHz across

the BEC-BCS crossover. Though these beams seem to be very closely (200 MHz) red-

detuned from the |J ′ = 3/2, mJ ′ = −3/2;mI = −1, 0, 1〉 state and very largely (2∆)

red-detuned from the |J ′ = 3/2, mJ ′ = 1/2;mI = −1, 0, 1〉, they do not address these

states. This is because only a π- polarized light can excite this transition, whereas the

Bragg beams are linearly polarized in our experiment (see sec. 4.7).

3.6 Summary

In this chapter, ultracold collisions and interactions in quantum degenerate gases are

revised. More importantly the way the interactions are controlled in experiments using

a Feshbach resonance is explained. The focus is given mainly to s-wave scattering,

although the binding energies of 6Li p-wave Feshbach molecules have been measured [81]

in our lab. The broad s-wave Feshbach resonance in 6Li is well suited to study the

BEC-BCS crossover physics. The energy levels of 6Li are described showing the relevant

transitions used for laser cooling and trapping experiments. Also from the transitions

chosen for absorption imaging, it is clear that only atoms in the state |1〉 are imaged.
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Chapter 4

Experimental set-up

4.1 Overview

The key experimental result of this thesis is the probing of strongly interacting

degenerate gases using Bragg spectroscopy. The whole experimental set-up required to

perform this task is quite complex and a major part of it has been described in detail

in the first PhD thesis on this experiment by Jürgen Fuchs [66]. To avoid repetition,

this chapter highlights only the important aspects of the experiment. The major

experimental changes introduced in this thesis work involve incorporating different

laser locking schemes, setting up a tapered amplifier for a six-beam magneto-optical

trap (MOT), absorption imaging at high magnetic fields and the optical setup for Bragg

spectroscopy.

4.2 Experiment in a nutshell

All the experiments are performed in an ultra-high vacuum (UHV) environment. Each

experimental sequence starts by slowing down a beam of hot 6Li atoms exiting an oven
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using a σ− Zeeman slower [79]. From this slowed atomic beam, 4% of the atoms are

cooled and trapped in a MOT created by six perpendicularly intersecting near-resonant

laser beams. This Doppler cooled MOT contains about 108 atoms at a temperature of

280 µK. A small fraction (1%) of the atoms is then transferred from the MOT to an

optical dipole trap. A high magnetic field is then turned on to make use of the broad

Feshbach resonance of 6Li at 834 G. The transferred atomic sample in the dipole trap

has a roughly equal spin mixture of the two lowest hyperfine ground states (|1〉 and

|2〉) of 6Li. To obtain the temperatures required for degeneracy, the atomic sample

is further cooled by forced evaporation. Once a degenerate gas is formed, the dipole

trap is switched off and the gas is allowed to expand for a certain time of flight (TOF)

before taking an absorption image on a CCD camera at high magnetic fields.

In addition, Bragg spectroscopy of strongly interacting degenerate gases is per-

formed. This is achieved by shining counter-propagating Bragg beams either on an

expanded cloud or on a trapped cloud at different magnetic fields across the BEC-BCS

crossover. TOF absorption images taken in the presence of magnetic fields after the

Bragg pulse reveal the properties of the degenerate gases. The entire experimental

sequence is fully computer controlled with a 50 s duty cycle.

4.3 Vacuum system

Our vacuum system consists of two separate pumping chambers (six-way crosses)

connected through a valve, a Zeeman slower, a glass cell and a bellow as shown in

Fig. 4.1. The total length of the vacuum system is about 1.6 meters. All the vacuum

components are supported on an optical table by 1.5 inch diameter steel posts. A

description of each section of the apparatus is given below followed by an explanation

of the procedure employed to obtain UHV in this system.

Oven: This is a 9 cm long copper tube that is attached to the left pumping chamber

through a 10 cm long collimation nozzle. Lithium exists as a solid at room temperature
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with a melting point of 181◦C. Therefore, in order to increase its vapour pressure, the

oven is heated to 420◦C. The oven is loaded with 1 g of 95% isotopically enriched 6Li.

The temperature of the oven and nozzle is kept constant by heating with a thermocoax

cable that is wound around them. Two cement blocks placed around the oven ensure

thermal insulation from the surroundings. The nozzle, having an inner diameter of 4.5

mm, collimates the atoms exiting the oven and also maintains a pressure difference

between the oven and pumping region.

Left pumping chamber: This six-way cross chamber connects to a 50 l/s ion pump on

one side and a turbo-molecular pump on the other side. The turbo pump is connected

through an angle steel valve and a bellow (see Fig. 4.1a). In addition, a titanium

sublimation (Ti-sub) pump is placed on the upper port, whereas the lower port is

attached to an in-house made mechanical shutter used for blocking the atomic beam

coming from the oven (see Fig. 4.1b). This chamber is attached to the Zeeman slower

through an all-metal straight-through valve which is used for isolating the two pumping

chambers.

Zeeman slower tube: The Zeeman slower acts as a low-conduction tube for

differential pumping and maintains the vacuum pressure difference between the two

pumping chambers. It is a 30 cm long tube with an increasing inner diameter from

the left end to the right end. The first two sections are each 10 cm long with inner

diameters of 4 mm and 6 mm, respectively. In the next two 5 cm long sections the

inner diameter increases to 8 mm and 10 mm, respectively. This type of design matches

the focussed Zeeman slowing laser beam to address most of the atomic beam which

diverges from the nozzle.

Glass cell: The heart of our experimental set-up is a custom-made glass cell which

is 32 cm long. One end of the glass cell is attached to the Zeeman slower, and the

other end is attached to the right pumping chamber via an edge-welded bellow, which

reduces any stress or strain on the glass cell. The central part of the glass cell is a 12

cm long quartz square cross section with outer dimensions 3×3 cm2. This is the region
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(a) Top view of the experimental set-up.

(b) Side view of the experimental set up.

Figure 4.1: Schematic view of the experimental set-up (not to scale).
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where all the experiments take place. The outer surface of this part is anti-reflection

coated for both 670 nm and 1030 nm laser light. On either side of this part, 10 cm

long glass to metal transitions are fused which smoothly match the thermal expansion

coefficients from quartz to steel.

Right pumping chamber: This six-way cross chamber also connects to a 50 l/s ion

pump on one side and a turbo-molecular pump on the other side that is connected

through an angle steel valve and a bellow (Fig. 4.1a). In addition, a non-evaporative

getter pump is placed on the upper port whereas the lower port is attached to a

cold-cathode pressure gauge to monitor the vacuum pressure at this end (Fig. 4.1b).

The remaining port is sealed by a sapphire window for optical access of the Zeeman

slower laser beam. The reason for using a sapphire viewport instead of glass is because

lithium is highly corrosive to glass. In fact, this window is continuously heated to 80◦C

to minimize lithium deposition on it.

Achieving UHV: After assembling all the vacuum components as mentioned above,

the turbo-molecular pumps are started first to pump out the system. Once the pressure

inside the chambers reaches 10−6 Torr, it becomes harder to achieve further low pressure

due to outgassing from the chamber walls. To overcome this, the entire vacuum system

is baked (heated) to a high temperature (300◦C) for six days to hasten outgassing and

then cooled gradually to bring the pressure down to around 10−8 Torr. The glass cell

is baked carefully by building a cage of aluminium bars around it and increasing the

temperature in steps of only 5◦C/hr to a maximum value of 150◦C. By now, both

the ion pumps start running and maintain the required pressure (10−9 Torr) in each

chamber. An ion pump creates a region of high electric field between its electrodes.

Any atoms wandering in this region are ionized and attracted towards the appropriate

electrode.

To achieve a UHV pressure of less than 10−11 Torr, both the getter pump and

titanium sublimation (Ti-sub) pumps are used. The Ti-sub pump coats the inner walls

of the vacuum chambers with highly reactive titanium which absorbs non-inert gases.
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Figure 4.2: Photographs of the experimental set-up.
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This turns the chambers into an effective vacuum pump with a very high pumping

speed until the layer becomes saturated. An ultimate equilibrium of vacuum pressures

between the two chambers is obtained when the pumping rate equals the flux of atoms

entering the glass cell. The pressure on the left pumping chamber is maintained at

10−9 Torr, as measured by the current in the ion pump, and on the right pumping

chamber at 10−11 Torr as measured by the pressure gauge.

Figure 4.2 shows photographs of the experimental setup at an earlier stage and at

an intermediate stage. In Fig. 4.2a, the glass cell, the Zeeman slower and the oven can

be clearly seen, while in Fig. 4.2b, the MOT and Feshbach coils are seen along with

the getter and Ti-sub pumps. The final stage of the experimental set-up (not shown)

is similar to that in Fig. 4.2b except that the camera is placed on top of the Feshbach

mounts for taking absorption images in the vertical direction.

4.4 Laser locking scheme

Figure 4.3 shows schematically the different laser frequencies employed in our

experiment. Two independent external-cavity diode lasers (ECDL) and various

acousto-optical modulators (AOMs) are used to produce all the required frequencies.

Using saturation absorption spectroscopy, the frequency of an ECDL is locked and

red-shifted by -250 MHz from the crossover of the two lowest hyperfine states of 6Li.

From this reference frequency, the trapping (repumping) beam is generated by blue-

detuning the frequency by +110 MHz (+338 MHz) which is four line widths away from

the F=3/2 (F=1/2) hyperfine state. Also, the Zeeman slower beam is obtained by

red-detuning the frequency by -976 MHz from the F=3/2 hyperfine state.

A major improvement in our experimental setup is the implementation of offset-

locking two ECDLs [65]. A second ECDL laser is combined with the first one, and the

beat frequency signal is amplified before mixing with the frequency of a tunable voltage

controlled oscillator (VCO) for offset-locking (see sec. 4.6). This locked frequency

41



Image Bragg

Trapping Repumping

Zeeman
slower

Crossover

Master
locking

Offset
locking

710 MHz

228 MHz

370 MHz

136 MHz

4Г

4Г

420 MHz

145 MHz

110 MHz
114 MHz

114 MHz

110 MHz

145 MHz

80 MHz

420 MHz

90 MHz

Shift before
locking

103 MHz

103 MHz

44 MHz

F =1/2

F = 3/2

2 ²S
½

Figure 4.3: Laser locking scheme for generating various frequencies. The master laser
is frequency red-shifted and locked at 250 MHz from the crossover peak. The Zeeman
slower beam is red-detuned by 976 MHz from the F=3/2 state. The MOT (repump)
beam is red-detuned by 4Γ from the F=3/2 (F=1/2) state. Another master laser is
offset-locked with the main master laser and its frequency is red-shifted by 710 MHz.
The frequency difference between the imaging and Bragg beams is always kept constant
at 280 MHz. The vertical lines on the right give the range of frequencies involved (not
to scale).
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can be varied continuously by tuning the VCO voltage allowing absorption imaging

at various high magnetic fields. For example, a VCO frequency of 710 MHz is needed

to offset-lock the laser for imaging at 780 G. From this reference frequency, a near

resonant laser frequency (from |1〉 to |F ′ = 3/2, mF = −3/2〉) is obtained for imaging

by red-shifting the frequency by -90 MHz. Also, two Bragg beams are generated by

red-detuning the frequency by -370 MHz.

4.5 Optical set-up for a six-beam MOT

The inclusion of a tapered amplifier (BoosTA from Toptica, 670 nm, 0.5 W) into our

optical system increased the available optical power and made it possible to realize a six-

beam MOT. In order to incorporate this, the entire optical set-up has been modified.

The laser frequency from the ECDL (Toptica, DL100), master laser-1, is first red-

detuned by -206 MHz using an AOM in double-pass configuration (see Fig. 4.4). The

laser beam is then passed into a spectroscopy cell which consists of a stainless steel

tube with viewports at both ends. The central part of the spectroscopy cell is heated

to 350◦C to increase the lithium vapour pressure inside the cell and the viewports are

heated to 120◦C to avoid corrosion by lithium on the glass windows. The frequency

of the laser is stabilized through saturation absorption spectroscopy where counter-

propagating pump and probe beams are used. During the process, the frequency

is further red-shifted by -44 MHz using an AOM and the saturated absorption signal

obtained from the probe beam is focussed onto a photodiode. Using a lock-in amplifier,

a derivative of this signal is obtained and the laser is locked to the crossover of the

D2-transition of 6Li.

The laser power from this master laser-1 is amplified by injection-locking a diode

slave laser-1 in a master-slave configuration. Light from the slave laser is then split

into three paths. The first path is used for offset-locking a second ECDL for creating
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the imaging and Bragg beams. The second path is used to injection-lock another diode

slave laser for generating the Zeeman slower beam after passing through a -420 MHz

AOM (Intraaction) in double-pass configuration. In order to enhance the flux of slowed

atoms for the MOT loading, the diode laser current is modulated at 120 MHz which

adds sidebands to the central frequency. The Zeeman beam is focussed into a pin hole

(300 µm) to remove the high spatial frequency components from the beam profile. It is

then expanded to a diameter of 1 inch using a 200 mm and 300 mm lens arrangement.

This beam is weakly focussed into the oven end using a large focal length (1000 mm)

lens placed before the sapphire window.

The third beam is passed through a -114 MHz AOM in double-pass configuration

to obtain the repumper beam. This beam is then combined with the trapping beam

on a 50/50 beam splitter before being sent into the TA. The power in each beam is

2.5 mW at this point and the TA amplifies it by a factor of 30. The output from the

TA is coupled to a single-mode optical fibre to obtain a clean Gaussian beam profile.

This is focussed into a +110 MHz AOM in a single-pass configuration which brings

the frequency of the combined trapping and repumping beams closer to four linewidths

(4Γ) away from the atomic resonance. The diameter of this combined MOT beam is

expanded to 25 mm from 2.5 mm using a 30/300 mm lens arrangement to achieve a

large MOT trapping volume. This beam is later split in six ways (∼13 mW in each)

to construct a six-beam MOT.

4.6 Offset-locking scheme

In order to image at high magnetic fields, an offset-locking technique is implemented

using two ECDLs [65]. The wavelength of the imaging master laser-2 is set around

670.977 nm (D2 line) with the help of a wavemeter. Laser light from the slave laser-1

is then allowed to beat with a beam from the master laser-2 and the beat signal is

observed on a fast photo-diode. This beat signal is amplified (Fig. 4.5) and mixed with
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the frequency of a tunable VCO (600 - 1200 MHz), following which the low frequencies

(≤140 MHz) are filtered and further amplified before being split into two equal signals.

One is passed through a long (5 m) cable to introduce a frequency dependent phase shift

with respect to the other signal which is measured by a phase detector. This second

beat signal is used as an error signal for locking master laser-2 (Toptica, DL100). The

frequency of the laser can be precisely adjusted by tuning the voltage (frequency) of

the VCO over a range of 600 MHz.

A slave diode laser-2 is injection-locked by the locked laser light from master laser-2

and then split into two paths (Fig. 4.6), one for absorption imaging and the other for

generating Bragg beams. The imaging beam is first frequency-shifted (−90 MHz) by

an AOM before being coupled into a single-mode polarization-maintaining fibre.
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Figure 4.6: Optical set-up for offset-locking, injection-locking, and generating the imaging and Bragg laser frequencies.
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4.7 Generating Bragg beams

The Bragg beam derived from the slave laser-2 is first frequency-shifted (−210 MHz)

by an AOM in double-pass configuration before being coupled into a single-mode

polarization-maintaining fibre. After the fibre the beam is separated into two and

the frequency of each beam is shifted (−80 MHz) by two different single-pass AOMs

as shown in Fig. 4.6. A small pick-off beam (dotted lines) is taken from each Bragg

beam and combined on a fast photodiode to monitor their beat frequency.

The two Bragg AOMs are driven by two separate VCOs. Using a spectrum analyzer,

it has been verified that for the Bragg frequencies applied in our experiments (δ/2π =

0 − 500 kHz), no phase lock loop is needed for the AOMs to keep the beat frequency

stable, as long as the supplied tuning voltage for the VCOs is stable and taken from a

common DC power supply. For this purpose, the DC voltage for each VCO is obtained

from a voltage regulator (LM-317) with an additional voltage applied to one VCO that

is derived from the LabV iew control program. The LabV iew voltage is first stepped

down by a factor of 20 before being added to one of the VCOs. This improves the

stability and accuracy of the voltage from the LabV iew control and allows the Bragg

frequency to be tuned precisely. The full width at half maximum (FWHM) of the

observed beat signal is 0.2 kHz and its day-to-day stability is up to 2 kHz. By keeping

the tuning voltage of one VCO constant, the beat (Bragg ) frequency is varied in steps

of 5 kHz by tuning the voltage of the other VCO.

The collimated Bragg beams are directed near-perpendicular to the weak axis of the

single dipole trap. Two polarizing beam splitters are placed before the glass cell (see

Fig. 4.9) to ensure that the Bragg beams have vertical polarization as they enter the

glass cell. Using a spare (broken) glass cell, identical to the one in the experiment, it

has been verified that the polarization of λ = 671 nm light varies by less than 5% upon

transmission through the cell window. For maximum overlap, each beam is aligned in

such a way that it retraces the path of the other beam.
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4.8 Single dipole trap set-up

A 100 Watt CW Ytterbium fibre laser (IPG-Photonics, YLR-100) is used for creating

the single dipole trap. Its central wavelength is 1075 nm with many longitudinal modes

distributed within 3 nm. The laser light has linear polarization and a near Gaussian

beam profile (M2 ≤1.05). The beam diameter is first reduced from 5 mm to 1 mm

using a step-down telescope with a 250 mm and -50 mm lens arrangement as shown

in Fig. 4.7. After this, the laser beam is passed through a PID controlled AOM (-120

MHz) which is used to stabilize the intensity of the laser during the evaporative cooling

stage by dumping the power in zeroth order. The negative first-order beam from the

AOM is then expanded using a -100 mm lens and focussed to a 38 µm beam waist into

the glass cell with the help of another 200 mm lens that is placed on a translational

stage. The focussed beam is blocked by a beam dump after passing through the glass

cell. Before dumping, a low intensity beam is picked off and focussed onto a photodiode

to generate an error signal for the PID controller (SRS, SIM 960) with respect to a

setpoint voltage from the LabV iew program. This determines the amount of radio-

frequency (RF) power required for the AOM to stabilize the intensity of the laser light.

Figure 4.7: Optical set-up for implementing the single dipole trap.
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4.9 Absorption imaging

All the scientific information about our experiments is obtained from absorption images.

This information includes cloud position, width and density. The idea is to illuminate

the atomic cloud with near-resonant laser light to cast a shadow onto a CCD camera

placed behind it. To remove any inhomogeneities in the probe beam profile, a second

absorption image is taken after 360 ms in the absence of the atomic cloud. Absorption

imaging is a destructive technique where an atom absorbs resonant light thereby heating

the atoms. For a second measurement the whole preparation process has to be repeated.

If the intensity of the first image is I(x, y) and that of second image is Io(x, y) then

the atomic column density n(x, y, z) is evaluated using the relation

I(x, y)

Io(x, y)
= e−σ

∫

n(x,y,z) dz (4.1)

where σ is the absorption cross section and the imaging beam propagates in the z-

direction. For a two-level system the resonant cross section is given by σ =3λ2/2π.

The image of the cloud is magnified by a factor of two in order to achieve an imaging

resolution of 3 µm.
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Figure 4.8: Optical set-up for implementing absorption imaging.
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The imaging laser beam derived from slave laser-2 is brought close to the glass cell

through an optical fibre. The beam from the fibre output coupler is collimated to a

diameter of 200 mm using a 60 mm lens. It is then combined with one of the vertical

MOT beams on a polarizing beam splitter before being sent through the glass cell along

the direction of the Feshbach fields (see Fig. 4.8). The image of the atomic cloud is

magnified by a factor of two using two 2-inch achromatic lenses with focal lengths of

75 mm and 150 mm, respectively. Another 75 mm convex lens is used to collimate a

second MOT beam from the top of the glass cell as shown in Fig. 4.8.

4.10 Experimental sequence

In this section the steps followed during the experiment to create and study degenerate

quantum gases are explained. Technical details such as ramp timings, frequencies and

currents applied in the various coils are also given.

Slowed atomic beam:

A vapour pressure of 1.2×10−4 mbar is created in the oven containing 95%

isotopically enriched 6Li atoms by constantly heating it to 420◦C. The average velocity

of the atoms at this temperature is around 1500 m/s with a negligible collision rate

due to their large mean free path. As they pass through the Zeeman slower coil, atoms

with velocities below 650 m/s are selectively slowed to 50 m/s by means of a counter-

propagating Zeeman laser beam which is red-detuned from the |F=3/2〉 state by -976

MHz. Additional sidebands are added to this frequency by modulating the current of

Zeeman slave laser diode by 120 MHz which increased the flux of slowed atoms by a

factor of two to 109 atoms/s. During the loading time (20 s), the current in the Zeeman

slower coil is maintained at 2.94 A to create a slowly varying magnetic field of up to

620 G towards the glass cell end.
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MOT loading:

From this slowed atomic beam, 4% of the atoms are cooled and trapped in a MOT

created by six perpendicularly intersecting laser beams. The four horizontal beams

are shown schematically in Fig. 4.9 with the two vertical beams perpendicular to the

plane of the page. These beams are red-detuned by four linewidths from the atomic

resonance (D2-transition) and have five times the saturation intensity. The MOT

magnetic gradient of 20 G/cm is produced by a pair of current-carrying coils in an

anti-Helmholtz configuration placed above and below the glass cell. At the end of this

stage, the MOT contains more than 108 atoms at a temperature of 1 mK with a lifetime

of 60 seconds.

ω
+δ

ω

Dipole trap
beam

Slowed
atomic beam

Glass cell

Zeeman
slower beam

3

2

4

1

MOT
beams

Bragg
beams

Figure 4.9: Schematic view of the experimental sequence in the science cell. Numbers
indicate the steps followed during the experiment. First, Lithium atoms are slowed
using a Zeeman slower, followed by cooling and trapping in a MOT. Later the atoms
are transferred from the MOT to the dipole trap. Once a degenerate gas is formed after
evaporative cooling in the dipole trap, the Bragg beams are shone on the gas before
taking a time of flight absorption image. The MOT coils, Feshbach coils and imaging
beam are not shown as they are perpendicular to the plane of the page.
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Dipole trap loading:

For efficient loading of atoms into the optical dipole trap, the temperature of atoms

in the MOT should be lower and the atomic density should be higher to obtain a high

phase space density:

D = n

(

2πℏ
2

mkBT

)
3
2

, (4.2)

where n is the density and T is its temperature. To achieve this, the frequency of both

the trapping and repumping laser beams is detuned to half a line-width before loading

into the dipole trap. In addition, the repumper intensity is reduced more rapidly than

the trapping laser to achieve optical pumping into the |F=1/2〉 state. This reduces the

temperature in the MOT to ∼280 µK which is twice the limiting Doppler temperature

of 140 µK. At the same time, the magnetic field gradient is linearly increased from

20 G/cm to 50 G/cm in 20 ms to increase the density of the MOT. A small fraction

(1%) of atoms is then transferred from the MOT into the dipole trap which is switched

on 100 ms before the compression stage. After loading the dipole trap, the Feshbach

magnetic field is then turned on for evaporative cooling. Feshbach fields of up to 1.5

kG can be achieved in our experiment using a pair of water cooled, low inductance

(433 µH), high current-carrying (200 A) coils. They are placed very close (2 mm) to

above and below the glass cell to obtain high fields in a Helmholtz configuration.

Evaporative cooling:

Owing to the large elastic collision rate (∼ 104 s−1), the plain evaporation process

starts immediately in the dipole trap with full laser power (90 W). Nevertheless, this

process stagnates after 500 ms as fewer and fewer high energy atoms leave the trap. To

obtain the temperatures required for degeneracy, the atomic sample is further cooled

by forced evaporation. This is carried out in two steps. Initially, the trap depth is

decreased by reducing the intensity of the dipole trap laser from 90 W to 12 W in

1.5 s simply by decreasing its current via an analog control voltage. During this time,

the photo-diode which monitors laser intensity (see Fig. 4.7) from the pick-up beam
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remains saturated. However, once the optical power drops below 12 W, the photo-

diode is no longer saturated and the signal is sent to a PID controller. The dipole trap

intensity is further reduced by a factor of 100 over the next 4 s using a logarithmic

ramp sent to the PID controller.

Bragg scattering:

Once a degenerate gas is formed in the dipole trap, the Feshbach magnetic field

can be adiabatically ramped in 100 ms to a value where Bragg spectroscopy is to be

performed. In the meantime, the trap depth is increased by a factor of two from the

lowest evaporation value to confine the gas at the bottom of the trap. A short Bragg

pulse can then be applied to study the properties of the gas. An absorption image

is taken after a 3 ms TOF, once all the non-imaging lasers are switched off. From

these image profiles, all the important physical information can be obtained by fitting

various distribution functions to the gas.

4.11 Summary

This chapter briefly described the experimental set-up and procedures implemented

in our lab to achieve highly degenerate quantum gases. Discussion of various topics

is kept concise to focus more on Bragg scattering which is the main topic of the

thesis. Additional details on saturation absorption spectroscopy, computer control,

the Zeeman slower and other coils can be found in the PhD thesis of Jürgen Fuchs [66].

The major advantage with the new experimental set-up compared to the earlier one is

the implementation of a six-beam MOT and the employment of offset-locking for high

magnetic field imaging. As a consequence of these changes a large number of atoms

∼ 106 are now trapped in a single dipole trap without requiring the use of a crossed

dipole trap.
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Chapter 5

Production of quantum degenerate

gases

5.1 Introduction

In this chapter, the generation of ultracold degenerate gases in our experimental system

is described. Since the theoretical and experimental process behind these techniques

are well understood and documented [79], only a brief review is given for each topic.

For a more detailed discussion the reader is referred to the classic papers on these

subjects such as [13, 14, 15, 16]. Creating a MOT from a slowed atomic beam is the

first step for producing degenerate gases. In our experiment, the atoms are trapped by

all optical means after they are transferred from the MOT to a dipole trap. Following

that, atoms in the dipole trap are cooled by forced evaporation, in the presence of a

Feshbach magnetic fields, to form either a molecular BEC or a degenerate Fermi gas.
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5.2 Magneto-optical trap

Atoms can be cooled optically by the application of a radiative force using near-resonant

optical fields and trapped in the presence of a spatially varying magnetic field. When

an atom absorbs a photon with momentum ℏ~k, where ~k is the wave vector of the

photon, it is first excited followed by spontaneous emission of a photon with the same

frequency to relax back to its initial state. Due to the isotropic distribution and large

number of scattered photons, the atom experiences a net resulting force of

~Fsp = ℏ~kΓS, (5.1)

in the direction of the laser beam, where the scattering rate ΓS describes the rate

at which photons are absorbed and spontaneously emitted. Its value depends on the

initial velocity ~v of the atoms, the laser intensity I and the frequency detuning from

the atomic resonance ω0:

δ′ = δ − ~k · ~v, (5.2)

where δ = ω − ω0. The scattering rate is given by [79]

ΓS =
1

2
Γ

I/Is
1 + I/Is + (2δ′/Γ)2

, (5.3)

where Γ is the natural linewidth and Is is the saturation intensity. The values for the

closed transition in 6Li are Is = 2.5 mW/cm2 and Γ = 2π · 5.9 MHz [82, 80].

Counter-propagating circularly polarized (σ±) laser beams can be used in all three

directions to slow down the atoms. However, for spatial confinement, a magnetic field

gradient is also required. This is created by a pair of current-carrying coils arranged

in an anti-Helmholtz configuration. The detuning of the laser is then changes to

δ± = δ − ~k · ~v ∓ (gemF ′ − ggmF )µBB/ℏ, (5.4)
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where ge and gg are the Landé g-factors of the excited and ground state, respectively.

In the presence of the MOT magnetic field, the degeneracy of the 6Li hyperfine states

is lifted. The net force due to the two counter-propagating circularly polarized beams

in one dimension is given by

~Ftotal = ~F+ + ~F− =
ℏ~kΓ

2

I/Is
1 + I/Is + [2(δ+/Γ)]2

− ℏ~kΓ

2

I/Is
1 + I/Is + [2(δ−/Γ)]2

.

At low intensity and large detuning, the above equation is simplified to obtain

~F = −β~v − κ~r, (5.5)

where the damping constant β and the spring constant κ are given by

β =
8ℏk2δI/Is

Γ(1 + I/Is + (2δ/Γ)2)2
, (5.6)

κ =
(gemF ′ − ggmF )µBA

ℏk
β. (5.7)

For red detuning (δ < 0), the constant β is positive. Therefore, the first term in eq. 5.5

is a damping force, whereas the second term confines the atoms spatially towards the

centre of the trap (magnetic minimum). The same results apply in three dimensions

for a six-beam MOT.

For 6Li, the frequency of the trapping beams is tuned to the red of the |F =

3/2;mF = ±3/2〉 ↔ |F ′ = 5/2;mF ′ = ±5/2〉 cycling transition. This is also the

same transition used for the Zeeman slower laser to create a slowed atomic beam in

combination with Zeeman coils. Because the detuning of the Zeeman slower beam is

very large (≃1 GHz) compared to that of the trapping beam (4Γ), it passes through

the MOT with no measurable effect during the MOT loading period. In addition, to

avoid spontaneous decay of atoms into the |F = 1/2〉 state, a repumper beam which

is red-detuned to the |F = 1/2;mF = ±1/2〉 ↔ |F ′ = 3/2;mF ′ = ±3/2〉 transition is

combined with the trapping beam before constructing a six-beam MOT.
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Figure 5.1: Temperature measurement of the MOT with 108 atoms. The radial width
squared is plotted versus the time of flight squared. Error bars are from the statistical
average.

In our experiments, the loading and trapping of atoms in the MOT is achieved as

explained in section. 4.10. Absorption images of atoms released from the MOT are

taken at zero magnetic field after various times of flight t between 100 µs and 1 ms.

The width of the released atom cloud σ(t) increases according to the relation

σ(t) =

√

σ2
0 +

kBT

m
t2, (5.8)

where σ0 is the initial MOT width. Figure 5.1 shows the radial width squared of

the MOT versus the time of flight squared. From a straight line fit to this data, the

temperature in the MOT is evaluated to be 280(15) µK.

5.3 Single dipole trap

The interaction of neutral atoms with an optical field is exploited in implementing

optical dipole traps. The electric component E in the optical field induces a dipole

moment p = αE in an atom, where α is the atomic polarizability. This induced dipole
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moment then interacts with the oscillating electric field E of the laser giving rise to the

dipole potential Udip = −1
2
〈pE〉. Note that α is a complex quantity whose real part

gives rise to a dipole force (conservative potential) and the imaginary part gives rise to

a scattering force (radiation pressure). For effective trapping of atoms, the scattering

component should be negligible compared to the dipole force. An expression for both

the dipole potential and the scattering rate (Γscat) can be obtained from the atomic

polarizability as derived in various references [79, 83] for a two-level system:

Udip(r) = −3πc2

2ω3
0

( Γ

ω0 − ω
+

Γ

ω0 + ω

)

I(r) (5.9)

Γscat(r) = − 3πc2

2~ω3
0

( ω

ω0

)3( Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r). (5.10)

where c is the speed of light, ω0 the atomic transition frequency, ω the driving laser

field frequency, Γ the natural linewidth and I(r) the position-dependent laser field

intensity. From the above relations, it is clear that for a large detuning ∆ = ω0 − ω,

the scattering rate is minimized which varies as 1/∆2 while the conservative dipole

potential only varies as 1/∆.

Experimentally, a single dipole trap is achieved by focussing a far-detuned Gaussian

laser beam to a narrow waist. The intensity distribution for a Gaussian beam with

power P is

I(r, z) =
2P

πw2(z)
exp

(

− 2
r2

w2(z)

)

(5.11)

where w(z) is the beam waist along the beam direction (z) which is given by

w(z) = w0

√

1 +
( z

zR

)2

(5.12)

where zR = πw2
0/λ is the Rayleigh length of the focussed beam and λ is the wavelength

of the laser. The waist w0 is defined as the 1/e2 minimum radius. This parameter was

measured in our optical set-up using the IPG fibre laser outside the glass cell and a

razor blade fixed on a moving translation stage. The beam is blocked perpendicularly

by the razor blade to record laser powers corresponding to 13.6% and 84.4% of the
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peak power on the power meter placed behind it. The difference between the two razor

positions directly gives the beam waist. The measurements are shown in Fig. 5.2. By

fitting eq. 5.12 to the data a minimum beam waist of 38(1) µm is obtained.
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Figure 5.2: Beam waist measurement of the focussed Gaussian laser beam used for the
dipole trap

5.3.1 Trapping frequencies

To trap neutral atoms in their ground state a red-detuned laser is used so that atoms

accumulate in the high intensity region of the laser beam. A dipole trap can be formed

by a single focussed laser beam which has tight confinement along the radial direction

and weak confinement along the axial direction. The atoms in such a trap appear as

an elongated, cigar-shaped cloud. To determine the trapping frequencies along both

directions, the trap potential near the bottom of the trap is approximated to that of

a harmonic oscillator. This is a valid assumption when the temperature of the atoms

is smaller than the trap depth which is mostly true in our experiments. After Taylor

expanding eq. 5.9, we get

Udip(r) ≃ −U0

[

1 − 2
( r

w0

)2

−
( z

zR

)2]

(5.13)
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which is compared to a harmonic oscillator potential to obtain expressions for the radial

and axial trapping frequencies:

ωr =

√

4U0

mw2
0

and ωz =

√

2U0

mz2
R

, (5.14)

where U0 is the maximum trap depth at the centre of the trap, i.e., when r = z = 0.

Note that both the atoms and molecules experience the same trapping frequencies. This

is because the polarizability of molecules is twice that of atoms which compensates for

their doubled mass.

Measurements:

For the parameters used in our experiments λ0 = 671 nm, λ = 1075 nm and Γ/2π =

5.9 MHz, the trap depth is calculated to be 3 mK at a power of P = 90 W and the

trap frequencies are given by

ωr = 2π 1600
√

P/W Hz (5.15)

ωz = 2π 10
√

P/W Hz (5.16)

During the evaporation process, in the presence of the Feshbach magnetic field, the

axial confinement in a single dipole trap becomes weak at low laser power. However,

the magnetic field curvature from the Feshbach coils provides additional confinement

along the axial direction of the trap. This curvature in the horizontal plane is measured

to be 0.024(3)×B cm−2. Therefore, the effective axial trap frequency can be written

as [66]

ωz =
√

814(180)B/kG + 13.6(4)P/mW Hz. (5.17)

At a fixed low laser power, this axial frequency only varies with the square root of the

Feshbach magnetic field applied in our experiments (700 G to 1000 G).

The axial frequency is measured by observing the oscillations of the cloud along the

weak trap axis. Initially, the atomic sample is evaporatively cooled at unitarity to the
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Figure 5.3: Oscillations of the atomic cloud along the axial direction of the dipole trap.

lowest trap depth possible. Then the cloud is shifted from its initial position using an

auxiliary magnetic field gradient and then absorption images are taken after various

hold times. Figure 5.3 shows the measured axial position of the oscillating cloud with

respect to time. A sinusoidal fit to the data yields an axial frequency of 25(1) Hz which

is close to the calculated value of 26 Hz due to the residual magnetic field curvature at

unitarity.
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Figure 5.4: Parametric heating in the dipole trap. When the modulation frequency is
twice the radial frequency, atoms are heated and lost from the trap.
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Unlike the axial frequency, the radial trap frequency does not depend on the

magnetic field gradient. Even at the lowest trap depth (50 mW), the radial frequency

is greater than the magnetic trap frequency by a factor of 10. Experimentally, ωr

cannot be measured easily by shifting the cloud position. In order to measure the

radial frequency, the trap is heated parametrically [80] and the loss of atoms from the

trap is measured as function of the modulating frequency. The observed frequency for

maximum trap loss is twice the actual frequency due to the harmonic confinement.

Initially, the atomic sample is evaporatively cooled to a final laser power of 0.5 W and

then recompressed by doubling the power to confine the atoms deeply at the bottom

of the dipole trap. At this power the intensity is modulated by 3% for 1 s followed

by absorption imaging after 3 ms TOF. Figure 5.4 shows the measured atom numbers

versus the applied frequency. Two distinct minima are observed, at 1.73 kHz and 2.27

kHz, instead of one. This might be due to astigmatism introduced in the beam while

passing through the glass wall. From eq. 5.15, for a trap at 0.5 W power, the radial

frequency is calculated to be 1.1 kHz which is close to twice the observed value.

5.4 Evaporative cooling

Trapping frequency measurements are essential for knowing the phase-space density of

the cloud from the relation

D = N

(

ℏω̄

kBT

)3

, (5.18)

where ω̄ = (ωzω
2
r)

1/3
is the geometric mean of the trapping frequencies, N is the

total number of atoms and T is the temperature of the cloud. For a MOT containing

∼108 atoms at a temperature of 280 µK and for a loading efficiency of 1% into the

dipole trap, the initial phase-space density is calculated to be 0.6×10−3. In order to

achieve degeneracy (D=1), the temperature needs to be reduced further through forced

evaporation.

Evaporative cooling is a process in which the highly energy particles leave the dipole
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trap so that the remaining particles rethermalise and reduce the average temperature

of the sample. The transferred atomic sample in the trap has a roughly equal spin

mixture of the two lowest hyperfine ground states (|1〉 and |2〉) of 6Li. Although the

elastic collisions between atoms with identical spins are suppressed due to the Pauli

exclusion principle, the presence of two different spin states ensures that these collisions

are allowed for evaporative cooling. For efficient evaporation, fast rethermalisation is

required which depends on the elastic scattering rate given by [84]

γ = nσv =
4πNmσν3

kBT
, (5.19)

where n is the atomic density of each state, v is the mean velocity of the atoms,

N is the number of atoms in each state, ν = ω/2π is the mean trapping frequency

and σ is the elastic s-wave scattering cross section of the colliding atoms in the two

different hyperfine states. The scattering cross section depends on the scattering length

a through the relation σ = 4πa2. However, at unitarity (834 G), the scattering cross

section becomes independent of the scattering length and is given by σ ≃ 4π/k2, where

k = mv/2ℏ is the scattering wave number, which depends only on the momentum.

At the end of plain evaporation, the temperature of the cloud in the dipole trap is

typically around 100 µK giving an initial collision rate as high as ∼ 1.5 × 104 s−1.

To quantify the forced evaporation in time-dependent optical traps, O’Hara et.

al. [84] derived scaling laws for particle number, phase-space density, and elastic

collision rate in terms of their initial values. This model assumes that the ratio of

the trap potential to the temperature is always kept constant, i.e., η = U/kBT = 10.

From these relations, given below,

N

Ni

=

(

U

Ui

)0.19

(5.20)

D

Di
=

(

U

Ui

)−1.3

(5.21)

γ

γi
=

(

U

Ui

)0.69

. (5.22)
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Figure 5.5: Evaporative cooling in the crossed dipole trap. The data, which is similar
to that of a single dipole trap, shows efficient cooling of particles according to the
scaling laws.

it can be easily calculated that to achieve a phase-space density of 1 from an initial

value of 0.6×10−3, the trap depth should be reduced by a factor of 200. At the end of

this, the collision rate is decreased by a factor of 40 with a 65% loss in the number of

particles. Because these equations are obtained without including the inelastic losses

or background atom collisions and other imperfections due to the trap, the numbers

above represent the best case scenario.

Figure 5.5 shows the data for evaporative cooling in our dipole trap. This data is

taken from an earlier experimental set-up in a crossed dipole trap. A similar number

of atoms is obtained nowadays using a single beam dipole trap and the evaporation

process is similar in both the traps. The atomic sample is first evaporatively cooled at

770 G before ramping to 694 G in 100 ms for absorption imaging. It shows a decrease

in atom number in the state |1〉 as the final laser power in the trap is reduced. The solid

line represents the calculated scaling law prediction for a cut-off parameter of η = 10.

The experimental data agrees well with the scaling law prediction until the lowest trap

depth (100 mW) achievable with our laser. This shows that the evaporation is efficient

even when the trap depth is reduced by a factor of 800.
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5.5 Molecular BEC
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(d) Bimodal distributions of the images a, b and c

Figure 5.6: Formation of a molecular BEC: Absorption images taken at various final
trap depths are shown in (a)-(c). The dashed, dash-dotted, solid (blue) lines in (d) are
fits to a Gaussian, Thomas-Fermi and combined profiles, respectively.

When the evaporation is performed on the BEC side of the Feshbach resonance,

stable molecules are formed via three-body recombination when the temperature of

the atoms becomes lower than the binding energy of the molecules. At this stage,

both atoms and molecules exist in thermodynamic equilibrium and the measured

temperature no longer represents the true value due to the two-components in the

cloud. Further evaporation to lower temperatures favours the formation of molecules.

Because these molecules are composite bosons, whose inelastic loss rate is low, they

can undergo efficient evaporative cooling to reach Bose-Einstein condensation at a
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sufficiently high phase-space density.

Figure 5.6 shows the formation of a molecular BEC monitored by absorption images.

All images are taken at 694 G after evaporation at 770 G to a final trap depth of (a)

57 mW, (b) 115 mW and (c) 172 mW. In Fig. 5.6d integrated cross sections of these

images along the weakest trapping direction are shown. The dashed, dash-dotted

and solid (blue) lines are fits to a Gaussian, Thomas-Fermi and combined profiles,

respectively. An increase of 10% to 50% in condensate fraction is shown in these

profiles. However, nowadays at a final trap depth of 50 mW, ∼ 150 000 molecules are

observed and a condensate fraction of up to 90% is obtained.

5.6 Degenerate Fermi gas

When evaporative cooling is performed on the BCS side of the Feshbach resonance,

its efficiency is suppressed due to Pauli blocking. In other words, because the

evaporation process depends on scattering to available low-lying energy states, the

Pauli exclusion principle forbids collisions into occupied states, which stagnates the

evaporation process. However, it has been shown [85] that at temperatures T ≪ TF ,

the rethermalisation rate is faster than evaporation. In the case of a weakly interacting

Fermi gas, a BCS-like state is favoured involving Cooper pairs.

In our experiments, a degenerate Fermi gas is typically produced by taking

advantage of the fact that the crossover from the BEC to BCS side is isentropic [23].

The atomic sample is first evaporatively cooled at unitarity and then the magnetic

field is adiabatically ramped to the desired value on the BCS side . Figure 5.7 shows

a one-dimensional profile of the observed Fermi gas, after 4 ms time of flight, obtained

by integrating the absorption image along the weak trapping axis. At this lowest

trap depth (60 mW) the trapping frequencies are ωaxial=150 Hz and ωradial=1.63 kHz.

Because fermions follow a Fermi-Dirac distribution, the data fits very well to this

profile. For comparison a Maxwell-Boltzmann (classical gas) distribution is plotted for
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Figure 5.7: 1D Poly-logarithmic (Fermi-Dirac) fit to the data (TOF = 4 ms). For
comparison a Maxwell-Boltzmann (classical gas) distribution is plotted for a gas at the
same temperature (T/TF=0.06). A Thomas-Fermi (bosons) distribution is also shown
for the same Fermi radius.

a gas at the same temperature (T/TF=0.06). A Thomas-Fermi (bosons) distribution

is also shown for the same Fermi radius. The peak of the Fermi-Dirac fit has a flat top

whereas it is sharp for the classical gas. This is due to the emergence of Fermi pressure

at trap centre where the density is high.

5.7 Summary

This chapter described the procedure followed in our experiments to achieve highly

degenerate quantum gases. The way how the atoms are trapped and cooled

using dissipative and conservative forces due to the laser field is briefly discussed.

Additionally, technical details about measuring the dipole trap frequencies and the

mechanism behind evaporative cooling is explained. Producing degenerate quantum

gases is the starting point for performing Bragg spectroscopy across the BEC-BCS

crossover. The results of the Bragg spectroscopy experiments are discussed in

Chapters 7 and 8 after presenting a theoretical background in Chapter-6.
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Chapter 6

Bragg scattering - Theory

6.1 Introduction

In this chapter the theoretical background for the Bragg scattering experiments is

presented. The first objective is to introduce pair correlation functions and to show

how they are related to the static structure factor via a Fourier transform. The second

objective is to obtain a relation between the static structure factor and the measured

Bragg scattering signal, which is the centre-of-mass (COM) displacement of the cloud.

Although these two relations are frequently referred to in many papers [54, 55], their

explicit derivation is not found in the literature. A brief introduction to the static

structure factors (sec. 6.3) and correlation functions (sec. 6.4) is given here. Also, a

method for probing the pair correlations in a strongly interacting fermionic system via

a Bragg scattering experiment is discussed in the last section (sec. 6.5). First, the

principles of Bragg scattering are schematically explained in the following section.
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6.2 Bragg scattering

In an inelastic scattering experiment, such as Bragg scattering, the response of a

many-body system to a weak probe provides information about the internal properties

of the system [53, 54, 55]. This response function typically reveals the correlations

between particles in the system. For example, to study elementary excitations of

liquid 4He, slow-moving neutrons were used as a probe and the response of the system

was measured as a function of the scattering angle of the neutrons [56, 57, 58]. On the

other hand, Bragg scattering of X-rays from a solid state crystal provides information

about the structure of the crystal lattice [86].

In atom optics, a coherent source of matter waves can be manipulated in the same

way as optical waves. In contrast to the Bragg scattering of X-rays from a crystal

lattice, the roles of the light and matter are reversed and a matter wave can be diffracted

from a periodic optical potential. One key example is Bragg scattering of a BEC from

a moving optical lattice [87]. Here, the dependence on the scattering angle becomes a

dependence on the relative velocity between the lattice and atoms.

6.2.1 Principle

Bragg scattering is a coherent process in which momentum is transferred to a particle

via paired stimulated absorption and emission of photons. Consider two counter-

propagating laser beams with frequencies ω+δ and ω, far detuned ∆ from the resonant

atomic frequency, interacting with a particle. The particle is first excited from the

ground state to a virtual excited state by absorbing a high frequency photon ω + δ,

followed by stimulated emission of a low frequency photon ω (see Fig. 6.1). Due to

momentum conservation, the net momentum difference between these two photons

causes the particle to scatter with a velocity vrecoil = q
m

, where the two-photon recoil

momentum q = 2ℏk, k = 2π/λ is the wavevector of the laser of wavelength λ and m is

the mass of the scattered particle. Conservation of energy leads to the Bragg resonance
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condition when the energy associated with this recoil momentum (E = q2/2m) is equal

to the energy associated with the Bragg frequency (E = ℏδ) of the laser beams, thus

δ =
2ℏk2

m
. (6.1)

The detuning ∆ of the laser from the atomic resonance should be small enough to give

a reasonable excitation probability but large enough to avoid directly populating the

excited state.

Ground state

Excited state

Virtual state

Frequency

Momentum

ω+δ ω

0 +1

δ

q=2 kћ

∆

ω = 2 446 THzπ

δ = 300 kHz

∆ = 1.5 GHz

ћq²/2m

Figure 6.1: Energy level diagram for Bragg spectroscopy (not to scale). The vertical
line on the right gives the approximate range of frequencies involved in the case of 6Li
atom for our experimental conditions.

Phonon regime: When the recoil velocity vrec = q/m due to the Bragg pulse is

smaller than the speed of sound cs in the gas, only low lying elementary excitations

are excited. These excitations give a phonon-like spectrum being linearly proportional

to q as given below

ℏδ ≃ ℏqcs, (6.2)

where the relation between the interaction energy and the speed of sound is given as
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µ = mc2s. This modifies the low energy region of Fig. 6.1 to linear.

Free particle regime: When the recoil velocity vrec = q/m due to the Bragg pulse

is larger than the speed of sound cs in the gas, the excitations resemble a free particle

spectrum as given below

ℏδ ≃ ℏ
2q2

2m
. (6.3)

The spectrum in this regime is parabolic, and in the case of an atomic BEC there is an

additional offset of µ due to the mean field shift [88]. For large q values (q > kF, where

kF is the Fermi wave-vector), the excitation spectrum of fermions also approaches that

of the free particle excitations [30].

Our experimental conditions: The atomic resonance wavelength for a 6Li atom

is λ = 671 nm; therefore the recoil velocity vrec = 19.8 cm/s. The velocity of sound

across the BEC-BCS crossover was first measured by J. Joseph et al. [89] in terms of

the Fermi velocity vF

v2
F =

2

ma

ℏ (ωxωyωz)
1
3 (6N)

1
3 , (6.4)

where ma is the mass of the 6Li atom, ωi are the trapping frequencies in the various

directions and N is the total number of atoms in one spin state. Substituting our

experimental values for the trapping frequencies, ωx = ωy = 2π× 320 Hz and ωz = 2π×
24 Hz, and the atomic number N =130,000, the Fermi energy is calculated to be

EF/kB = 600 nK. For the experimental magnetic field range 750 G to 1000 G, the

1/kFa value varies from +1.4 on the BEC side to -1 on the BCS side. For this range,

the measured cs varies from 0.25vF to 0.45vF according to reference [89]. Therefore,

the calculated value for vF = 0.3 cm/s gives a sound velocity cs = 0.10 cm/s on the

BEC side and cs = 0.16 cm/s on the BCS side.

Thus, for our experimental conditions, the recoil velocity is always much greater

than the speed of sound (vrec >> cs) across the BEC-BCS crossover confirming that

all our experiments are performed well into the free particle regime.
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6.3 The structure factors

As explained in the previous section, for Bragg scattering in ultracold gases, the

strength of the scattering depends on the frequency difference δ between the beams

and the momentum q transferred by the beams [87, 88]. For short interaction times

(pulse duration), the response of the cloud to the Bragg pulse indirectly [90] measures

the dynamic structure factor S(q, δ) which characterizes the dynamics of the many-

body quantum system. The static structure factor S(q) is obtained from the integral

of S(q, δ) over all frequencies and gives the effective line strength of the scattering for

a given momentum q. These quantities have been measured in an atomic BECs and

have proven valuable in understanding the density correlations [61] and the elementary

excitations [60] of the condensate. In the following subsections, these structure factors

are defined and their relation to the density correlation functions are presented.

6.3.1 The dynamic and static structure factors

Following reference [91], an expression for the dynamic and static structure factors

in terms of the density operators is presented. Consider an incoming external probe

particle interacting with a system ofN -particles. In first quantized form, the interaction

Hamiltonian is written as the sum of all the interactions U between the probe and the

particles of the system.

Ĥint =
N
∑

i=1

U(R − r̂i), (6.5)

where R is the probe position and ri is the particle position. It is more convenient to

write Ĥint in the frame-work of second quantization by Fourier analyzing the above

equation

Ĥint =
1

V

∑

K

U(K)e−iK.Rρ̂(K), (6.6)

where V is the volume of the system, ρ̂(K) is the Fourier transform of the one-body

density ρ̂I and U(K) is the Fourier transform of the interaction potential U(R− r) as
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given by 1

ρ̂(K) =

∫

dreiK.rρ̂I(r)

U(K) =

∫

drU(R− r)eiK.(R−r).

Consider a Bragg scattering experiment, where photons with momentum pi = ℏk1

and energy εi scatter from a sample and emerge with momentum pf = ℏk2 and energy

εf . During this scattering process, the N -particle system changes from an initial state

φi with energy Ei to a final state φf with energy Ef . In order to evaluate the transition

rate for this process, the interaction matrix element is expressed as

〈k2, φf |Ĥint|k1, φi〉 = 〈k2, φf |
1

V

∑

K

U(K)e−iK.Rρ̂(K)|k1, φi〉

=
∑

K

U(K)〈φf |ρ̂(K)|φi〉δ(K + k2 − k1)

= U(q)〈φf |ρ̂(q)|φi〉,

where q = k1 − k2 is the momentum imparted to the system by the probe and U(q) is

the amplitude of the interaction potential. The transition rate between the initial and

final state is obtained using Fermi’s golden rule within the Born approximation

Wi→f =
2π

ℏ
|U(q)|2|〈φf |ρ̂(q)|φi〉|2δ(ℏδ − Ef + Ei), (6.7)

where ℏδ = εi − εf is the energy lost by the scattered photons. To account for the fact

that the final state |φf〉 may belong to a continuous spectrum, a sum is taken over all

allowed final states [92]. Thus, the transition rate from the initial state |φi〉 to the final

state of the continuum is given by

1Here and in the following integrals dr represents the volume element, i.e., d3r, unless otherwise
specified.
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Wi→f =
2π

ℏ
|U(q)|2

∑

f

|〈φf |ρ̂(q)|φi〉|2δ(ℏδ − Ef + Ei)

=
2π

ℏ
|U(q)|2S(q, δ), (6.8)

where in the last line the dynamic structure factor (DSF) S(q, δ) has been introduced.

As can be seen, the DSF quantifies how the energy eigenstates of the many-body system

are coupled by fluctuations of the momentum density:

S(q, δ) =
∑

f

|〈φf |ρ̂(q)|φi〉|2δ(ℏδ −Ef + Ei). (6.9)

The static structure factor (SSF) S(q) is defined as the total scattered intensity

for a given momentum transfer q. Using this definition, it is shown below that S(q)

represents the density-density fluctuations of the initial state in momentum space

NS(q) =

∫

dδ S(q, δ) (6.10)

=
∑

f

|〈φf |ρ̂(q)|φi〉|2

=
∑

f

〈φi|ρ̂†(q)|φf〉〈φf |ρ̂(q)|φi〉

= 〈φi|ρ̂†(q)ρ̂(q)|φi〉, (6.11)

where the identity operator is resolved in deriving the last equality.

In summary, S(q, δ) gives a measure of the spectrum of the elementary excitations,

being directly proportional to the square of the excitation matrix element, and S(q)

gives information about the momentum density-density correlations in the initial state.
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6.3.2 Impulse approximation

The derivations presented so far apply to a system at zero temperature. In order to

include finite temperature effects, a statistical description of the states should be taken

into account. Then the dynamic structure factor becomes [53]

S(q, δ) =
1

Z

∑

f i

e−βEf |〈φf |ρ̂(q)|φi〉|2δ(ℏδ − Ef + Ei), (6.12)

where |φn〉 and En are the eigenstates and eigenvalues of the total Hamiltonian of

the system respectively, Z =
∑

n e
−βEn is the partition function and β = 1/kBT . For

an ideal gas, the above equation can be written in terms of the particle distribution

functions (np) at temperature T [93], so that

S(q, δ) =
∑

p

np[1 ± np+q] δ

(

ℏδ − (p+ q)2

2m
+

p2

2m

)

, (6.13)

where p and p+ q are the initial and final momentum of the particle, respectively. The

plus sign holds for bosons and the negative sign holds for fermions. Thus, in the case

of bosons, the scattering process is enhanced while it is suppressed for fermions due to

the Pauli exclusion principle. For a large momentum transfer, the np+q term becomes

negligible as there is negligible occupation of the final state and the summation can be

replaced by an integral:

SIA(q, δ) =

∫

dp n(p)δ

(

ℏδ − (p+ q)2

2m
+

p2

2m

)

, (6.14)

where n(p) is the momentum distribution of the system. This is known as the

impulse approximation (IA) [54], which shows that the measurement of the dynamic

structure factor can also provide information about the initial momentum distribution

of the system [94]. In fact, this approximation can be used to determine the zero

temperature behaviour of an ideal Bose gas and an ideal Fermi gas to compare with

the experimentally measured dynamic structure factor (see sec. 8.4).

76



6.4 Dependence of structure factors on the

correlation functions

In order to derive a relation between the structure factor and the correlation function,

the properties of the density fluctuations and the correlation functions are stated first.

The derivation follows the discussion presented by C. Cohen-Tannoudji et al. in ref. [91]

and by Fetter and Walecka in ref. [93].

6.4.1 Brief review of the correlation functions

A uniform system of N -particles can be described in second quantized notation, where

the field operators are defined as

ψ̂(r) =
∑

i

ψi(r)âi

ψ̂†(r) =
∑

i

ψ∗
i (r)â

†
i .

Here, â†i and âi are the creation and annihilation operators and ψi(r) = 〈r|ψ〉 is the

projection of the ith single state particle onto |r〉. For bosons, the field operators

commute

[ψ̂(r), ψ̂†(r′)] = δ(r − r′) (6.15)

[ψ̂(r), ψ̂(r′)] = 0, (6.16)

while for fermions the field operators anti-commute

{ψ̂(r), ψ̂†(r′)} = δ(r − r′) (6.17)

{ψ̂(r), ψ̂(r′)} = 0. (6.18)
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In the |r〉 basis, the one-body ρ̂I and two-body ρ̂II density operators are defined as

ρ̂I(r) = ψ̂†(r)ψ̂(r)

ρ̂II(r, r
′) = ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r).

The correlation functions are defined as the expectation values of products of the field

operators. For example, the first-order correlation function is given as

G(1)(r, r) = 〈ψ̂†(r)ψ̂(r)〉 = 〈ρ̂I(r)〉 = n (6.19)

which gives the probability of finding a particle at a position r, where n = N/V is the

density of the system [91]. Similarly, the second-order correlation function is defined

as

G(2)(r, r′) = 〈ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)〉 = 〈ρ̂II(r, r
′)〉 (6.20)

which gives the probability of finding a particle at position r given another particle

at r′. G(2)(r, r′) can be written in terms of the normalized second-order correlation

function:

g(2)(r, r′) =
G(2)(r, r′)

G(1)(r, r)G(1)(r′, r′)

=
G(2)(r, r′)

〈ψ̂†(r)ψ̂(r)〉〈ψ̂†(r′)ψ̂(r′)〉

=
G(2)(r, r′)

n2
,

or

G(2)(r, r′) = 〈φi|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|φi〉

= g(2)(r, r′)n2. (6.21)
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6.4.2 Structure factors in terms of the correlation functions

In the case of inelastic scattering, where the energy transferred to the system is positive,

ρ̂(q) in eq. 6.11 can be described in terms of the fluctuations of the particle density

δρ̂(q) about its average value ρo [93], i.e.,

δρ̂(q) = ρ̂(q) − ρ̂o(q) (6.22)

= ρ̂(q) − 〈φi|ρ̂(q)|φi〉. (6.23)

Therefore, from the definition of the SSF, eq. 6.11 can be written as

NS(q) = 〈φi|δρ̂†(q)δρ̂(q)|φi〉. (6.24)

Dropping the q dependence for the time being, consider the following product

δρ̂† δρ̂ =
(

ρ̂† − ρ̂o
†
)

(ρ̂− ρ̂o)

=
(

ρ̂† − 〈φi|ρ̂†|φi〉
)

(ρ̂− 〈φi|ρ̂|φi〉)

= ρ̂†ρ̂− ρ̂†〈φi|ρ̂|φi〉 − 〈φi|ρ̂†|φi〉ρ̂+ 〈φi|ρ̂†|φi〉〈φi|ρ̂|φi〉.

Therefore, the expectation value for the product δρ̂† δρ̂ follows

〈φi|δρ̂† δρ̂|φi〉 = 〈φi|ρ̂†ρ̂|φi〉 − 〈φi|ρ̂†|φi〉〈φi|ρ̂|φi〉 − 〈φi|ρ̂†|φi〉〈φi|ρ̂|φi〉

+ 〈φi|ρ̂†|φi〉〈φi|ρ̂|φi〉〈φi|φi〉.

Using the completeness condition 〈φi|φi〉 = 1 in the last term

〈φi|δρ̂† δρ̂|φi〉 = 〈φi|ρ̂†ρ̂|φi〉 − 〈φi|ρ̂†|φi〉〈φi|ρ̂|φi〉

= 〈φi|ρ̂†ρ̂|φi〉 − |〈φi|ρ̂|φi〉|2. (6.25)
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Thus, using eq. 6.25 in eq. 6.24, the equation for the SSF becomes

NS(q) = 〈φi|ρ̂†(q)ρ̂(q)|φi〉 − |〈φi|ρ̂(q)|φi〉|2. (6.26)

Recalling that ρ̂(q) is the Fourier transform of the one-body spatial density operator

ρ̂(q) =

∫

dreiq.rρ̂I(r)

=

∫

dreiq.rψ̂†(r)ψ̂(r)

the first term in eq. 6.26 can be written as

〈φi|ρ̂†(q)ρ̂(q)|φi〉 = 〈φi|
(
∫

dr′e−iq.r′ ρ̂I
†(r′)

∫

dreiq.rρ̂I(r)

)

|φi〉

=

∫

e−iq.r′〈φi|ψ̂†(r′)ψ̂(r′)ψ̂†(r)ψ̂(r)|φi〉eiq.rdr′dr.

Using the first commutation (anti-commutation) relation eq. 6.15 (eq. 6.17) for bosons

(fermions) between the field operators,

〈φi|ρ̂†(q)ρ̂(q)|φi〉 =

∫

e−iq.r′〈φi|ψ̂†(r′)
[

δ(r − r′) ± ψ̂†(r)ψ̂(r′)
]

ψ̂(r)|φi〉eiq.rdr′dr

=

∫

e−iq.r′〈φi|ψ̂†(r′)δ(r − r′)ψ̂(r)|φi〉eiq.rdr′dr

±
∫

e−iq.r′〈φi|ψ̂†(r′)ψ̂†(r)ψ̂(r′)ψ̂(r)|φi〉eiq.rdr′dr,

where the positive sign holds for bosons and the negative sign for fermions. Resolving

the delta function and using the second commutation (anti-commutation) relation

eq. 6.16 (eq. 6.18) for bosons (fermions) between the field operators
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〈φi|ρ̂†(q)ρ̂(q)|φi〉 = V 〈φi|ψ̂†(r)ψ̂(r)|φi〉

±
∫

e−iq.r′〈φi|
(

±ψ̂†(r)ψ̂†(r′)
)

ψ̂(r′)ψ̂(r)|φi〉eiq.rdr′dr

= n V +

∫

e−iq.r′〈φi|ψ̂†(r)ψ̂†(r′)ψ̂(r′)ψ̂(r)|φi〉eiq.rdr′dr

= N + n2

∫

e−iq.r′g(2)(r, r′)eiq.rdr′dr, (6.27)

where the normalization condition 〈φi|ψ̂†(r)ψ̂(r)|φi〉 = n for the field operators and

the definition (eq. 6.21) of the normalized second-order correlation function g(2)(r, r′)

is used. Thus, the final result is the same for both bosons and fermions. Now, the

second term in eq. 6.26 can be written as

|〈φi|ρ̂(q)|φi〉|2 = 〈φi|ρ̂†(q)|φi〉〈φi|ρ̂(q)|φi〉

= 〈φi|
(
∫

dr′e−iq.r′ ρ̂I
†(r′)

)

|φi〉〈φi|
(
∫

dreiq.rρ̂I(r)

)

|φi〉

=

∫

e−iq.r′〈φi|ψ̂†(r′)ψ̂(r′)|φi〉〈φi|ψ̂†(r)ψ̂(r)|φi〉eiq.rdr′dr

= n2

∫

e−iq.r′eiq.rdr′dr. (6.28)

Finally, using equations 6.27 and 6.28, eq.6.26 can be written as

NS(q) = N + n2

∫

e−iq.r′
[

g(2)(r, r′) − 1
]

eiq.rdr′dr

S(q) = 1 +
N

V 2

∫

e−iq.r′
[

g(2)(r, r′) − 1
]

eiq.rdr′dr.
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In the case of a uniform gas, the two-body correlation function depends only on the

relative distance between the particles. Thus, g(2)(r, r′) ≡ g(2)(|r − r′|) = g(z), where

g(z) is the conditional probability to find two atoms separated by a distance z, and

the SSF becomes

S(q) = 1 +
N

V 2
V

∫

eiq.z [g(z) − 1] dz

S(q) = 1 + n

∫

eiq.z [g(z) − 1] dz. (6.29)

This shows the explicit dependence of the static structure factor S(q) on the two-body

correlation function g(z).

6.4.3 The two-body pair correlation function

We now consider a two-component Fermi gas with an equal number N/2 of atoms in

the two spin hyperfine states (spin up σ =↑ and spin down σ =↓). The spin-resolved

pair correlation function is defined as

g
(2)
σσ′(r, r

′) =
〈ψ̂†

σ(r)ψ̂†
σ′(r′)ψ̂σ′(r′)ψ̂σ(r)〉
nσ(r)nσ′(r′)

, (6.30)

which gives the probability of simultaneously finding a fermion at a position r with spin

σ and another at r′ with spin σ′. For a uniform gas, as mentioned above, g
(2)
σσ′(r, r′) =

g
(2)
σσ′(z) and the two-body pair correlation function can be written as an average of the

contributions from the same spins and the opposite spins as shown below

g(z) =
[g↑↑(z) + g↑↓(z)]

2
.

Note that we have assumed that the gas consists of an equal number of atoms in the

two spin states, so g↑↑ = g↓↓ and g↑↓ = g↓↑. Now one can write the static structure
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factors explicitly depending on the pair correlation functions [51] as

S↑↑(q) = 1 +
n

2

∫

dz[g↑↑(z) − 1]eiq.z

S↑↓(q) =
n

2

∫

dz[g↑↓(z) − 1]eiq.z

and the total static structure factor can be written as

S(q) = S↑↑(q) + S↑↓(q).

Small q limit: In the limit of small momentum transfer (q < kF ), the static structure

factor S(q) depends linearly on q due to long-range correlations [53]. Therefore, as a

consequence of the Pauli exclusion principle S(q → 0) → 0, implying the suppression

of low energy excitations.

Large q limit: In the limit of large momentum transfer (q > kF ), the auto-correlations

among identical spin particles dominate [51] leading to S↑↑(q) → 1. Therefore, the final

SSF becomes

S(q) = 1 + S↑↓(q). (6.31)

In the case of a non-interacting Fermi gas on the BCS side, where there is no correlation

between the particles of opposite spin, S↑↓(q) = 0, such that S(q) = 1. However, in

the case of a strongly interacting Fermi gas at unitarity, S↑↓(q) is non-zero but less

than one. However, on the BEC side, for distances z comparable to the size aM of the

molecules, there is a strong correlation between atoms with opposite spin within the

same molecule S↑↓(q) = 1, such that S(q) = 2. Thus, to probe these two-body pair

correlations, the Bragg experiments mentioned in this thesis are performed in the high

q limit where q ⋍ 5kF .
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6.5 Measuring the static structure factor

In our Bragg scattering experiments, two counter-propagating laser beams with

frequency difference δ are shone onto a degenerate gas for a time τB and the response

of the gas is measured. The momentum Pz imparted to the gas is quantified by the

centre-of-mass (COM) displacement X(q, δ) of the entire gas cloud along the direction

of the Bragg pulse (see sec. 7.2). From this measurement, the static structure factor

can be deduced as explained below.

The periodic potential created by the two counter-propagating Bragg beams

travelling along the z-direction is given as

VBragg = f(t)ℏΩR cos(qz − δt), where (6.32)

f(t) = 1 for | t |< τB
2

= 0 otherwise.

Here ΩR is the two-photon Rabi frequency. The interaction Hamiltonian due to this

potential can be written as

Ĥint =
ℏΩR

2

(

ρ̂†(q)e−iδt + ρ̂†(−q)eiδt
)

, (6.33)

where ρ̂†(−q) =
∑N

j=1 e
iq.rj is the density creation operator. The total Hamiltonian

of a trapped interacting system of N -particles with the above periodic perturbation is

given by

Ĥtot =

N
∑

i=1

p2
i

2m
+

N
∑

i=1

Vext(ri) + g
∑

i<j

δ(ri − rj) + Ĥint, (6.34)

where g = 4πℏ
2a/m defines the strength of the interaction between the particles, m is

the mass of the scattered particle and Vext is the harmonic confinement produced by

the trap potential. Brunello et al. [55] have shown that for a such a system the rate of

momentum transfer to the gas is related to the dynamic structure factor according to
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the relation

dPz(t)

dt
= −mω2

zZ +
ℏqΩ2

R

2

∫

dδ′ [ S(q, δ′) − S(−q,−δ′) ]
sin[ (δ − δ′)t ]

(δ − δ′)
. (6.35)

Since we are interested in the dynamics only on a timescale much shorter than the

inverse trap frequencies, the first term can be ignored, while the second term in the

integral, S(−q,−δ′), can be ignored under our experimental conditions q > kF due to

the principle of detailed balancing [53], which states that the initial population in the

states we are scattering into is negligible,

S(−q,−δ′) = e−βℏδ S(q, δ′)

= e
− ℏδ

kBT S(q, δ′)

= e
−

ℏ
2q2

2mkBT S(q, δ′).

For finite temperatures kBT > EF, where EF =
ℏ2k2

F

2m
is the Fermi energy. Therefore,

when q > kF the exponential factor in the last equality becomes very small, making

S(−q,−δ′) negligible in comparison to S(q, δ′) in eq. 6.35. Thus we have the

approximation
dPz(t)

dt
=

ℏqΩ2
R

2

∫

dδ′ S(q, δ′)
sin[ (δ − δ′)t ]

(δ − δ′)
. (6.36)

Integrating the above equation over the duration of the Bragg pulse τB gives

Pz(t)

m
=
dX(q, δ)

dt
=

ℏqΩ2
R

2m

∫

dδ′S(q, δ′)
1 − cos[( δ − δ′)τB ]

(δ − δ′)2
. (6.37)

This equation gives the COM velocity VCOM immediately following the Bragg pulse,

where X(q, δ) is the COM displacement along the direction of the Bragg pulse. If

the trap is switched off immediately after the Bragg pulse, the cloud moves with

this velocity for the time of flight τtof ; therefore X(q, δ) = VCOMτtof . Integrating this

equation over δ gives

∫

X(q, δ)dδ =
ℏqΩ2

Rτtof
2m

∫ ∫

dδ′S(q, δ′)
1 − cos[ (δ − δ′)τB ]

(δ − δ′)2
dδ. (6.38)
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Using contour integration, one can show

∫ ∞

−∞

1 − cos[ (δ − δ′)τB ]

(δ − δ′)2
dδ = πτB.

Therefore, eq. 6.38 can be written as

∫

X(q, δ)dδ =
ℏqΩ2

Rτtof
2m

πτB

∫

dδ′S(q, δ′)

∫

X(q, δ)dδ =
ℏqΩ2

Rτtof
2m

πτBNS(q),

where the definition for the true static structure factor (SSF) is used from eq. 6.10.

Thus, the SSF can be directly measured from the COM displacement:

S(q) =
2m

ℏqΩ2
RτtofπτBN

∫

X(q, δ)dδ

S(q) =
2m

ℏqΩ2
RτtofπτBN

Sexpt(q). (6.39)

This is similar to equation (5) presented in reference [60] except that the normalization

constant is different, because in [60] Sexpt(q) is defined as the measured momentum

transfer divided by ℏqN . Using the relation obtained between S(q) and the pair density

correlation functions (eq. 6.31), we obtain Sexpt(q) ∝ [1 + S↑↓(q)]. This is the most

important result which relates the measured COM displacement of the cloud to the

static structure factor and hence to the pair correlation function.

6.6 Summary

From this chapter, it is evident that Bragg scattering experiments provide a unique way

to probe pair correlations in a strongly interacting fermionic system. The principles of

Bragg spectroscopy are explained through free particle excitations. In the limit of large
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momentum transfer q > kF, the important role played by pair correlations is highlighted

through their link to the static structure factor S(q) (eq. 6.31). It has been shown that

this factor can be measured through Bragg spectroscopy by quantifying the momentum

imparted to the cloud in terms of the COM displacement (eq. 6.39). When particles in

different spin states are highly correlated, as is the case for bound molecules (BEC side),

S↑↓(q) = 1 and the normalized S(q) = 2. When these correlations vanish S↑↓(q) = 0,

the S(q) = 1 as in the case of non-interacting fermions (BCS side). In the unitarity

regime, quantum Monte-Carlo simulations predict [51] strong correlations between the

interacting fermions, suggesting 1 < S(q) < 2. With this theoretical motivation, Bragg

spectroscopy is performed across the BEC-BCS crossover to quantify the two-body

pair correlations for the first time. The results and analysis of the experiments are

presented in Chapters 7 and 8.
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Chapter 7

Bragg scattering - collisionless

regime

7.1 Introduction

In this chapter, the collionless behaviour of atoms and molecules/pairs are studied

across the BEC-BCS crossover. The main objective is to measure two-photon Rabi

frequencies (sec. 7.4) of both atoms and molecules and to obtain Bragg spectra (sec. 7.5)

across the crossover in the low density limit. Since the Bragg resonance condition

(eq. 6.1) is mass dependent, the presence of atoms or molecules/pairs shows up as

a peak in the response spectrum at their corresponding resonant frequencies. The

Bragg resonant frequencies for 6Li atoms and molecules are δatom/2π = 294.7 kHz and

δmol/2π = 147.4 kHz, respectively. Due to the large scattering length in these gases,

elastic collisions can distort the particle distributions making it difficult to analyse

the Bragg signal. For this reason, the COM displacement of the cloud along the

direction of the Bragg pulse is used to quantify the spectral features (sec. 7.2), instead

of counting the number of scattered particles. For the same reason, the relative fraction

of the constituent particles (atoms or molecules) in the gas is obtained from absorption
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images of the Rabi oscillation sequences (see sec. 7.4.1).

7.2 Analysis of the Bragg signal

The starting point for our experiments is a gas of 6Li in an equal spin mixture of the

|1〉 and |2〉 states evaporatively cooled in a single beam optical dipole trap. First a

highly degenerate cloud is produced containing 1.3× 105 atoms in each spin state at a

magnetic field of 835 G. Then the trap depth is increased by a factor of two to avoid

any atom loss during the adiabatic ramp (in 100 ms) to the desired magnetic field

(B) where they are held for 200 ms to let the transient magnetic field vanish. Bragg

scattering and imaging take place at this final magnetic field.

In most of the Bragg scattering experiments performed by other groups [87, 88, 61,

60, 63], the ratio of the scattered fraction of particles with respect to the remaining

unscattered cloud is normally taken as a standard Bragg signal. In these experiments,

the elastic collisions between the scattered and unscattered particles are negligible.

Therefore, it is possible to count the atoms which appear in a spatially separated

scattered cloud after a sufficiently long time of flight. However, in our experiments,

the strong interactions (large scattering length near unitarity) cause elastic collisions

which distort the particle distributions making it difficult to analyse the Bragg signal.

Therefore, to quantify the momentum imparted to the cloud by the Bragg pulse, the

centre-of-mass (COM) displacement of the distribution is measured.

The elastic collisions can be reduced by expanding the gas before applying the Bragg

pulse, so that a clear scattered cloud is observed. This method of Bragg scattering is

referred as the collisionless regime throughout this thesis.

Alternatively, if the Bragg pulse is applied to a trapped gas, the interactions can

affect the Bragg spectra and this method is referred as the interacting regime.

In either case, the COM displacement spectrum is evaluated in the following way :
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1. For every absorption image taken after a Bragg pulse, at a particular Bragg

frequency, the COM position of the particle distribution is evaluated using the

relation
∑

miri
∑

mi
where mi is taken as the pixel intensity and ri is the pixel position.

2. Similarly, the COM position of the cloud imaged in the absence of a Bragg pulse

(molecular BEC or a degenerate Fermi gas) is calculated for the same time of

flight. This value is then subtracted from the one obtained in step 1 to get the

COM displacement of the scattered cloud along the direction of the Bragg pulse.

3. Such COM displacements are evaluated from all the absorption images, taken for

the range of Bragg frequencies, and joined together to create a Bragg spectrum.

4. Two Gaussian curves are fitted to the spectra to distinguish the scattered

molecules and atoms.

7.3 Collisionless behaviour

To probe the composition of particles (atoms/pairs) in a non-interacting gas, Bragg

scattering is performed on an expanded gas. Once the dipole trap is switched off, the

mean field energy of the interacting gas is converted into kinetic energy and the cloud

expands. After expansion, the cloud consists of free particles with a wide range of

velocities. Since Bragg scattering is highly momentum sensitive and the momentum

width of the scattering transition is narrower than that of the expanded cloud, only

particles within a certain Bragg momentum range are scattered [87]. Because atoms

scatter with twice the velocity vrecoil = q
m

of molecules, owing to their mass difference,

they travel twice the distance of molecules for the same time of flight. This is another

way, apart from their resonant frequencies, that Bragg scattering can distinguish atoms

from molecules.

To demonstrate collisionless Bragg scattering, a degenerate gas is made as described

in sec. 4.10. The dipole trap is then switched off and the cloud expands for 4 ms
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Figure 7.1: Bragg scattering of molecules at 730 G.

before applying the Bragg pulse. Following the pulse, a further 2 ms of expansion

is allowed before taking an absorption image. Figure 7.1b shows the scattering of

molecules at 730 G (BEC side) from a molecular condensate after applying a 30 µs

Bragg pulse at a Bragg frequency of 132 kHz. For comparison, Fig. 7.1a shows a pure

molecular condensate imaged after the same time of flight without applying a Bragg

pulse. Similarly, Fig. 7.2b shows the scattering of atoms at 860 G (BCS side) from a
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Figure 7.2: Bragg scattering of atoms at 860 G.
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degenerate Fermi gas after applying a 50 µs Bragg pulse at a Bragg frequency of 285

kHz, and Fig. 7.2a shows the same conditions without a Bragg pulse.

Note that the observed resonant frequencies for molecules and atoms are lower than

the calculated values δmol/2π = 147.4 kHz and δatom/2π = 294.7 kHz, respectively. This

is because, during the TOF expansion of the cloud, the particles are accelerated in the

stray Feshbach magnetic fields, which increases their velocities causing a Doppler shift

in the observed Bragg frequencies. The scattered intensity of the molecules (fig. 7.1c)

is observed to be higher than that of atoms (fig. 7.2c) due to the presence of a large

population of zero momentum molecules in the condensate. On the BCS side of the

resonance, fermions occupy many more quantum states; so fewer atoms lie in the

momentum window of the Bragg pulse. Also, the width of the parent (central) cloud is

larger for the DFG than for a molecular BEC due to the larger momentum distribution

of fermions. Finally, due to the near perpendicular alignment of the Bragg beams (see

Fig. 4.9) with respect to the axis of the dipole trap, the scattered particles appear at

an angle with respect to the parent cloud.

7.4 Two-photon Rabi oscillations

Bragg scattering can be viewed as a Raman transition between two momentum states

of the same magnetic sublevel. This can be treated as a simple two-level system,

interacting with a periodic time-dependent optical field. It can be easily shown [95]

that for such a system the particle will oscillate between these two momentum states

with a frequency ΩR, the two-photon Rabi frequency. This can be written in terms

of the intensity (I1 and I2) of each Bragg beam, the detuning (∆) from the resonant

transition, the line width (Γ) of the transition and the saturation intensity (Isat) [83]:

ΩR =
Γ2

4 ∆

√
I1I2
Isat

(7.1)
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The intensity of the beam is given by I = 2P
πw2

o
, where P is the power in the beam and

wo is the beam waist. The probability of finding a particle in the excited state after a

time t is given by

P (t) = sin2(
ΩRt

2
). (7.2)

When t = π
2ΩR

, the number of particles in each momentum state becomes equal, i.e.,

P (t) = 1
2

and a pulse of such width is termed a π
2

pulse. When t = π
ΩR

, all the particles

are scattered to the higher momentum state, i.e., P (t) = 1 and the pulse is termed a π

pulse. Experimentally, ΩR is obtained by fitting the following function to the scattered

fraction (SF) of particles measured as a function of the pulse width t

SF =
A

2

(

1 − e−
t
τ cos(ΩRt)

)

, (7.3)

where e−
t
τ is a damping term and A is the amplitude.

Bragg temporal regime: To ensure that the system truly undergoes Bragg

scattering, the Bragg pulse duration should be large enough to scatter to the first-order

momentum state but small enough to avoid scattering into higher order momentum

states and also to minimize spontaneous emission events, i.e., [96]

1

4

(

2π

ωr

)

≪ τB ≪ 4π∆

ΓΩR
, (7.4)

where τB is the duration of the Bragg pulse, ωr is the single-photon recoil frequency

and Γ is the natural linewidth of the transition. The single photon recoil energy Er is

related to ωr by the relation

Er = ℏωr =
ℏ

2k2

2m
, (7.5)

which gives ωr = 2π·74 kHz for atoms and ωr = 2π·37 kHz for molecules. Substituting

the values for our experimental parameters for 6Li, the Bragg pulse duration is

constrained by 3.4 µs ≪ τB ≪ 135 ms for atoms and 6.8 µs ≪ τB ≪ 135 ms for

molecules. For the experiments mentioned in this thesis, the pulse duration is chosen

such that τB = 40 µs for probing the interacting regime (chapter. 8) and up to τB =
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0.4 ms for probing the collisionless regime (sec. 7.5), which are both well within the

Bragg regimes.

7.4.1 Oscillation sequences

Two-photon Rabi frequencies (ΩR) of molecules (at δmol/2π = 135 kHz) and atoms

(at δatom/2π = 280 kHz) in the collisionless regime were measured using a fixed Bragg

intensity (I = 8.2 mW/cm2) and varying the pulse duration from 10 µs to 100 µs

in steps of 10 µs. In order to illustrate the pattern of the scattered particles from an

expanded gas, the absorption images taken for different conditions were joined together

as explained below:

1. Each absorption image taken with a particular Bragg pulse is integrated along

the X-direction (perpendicular to the direction of the Bragg pulse) to obtain a

1D-line profile as shown in Fig. 7.1c (molecules) and Fig. 7.2c (atoms).

2. Such line profiles of all the absorption images taken for various Bragg pulse

durations are joined together to create a sequence of absorption images.

3. From this Rabi oscillation sequence (Fig. 7.3d) of molecules taken at 710 G it

can be seen that the molecules are scattered from the central region of the parent

cloud.

4. Similarly, Fig. 7.3h shows the oscillation sequence of atoms at 850 G created

by joining the horizontally integrated single images like Fig. 7.3e, Fig. 7.3f and

Fig. 7.3g.

5. From such Rabi oscillation sequences, a thin slice of the image is taken

horizontally around the scattered region of the particles, along the direction of

the pulse durations, to obtain the signal for Rabi oscillations.
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Figure 7.3: Making Rabi oscillation sequences from single absorption images taken at different conditions. Fig. (a-d) show
the scattering of molecules at 730 G and Figure.(e-h) show the scattering of atoms at 860 G.
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7.4.2 Rabi Frequencies for atoms and molecules

Figure 7.4a shows the observed two-photon Rabi oscillations of molecules taken at 745

G with various powers, 50 µW, 100 µW and 185 µW. ΩR = 2πνR is obtained from

this data by fitting a decaying sinusoidal curve (eq. 7.3) and Fig. 7.4b shows the
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Figure 7.4: Two-photon Rabi frequencies for molecules taken at 745 G.
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evaluated νR at different powers with constant detuning (∆/2π = 1592 MHz). Taking

the values Γ/2π = 5.9 MHz and Isat = 2.54 mW/cm2 for the 6Li D2-line, a beam waist

of wo = 0.55 mm is obtained from the slope of the straight line fit to the data points,

using eq. 7.1.

The line profiles of the scattered fraction of molecules and atoms are generated
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(a) Two-photon Rabi oscillations of molecules.
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(b) Two-photon Rabi oscillations of atoms.

Figure 7.5: Two-photon Rabi oscillations of molecules and atoms at various magnetic
fields.
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from the Rabi oscillation sequences taken at various magnetic fields as mentioned in

section. 7.4.1. The line profiles obtained in this way across the BEC-BCS crossover are

fitted with eq. 7.3 to obtain their two-photon Rabi frequencies. Figure 7.5 shows this

data along with non-linear best fit curves. The molecular Rabi frequencies are observed

to decrease slowly with increase in the magnetic field, whereas the atom signals are

seen to oscillate almost with the same Rabi frequency.
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Figure 7.6: Two-photon Rabi frequencies of molecules and atoms across the BEC-BCS
crossover. The vertical dotted line indicates the position of unitarity.

Figure 7.6 shows the evaluated two-photon Rabi frequencies along the BEC-BCS

crossover with the calculated νR for both molecules and atoms. The measured two-

photon Rabi frequency is close to that of the calculated value for both molecules (far

on BEC side) and atoms (on BCS side), which is a manifestation of their free particle

behaviour. Also, it is observed that molecules oscillate with twice the Rabi frequency

of atoms as they have twice the polarisability [83]. It is interesting to note that on the

BEC side of the Feshbach resonance, molecules show a deviation from the free particle

behaviour. This could be due to the increased size of the molecular wavefunction near
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the Feshbach resonance. Figure 7.7 shows the calculated value of the atomic scattering

length a versus magnetic field. Since the values are close to the actual size of the

molecules, it can be seen that they becomes comparable to the wavelength (λ=671

nm) of the Bragg beams and their oscillations can no longer be treated under the

semi-classical electric dipole approximation. However, on the BCS side, atoms scatter

as free particles as their size is always very small compared to the wavelength of the

light.
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Figure 7.7: Size of the molecules a versus magnetic fields. The green (blue) point shows
where the size of the molecule becomes 1/4 (1/2) of the wavelength λ=671 nm of the
laser light.

7.5 Bragg spectra across the BEC-BCS crossover

Bragg scattering of molecules/pairs and atoms is performed at different magnetic fields

across the BEC-BCS crossover by varying the Bragg frequency from 80 kHz to 380

kHz in steps of 10 kHz, while keeping the intensity (I = 8.2 mW/cm2) and the pulse

duration constant. To illustrate the pattern of the scattered particles from an expanded

gas, all the absorption images taken under different conditions are joined together as

explained below:
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1. Each absorption image taken at a particular Bragg frequency is integrated along

the X-direction (perpendicular to the direction of the Bragg pulse) to obtain a

1D-line profile (similar to fig. 7.1c and fig. 7.2c).

2. Such line profiles of all the absorption images taken for various Bragg frequencies

are joined together to create a sequence of absorption images.

3. In such a sequence (Fig. 7.8a), the high density central clouds are shown by red

and yellowish green colours. The particles (light green) are observed to scatter

downwards along the direction of the Bragg pulse.

Figure 7.8a shows the Bragg spectrum constructed in this way at a magnetic field of

810 G with a 60 µs Bragg pulse. The particles are observed to scatter in two different

regions of the spectrum. The first region is due to the scattering of molecules around

the Bragg resonant frequency of 147 kHz, whereas the second region is due to the

scattering of atoms around 294 kHz. In both cases, the location of the scattered cloud

follows a diagonal line in Fig. 7.8a (shown by the dotted line). This is due to the

fact that as the Bragg frequency is varied particles with different momentum become

resonant with the Bragg pulse. In our experiment, as the frequency is increased, the

region from where molecules/atoms are scattered shifts from the top to the bottom

of the central cloud. This can be noticed by the presence of a diagonal gap in the

central cloud whose location follows a similar diagonal path. The spacing between the

scattered atoms and the parent cloud (shown by vertical lines) is observed to be twice

that of the molecules. Although the atoms and molecules receive the same momentum

kick (ℏq) from the Bragg pulse, due to the mass difference atoms travel twice as far as

molecules.

Once the Bragg spectrum is obtained, the COM displacement is evaluated as

explained in sec. 7.2 and shown in fig. 7.8b. The data is fitted with a sum of two

Gaussian curves to guide the eye. In this spectrum, the first (second) peak corresponds

to the scattering of molecules (atoms).
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(a) Free particle Bragg spectrum at 810 G with 60 µs Bragg pulse.
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(b) Spectrum of COM displacement obtained from the line profiles at
810 G.

Figure 7.8: Free particle Bragg spectrum at 810 G. In (b) the sum of two Gaussian
peaks is shown (solid line) as a fit to guide the eye.

102



0 100 200 300 400 500

0

5

10

15

20

25

Bragg frequency HkHzL

C
O

M
d
is

p
la

ce
m

en
t
HΜ

m
L

745 G

(a) Free particle Bragg spectrum of molecules at 745 G.
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(b) Free particle Bragg spectrum of atoms at 890 G.

Figure 7.9: Free particle Bragg spectra. A Gaussian peak is shown (solid line) as a fit
to guide the eye.
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Bragg spectra taken far away from the Feshbach resonance show scattering of purely

molecules (see Fig. 7.9a) on the BEC side (745 G) and purely atoms (see Fig. 7.9b) on

the BCS side (890 G). These spectra were taken under different conditions to achieve a

clear Bragg scattering signal with less collisional scattering. At 745 G a short (80 µs)

and lower intensity (I = 2.2 mW/cm2) Bragg pulse is used to obtain a π-pulse, whereas

at 890 G a shorter (40 µs) pulse is used, keeping the intensity at I = 8.2 mW/cm2.

From these spectra, it can be seen that on the BEC side, due to the presence of a

large condensate fraction, the width of the momentum distribution is narrow, whereas

for atoms on the BCS side, the momentum distribution is broader due to the Fermi

pressure.

To quantify all of these data, the scattered fraction of particles is evaluated from the

Rabi oscillation sequences at various magnetic fields, by counting the total scattered

particles after one-half of a Rabi cycle. In this way, the results are normalized

and do not depend on the Bragg pulse duration. The obtained scattered fraction
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Figure 7.10: Relative fraction of scattered pairs and atoms across the BEC-BCS
crossover. The vertical dotted line indicates the position of the Feshbach resonance.
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of molecules/pairs and atoms across the BEC-BCS crossover is shown in Fig. 7.10.

Below 750 G, the molecules are seen to scatter with a constant amplitude. However,

their response is observed to decrease from the BEC to the BCS side of the Feshbach

resonance. No free pairs are seen to be scattered at magnetic fields above the Feshbach

resonance. On the other hand, the thermal atoms are observed to scatter from 760 G,

and above 820 G they scatter with a constant amplitude.

7.6 Summary

The collisionless behaviour of atoms and molecules/pairs is studied across the BEC-

BCS crossover by measuring two-photon Rabi oscillations. The deviation of the

measured two-photon Rabi frequencies for molecules from the calculated (free particle)

values, near the BEC side of the Feshbach resonance, suggests an increase in the pair

size. The Bragg spectra are analysed in terms of the COM displacement of the cloud

along the direction of the Bragg pulse. Atoms and molecules are observed to scatter

around their respective Bragg resonant frequencies. The width of the momentum

distribution is observed to be narrow on the BEC side, due to the large condensate

fraction, and broad on the BCS side, due to the Fermi pressure. For short pulse

durations (<100 µs), the ratio of the constituent particles is obtained from the Rabi

oscillation spectra, which also show scattering of pairs near the BEC side of the

Feshbach resonance. In order to verify the presence of these pairs with certainty,

Bragg scattering is performed on a trapped cloud, where the density is higher and

hence the interactions are stronger. Results from this experiment are presented in the

next chapter (Chapter. 8).
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Chapter 8

Bragg scattering - Interacting

regime

8.1 Introduction

This chapter presents the key experimental results obtained in this thesis. The results

were published recently in [97]. Bragg spectroscopy is applied to a strongly interacting

Fermi gas across the BEC-BCS crossover regime. From the observed Bragg spectra in

this regime, pair correlations between spin-up and spin-down fermions are quantified

and their density dependence is revealed. Unlike the collisionless regime (Chapter. 7),

Bragg scattering of a trapped gas can reveal the effects of strong interactions, and for

the same reason the analysis of the Bragg signal becomes more difficult. Once again, the

spectra are constructed by measuring the COM displacement of the cloud as discussed

previously in section 7.2. The Bragg response function (spectrum) is calculated for

both ideal bosons and fermions, under the impulse approximation at zero temperature,

and compared with the observed data. Following this, the static structure factors

are measured by integrating the Bragg spectra and normalizing with respect to the

bound molecule limit (sec. 8.4). All of the results presented here are obtained for the
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lowest trap temperatures achievable in our set-up. An empirical temperature of the

strongly interacting Fermi gas is obtained by integrating the absorption image along

the weak trapping axis and fitting a 1D-density profile of non-interacting fermions,

after including appropriate scaling factors (see sec. 2.5).

8.2 Behaviour of interacting particles

Due to the presence of large particle densities, the trapped gas regime becomes an ideal

set-up to study two-body correlations across the BEC-BCS crossover. However, in

Bragg scattering experiments, elastic collisions between the scattered and unscattered

particles can distort the resulting atomic distribution (see Fig. 8.1b), making it difficult

to analyse the data. Usually it is not possible to easily discern a spatially separated

scattered cloud that can be used as the standard signal of Bragg scattering. Therefore,

to quantify the momentum imparted to the cloud due to the Bragg pulse, the centre of

mass displacement of the atomic distribution is measured as described in section 7.2.

To probe the interacting regime, a sample of degenerate gas is produced by the
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Figure 8.1: Bragg scattering of molecules in a trapped gas at 780 G.
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method described in sec. 4.10. After this, a Bragg pulse of 40 µs duration is applied to

the trapped gas and the trap is then switched off immediately. An absorption image

is taken after a 4 ms time of flight.

8.3 Bragg spectra across the BEC-BCS crossover

Bragg scattering of a trapped gas is performed at different magnetic fields across the

BEC-BCS crossover by varying the Bragg frequency from 5 kHz to 480 kHz in steps

of 10 kHz while keeping the intensity (I = 5 mW/cm2) and the pulse duration (40

µs) constant. Figure. 8.1 shows molecular condensates with (Fig. 8.1b) and without

(Fig. 8.1a) application of a Bragg pulse. In order to illustrate the pattern of the

scattered particles from the trapped gas, all the absorption images taken at different

conditions are joined together as explained below :

1. Each absorption image taken at a particular Bragg frequency is integrated along

the X-direction (perpendicular to the direction of the Bragg pulse) to obtain a

1D-line profile as shown in Fig. 8.1c.

2. Such line profiles of all the absorption images obtained at the different Bragg

frequencies are joined together to create a sequence of absorption images.

3. In such a sequence (Fig. 8.2a), the high density central clouds are shown by red

and yellowish green colors. The particles are observed to scatter (upwards) along

the direction of the Bragg pulse, distorting the central cloud around the resonant

frequency (δm/2π =147 kHz in this case).

As explained in sec. 7.2, the COM displacement spectrum is obtained and shown in

Fig. 8.2b. Similar spectra are evaluated for various magnetic fields across the BEC

(Fig. 8.3a)-BCS (Fig. 8.3b) crossover. The dominant peak at 147 kHz in these spectra

on the BEC side corresponds to the scattering of molecules. The height and sharpness
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(b) Spectrum of the COM displacement obtained from the line profiles.

Figure 8.2: Bragg spectrum of a trapped gas at 780 G. The sum of two Gaussian peaks
is shown in (b) (solid line) as a fit to guide the eye.
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Figure 8.3: Bragg spectra across the BEC-BCS crossover. The sum of two Gaussian
peaks is shown (solid line) as a fit to guide the eye, except for the 990 G data where a
single Gaussian peak is used.
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of this peak signifies a large condensate fraction. However, a small fraction of scattered

free atoms contributes to an asymmetry in the spectra. At unitarity (835 G), the

peak at the molecular resonant frequency is still significant (Fig. 8.3b), indicating the

presence of a substantial fraction of correlated pairs (with the same mass as molecules)

in a trapped interacting Fermi gas.

At higher magnetic fields on the BCS side, this pair signal is observed to gradually

decrease as the length scale for pair correlations increases. On the other hand, the

atomic excitations obtain a constant amplitude and the spectrum approaches that of

an ideal Fermi gas.

To quantify these results, the data are fitted with the sum of two Gaussian curves

Fit = Ame
−

(δ−δm)2

2σ2
m + Aae

−
(δ−δa)2

2σ2
a , (8.1)

one for molecules/pairs and the other for atoms, where δ is the Bragg frequency, Aa

(Am) is the amplitude of the scattered atoms (molecules/pairs) and σa (σm) is the

width of the atomic (molecular/pair) peak. Fitting a Gaussian profile is only an

approximation to help quantify the centre positions and root-mean-square widths of

the two peaks. In order to quantify the behaviour of the molecular/pair peak widths

and amplitudes, the atomic width and its resonant frequency are held constant at

σa/2π=60 kHz and δa/2π=285 kHz, respectively, in fitting eq. 8.1 to the data. These

parameters are chosen from the Bragg spectra taken at 990 G for a weakly interacting

Fermi gas.

Figure 8.4a shows the evaluated peak amplitudes for molecules (/pairs) and atoms

from the fits. This plot is similar to the ratio plot (Fig. 7.10) obtained in the collionless

regime where the densities were smaller than for these trapped gases. Here, the

molecular peak amplitudes are higher on the BEC side (750 G and 780 G) and on

the BCS side the atomic excitations approach a constant value corresponding to that

of an ideal Fermi gas. In contrast to the low density case (collisionless regime) at
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(a) Peak amplitudes of the scattered particles across the BEC-BCS crossover.
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(b) Peak width of the scattered molecules/pairs across the BEC-BCS crossover.

Figure 8.4: Amplitudes and widths of the Bragg signals obtained from the fits, across
the BEC-BCS crossover. The vertical dotted line indicates the position of unitarity.
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unitarity, there is a non-zero amplitude for the peak at δ/2π = 147 kHz, indicating the

presence of a substantial fraction of correlated pairs. Figure 8.4b shows the evaluated

peak widths for molecular/pair peaks across the BEC-BCS crossover. This plot reveals

that the momentum distribution evolves smoothly from a narrow molecular condensate

peak to a broader strongly interacting Fermi gas peak, due to the increase in spread of

the particle energies.

8.4 Measuring the static structure factor

As explained in chapter. 6 (sec. 6.3.2 and sec. 6.5), the COM displacement spectra

obtained (fig. 8.3) via Bragg spectroscopy of the trapped degenerate gas probe the

dynamic structure factor (DSF). To show this, the Bragg response function (COM

displacement) is calculated from eq. 6.37, for both an ideal Bose gas and an ideal

Fermi gas at zero temperature, using eq. 6.14 under the impulse approximation (large

q). This equation can be written as

S(q, δ) =
m

q

∫

dpydpzn(px, py, pz), (8.2)

where the excitation with wavevector q is assumed to be oriented along the x-direction,

px = m(E − Er)/q and Er is the single photon recoil energy.

For the case of a zero temperature BEC, in the TF approximation, the momentum

distribution is given by [54]

nTF(p) = N
15

16λ

(σx

ℏ

)3
[

J2(p̃)

p̃2

]2

, (8.3)

where λ = ωz/ωx, J2(z) is the second order Bessel function, σx is the TF radius and

p̃ =
√

p2
x + p2

y + (pz/λ)2 σx/ℏ is a dimensionless momentum. For simplicity, when

comparing with data, the dominant peak of the J2(z) is well approximated by a
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Gaussian function and the value of the integral becomes

SBosons(q, δ) = A
m

q
e−

p2
x(δ)

2σ2 , (8.4)

where A is the amplitude and σ is the approximate width of the Bessel function.

For the case of an ideal Fermi gas at zero temperature, the momentum distribution

is

n(px, py, pz) =
8

π2

N

p3
F

Max

[

(

1 −
p2

x + p2
y + p2

z

p2
F

)3/2

, 0

]

, (8.5)

where pF = ℏkF is the Fermi momentum. Substituting this expression for the integrand

in eq. 8.2, the value of the integral becomes

SFermions(q, δ) =
16 (p2

F − p2
x(q, δ))

5
2

5πp6
F

(8.6)

The Bragg spectrum of a bosonic molecular condensate at 750 G is compared to

the Bragg response function for bosons using eq. 8.4 and the spectrum of a weakly

interacting Fermi gas at 990 G is compared to the Bragg response function for fermions
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Figure 8.5: Comparison of the measured and calculated Bragg responses of bosons and
fermions.
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Figure 8.6: Evaluated experimental static structure factor across the BEC-BCS
crossover. The vertical dotted line indicates the position of the Feshbach resonance.

using eq. 8.6, as shown in fig. 8.5. The relative heights of the calculated responses are

set by the requirement that the area under the bosonic curve be equal to twice that

of the fermionic curve [51]. Both the amplitudes and widths of the experimental data

show good agreement with the limiting case theory when |1/kFa| > 1. The width of

the molecular peak is limited experimentally by the Fourier width of the Bragg pulse

(20 kHz) and the background signal is due to off-resonant scattering of free thermal

atoms.

Thus, by definition, the static structure factor (SSF) can be evaluated by integrating

the area under the spectra at different magnetic fields. These values are normalised in

such a way that Sexpt(q = 5kF) = 2 corresponding to the bound molecular BEC-limit

at 750 G, which ensures Sexpt(q = 5kF) = 1 corresponding to the BCS-limit at 990 G.

The results are presented in fig. 8.6 and are qualitatively in good agreement with the

theoretical simulations given in reference [51], where the SSF varies monotonically from

2 on the BEC side to 1 on the BCS side. Quantitatively, however, there is a difference
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between the measured and calculated values of the SSF. For example, Sexpt = 2 for

an interaction parameter 1/kFa = 1.39 whereas in the simulations S = 2 only for

values 1/kFa > 41. This difference may be due to the fact that kF in the experimental

(trapped) case refers to the Fermi wavevector at the peak cloud density, and away from

the trap centre the local Fermi wavevector decreases as kF = (6π2n(r))1/3. Therefore,

a density average of the interaction parameter would be higher than the quoted 1/kFa;

so it is expected that a trapped gas would approach ideal molecular behaviour more

rapidly than a uniform gas with the same 1/kFa. However, proper theoretical modelling

of the trapped case would be very insightful. In summary, these measurements of S(q)

confirm the decay of two-body pair correlations g
(2)
↑↓ (z) from the BEC to BCS side of

the Feshbach resonance with a finite value present at unitarity.

8.5 Density dependence of pair scattering

At unitarity and above the Feshbach resonance, on the BCS side, correlated pairs

exist due to many-body effects in the strongly interacting gas [38]. These interactions

in principle depend on the density of the system. When the density of the gas is

decreased, the interactions (elastic collisions) and the pair correlations also decrease.

To verify this, Bragg scattering is performed across the BEC-BCS crossover at various

magnetic fields whilst varying the density of the interacting gas. This is achieved by

varying the expansion time of the gas after releasing from the trap, before applying a

Bragg pulse and keeping the same time of flight for imaging. The Bragg frequency is

chosen to be resonant with pairs/molecules and kept constant at δ/2π=145 kHz. The

momentum imparted to the gas is measured again via the centre of mass displacement

(COM) of the entire distribution of the gas. The density of the gas is calculated from

the reference images that are taken for each time of flight (i.e., without applying a

1Note that, if the experimental data is normalized on one side of the Feshbach resonance to the
theoretical value, to overcome this difference, then the data would disagree on the other side
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Figure 8.7: Density dependence of the molecules and correlated pairs across the BEC-
BCS crossover. The interaction strength 1/kFa is given in brackets.

Bragg pulse). In doing so, the appropriate scaling factors are taken into account to

include the effect of the saddle magnetic potential produced by our Feshbach coils on

the expanding gas (see sec. 2.5). The density is expressed in units of 6π2/k3
F and is

always greater than unity because of the interactions.

Figure 8.7 shows the measured COM displacement dependence on the density of

the interacting gas across the crossover. On the BEC side (780 G, 800 G and 820

G), at high density, tightly bound molecules are displaced to a large distance which is

observed to gradually decrease towards an asymptotic value as the density is lowered.

This is due to fewer and fewer molecules becoming resonant with the Bragg pulse as

the mean field energy is converted into kinetic energy during expansion of the cloud.

The fact that this signal is approaching a non-zero asymptotic value implies that the

scattered particles are true bound molecules in the low density limit.

On the other hand, at unitarity (834 G) and near the BCS side (850 G and 890 G) of

the Feshbach resonance, a pair scattering signal (COM displacement) is observed only

at high densities and the signal is observed to gradually approach zero at low densities.
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This behaviour highlights the importance of density dependent correlations among the

pairs. Since no stable bound two particle states exist at these magnetic fields, it can be

interpreted as scattering of correlated pairs which only exists in a strongly interacting

many-body system at these temperatures. These observations establish a means to

distinguish true bound molecules from many body pairs.

In a trapped two-component unitary Fermi gas, elastic collisions are limited by Pauli

blocking at low temperatures. For T/TF ≤ 0.15 the collision rate can be estimated from

γel = 41EF

3πℏ

(

T
TF

)2

[98]. For our parameters, at a temperature T/TF = 0.06, this value

is evaluated as τel = γ−1
el = 1 ms. This is much longer than the Bragg pulse duration

of 40 µs and supports the idea that pre-existing pairs are scattered rather than pairs

which associate via collisions during the Bragg pulse. Elastic collisions may actually

increase during expansion [99] but no increase in the scattered signal is observed in our

data.

8.6 Thermometry of a strongly interacting gas

The measured pair correlations presented in section 8.4 need to be quantified in terms of

the temperature. At unitarity, although the interactions among opposite spin fermions

are strong, pairing does not start until below the characteristic temperature T ∗. When

the gas is further cooled to temperatures below the critical temperature TC, the pairs

start to condense and show the signature of superfluidity. Both T ∗ and TC vary

as a function of the interaction parameter 1/kFa along the BEC-BCS crossover as

shown in Fig. 1.1. Therefore, it is important to quantify whether the measured density

correlations are in this superfluid regime or not.

Measuring the temperature of a strongly interacting Fermi gas is not straight-

forward as there exists no universally agreed theory that explains the physics of

the BEC-BCS crossover regime completely. Experimentally, the temperature of an
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interacting Fermi gas with equal spin population2 can be measured indirectly by

two different methods [100]. In one method [23, 101], the interaction strength of a

strongly interacting gas is isentropically ramped to a very weakly interacting value by

sweeping the magnetic field adiabatically far away from the Feshbach resonance. The

temperature is then deduced by fitting spatial profiles of a non-interacting Fermi gas

to the measured density distribution (column density) from time of flight absorption

images.

The other method [31] is used to obtain an empirical temperature T̃ by fitting

the density profile of a non-interacting gas to the measured density distribution of a

strongly interacting gas. This method is applicable only at unitarity where the equation

of state (µ ∝ n2/3) has the same form as for non-interacting fermions [30]. Once T̃ is

obtained, it is calibrated to the true physical temperature T using a model dependent

theoretical density profile. In the following section, this method is used to obtain the

temperature at unitarity.

8.6.1 Obtaining temperature from density distributions

An absorption image gives a two-dimensional column density, i.e., the density

distribution integrated along the direction of the resonant laser beam (see fig. 8.8a).

This image is then integrated along the axial direction to avoid the insensitivity of the

two-dimensional fit routine to the trap anharmonicity in the axial direction [31]. This

1D-density distribution (fig. 8.8b) is then normalized before fitting a theoretical profile

to obtain the empirical temperature.

Fitting procedure for a weakly interacting gas

The fitting function used for the 1D-density profile of a non-interacting Fermi gas

2For unequal spin populations, the temperature is obtained by fitting a non-interacting spatial
profile to the tail of the measured density distribution. However, the deviation of the interacting gas
from the non-interacting profile is very small (< 2%) [72], making it a difficult choice.
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Figure 8.8: Obtaining 1D-density profile from an absorption image (TOF = 4 ms).
The temperature of the gas is obtained from the Polylogarithmic fit as T/TF=0.06.

is given by [102]

n(x, T ) = − 3N√
πσx

(

T

TF

)
5
2

Li5/2

[

−exp

(

µ
EF

− x2

σ2
x

T/TF

)]

, (8.7)

where Li5/2 is the polylogarithm function, µ is the chemical potential and σx is the

Thomas-Fermi (TF) radius in the radial direction. Given that the number of atoms N

can be measured from the absorption images, there are only three parameters (µ, σx

and T ) left for the fit. For a Fermi gas the value of µ determines the shape of the cloud,

whereas σx and T appear as a product in the argument of the exponential (σ2
x T/TF).

If σx is known by other means then the temperature can be used as an independent fit

parameter.

For this reason, σx is first determined by fitting a zero temperature 1D-Thomas-

Fermi profile

n1D(x) =
16N

5πσx

(

1 − x2

σ2
x

)
5
2

(8.8)

to the lowest temperature clouds achievable in our experiment. The profile is fitted
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only to the central region of the clouds (excluding the wings) to obtain σx. This is

a valid approximation as finite temperature effects in a Fermi gas mostly affect its

wings [73, 74]. This procedure is different from the one mentioned in the thesis [102]

where the full profile is fitted for a non-interacting Fermi gas to obtain σx. For a fixed

trapping frequency ωx, the TF radius is written as

σx =

√

2EF

mω2
x

=

√

2(6)
1
3 ℏω̄

mω2
x

(

N

2

)
1
6

= Cx

(

N

2

)
1
6

, (8.9)

where Cx is a constant. Initially, an average value for Cx is obtained from a number of

absorption images and from that an average value for σx is obtained. Once the value

for σx is obtained from the 1D-TF fits, it is fixed for all higher temperatures leaving

T/TF as a free parameter in eq. 8.7.

Fitting procedure for a strongly interacting gas

The fitting procedure in this case is similar to that of the weakly interacting gas as

mentioned above, except that the Fermi radius σx and Fermi temperature TF should

be replaced by their unitarity values σ∗
x and T ∗

F, respectively. At unitarity, σ∗
x =

(1 + β)1/4σx and T ∗
F = (1 + β)1/2TF, where β is a universal constant, and the fitting

profile becomes

n(x, T ) = − 3N√
πσ∗

x

(

T̃
)

5
2
Li5/2

[

−exp

(

q − x2

(σ∗
x)

2T̃

)]

, (8.10)

where q = µ

EFT̃
determines the shape of the strongly interacting Fermi gas at unitartiy

and T̃ is the reduced/empirical temperature given by

T̃ =
T

TF

√
1 + β

. (8.11)

Similar to the weakly interacting case, the value of σ∗
x is obtained by fitting a zero

temperature 1D-TF profile (n1D) for the lowest temperature clouds achievable in our

experiment, and then fixing this value constant for the fits at all higher temperatures
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leaving only T̃ and q as the free parameters. The empirical temperature, at unitarity,

for the lowest trap depth achievable in our experiment is obtained as T̃ = 0.1. Thus the

true temperature at unitarity is approximately T/TF = 0.06 for β = −0.56 [23, 31, 72].

The fit is shown in fig. 8.9 along with an equivalent Maxwell-Boltzmann classical gas at

the same temperature for comparison. The peak of the Fermi-Dirac (polylogarithmic)

fit has a flat top whereas it is sharp for the classical gas (Gaussian fit). This is due to

the Fermi pressure at the centre of the trap where the density is high.
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Figure 8.9: 1D Polylogarithmic fit to the data (TOF = 4 ms). For comparison a
Gaussian distribution for the same temperature (T/TF=0.06) is shown.

Comparison with isentropic magnetic field sweeps

The temperature obtained from the fitting functions can be verified by comparing

it with the values evaluated following an isentropic sweep of the magnetic field [23].

This technique also gives a rough estimate of the temperature at magnetic fields other

than unitarity (834 G). First, a sample of a strongly interacting Fermi gas is created

at the desired magnetic field by evaporatively cooling it to the lowest trap depth (2

µK) achievable in our dipole trap and then adiabatically (15 ms) ramping to the BEC

side of the Feshbach resonance. The temperature is then obtained by calculating the
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condensate fraction at that magnetic field by fitting a bimodal (Thomas-Fermi and

Gaussian) distribution to the expanded cloud. Using a model independent theory [103],

these temperatures are calibrated against those of an interacting Fermi gas to obtain

the final T/TF values.

Thus, from the estimated T/TF temperatures of a Fermi gas at unitarity (834 G) ,

the results of sec. 8.4 should be well below the superfluid transition temperature. Even

above 834 G, the data should be in the superfluid regime according to the isentropic

sweep predictions [104, 105, 106].

8.7 Summary

The first comprehensive Bragg spectroscopic study of a strongly interacting Fermi

gas is presented in this chapter. A smooth transition from molecular to atomic

spectra is observed with a clear signature of pairing at and above unitarity. These

pair correlations are quantified by measuring the static structure factor across

the BEC-BCS crossover. The features of these results qualitatively agree with

the theoretically calculated values [51], using quantum Monte-Carlo simulations.

Quantitative agreement is difficult to obtain as the calculations are performed for a

uniform gas, whereas the experiments are carried out in a trapped gas, whose density

varies across the trap. The correlated pair signal observed in the Bragg spectra, at

magnetic fields at and above unitarity, is seen to decay as the density is lowered.

However, the same signal on the BEC side is seen to approach a non-zero asymptotic

value, as the density is lowered, which indicates the presence of true bound molecules.
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Chapter 9

Summary and conclusions

In this thesis, an experimental investigation of pair correlations in a strongly interacting

6Li Fermi gas via Bragg spectroscopy is presented. In the process, our earlier

experimental set-up [64] was upgraded by including a tapered amplifier to create a

six-beam MOT, setting up offset-locking for taking absorption images at high magnetic

fields and setting up a high power (100 W) fibre laser for the single beam optical dipole

trap. The main advantage of the new experimental set-up is the ability to perform

absorption imaging continuously at any magnetic field across the BEC-BCS crossover

which is achieved by the offset-locking of two master lasers. These improvements not

only increased the trapped atom number in the dipole trap but also offered a powerful

tool to directly probe the strongly interacting regime smoothly from the BEC to the

BCS side of the Feshbach resonance. The Bragg spectra presented in this thesis are

taken from single runs of the experiment with no averaging of the data. This reflects

the robust nature of the physics and also the stability of our experimental setup. A

summary of the main achievements of this investigation is given below.
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9.1 Summary of the results

Production of degenerate quantum gases:

Our group has produced a molecular BEC of 6Li dimers, initially in two different

dipole trap geometries, viz., crossed and elongated crossed dipole traps using a low

power (22 W) Yb:YAG thin disc laser (ELS VersaDisk 1030-20 SF) [66]. Subsequently,

a high power (100 W) fibre laser (IPG-Photonics, YLR-100) was introduced to create a

single dipole trap. The large initial trap depth (3 mK) from this laser and the loading

of atoms from the six-beam MOT made it possible to achieve a high initial phase space

density. Evaporative cooling is performed near the broad s-wave Feshbach resonance

at 834 G. Due to three-body recombination at low temperatures, molecules are formed

on the BEC side of the resonance and further evaporation led to the creation of a

molecular BEC. When this condensate was isentropically ramped to the BCS side, a

strongly or weakly interacting Fermi gas is created depending on the final magnetic

field (scattering length).

Implementation of Bragg spectroscopy:

For the first time, Bragg spectroscopy was performed on a strongly interacting gas

to probe the composition of the particles and pair correlations, across the BEC-BCS

crossover. The momentum imparted to the gas was quantified based on the centre

of mass (COM) displacement. Both the low density (collisionless regime) and the

high density (interacting regime) clouds were subjected to Bragg scattering with high

momentum transfer (q ≃ 5kF ) to probe free particle excitations across the crossover. In

the collisionless regime, two-photon Rabi oscillations were measured both for molecules

and atoms. In the interacting regime, the Bragg spectra revealed information about

the dynamic and static structure factors.
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Measurement of the structure factors:

In chapter. 6, the relation between the density correlations and structure factors was

presented and the connection with the experimentally measured COM displacement

was made. The dynamic structure factor (DSF) S(q, δ) gives a direct measure of

elementary excitations, whereas the static structure factor (SSF) S(q) gives information

about pair correlations in an interacting gas. The DSFs of a molecular condensate

and a weakly interacting degenerate Fermi gas were obtained and compared with

an ideal gas at zero temperature. Good agreement between the measurements and

theory was found. From these measurements the SSF was determined across the BEC-

BCS crossover and the pair density correlations were quantified. These correlations

were found to decay smoothly from the BEC regime to the BCS regime in qualitative

agreement with theory (quantum Monte-Carlo simulations).

Verification of the density dependence:

The fact that correlated pairs can exist only in a strongly interacting many-body

system was verified by Bragg spectroscopy. The Bragg signal (COM displacement)

of the scattered pairs was found to gradually decrease from high density to low

density clouds, eventually approaching zero. However, for bound molecules, this

signal approached a non-zero asymptotic value indicating scattering of molecules as

free particles. These observations establish the density dependence of pair correlations

in a strongly interacting gas.

9.2 Outlook

The excitation spectrum: All of the experiments described in this thesis were

performed by keeping the momentum q imparted to the gas constant and large. This

allowed the exploration of only a small region of free particle excitations in the gas. If

the angle between the two Bragg beams is varied then the value of q can be varied from
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below kF to above. Such a variation would allow access to the phonon regime. In the

case of fermions, this could provide explicit detection of the superfluid gap. In addition,

since pair correlations are related to the structure factor via a Fourier transform, the

explicit pair correlation function can be obtained experimentally.

Detection of the particles: In this thesis, Bragg spectroscopy was used as a tool to

distinguish between molecules (on the BEC side) and correlated pairs (at unitarity).

Similarly, one can use this tool to detect the presence of Cooper pairs in a weakly

interacting Fermi gas [62]. The same technique can also be used to detect p-wave

molecules in 3D or 2D quantum gases. This work is in progress in our laboratory [81].

Mean-field broadening and shifts: Interactions in a condensate give rise to a mean-

field shift of the Bragg resonant frequency and broadens the peak response. Ketterle’s

group at MIT has extensively studied the effect of mean-field interactions in atomic

BECs [88] and on ultra-cold molecules [63]. Their work showed a surprisingly large

shift in the Bragg resonant frequency, which could not be explained simply on the basis

of mean-field effects. Meanwhile, no work has been reported on molecular condensates

near the strongly interacting regime. Because 6Li has a broad Feshbach resonance at

834 G, the scattering length can be varied smoothly and these effects could be studied

more systematically.

Properties of pair correlations: In this work we have observed the density

dependence of pairs at and above unitarity. Interestingly, the Bragg signal in this region

was found to reach zero around the same density value for various magnetic fields (see

fig. 8.7). This implies that further study is necessary to determine whether there is a

critical density for many-body interactions to come into effect for pair formation. Also,

we have quantified the SSF only for trapped (high density) gases across the BEC-BCS

crossover. One can extend this for various densities to quantify the density dependence

of the SSF, and hence the pair correlations. Finally, the SSF was measured only for

the lowest temperature available in our set-up. This can be measured again for various

temperatures to determine the temperature dependence of pairing.
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Signature of superfluidity: Currently, we are working on the possibility of using

the Bragg signal as a signature for superfluidity. Preliminary data taken by varying

the temperature of the gas has shown a large COM displacement below the critical

temperature (TC) of the gas at unitarity. Once the temperature of the gas is measured

accurately, one can even look only for the pairing signature above TC and below T ∗,

the characteristic temperature for pairing (see fig. 1.1).

Retracing the phase-space diagram: A long-standing goal of the BEC-BCS

crossover physics is to retrace the phase-space diagram experimentally across the

crossover regime. If the signature of superfluidity can be verified by Bragg spectroscopy,

as mentioned above, then one can obtain TC and T ∗ experimentally at various magnetic

fields. This is possible in our set-up as we can perform absorption imaging continuously

at any magnetic field across the crossover. However, we still need to work on evaluating

the temperatures accurately not only at unitarity but throughout the crossover where

new theoretical models are needed.
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