
BRAID GROUP ACTIONS ON DERIVED

CATEGORIES OF COHERENT SHEAVES

PAUL SEIDEL and RICHARD THOMAS

Abstract

This paper gives a construction of braid group actions on the derived category of

coherent sheaves on a variety X. The motivation for this is M. Kontsevich’s homolog-

ical mirror conjecture, together with the occurrence of certain braid group actions

in symplectic geometry. One of the main results is that when dimX ≥ 2, our braid

group actions are always faithful.

We describe conjectural mirror symmetries between smoothings and resolutions

of singularities which lead us to find examples of braid group actions arising from

crepant resolutions of various singularities. Relations with the McKay correspon-

dence and with exceptional sheaves on Fano manifolds are given. Moreover, the case

of an elliptic curve is worked out in some detail.

1. Introduction

1.1. Derived categories of coherent sheaves

Let X be a smooth complex projective variety, and let Db(X) be the bounded derived

category of coherent sheaves. It is an interesting question how much information

about X is contained in Db(X).

Certain invariants ofX can be shown to depend only onDb(X). This is obviously

true forK(X), the Grothendieck group of both the abelian category Coh(X) of coher-

ent sheaves and ofDb(X). A deep result of D. Orlov [40] implies that the topological

K-theory K∗top(X) is also an invariant of Db(X); hence, so are the sums of its even

and odd Betti numbers. Because of the uniqueness of Serre functors (see [2]), the di-

mension of X, and whether it is Calabi-Yau (ωX
∼= OX) or not, can be read off from

Db(X). Using Orlov’s theorem quoted above, one can prove that the Hochschild co-

homology of X, HH ∗(X) = Ext∗X×X(O	,O	), depends only on Db(X). As pointed

out by Kontsevich [30, p. 131], it is implicit in the work of M. Gerstenhaber and
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S. Schack [15] that

HH r(X) ∼=
⊕

p+q=r

Hp
(
X,�qTX

)
.

Thus, for Calabi-Yau varieties, dimHH r(X) =
∑

p+q=r h
p,n−q(X); in mirror sym-

metry these are the Betti numbers of the mirror manifold. Finally, a theorem of

A. Bondal and Orlov [5] says that if the canonical sheaf ωX or its inverse is ample, X

can be entirely reconstructed from Db(X). Contrary to what this list of results might

suggest, there are in fact nonisomorphic varieties with equivalent derived categories.

The first examples are due to S. Mukai: abelian varieties in [37] and K3 surfaces

in [38]. Examples with nontrivial ωX have been found by Bondal and Orlov [4].

This paper is concerned with a closely related object, the self-equivalence group

Auteq(Db(X)). Recall that an exact functor between two triangulated categories C,D

is a pair (F, νF ) consisting of a functor F : C → D and a natural isomorphism

νF : F ◦ [1]C ∼= [1]D ◦ F (here [1]C, [1]D are the translation functors) with the

property that exact triangles in C are mapped to exact triangles in D. The appropriate

equivalence relation between such functors is graded natural isomorphism, which

means natural isomorphism compatible with themaps νF (see [5, Section 1]). Ignoring

set-theoretic difficulties, which are irrelevant for C = Db(X), the equivalence classes

of exact functors from C to itself form a monoid. Auteq(C) is defined as the group

of invertible elements in this monoid. Known results about Auteq(Db(X)) parallel

those forDb(X) itself. It always contains a subgroupA(X) ∼= (Aut(X)⋉Pic(X))×Z

generated by the automorphisms of X, the functors of tensoring with an invertible

sheaf, and the translation. Bondal and Orlov [5] have shown that ifωX orω−1X is ample,

then Auteq(Db(X)) = A(X). Mukai’s arguments in [37] imply that Auteq(Db(X))

is bigger than A(X) for all abelian varieties. (Recent work of Orlov [41] describes

Auteq(Db(X)) completely in this case.)

Our own interest in self-equivalence groups comes from Kontsevich’s homo-

logical mirror conjecture in [30]. One consequence of this conjecture is that, for

Calabi-Yau varieties to which mirror symmetry applies, the group Auteq(Db(X))

should be related to the symplectic automorphisms of the mirror manifold. This con-

jectural relationship is rather abstract and difficult to spell out in concrete examples.

Nevertheless, as a first and rather naive check, one can look at some special symplec-

tic automorphisms of the mirror and try to guess the corresponding self-equivalences

of Db(X). Having made this guess in a sufficiently plausible way (which means that

the two objects show similar behaviour), the next step might be to take some un-

solved questions about symplectic automorphisms and translate them into one about

Auteq(Db(X)). Using the smoother machinery of sheaf theory, one stands a good

chance of solving this analogue; this in turn provides a conjectural answer, or “mirror

symmetry prediction,” for the original problem. The present paper is an experiment
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in this mode of thinking. We now state the main results independently of their moti-

vation; the discussion of mirror symmetry is taken up again in Section 1.2.

Let X, Y be two (as before, smooth complex projective) varieties. The Fourier-

Mukai transform (FMT) by an object P ∈ Db(X × Y ) is the exact functor

�P : D
b(X) −→ Db(Y ), �P(G ) = Rπ2∗

(
π∗1G

L
⊗P

)
,

where π1 : X×Y → X, π2 : X×Y → Y are the projections. This is a very practical

way of defining functors. Orlov [40] has proved that any equivalence Db(X) →

Db(Y ) can be written as an FMT. Earlier work of A. Maciocia [32] shows that if �P

is an equivalence, then P must satisfy a partial Calabi-Yau condition, P⊗ π∗1ωX ⊗

π∗2ω
−1
Y
∼=P. T. Bridgeland [7] provides a partial converse to this.

Now take an object E ∈ Db(X) which is a complex of locally free sheaves. We

define the twist functor TE : D
b(X)→ Db(X) as the FMT with

P = Cone
(
η : E ∨ ⊠ E −→ O	

)
, (1.1)

where E ∨ is the dual complex, ⊠ is the exterior tensor product, 	 ⊂ X × X is

the diagonal, and η is the canonical pairing. Since quasi-isomorphic E give rise to

isomorphic functors TE , one can use locally free resolutions to extend the definition

to arbitrary objects of Db(X).

Definition 1.1

(a) E ∈ Db(X) is called spherical if Homr
Db(X)

(E , E ) is equal to C for r = 0, dimX

and zero in all other degrees, and if in addition E ⊗ ωX
∼= E .

(b) An (Am)-configuration, m ≥ 1, in Db(X) is a collection of m spherical objects

E1, . . . , Em such that

dimC Hom∗
Db(X)

(
Ei, Ej

)
=

{
1 |i − j | = 1,

0 |i − j | ≥ 2.

Here, as elsewhere in the paper, Homr(E ,F ) stands for Hom(E ,F [r]), and Hom∗

(E ,F ) is the total space
⊕

r∈Z
Homr(E ,F ).

theorem 1.2

The twist TE along any spherical object E is an exact self-equivalence of Db(X).

Moreover, if E1, . . . , Em is an (Am)-configuration, the twists TEi satisfy the braid

relations up to graded natural isomorphism:

TEiTEi+1TEi
∼= TEi+1TEiTEi+1 for i = 1, . . . , m− 1,

TEiTEj
∼= TEj TEi for |i − j | ≥ 2.
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We should point out that the first part, the invertibility of TE , was also known

to Kontsevich, Bridgeland, and Maciocia. Let ρ be the homomorphism from the

braid group Bm+1 to Auteq(Db(X)) defined by sending the standard generators

g1, . . . , gm ∈ Bm+1 to TE1
, . . . , TEm . We call this a weak braid group action on

Db(X). (There is a better notion of a group action on a category which requires the

presence of certain additional natural transformations (see [11]); we have not checked

whether these exist in our case.) There is an induced representation ρ∗ of Bm+1 on

K(X). Concretely, the twist along an arbitrary E ∈ Db(X) acts on K(X) by

(TE )∗(y) = y −
〈
[E ], y

〉
[E ], (1.2)

where 〈[F ], [G ]〉 =
∑

i(−1)
i dimHomi(F ,G ) is the Mukai pairing (see [38]) or

“Euler form.” If dimX is even, then ρ∗ factors through the symmetric group Sm+1.

The odd-dimensional case is slightly more complicated, but still ρ∗ is far from being

faithful, at least if m is large.

For ρ itself we have the following contrasting result.

theorem 1.3

Assume that dimX ≥ 2. Then the homomorphism ρ generated by the twists in any

(Am)-configuration is injective.

The assumption dimX �= 1 cannot be removed; indeed, there is a B4-action on the

derived category of an elliptic curve which is not faithful (see Section 3.4).

1.2. Homological mirror symmetry and self-equivalences

We begin by recalling Kontsevich’s homological mirror conjecture in [30]. On the

one hand, one takes Calabi-Yau varieties X and their derived categories Db(X). On

the other hand, using entirely different techniques, it is thought that one can attach to

any compact symplectic manifold (M, β), with zero first Chern class a triangulated

category, the derived Fukaya categoryDb Fuk(M, β). (Despite the notation, this is not

constructed as the derived category of an abelian category.) Kontsevich’s conjecture

is that whenever X and (M, β) form a mirror pair, there is a (noncanonical) exact

equivalence

Db(X) ∼= Db Fuk(M, β). (1.3)

A more prudent formulation would be to say that (1.3) should hold for the gen-

erally accepted constructions of mirror manifolds. Before discussing this conjecture

further, we need to explain whatDb Fuk(M, β) looks like. This is necessarily a tenta-

tive description since a rigorous definition does not exist yet. Moreover, for simplicity

we have omitted some of the more technical aspects.
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Let (M, β) be as before, of real dimension 2n. To simplify things we assume

that π1(M) is trivial; this excludes the case of the 2-torus, so that n ≥ 2. Recall

that a submanifold Ln ⊂ M is called Lagrangian if β|L ∈ %2(L) is zero. Fol-

lowing Kontsevich [30, p. 134], one considers objects, denoted by L̃, which are

Lagrangian submanifolds with some extra structure. We call such objects graded

Lagrangian submanifolds and the extra structure the grading. This grading amounts

approximately to an integer choice. In fact, there is a free Z-action, denoted by

L̃ �→ L̃[j ] for j ∈ Z, on the set of graded Lagrangian submanifolds; and if L is

a connected Lagrangian submanifold, all its possible gradings (assuming that there

are any) form a single orbit of this action. For details we refer to [49]. For any pair

(L̃1, L̃2) of graded Lagrangian submanifolds, one expects to have a Floer cohomology

group HF ∗(L̃1, L̃2), which is a finite-dimensional graded R-vector space satisfying

HF ∗(L̃1, L̃2[j ]) = HF ∗(L̃1[−j ], L̃2) = HF ∗+j (L̃1, L̃2). Defining this is a diffi-

cult problem; a fairly general solution has been announced recently by K. Fukaya,

Kontsevich, Y.-G. Oh, H. Ohta, and K. Ono.

The most essential property of Db Fuk(M, β) is that any graded Lagrangian

submanifold L̃ defines an object in this category. The translation functor (which is

part of the structure of Db Fuk(M, β) as a triangulated category) acts on such objects

by L̃ �→ L̃[1]. The morphisms between two objects of this kind are given by the

degree zero Floer cohomology with complex coefficients:

HomDb Fuk(M,β)

(
L̃1, L̃2

)
= HF 0

(
L̃1, L̃2

)
⊗R C.

(Floer groups in other degrees can be recovered by changing L̃2 to L̃2[j ].) Compo-

sition of such morphisms is given by certain products on Floer cohomology, which

were first introduced by Donaldson. There is also a slight generalisation of this: any

pair (L̃, E) consisting of a graded Lagrangian submanifold, together with a flat uni-

tary vector bundle E on the underlying Lagrangian submanifold, defines an object of

Db Fuk(M, β). The morphisms between such objects are a twisted version of Floer

cohomology. It is important to keep in mind that Db Fuk(M, β) contains many ob-

jects other than those that we have described. This is necessarily so because it is

triangulated; there must be enough objects to complete each morphism to an exact

triangle, and these objects do not usually have a direct geometric meaning. However,

it is expected that the objects of the form (L̃, E) generate the categoryDb Fuk(M, β)

in some sense.

Remark 1.4

In the traditional picture of mirror symmetry, M carries a C-valued closed 2-form βC

with real part β. What we have said concerns the Fukaya category for im(βC) = 0.

Apparently, the natural generalisation to im(βC) �= 0 would be to take objects
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(L̃, E,A) consisting of a graded Lagrangian submanifold L̃, a complex vector bun-

dle E on the underlying Lagrangian submanifold L, and a unitary connection A on E

with curvature FA = −βC | L⊗ idE . The point is that to any map w : (D2, ∂D2)→

(M,L) one can associate a complex number

trace
(
monodromy of A around w | ∂D2

)

rank(E)
exp

(
−

∫

D2
w∗βC

)
,

which is invariant under deformations of w. These numbers, as well as certain varia-

tions of them, would be used as weights in the counting procedure that underlies the

definition of Floer cohomology. For simplicity, we stick to the case im(βC) = 0 in

our discussion.

In parallel with graded Lagrangian submanifolds, there is also a notion of graded

symplectic automorphisms; in fact, these are just a special kind of graded Lagrangian

submanifolds on (M,−β) × (M, β). The graded symplectic automorphisms form a

topological group Sympgr(M, β) that is a central extension of the usual symplectic

automorphism group Symp(M, β) by Z. Sympgr(M, β) acts naturally on the set of

graded Lagrangian submanifolds. Moreover, the central subgroup Z is generated by a

graded symplectic automorphism denoted by [1], which maps each graded Lagrangian

submanifold L̃ to L̃[1]; we refer again to [49] for details. Because Db Fuk(M, β) is

defined in what are essentially symplectic terms, every graded symplectic automor-

phism of M induces an exact self-equivalence of it. Moreover, an isotopy of graded

symplectic automorphisms gives rise to an equivalence between the induced functors.

Thus one has a canonical map

π0

(
Sympgr(M, β)

)
−→ Auteq

(
Db Fuk(M, β)

)
.

Nowwe return to Kontsevich’s conjecture. Assume that (M, β) has a mirror partnerX

such that (1.3) holds. Then there is an isomorphism between Auteq(Db Fuk(M, β))

and Auteq(Db(X)). Combining this with the canonical map above yields a homo-

morphism

µ : π0

(
Sympgr(M, β)

)
−→ Auteq

(
Db(X)

)
. (1.4)

Somewhat oversimplifying, and ignoring the conjectural nature of the whole discus-

sion, one can say that symplectic automorphisms of M induce self-equivalences of

the derived category of coherent sheaves on its mirror partner. Note that the map µ

depends on the choice of equivalence (1.3) and hence is not canonical.

Remark 1.5

One can see rather easily that the central element [1] ∈ Sympgr(M, β) induces the
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translation functor on Db Fuk(M, β) and hence on Db(X). Passing to the quotient

yields a map

µ̄ : π0

(
Symp(M, β)

)
−→ Auteq

(
Db(X)

)
/(translations).

This simplified version may be more convenient for those readers who are unfamiliar

with the “graded symplectic” machinery.

1.3. Dehn twists and mirror symmetry

A Lagrangian sphere in (M, β) is a Lagrangian submanifold S ⊂ M which is dif-

feomorphic to Sn. One can associate to any Lagrangian sphere a symplectic auto-

morphism τS called the generalised Dehn twist along S, which is defined by a local

construction in a neighbourhood of S. (See [48] or [49] for details; strictly speaking,

τS depends on various choices, but since the induced functor on Db Fuk(M, β) is ex-

pected to be independent of these choices, we ignore them in our discussion.) These

maps are symplectic versions of the classical Picard-Lefschetz transformations. In

particular, their action on H∗(M) is given by

(τS)∗(x) =

{
x − ([S] · x)[S] if dim(x) = n,

x otherwise,
(1.5)

where · is the intersection pairing twisted by a dimension-dependent sign. As ex-

plained in [49, Section 5b], τS has a preferred lift τ̃S ∈ Sympgr(M, β) to the graded

symplectic automorphism group. Suppose that (M, β) has a mirror partnerX such that

Kontsevich’s conjecture (1.3) holds. Choose some lift S̃ of S to a graded Lagrangian

submanifold, and let E ∈ Db(X) be the object that corresponds to S̃. Then

Hom∗
Db(X)

(E , E ) ∼= Hom∗
Db Fuk(M,β)

(
S̃, S̃

)
= HF ∗

(
S̃, S̃

)
⊗R C. (1.6)

The Floer cohomology group HF ∗(S̃, S̃) is isomorphic to the ordinary cohomology

H ∗(S;R); this is not true for general Lagrangian submanifolds, but it holds for

spheres. Therefore E must be a spherical object. (This motivated our use of the word

spherical.) A natural conjecture about the homomorphism µ introduced in Section

1.2 is that

µ
(
[τ̃S]

)
= [TE ], (1.7)

where TE is the twist functor as defined in Section 1.1. Roughly speaking, the idea is

that twist functors and generalised Dehn twists correspond to each other under mirror

symmetry. At present this is merely a guess, which can be motivated, for example,

by comparing (1.2) with (1.5). But supposing that one wanted to actually prove this

claim, how should one go about it? The first step would be to observe that for any
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F ∈ Db(X) there is an exact triangle

Hom∗(E ,F )⊗C E F TE (F )

[1]

Here Hom∗(E ,F ) is the graded group of homs in Db(X), Hom∗(E ,F )⊗C, E is the

corresponding direct sum of shifted copies of E , and the first arrow is the evaluation

map. This exact triangle determines TE (F ) up to isomorphism; moreover, it does

so in purely abstract terms, which involves only the triangulated structure of the

category Db(X). Hence, if there was an analogous abstract description of the action

of τ̃S on Db Fuk(M, β), one could indeed prove (1.7). (This is slightly imprecise

since it ignores a technical problem about nonfunctoriality of cones in triangulated

categories.) The first step towards such a description will be provided in [50]. Note

that here, for the first time in our discussion of mirror symmetry, we have made

essential use of the triangulated structure of the categories.

Now define an (Am)-configuration of Lagrangian spheres in (M, β) to be a col-

lection of m ≥ 1 pairwise transverse Lagrangian spheres S1, . . . , Sm ⊂ M such

that

|Si ∩ Sj | =

{
1 |i − j | = 1,

0 |i − j | ≥ 2.
(1.8)

Such configurations occur in Kähler manifolds that can be degenerated into a man-

ifold with a singular point of type (Am) (see [48] or [28]). The generalised Dehn

twists τ̃S1, . . . , τ̃Sm along such spheres satisfy the braid relations up to isotopy inside

Sympgr(M, β). For n = 2, and ignoring the issue of gradings, this was proved in [48,

appendix]; the argument given there can be adapted to yield the slightly sharper and

more general statement that we are using here. Thus, by mapping the standard gener-

ators of the braid group to the classes [τ̃Si ], one obtains a homomorphism from Bm+1

to π0(Sympgr(M, β)). It is a difficult open question in symplectic geometry whether

this homomorphism, which we denote by ρ′, is injective (see [28] for a partial result).

We now see what mirror symmetry has to say about this.

Assume, as before, that Kontsevich’s conjecture holds, and let E1, . . . , Em ∈

Db(X) be the objects corresponding to some choice of gradings S̃1, . . . , S̃m for the

Sj . We already know that each Ei is a spherical object. An argument similar to

(1.6) but based on (1.8) shows that E1, . . . , Em is an (Am)-configuration in Db(X)

in the sense of Definition 1.1. Hence the twist functors TEi satisfy the braid relations

(see Theorem 1.2) and generate a homomorphism ρ from Bm+1 to Auteq(Db(X)).

Assuming that our claim (1.7) is true, one would have a commutative diagram
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Bm+1
ρ′

ρ

π0

(
Sympgr(M, β)

)

µ

Auteq
(
Db(X)

)

Since dimC X = n ≥ 2, we have Theorem 1.3, which says that ρ is injective. In

the diagram above this would clearly imply that ρ′ is injective. Thus we are led to a

conjectural answer “based on mirror symmetry” to a question of symplectic geometry.

conjecture 1.6

Let (M, β) be a compact symplectic manifold with π1(M) trivial and c1(M, β) = 0,

and let (S1, . . . , Sm) be an (Am)-configuration of Lagrangian spheres inM for some

m ≥ 1. Then the map ρ′ : Bm+1→ π0(Sympgr(M, β)) generated by the generalised

Dehn twists τ̃S1, . . . , τ̃Sm is injective.

1.4. A survey of the paper

Section 2 introduces spherical objects and twist functors for derived categories of

fairly general abelian categories. The main result is the construction of braid group

actions, Theorem 2.17.

Section 3.1 explains how the abstract framework specializes in the case of coher-

ent sheaves; this recovers the definitions presented in Section 1.1 and, in particular, in

Theorem 1.2. More generally, in Section 3.2 we consider singular and quasi-projective

varieties, as well as equivariant sheaves on varieties with a finite group action; the lat-

ter give rise to what are probably the simplest examples of our theory. In Section 3.3

we present a more systematic way of producing spherical objects, which exploits their

relations with the (much studied) exceptional objects on Fano varieties. Elliptic curves

provide the only example where both sides of the homological mirror conjecture are

completely understood; in Section 3.4 the group of symplectic automorphisms and

the group of autoequivalences of the derived category are compared in an explicit

way. Section 3.5 gives more explicit examples on K3 surfaces. Finally, Section 3.6

puts our results in the framework of mirror symmetry for singularities; this was the

underlying motivation for much of this work.

Section 4 contains the proof of the faithfulness result, Theorem 2.18. For the

benefit of the reader, we provide here an outline of the argument, in the more concrete

situation stated as Theorem 1.3; the general case does not differ greatly from this. Let

E1, . . . , Em be a collection of spherical objects in Db(X), and set E = E1⊕· · ·⊕Em.

For a fixed m and dimension n of the variety, the endomorphism algebra

End∗(E ) =
⊕

i,j

Hom∗
(
Ei, Ej

)
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is essentially the same for all (E1, . . . , Em). More precisely, after possibly shifting

each Ei by some amount, one can achieve that End∗(E ) is equal to a specific graded

algebra Am,n depending only on m, n. Moreover, one can define a functor .naive :

Db(X) → Am,n-mod into the category of graded modules over Am,n by mapping

F to Hom∗(E ,F ). By a result of [28], the derived category Db(Am,n-mod) carries

a weak action of Bm+1, and one might hope that .naive would be compatible with

these two actions. A little thought shows that this cannot possibly be true; Am,n-mod

can be embedded into Db(Am,n-mod) as the subcategory of complexes of length 1,

but the braid group action on Db(Am,n-mod) does not preserve this subcategory.

Nevertheless, the basic idea can be saved, at the cost of introducing some more

homological algebra.

Take resolutions E ′i of Ei by bounded below complexes of injective quasi-coherent

sheaves. Then one can define a differential graded algebra end(E ′)whose cohomology

is End∗(E ). The quasi-isomorphism type of end(E ′) is independent of the choice of

resolutions, so it is an invariant of the (Am)-configuration E1, . . . , Em. As before,

there is an exact functor hom(E ′,−) : Db(X)→ D(end(E ′)) to the derived category

of differential graded modules over end(E ′). Now assume that end(E ′) is formal,

that is to say, quasi-isomorphic to the differential graded algebra Am,n = (Am,n, 0)

with zero differential. Quasi-isomorphic differential graded algebras have equivalent

derived categories, so what one obtains is an exact functor

. : Db(X) −→ D
(
Am,n

)
,

which replaces the earlier .naive. A slight modification of the arguments of [28]

shows that there is a weak braid group action on D(Am,n); moreover, in contrast

to the situation above, the functor . now relates the two braid group actions. Still

borrowing from [28], one can interpret the braid group action on D(Am,n) in terms

of low-dimensional topology and, more precisely, geometric intersection numbers of

curves on a punctured disc. This leads to a strong faithfulness result for it, which

through the functor . implies the faithfulness of the original braid group action on

Db(X).

This argument by reduction to the known case ofD(Am,n) hinges on the formality

of end(E ′). We prove that this assumption is always satisfied when n ≥ 2. This has

nothing to do with the geometric origin of end(E ′); in fact, what we show is that Am,n

is intrinsically formal for n ≥ 2, which means that all differential graded algebras

with this cohomology are formal. There is a general theory of intrinsically formal

algebras, which goes back to the work of S. Halperin and J. Stasheff [19] in the

commutative case; the Hochschild cohomology computation necessary to apply this

theory to Am,n is the final step in the proof of Theorem 2.18.
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2. Braid group actions

2.1. Generalities

Fix a field k; all categories are assumed to be k-linear. If S is an abelian cate-

gory, Ch(S) is the category of cochain complexes in S and cochain maps, K(S) is

the corresponding homotopy category (morphisms are homotopy classes of cochain

maps), and D(S) is the derived category. The variants involving bounded (below,

above, or on both sides) complexes are denoted by Ch+(S), Ch−(S), Chb(S), and

so on. Let (Cj , δj )j∈Z be a cochain complex of objects and morphisms in Ch(S),

that is to say, Cj ∈ Ch(S) and δj ∈ HomCh(S)(Cj , Cj+1) satisfying δj+1δj = 0.

Such a complex is exactly the same as a bicomplex in S. In this case we write

{· · · → C−1→ C0 → C1→ · · · } for the associated total complex, obtained by col-

lapsing the bigrading; this is a single object in Ch(S). The same notation is applied

to bicomplexes of objects of Ch(S) (which are triple complexes in S).

For C,D ∈ Ch(S), let hom(C,D) be the standard cochain complex of k-vector

spaces whose cohomology isH i hom(C,D) = Homi
K(S)

(C,D); that is, homi(C,D)

=
∏

j∈Z
HomS(Cj ,Dj+i) with d ihom(C,D)(φ) = dDφ − (−1)iφdC . Now suppose

that S contains infinite direct sums and products. Given an object C ∈ Ch(S) and a

cochain complex b of k-vector spaces, one can form the tensor product b⊗C and the

complex of linear maps lin(b, C), both of which are again objects of Ch(S). They are

defined by choosing a basis of b and taking a corresponding direct sum (for b ⊗ C)

or product (for lin(b, C)) of shifted copies of C, with a differential that combines db

and dC . The outcome is independent of the chosen basis up to canonical isomorphism.

The definition of b ⊗ C is clear, but for lin(b, C) there are two possible choices of

signs. Ours is fixed to fit in with an evaluation map b ⊗ lin(b, C) → C. To clarify

the issue, we now spell out the definition. Take a homogeneous basis (xi)i∈I of the

total space b, and write db(xi) =
∑

j zjixj . Then linq(b, C) =
∏

i∈I C
q
i , where Ci

is a copy of C shifted by deg(xi). The differential dq : linq(b, C) → linq+1(b, C)

has components d
q
ji : C

q
i → C

q+1
j , which are given by

d
q
ji =





(−1)deg(xi) dC i = j,

(−1)deg(xi)zij · idC deg(xi) = deg(xj )+ 1,

0 otherwise.

One can verify that the map b ⊗ lin(b, C) → C, xj ⊗ (ci)i∈I �→ cj , is indeed a

morphism in Ch(S). Moreover, there are canonical monomorphic cochain maps
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b ⊗ hom(D,C) −→ hom(D, b ⊗ C),

hom(D,C)⊗ b −→ hom
(
lin(b,D), C

)
,

hom
(
B, lin(b, C)

)
⊗D −→ lin

(
b, hom(B,C)⊗D

)
,

(2.1)

where b is as before and B,C,D ∈ Ch(S). These maps are isomorphisms if b

is finite-dimensional, and they are quasi-isomorphisms if b has finite-dimensional

cohomology.

From now on S is an abelian category and S′ ⊂ S a full subcategory such that

the following conditions hold:

(C1) S′ is a Serre subcategory of S (this means that any subobject and quotient

object of an object in S′ lies again in S′ and that S′ is closed under extension);

(C2) S contains infinite direct sums and products;

(C3) S has enough injectives, and any direct sum of injectives is again injective (this

is not a trivial consequence of the definition of an injective object);

(C4) for any epimorphism f : A ։ A′ with A ∈ S and A′ ∈ S′, there is a B ′ ∈ S′

and a g : B ′ → A such that fg is an epimorphism (because S′ is a Serre

subcategory, g may be taken to be mono):

A

f

B ′

g

A′

lemma 2.1

Let X be a noetherian scheme over k, and let S = Qco(X), S′ = Coh(X) be the

categories of quasi-coherent, respectively, coherent sheaves. Then properties (C1)–

(C4) are satisfied.

Proof

(C1) and (C2) are obvious.S has enough injectives by [20, Chapter II, Theorem 7.18].

Moreover, X is locally noetherian, which implies that direct sums of injectives are

again injective (see [20, p. 121] and the references quoted therein). This proves (C3).

Finally, we need to verify that a diagram as in (C4) with A quasi-coherent and A′

coherent can be completed with a coherent sheaf B ′. Such a B ′ certainly exists locally,

and, replacing it by its image in A (which is also coherent), we may extend it to be

a coherent subsheaf on all of X (see [17, Chapter I, Theorem 6.9.7]). Since X is

quasi-compact, repeating this a finite number of times and taking the union yields a

B ′ whose map to A′ is globally surjective.

As indicated by this example, our main interest is in Db(S′). However, we find it
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convenient to replace all complexes by injective resolutions. These resolutions may

exist only in S, and they are not necessarily bounded. The precise category we want

to work with is defined as follows.

Definition 2.2

K ⊂ K+(S) is the full subcategory whose objects are those bounded below cochain

complexes C of S-injectives which satisfy H i(C) ∈ S′ for all i, and H i(C) = 0 for

i ≫ 0.

We now prove, in several steps, that K is equivalent toDb(S′). First, let D ⊂ D+(S)

be the full subcategory of objects whose cohomology has the same properties as in

Definition 2.2. The assumption that S has enough injectives implies that the obvious

functor K → D is an equivalence. Now let ChbS′(S) be the category of bounded

cochain complexes in S whose cohomology objects lie in S′, and let Db
S′
(S) be the

corresponding full subcategory ofDb(S). It is a standard result (proved by truncating

cochain complexes) that the obvious functor Db
S′
(S) → D is an equivalence. The

final step (and the only nontrivial one) is to relate Db
S′
(S) and Db(S′).

lemma 2.3

For any C ∈ ChbS′(S), there is an E ∈ Chb(S′) and a monomorphic cochain map

ι : E→ C which is a quasi-isomorphism.

Proof

Recall that, as an abelian category, S has fibre products. The fibre product of two

maps f1 : A1 → A, f2 : A2 → A is the kernel of f1 ⊕ 0− 0⊕ f2 : A1 ⊕ A2 → A.

If f1 is mono (thought of as an inclusion), we write f−12 (A1) for the fibre product,

and if both f1 and f2 are mono, we write A1 ∩ A2. In the latter case, one can also

define the sum A1 +A2 as the image (kernel of the map to the cokernel) of f1 ⊕ f2.

Let N be the largest integer such that CN �= 0. Set En = 0 for all n > N . For

n ≤ N , define En ⊂ Cn (for brevity, we write the monomorphisms as inclusions)

inductively as follows. By invoking (C4), one finds subobjects F n,Gn ⊂ Cn which

lie in S′ and complete the diagrams

(
dnC

)−1(
En+1

)

dnC

ker dnC

F n En+1 ∩ im dnC and Gn H n(C)

Set En = F n + Gn (this is again in S′), and define dnE = dnC | E
n. Since En is

a subobject of Cn for any n, E is a bounded complex. Consider the obvious map
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jn : ker dnE = En ∩ ker dnC → H n(C). The definition of Gn implies that jn is an

epimorphism, and the definition of F n−1 yields ker jn = En ∩ im dn−1C = im dn−1E .

It follows that the inclusion induces an isomorphism H ∗(E) ∼= H ∗(C).

FromLemma 2.3 it now follows by standard homological algebra (see [14, Proposition

III.2.10]) that the obvious functorDb(S′)→ Db
S′
(S) is an equivalence of categories.

Combining this with the remarks made above, one gets the following proposition.

proposition 2.4

There is an exact equivalence (canonical up to natural isomorphism) Db(S′) ∼= K.

2.2. Twist functors and spherical objects

Definition 2.5

Let E ∈ K be an object satisfying the following finiteness conditions:

(K1) E is a bounded complex;

(K2) for any F ∈ K, both Hom∗K(E, F ) and Hom∗K(F,E) have finite (total) dimen-

sion over k.

Then we define the twist functor TE : K→ K by

TE(F ) =
{
hom(E, F )⊗ E

ev
−−→ F

}
. (2.2)

This expression requires some explanation; ev is the obvious evaluation map. The

grading is such that if one ignores the differential, TE(F ) = F⊕(hom(E, F )⊗E)[1].

In other words, TE(F ) is the cone of ev. Since E is bounded and F is bounded

below, hom(E, F ) is again bounded below. Hence hom(E, F ) ⊗ E is a bounded

below complex of injectives in S. (This uses property (C3) of S.) Its cohomology

H ∗(hom(E, F )⊗ E) is isomorphic to Hom∗K(E, F )⊗H ∗(E) (because hom(E, F )

is quasi-isomorphic to Hom∗K(E, F ), which is finite-dimensional) and so is bounded,

and the finiteness conditions imply that each cohomology group lies in S′. Therefore

hom(E, F )⊗ E lies in K, and the same holds for TE(F ). The functoriality of TE is

obvious, and one sees easily that it is an exact functor. Actually, for any F,G ∈ K

there is a canonical map of complexes (TE)∗ : hom(F,G)→ hom(TE(F ), TE(G)).

In fancy language, this means that TE is functorial on the differential graded category

that underlies K.

proposition 2.6

If two objects E1, E2 ∈ K satisfying (K1), (K2) are isomorphic, the corresponding

functors TE1
, TE2

are isomorphic.
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Proof

Take cones of the rows of the following commutative diagram:

hom(E1, F )⊗ E1 F

hom(E2, F )⊗ E1 F

hom(E2, F )⊗ E2 F

Here the vertical arrows are induced by a quasi-isomorpism of complexes E1→ E2.

Note also that TE[j ] is isomorphic to TE for any j ∈ Z.

Definition 2.7

For an object E as in Definition 2.5, we define the dual twist functor T ′E : K→ K by

T ′E(F ) = {ev′ : F → lin(hom(F,E),E)}.

Here the grading is such that F lies in degree zero; ev′ is again some kind of evaluation

map. To write it down explicitly, choose a homogeneous basis (ψi) of hom(F,E).

Then linq(hom(F,E),E) =
∏

i E
q
i , where Ei is a copy of E[deg(ψi)], and the ith

component of ev′ is simply ψi itself. T
′
E is again an exact functor from K to itself.

lemma 2.8

T ′E is left adjoint to TE .

Proof

Using the maps from (2.1) and condition (K2), one constructs a chain of natural (in

F,G ∈ K) quasi-isomorphisms

hom
(
F, TE(G)

)
=
{
hom

(
F, hom(E,G)⊗ E

)
−→ hom(F,G)

}

←−
{
hom(E,G)⊗ hom(F,E) −→ hom(F,G)

}

−→
{
hom

(
lin
(
hom(F,E),E

)
,G
)
−→ hom(F,G)

}

= hom
(
T ′E(F ),G

)
.

Here the chain map hom(E,G) ⊗ hom(F,E) → hom(F,G) is just composition.

The reader may easily check that the required diagrams commute. TakingH 0 on both

sides yields a natural isomorphism HomK(F, TE(G)) ∼= HomK(T
′
E(F ),G).
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Definition 2.9

An object E ∈ K is called n-spherical for some n > 0 if it satisfies (K1), (K2) of

Definition 2.5 and, in addition,

(K3) Homi
K(E,E) is equal to k for i = 0, n and zero in all other degrees;

(K4) the composition Hom
j

K(F,E) × Hom
n−j
K (E, F ) → Homn

K(E,E) ∼= k is a

nondegenerate pairing for all F ∈ K, j ∈ Z.

One can also define zero-spherical objects; these are objectsE for whichHom∗K(E,E)

is 2-dimensional and concentrated in degree zero, and such that the pairings Hom
j

K

(E, F ) × Hom
−j
K (F,E) → Hom0

K(E,E)/k · idE are nondegenerate. (This means

in particular that Hom0
K(E,E) is isomorphic to k[t]/t2 as a k-algebra.) We do not

pursue this further; the interested reader can easily verify that the proof of the next

proposition extends to this case.

proposition 2.10

If E is n-spherical for some n > 0, both T ′ETE and TET
′
E are naturally isomorphic

to the identity functor IdK. In particular, TE is an exact self-equivalence of K.

Proof 1

TET
′
E(F ) is a total complex





hom(E, F )⊗ E

α

δ
hom

(
E, lin

(
hom(F,E),E

))
⊗ E

γ

F
β

lin
(
hom(F,E),E

)





(2.3)

Here α = ev, β = ev′, γ is a map induced by ev, and δ is a map induced by ev′.

We need to know a little more about δ. By the very definition of ev′ by duality, δ’s

induced map on cohomology

Hom∗K(E, F )⊗H ∗(E) −→ Hom∗K(F,E)∨ ⊗ Hom∗K(E,E)⊗H ∗(E) (2.4)

is dual to the composition Hom∗K(F,E)⊗ Hom∗K(E, F )→ Hom∗K(E,E), tensored

with the identity map on H ∗(E). This second pairing is, by the conditions (K3) and

(K4) on E, perfect when we divide Hom∗K(E,E) by its degree zero piece (k · idE).

Thus the following modification of the map (2.4),

Hom∗K(E, F )⊗H ∗(E) −→ Hom∗K(F,E)∨ ⊗
Hom∗K(E,E)

k · idE
⊗H ∗(E), (2.5)

is an isomorphism.

1 We thank one of the referees for simplifying our original proof of this result.
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We now enlarge slightly the object in the top right-hand corner of (2.3) to pro-

duce a new, quasi-isomorphic, complex QE(F ). The last equation in (2.1) gives a

map hom(E, lin(hom(F,E),E)) ⊗ E →֒ lin(hom(F,E), hom(E,E) ⊗ E). Since

hom(F,E) has finite-dimensional cohomology, this is a quasi-isomorphism. The

map γ̄ : lin(hom(F,E), hom(E,E) ⊗ E) → lin(hom(F,E),E) induced by ev :

hom(E,E) ⊗ E → E naturally extends γ . In fact, γ̄ splits canonically. Define

the map φ : lin(hom(F,E),E) → lin(hom(F,E), hom(E,E) ⊗ E) induced by

k→ hom(E,E), 1 �→ idE . From the definition of γ̄ , it follows that γ̄ ◦ φ = id. This

splitting gives a way of embedding an acyclic complex {id : lin(hom(F,E),E) →

lin(hom(F,E),E)} into our enlarged complex QE(F ); the cokernel is

{
hom(E, F )⊗ E

δ⊕α
−−−→ lin

(
hom(F,E),

hom(E,E)

k · idE
⊗ E

)
⊕ F

}
.

There is an obvious map of F to this, and everything we have done is functorial in F .

Thus to prove that TET
′
E
∼= IdK we are left with showing that the cokernel

{
hom(E, F )⊗ E

δ
−→ lin

(
hom(F,E),

hom(E,E)

k · idE
⊗ E

)}
(2.6)

is acyclic; that is, the arrow induces an isomorphism on cohomology. But passing to

cohomology yields (2.5), which we already noted was an isomorphism.

The proof that T ′ETE
∼= IdK is similar; one passes from T ′ETE(F ) to a quasi-

isomorphic but slightly smaller object, which then has a natural map to F . The details

are almost the same as before, and we leave them to the reader.

2.3. The braid relations

lemma 2.11

Let E1, E2 ∈ K be two objects such that E1 satisfies conditions (K1), (K2) of Defi-

nition 2.5 and E2 is n-spherical for some n > 0. Then TE2
(E1) also satisfies (K1),

(K2), and TE2
TE1

is naturally isomorphic to TTE2
(E1)TE2

.

Proof

Since E1 and E2 are bounded complexes, so are hom(E1, E2) and TE2
(E1). Lemma

2.8 says that Hom∗K(F, TE2
(E1)) ∼= Hom∗K(T

′
E2
(F ), E1). By assumption on E1, this

implies that Hom∗K(F, TE2
(E1)) is always finite-dimensional. Similarly, the finite-

dimensionality of Hom∗K(TE2
(E1), F ) follows from Proposition 2.10 since Hom∗K

(TE2
(E1), F ) ∼= Hom∗K(E1, T

′
E2
(F )). We have now proved that TE2

(E1) satisfies

(K1), (K2). TE2
TE1

(F ) is a total complex
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hom
(
E2, hom(E1, F )⊗ E1

)
⊗ E2 hom(E2, F )⊗ E2

hom(E1, F )⊗ E1 F





where all arrows are evaluation maps or are induced by them. We argue as in the proof

of Proposition 2.10. Using (2.1), one sees that the object in the top left-hand corner can

be replaced by the smaller quasi-isomorphic hom(E1, F )⊗hom(E2, E1)⊗E2. More

precisely, this modification defines another functor RE1,E2
on K which is naturally

isomorphic to TE2
TE1

. One can rewrite the definition of this functor as

RE1,E2
(F ) =

{
hom(E1, F )⊗ TE2

(E1) −→ TE2
(F )

}
. (2.7)

The arrow in (2.7) is obtained by composing

hom(E1, F )⊗ TE2
(E1)

(TE2
)∗⊗id

−−−−−−−→ hom
(
TE2

(E1), TE2
(F )

)
⊗ TE2

(E1)

with the evaluation map ev : hom(TE2
(E1), TE2

(F )) ⊗ TE2
(E1) → TE2

(F ). This

means that one has a natural map from RE1,E2
(F ) to TTE2

(E1)TE2
(F ), given by

(TE2
)∗ ⊗ id on the first component and by the identity on the second one. Since

(TE2
)∗ is a quasi-isomorphism by Proposition 2.10, this natural transformation is an

isomorphism.

proposition 2.12

Let E1, E2 be as before, and assume in addition that Homi
K(E2, E1) = 0 for all i.

Then TE1
TE2
∼= TE2

TE1
.

Proof

The assumption implies that TE2
(E1) is isomorphic to E1. Hence the result follows

directly from Lemma 2.11 and Proposition 2.6. (One can also prove this by a direct

computation, without using Lemma 2.11.)

proposition 2.13

Let E1, E2 ∈ K be two n-spherical objects for some n > 0. Assume that the total

dimension of Hom∗K(E2, E1) is 1. Then TE1
TE2

TE1
∼= TE2

TE1
TE2

.

Proof

Since the twists are not affected by shifting, we may assume that Homi
K(E2, E1)

is 1-dimensional for i = 0 and zero in all other dimensions. A simple computation

shows that

TE2
(E1) ∼=

{
E2

g
−→ E1}, T ′E1

(E2) ∼=
{
E2

h
−→ E1

}
,
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where g and h are nonzero maps. As HomK(E2, E1) is 1-dimensional, it follows that

TE2
(E1) and T ′E1

(E2) are isomorphic up to the shift [1]. By applying Lemma 2.11

and Proposition 2.6, one finds that

TE1
TE2

TE1
∼= TE1

TTE2
(E1)TE2

∼= TE1
TT ′E1

(E2)
TE2

.

On the other hand, applying Lemma 2.11 to T ′E1
(E2) and E1 and using Proposition

2.10 shows that TE1
TT ′E1

(E2)
TE2
∼= TE2

TE1
TE2

.

We now carry over the results obtained so far to the derived category Db(S′).

Throughout the rest of this section, Hom always means HomDb(S′).

Definition 2.14

An object E ∈ Db(S′) is called n-spherical for some n > 0 if it has the following

properties:

(S1) E has a finite resolution by injective objects in S;

(S2) Hom∗(E, F ), Hom∗(F,E) are finite-dimensional for any F ∈ Db(S′);

(S3) Homi(E,E) is equal to k for i = 0, n and zero in all other dimensions;

(S4) the composition map Homi(F,E)× Homn−i(E, F )→ Homn(E,E) ∼= k is a

nondegenerate pairing for all F ∈ K and i ∈ Z.

Clearly, if E is such an object, any finite resolution by S-injectives is an n-spherical

object of K in the sense of Definition 2.9. Using such a resolution and the equivalence

of categories from Proposition 2.4, one can associate to E a twist functor TE which,

by Proposition 2.10, is an exact self-equivalence of Db(S′). This is independent of

the choice of resolution up to isomorphism, thanks to Proposition 2.6.

lemma 2.15

In the presence of (S2) and (S3), condition (S4) is equivalent to the following appar-

ently weaker one.

(S4′) There is an isomorphism Hom(E, F ) ∼= Homn(F,E)∨ which is natural in

F ∈ Db(S′).

Proof

The proof is by a “general nonsense” argument. Take any natural isomorphism as

in (S4′), and let qF : Hom(E, F ) × Homn(F,E) → k be the family of nonde-

generate pairings induced by it. Because of the naturality, these pairings satisfy

qF (φ, ψ) = qF (φ ◦ idE, ψ) = qE(idE, φ ◦ ψ). Since the pairings are all nondegen-

erate, qE(idE,−) : Homn(E,E)→ k is nonzero and hence by (S3) an isomorphism.

We have therefore shown that
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Hom(E, F )× Homn(F,E)
composition
−−−−−−−→ Homn(E,E) ∼= k

is a nondegenerate pairing for any F , which is the special case i = 0 of (S4). The

other cases follow by replacing F by F [i].

lemma 2.16

Let X be a noetherian scheme over k, and S = Qco(X), S′ = Coh(X). Then

condition (S4) or (S4′) for an object of Db(S′) implies condition (S1).

Proof

Let E be an object ofDb(S′), and let F ∈ S′ be a coherent sheaf. Since E is bounded

and F has a bounded below resolution by S-injectives, one has Homi(E ,F ) = 0

for i ≪ 0. Using (S4) or (S4′), it follows that Homi(F , E ) = 0 for i ≫ 0, and [20,

Proposition II.7.20] completes the proof.

Now define an (Am)-configuration (m > 0) of n-spherical objects in Db(S′) to be a

collection (E1, . . . , Em) of such objects, satisfying

dimk Hom∗
Db(S′)

(
Ei, Ej

)
=

{
1 |i − j | = 1,

0 |i − j | ≥ 2.
(2.8)

theorem 2.17

Let (E1, . . . , Em) be an (Am)-configuration of n-spherical objects in Db(S′). Then

the twists TE1
, . . . , TEm satisfy the relations of the braid group Bm+1 up to graded

natural isomorphism. That is to say, they generate a homomorphism ρ : Bm+1 →

Auteq(Db(S′)).

This follows immediately from the corresponding results for K (see Propositions 2.12

and 2.13). One minor point remains to be cleared up. Theorem 2.17 states that the

braid relations hold up to graded natural isomorphism, whereas before we have only

talked about ordinary natural isomorphism. But one can easily see that all the natural

isomorphisms we have constructed are graded ones, essentially because everything

commutes with the translation functors. We can now state the main result of this paper.

theorem 2.18

Suppose that n ≥ 2. Then the homomorphism ρ defined in Theorem 2.17 is injective,

and in fact the following stronger statement holds. If g ∈ Bm+1 is not the identity

element, then ρ(g)(Ei) �∼= Ei for some i ∈ {1, . . . , m}.
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3. Applications

3.1. Smooth projective varieties

We now return to the concrete situation of derived categories of coherent sheaves.

The main theme is the use of suitable duality theorems to simplify condition (S4′) in

the definition of spherical objects. Throughout, all varieties are over an algebraically

closed field k.

For the moment we consider only smooth projective varieties X, of dimension n.

Let us recall some facts about duality on such varieties. Serre duality says that for

any G ∈ Db(X) the composition

Homn−∗
(
G , ωX

)
⊗ Hom∗(O,G ) −→ Homn

(
O, ωX

)
= H n(ωX) ∼= k (3.1)

is a nondegenerate pairing. (The classical form is for a single sheaf G ; the general

case can be derived from this by induction on the length of the complex, using the

five lemma.) Now let E be a bounded complex of locally free coherent sheaves on

X. For all G1,G2 ∈ D+(X) there is a natural isomorphism

Hom∗
(
G1 ⊗ E ,G2

)
∼= Hom∗

(
G1,G2 ⊗ E ∨

)
. (3.2)

This is proved using a resolution G ′2 of G2 by injective quasi-coherent sheaves; the

point is that G ′2⊗E ∨ is an injective resolution of G2⊗E ∨ (see [20, Proposition 7.17]).

Setting G = F ⊗ E ∨ in (3.1) for some F ∈ Db(X) and using (3.2) shows that there

is an isomorphism, natural in F ,

Hom∗(E ,F ) ∼= Homn−∗
(
F , E ⊗ ωX

)∨
. (3.3)

Again, by (3.2) and the standard finiteness theorems, Hom∗(E ,F ) ∼= H
∗(E ∨ ⊗F )

is of finite total dimension; hence so is Hom∗(F , E ) by (3.3). Finally, because of

the existence of finite locally free resolutions, everything we have said holds for an

arbitrary E ∈ Db(X).

lemma 3.1

An object E ∈ Db(X) is spherical, in the sense of Definition 2.14, if and only if it

satisfies the following two conditions: Homj (E , E ) is 1-dimensional for j = 0, n

and zero for all other j ; and E ⊗ ωX
∼= E .

Proof

It follows from (3.3) and the previous discussion that the conditions are sufficient.

Conversely, assume that E is a spherical object. Then property (S4) and (3.3) imply

that the functors Hom(−, E ⊗ ωX) and Hom(−, E ) are isomorphic. By a general

nonsense argument, E must be isomorphic to E ⊗ ωX.
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This shows that the abstract definition of spherical objects specializes to the one in

Section 1.1. We now prove the corresponding statement for twist functors.

lemma 3.2

Let E ∈ Db(X) be a bounded complex of locally free sheaves, which is a spherical

object. Then the twist functor TE as defined in Section 2.3 is isomorphic to the FMT

by P = Cone(η : E ∨ ⊠ E → O	).

Proof

Let E ′ ∈ K be a bounded resolution of E by injective quasi-coherent sheaves. Let

T : K→ D+(X) be the functor that sends F to Cone(ev : hom(E ,F )⊗ E → F ).

We show that the diagram

K
T

TE′

K

Db(X)
�P

D+(X)

(3.4)

where the unlabeled arrows are the equivalence K ∼= Db(X) and its inclusion into

D+(X) commutes up to isomorphism. Since TE is defined using the twist functor TE ′

on K and K ∼= Db(X), the commutativity of (3.4) implies that �P
∼= TE . Take an

object F ∈ Db(X) and a resolution F ′ ∈ K. Then

�P(F ) = Rπ2 ∗

{
π∗1F ⊗ π∗1 E ∨ ⊗ π∗2 E −→ O	 ⊗ π∗1F

}

∼= Rπ2∗

{
π∗1F ′ ⊗ π∗1 E ∨ ⊗ π∗2 E −→ O	 ⊗ π∗1F ′

}

∼= π2∗

{
π∗1Hom

(
E ,F ′

)
⊗ π∗2 E −→ O	 ⊗ π∗1F ′

}

∼=
{
hom

(
E ,F ′

)
⊗ E −→ F ′

}
= T (F ′),

where the arrow in the last line is evaluation. This provides a natural isomorphism

that makes the left lower triangle in (3.4) commute. To deal with the other triangle,

set up a diagram as in the proof of Proposition 2.6.

Example 3.3

Let X be a variety that is Calabi-Yau in the strict sense; that is to say, ωX
∼= O and

H i(X,O) = 0 for 0 < i < n. Then any invertible sheaf on X is spherical. For the

trivial sheaf, the twist TO is the FMT given by the object on X × X which is the

ideal sheaf of the diagonal shifted by [1]. This is what Mukai [38] calls the reflection

functor.
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lemma 3.4

Let Y ⊂ X be a connected subscheme that is a local complete intersection, with

(locally free) normal sheaf ν = (JY /J
2
Y )
∨. Assume that ωX|Y is trivial, and assume

that H i(Y,�jν) = 0 for all 0 < i + j < n. Then OY ∈ Db(X) is a spherical object.

Proof

Denote by ι the embedding of Y into X. The local Koszul resolution of ι∗OY gives

the well-known formula for the sheaf Exts, Extj (ι∗OY , ι∗OY ) ∼= ι∗(�
jν). The as-

sumptions and the spectral sequenceH i(Extj )⇒ Exti+j (i.e., the hypercohomology

spectral sequence of H(RHom) = Ext) give Extr(ι∗OY , ι∗OY ) = 0 for 0 < r < n.

We have Hom(ι∗OY , ι∗OY ) ∼= k, and hence Extn(ι∗OY , ι∗OY ) ∼= k by duality.

Example 3.5

Let X be a surface. Then any smooth rational curve C ⊂ X with C ·C = −2 satisfies

the conditions of Lemma 3.4. Now take a chain C1, . . . , Cm of such curves such

that Ci ∩ Cj = ∅ for |i − j | ≥ 2, and Ci · Ci+1 = 1 for i = 1, . . . , m − 1. Then

(OC1
, . . . ,OCm) is an (Am)-configuration of spherical objects.

Remark 3.6

As far as Lemma 3.1 is concerned, one could remove the assumption of smoothness

and work with arbitrary projective varieties X. Serre duality must then be replaced

by the general duality theorem (see [20, Theorem III.11.1]) applied to the projection

π : X→ Spec k. This yields a natural isomorphism, for G ∈ D−(X),

Extn−∗
(
G , ωX

)
∼= Ext∗

(
OX,G

)∨
,

where now ωX = π !(OSpec k) ∈ D+(X) is the dualizing complex. With this replacing

(3.1), one can essentially repeat the same discussion as in the smooth case, leading

to an analogue of Lemma 3.1. The only difference is that the condition that E has a

finite locally free resolution must be included as an assumption. We do not pursue

this further, for lack of a really relevant application.

3.2. Two generalisations

We now look at smooth quasi-projective varieties. Rather than aiming at a compre-

hensive characterisation of spherical objects, we just carry over Lemma 3.4, which

provides one important source of examples.

Let X be a smooth quasi-projective variety of dimension n, and let Y ⊂ X be a

complete subscheme of codimension c; ι denotes the embedding Y →֒ X. CompleteX

to a projective variety X̄. Then Y ⊂ X̄ is closed, andX is smooth, so ι∗OY has a finite

locally free resolution; thus we may use Serre duality (see [20, Theorem III.11.1])
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on X̄, and the methods of (3.3), to conclude that

Hom
(
ι∗OY ,F

)
∼= Homn

(
F , ι∗OY ⊗ ωX

)∨

on X. By continuing as in the projective case and using the same spectral sequence

as in Lemma 3.4, one obtains the following result.2

lemma 3.7

Assume that H i(Y,�jν) = 0 for all 0 < i + j < n, and assume that ι∗ωX is trivial.

Then ι∗OY is a spherical object in Db(X).

One can now, for example, extend Example 3.5 to quasi-projective surfaces. For

subschemes of codimension 1, we later provide a stronger result, Proposition 3.15,

which can be used to construct more interesting spherical objects.

The other generalisation at which we want to look is technically much simpler.

Let X be a smooth n-dimensional projective variety over k with an action of a finite

group G. We assume that char(k) = 0; this implies the complete reducibility of

G-representations, which we use in an essential way. Let QcoG(X) be the category

whose objects are G-equivariant quasi-coherent sheaves and whose morphisms are

the G-equivariant sheaf homomorphisms. One can write

HomQcoG(X)

(
E1, E2

)
= HomQco(X)

(
E1, E2

)G
(3.5)

with respect to the obvious G-action on HomQco(X)(E1, E2). Because taking the in-

variant part of a G-vector space is an exact functor, it follows that a G-sheaf is

injective in QcoG(X) if and only if it is injective in Qco(X). This can be used to

show that QcoG(X) has enough injectives and also that S = QcoG(X) and its Serre

subcategory S′ = CohG(X) of coherent G-sheaves satisfy conditions (C1)–(C4)

from Section 2.1. As a further application, one derives a formula similar to (3.5) for

the derived category

HomD+(QcoG(X))

(
F1,F2

)
= HomD+(Qco(X))

(
F1,F2

)G
(3.6)

for all F1,F2 ∈ D+(QcoG(X)). This allows one to carry over the usual finiteness

results for coherent sheaf cohomology, as well as Serre duality, to the equivariant

context. The same argument as in the nonequivariant case now leads to the following

lemma.

lemma 3.8

An object E in the derived category Db
G(X) = Db(CohG(X)) of coherent equiv-

ariant sheaves is spherical if and only if the following two conditions are satisfied:

2We thank one of the referees for simplifying our original version of this proof.
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Hom
j

Db
G(X)

(E , E ) is 1-dimensional for j = 0, n and zero in other degrees; and E⊗ωX

is equivariantly isomorphic to E .

Finally, one can combine the two generalisations and obtain an equivariant version

of Lemma 3.7. This is useful in examples that arise in connection with the McKay

correspondence. We concentrate on the simplest of these examples, which also hap-

pens to be particularly relevant for our purpose. Consider the diagonal subgroup

G ∼= Z/(m+1) of SL2(k).WriteR for its regular representation, andwriteV1, . . . , Vm

for its (nontrivial) irreducible representations. LetX be a smooth quasi-projective sur-

face with a complex symplectic form, carrying an effective symplectic action of G.

Choose a fixed point x ∈ X; the tangent space TxX must necessarily be isomorphic

to R as a G-vector space. For i = 1, . . . , m, set Ei = Ox ⊗ Vi ∈ CohG(X). The

Koszul resolution of Ox , together with (3.6), shows that

Homr

Db
G(X)

(
Ei, Ej

)
∼=
(
�rR ⊗ V ∨i ⊗ Vj

)G
.

This implies that each Ei is a spherical object and that these objects form an (Am)-

configuration, so that we obtain a braid group action on Db
G(X).

Example 3.9

In particular, we have a braid group action on the equivariant derived category of

coherent sheaves over A
2, with respect to the obvious linear action of G. (This is

probably the simplest example of a braid group action on a category in the present

paper.)

Let π : Z→ X/G be the minimal resolution. This is again a quasi-projective surface

with a symplectic form; it can be constructed as a Hilbert scheme of G-clusters

on X. The irreducible components of π−1(x) are smooth rational curves C1, . . . , Cm

which are arranged as in Example 3.5, so that their structure sheaves generate a braid

group action on Db(Z). A theorem of M. Kapranov and E. Vasserot [24] provides an

equivalence of categories

Db
G(X) ∼= Db(Z), (3.7)

which takes Ej to OCj
up to tensoring by a line bundle (see [24, p. 7]). This means

that the braid group actions on the two categories essentially correspond to each other.

Adding the trivial 1-dimensional representation V0, and the corresponding equivariant

sheaf E0 = Ox = Ox⊗V0, extends the action onDb
G(X) to an action of the affine braid

group, except for m = 1. Interestingly, the cyclic symmetry between V0, V1, . . . , Vm

is not immediately visible on Db(Z); the equivalence (3.7) takes E0 to the structure

sheaf of the whole exceptional divisor π−1(x). Finally, everything we have said carries
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over to the other finite subgroups of SL(2, k) with the obvious modifications. The

Dynkin diagram of type (Am) which occurs implicitly several times in our discussion

must be replaced by those of type D/E, and one obtains actions of the corresponding

(affine) generalised braid groups.

A recent deep theorem of Bridgeland, A. King, and M. Reid [8] extends the

equivalence (3.7) to certain higher-dimensional quotient singularities. We consider

only one very concrete case.

Example 3.10

Let X be the Fermat quintic in P
4 with the diagonal action of G = (Z/5)3 familiar

from mirror symmetry. The fixed-point set XH of the subgroup H = (Z/5)2 × 1

consists of a single G-orbit F, whose structure sheaf is a spherical object in Db
G(X).

By considering other subgroups of the same kind, one finds a total of ten spherical

objects with no Homs between any two of them. Now let π : Z → X/G be the

crepant resolution given by the Hilbert scheme ofG-clusters. ThenDb
G(X) ∼= Db(Z)

by [8], so that one gets corresponding spherical objects on Z. Because of the nature of

the equivalence, the object corresponding to OF must be supported on the exceptional

set p−1(F) of the resolution. We have not determined its precise nature, but this is

clearly related to Proposition 3.15 and Examples 3.20.

3.3. Spherical and exceptional objects

The reader familiar with the theory of exceptional sheaves (see [47]), or with certain

aspects of tilting theory in representation theory, will have noticed a similarity between

our twist functors and mutations of exceptional objects. (See also [6], and note that

their “elliptical exceptional” objects are examples of 1-spherical objects.) The braid

group also occurs in themutation context, but there it acts on collections of exceptional

objects in a triangulated category instead of on the category itself. The relation of the

two kinds of braid group actions is not at all clear. Here we content ourselves with

two observations, the first of which is motivated by examples in [31].

Definition 3.11

Let X, Y be smooth projective varieties, with ωX trivial. A morphism f : X → Y

(of codimension c = dimX − dim Y ) is called simple if there is an exact triangle

OY −→ Rf∗OX −→ ωY [−c].

In most applications, Y would be Fano because one could then use the wealth of

known results about exceptional sheaves on such varieties. However, the general

theory does not require this assumption on Y .
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lemma 3.12

Suppose that c > 0 and

Rif∗OX
∼=





OY for i = 0,

0 for 0 < i < c,

ωY for i = c.

Then f is simple.

Proof

Rf∗OX is a complex of sheaves whose cohomology is nonzero only in two degrees; a

general argument, valid in any derived category, shows that there is an exact triangle

R0f∗OX → Rf∗OX → (Rcf∗OX)[−c].

proposition 3.13

Suppose that f is simple, and suppose that F ∈ Db(Y ) is an exceptional object,

in the sense that Hom(F ,F ) ∼= k and Homi(F ,F ) = 0 for all i �= 0. Then

Lf ∗F ∈ Db(X) is a spherical object.

Proof

One can easily show, using, for example, a finite locally free resolution of F and a

finite injective quasi-coherent resolution of OX, that Rf∗Lf
∗F ∼= F ⊗L (Rf∗OX).

Hence, by tensoring the triangle in Definition 3.11 with F , one obtains another exact

triangle F → Rf∗Lf
∗F → F ⊗ ωY [−c]. This yields a long exact sequence

· · ·−→Hom∗(F ,F )−→Hom∗
(
F ,Rf∗Lf

∗F
)
−→Hom∗−c

(
F ,F⊗ωY

)
−→· · ·.

The second and third group are Hom∗(Lf ∗F ,Lf ∗F ) and HomdimX−∗(F ,F ) by,

respectively, adjointness and Serre duality. From the assumption thatF is exceptional,

one now immediately obtains the desired result.

Examples 3.14

(a) (This assumes char(k) = 0.) Consider a Calabi-YauX with a fibration f : X→ Y

over a variety Y such that the generic fibres are elliptic curves orK3 surfaces. Clearly

f∗OX
∼= OY ; relative Serre duality shows that Rcf∗OX

∼= ωY ; and in the K3-fibred

case one has also R1f∗OX = 0. Hence f is simple.

(b) (This assumes char(k) �=2.) Let f : X→Y be a 2-fold covering branched over

a double anticanonical divisor. One can use the Z/2-action on X to split f∗OX into

two direct summands, which are isomorphic to OY and ωY , respectively; this implies

that f is simple. An example, already considered in [31], is a K3 double covering

of P
2 branched over a sextic. Another example, which is slightly degenerate but still



64 SEIDEL AND THOMAS

works, is the unbranched covering map from a K3 surface to an Enriques surface.

(c) Examples with c = −1 come from taking X to be a smooth anticanonical

divisor in Y and taking f to be the embedding. ThenRf∗OX = f∗OX
∼= {ωY → OY }

with the map given by the section of ω−1Y defining X. Quartic surfaces in P
3 are an

example considered in [31].

We now describe a second connection between spherical and exceptional objects, this

time using pushforwards instead of pullbacks. The result applies to quasi-projective

varieties as well, but it is limited to embeddings of divisors. Let X ⊂ P
N be a smooth

quasi-projective variety, and let ι : Y →֒ X be an embedding of a complete connected

hypersurface Y . As in the parallel argument in the previous section, we work on the

projective completion X̄ of X, in which Y is closed. By the smoothness of X, given

that F ∈ Db(Y ), ι∗F has a finite locally free resolution, and Serre duality on X̄ (see

[20, Theorem III.11.1]) yields

Hom(ι∗F ,G ) ∼= HomdimX
(
G , ι∗F ⊗ ωX

)∨

on X.

proposition 3.15

Assume that ι∗ωX is trivial. If F ∈ Db(Y ) is an exceptional object with a finite

locally free resolution, then ι∗F is spherical in Db(X).

Proof

In view of the previous discussion, what remains to be done is to compute Homi(ι∗F ,

ι∗F ), which, by [20, Theorem III.11.1] applied to ι∗, is isomorphic to Homi−1(F ,Lι∗

ι∗F ⊗ ωY ). We need the following result (which, perhaps surprisingly, need not be

true without the ι∗s).

lemma 3.16

We have ι∗Lι
∗(ι∗F ) ∼= ι∗(F ⊗ ω−1Y )[1] ⊕ ι∗F .

Proof

Replacing ι∗F by a quasi-isomorphic complex F ′ of locally free sheaves, the left-

hand side of the above equation is ι∗(F
′|Y ) = F ′⊗OY , which is quasi-isomorphic to

F ′ ⊗
{
O(−Y ) −→ O

}
≃ ι∗F ⊗

{
O(−Y ) −→ O

}
,

where the arrow is multiplication by the canonical section ofO(Y ). Since this vanishes

on Y , which contains the support of ι∗F , we obtain ι∗(F ⊗ O(−Y )|Y )[1] ⊕ ι∗F ,

as required.
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By hypothesis we may assume that F is a finite complex of locally free sheaves

on Y , so that Hom(F ,F ) ∼= F ⊗F∨. Thus, computing Homi(ι∗F , ι∗F ) as the

(i − 1)th (derived/hyper) sheaf cohomology of the complex of OY -module sheaves

Lι∗ι∗F ⊗F∨⊗ωY , we may push forward to X and there use Lemma 3.16. That is,

pick an injective resolution OY → I on Y , so that Homi(ι∗F , ι∗F ) is the (i − 1)th

cohomology of

ŴY

(
Lι∗ι∗F ⊗F∨ ⊗ ωY ⊗ I

)
,

where Ŵ is the global sections functor. Pushing forward to X, this is

ŴX

(
ι∗
(
Lι∗ι∗F

)
⊗ ι∗

(
(F )∨ ⊗ ωY ⊗ I

))
,

which by Lemma 3.16 is

ŴX

(
ι∗
(
F ⊗F∨ ⊗ I

))
[1] ⊕ ŴX

(
ι∗
(
F ⊗F∨ ⊗ ωY ⊗ I

))
.

This may be brought back onto Y to give the (i−1)th cohomology of ŴY (F ⊗F∨⊗

I )[1] ⊕ ŴY (F ⊗F∨⊗ωY ⊗ I ). This is Homi(F ,F )⊕Homn−i(F ,F )∨, where

for the second term we have used Serre duality on Y . Since F is exceptional, this

completes the proof.

3.4. Elliptic curves

The homological mirror conjecture for elliptic curves has been studied extensively by

A. Polishchuk and E. Zaslow [45], [44]. (Unfortunately, their formulation of the

conjecture differs somewhat from that in Section 1.2, so their results cannot be applied

directly here.) Polishchuk [43] and Orlov [41], following earlier work of Mukai

[37], have completely determined the automorphism group of the derived category of

coherent sheaves. These are difficult results, to which we have little to add. Still, it is

perhaps instructive to see how things work out in a well-understood case.

We begin with the symplectic side of the story. Let (M, β) be the torus M =

R/Z × R/Z with its standard volume form β = ds1 ∧ ds2. Matters are slightly

more complicated than in Section 1.2 because the fundamental group is nontrivial.

In particular, the C∞-topology on Symp(M, β) is no longer the correct one; this is

due to the fact that Floer cohomology is not invariant under arbitrary isotopies, but

only under Hamiltonian ones. There is a bi-invariant foliation F of codimension 2

on Symp(M, β), and the Hamiltonian isotopies are precisely those that are tangent

to the leaves. To capture this idea one introduces a new topology, the Hamiltonian

topology, on Symp(M, β). This is the topology generated by the leaves of F | U ,

where U ⊂ Symp(M, β) runs over all C∞-open subsets. To avoid confusion, we

write Symph(M, β) whenever we have the Hamiltonian topology in mind, and we

call this the Hamiltonian automorphism group; this differs from the terminology in

most of the literature, where the name is reserved for what, in our terms, is the
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connected component of the identity in Symph(M, β). The difference between the

two topologies becomes clear if one considers the group Aff(M) = M ⋊ SL(2,Z)

of oriented affine diffeomorphisms of M . As a subgroup of Symp(M, β), this has its

Lie group topology, in which the translation subgroup M is connected. In contrast,

as a subgroup of Symph(M, β) it has the discrete topology.

lemma 3.17

The embedding of Aff(M) into Symph(M, β) as a discrete subgroup is a homotopy

equivalence.

The proof consists of combining the known topology of Diff+(M), Moser’s theorem

that Symp(M, β) ⊂ Diff+(M) is a homotopy equivalence, and the flux homomor-

phism that describes the global structure of the foliation F. We omit the details.

Let π : R → RP1, s �→ [cos(πs) : sin(πs)] be the universal covering of RP1.

Consider the subgroup S̃L(2,R) ⊂ SL(2,R)×Diff(R) of pairs (g, g̃) such that g̃ is

a lift of the action of g on RP1. S̃L(2,R) is a central extension of SL(2,R) by Z.

(Topologically, it consists of two copies of the universal cover.) We define a graded

symplectic automorphism of (M, β) to be a pair

(
φ, φ̃

)
∈ Symph(M, β)× C∞

(
M, S̃L(2,R)

)

such that g̃ is a lift ofDg : M → SL(2,R); here we have used the standard trivialisa-

tion of TM . The graded symplectic automorphisms form a group under the composi-

tion (φ, φ̃)(ψ, ψ̃) = (φψ, (φ̃ ◦ψ)ψ̃). We denote this group by Symph,gr(M, β), and

we equip it with the topology induced from Symph(M, β)×C∞(M, S̃L(2,R)). It is

a central extension of Symph(M, β) by Z. One can easily verify that the definition is

equivalent to that in [49], which in turn goes back to ideas of Kontsevich [30].

Even in this simplest example, the construction of the derived Fukaya category

Db Fuk(M, β) has not yet been carried out in detail, so we proceed on the basis of

guesswork in the style of Section 1.2. The basic objects of Db Fuk(M, β) are pairs

(L,E) consisting of a Lagrangian submanifold and a flat unitary bundle on it. Thus,

in addition to symplectic automorphisms, the category should admit another group

of self-equivalences, which act on all objects (L,E) by tensoring E with some fixed

flat unitary line bundle ξ → M . The two kinds of self-equivalence should give a

homomorphism

γ : G
def
= M∨ ⋊ π0

(
Symph,gr(M, β)

)
−→ Auteq

(
Db Fuk(M, β)

)
, (3.8)

where M∨ = H 1(M;R/Z) is the Jacobian, or a dual torus. In order to make the

picture more concrete, we now write down the group G explicitly. Take the stan-

dard presentation of SL(2,Z) by generators g1 =
(
1 1
0 1

)
, g2 =

(
1 0
−1 1

)
and relations
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g1g2g1 = g2g1g2, (g1g2)
6 = 1. Let S̃L(2,Z) ⊂ S̃L(2,R) be the preimage of

SL(2,Z). One can lift g1, g2 to elements a1 = (g1, g̃1) and a2 = (g2, g̃2) in S̃L(2,Z)

which satisfy g̃1(1/2) = 1/4 and g̃2(1/4) = 0. Together with the central element

t = (id, s �→ s − 1), these generate S̃L(2,Z), and one can easily work out what the

relations are:

S̃L(2,Z) =
〈
a1, a2, t | a1a2a1 = a2a1a2, (a1a2)

6 = t2, [a1, t] = [a2, t] = 1
〉
.

Any element of (g, g̃) ∈ S̃L(2,Z) defines a graded symplectic automorphism of

(M, β); one simply takes φ = g and φ̃ to be the constant map with value g̃. Moreover,

any translation of M has a canonical lift to a graded symplectic automorphism by

taking φ̃ to be the constant map with value 1 ∈ S̃L(2,R). These two observations

together give a subgroup Ãff(M) = M ⋊ S̃L(2,Z) of Symph,gr(M, β), which fits

into a commutative diagram

1 Z

=

Ãff(M) Aff(M) 1

1 Z Symph,gr(M, β) Symph(M, β) 1

Hence, in view of Lemma 3.17, π0(Symph,gr(M, β)) ∼= Ãff(M). After spelling out

everything, one finds thatG is the semidirect product (R/Z)4⋊S̃L(2,Z), with respect

to the action of S̃L(2,Z) on R
4 given by

a1 �−→




1 1 0 0

0 1 0 0

0 0 1 0

0 0 −1 1


 , a2 �−→




1 0 0 0

−1 1 0 0

0 0 1 1

0 0 0 1


 , t �−→ id . (3.9)

We now pass to the mirror dual side. Let X be a smooth elliptic curve over C. We

choose a point x0 ∈ X which is the identity for the group law on x. The derived

category Db(X) has self-equivalences

TO , S and Rx, Lx, TOx
(x ∈ X)

defined as follows. TO is the twist by O , which is spherical for obvious reasons; S is

the original example of an FMT, S = �L with L = O(	−{x0}×X−X×{x0}) the

Poincaré line bundle. It maps the structure sheaves of points Ox to the line bundles

O(x − x0), and it was shown to be an equivalence by Mukai [37]. Rx is the self-

equivalence induced by the translation y �→ y + x; Lx is the functor of tensoring

with the degree zero line bundle O(x − x0); and TOx
is the twist along Ox which is

spherical by Lemma 3.4. These functors have the following properties:
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[Lx, Ry] ∼= id for all x, y, (3.10)

TOx
is isomorphic to O(x)⊗−, (3.11)

S4 ∼= [−2], (3.12)

TOx0
TOTOx0

∼= TOTOx0
TO
∼= S−1, (3.13)

TOx0
RxT

−1
Ox0

∼= RxL
−1
x , (3.14)

TOx0
LxT

−1
Ox0

∼= Lx, (3.15)

TORxT
−1
O
∼= Rx, (3.16)

TOLxT
−1
O
∼= RxLx . (3.17)

Most of these isomorphisms are easy to prove; those that present any difficulties are

(3.11), (3.12), and (3.13). The first and third of these are proved below, and the second

one is a consequence of [37, Theorem 3.13(1)].

Proof of (3.11)

(This argument is valid for the structure sheaf of a point on any algebraic curve.)

A simple computation shows that the dual in the derived sense is O∨x
∼= Ox[−1].

The formula for inverses of FMTs (for which, see, e.g., [7, Lemma 4.5]) shows that

T −1Ox

∼= �Q for some object Q fitting into an exact triangle

Q −→ O	
f
−−→ O(x,x).

When following through the computation, it is not easy to keep track of the map f ,

but that is not really necessary. All we need to know is that f �= 0, which is true

because the converse would violate the fact that �Q is an equivalence. Then, since

any morphism O	 → O(x,x) in the derived category is represented by a genuine

map of sheaves, f must be some nonzero multiple of the obvious restriction map.

It follows that Q is isomorphic to the kernel of f , which is O	 ⊗ π∗1O(−x). This

means that T −1Ox
is the functor of tensoring with O(−x). Passing to inverses yields

the desired result.

Proof of (3.13)

The equality between the first two terms follows from Theorem 2.17 because Ox0 ,O

form an (A2)-configuration of spherical objects. By the standard formula for the

adjoints of an FMT, the inverse of S is the FMT with L ∨[1]. By definition, TO is

the FMT with O(−	)[1]. Using (3.11), it follows that TOx0
TOTOx0

is the FMT with

π∗1O(x0)⊗ O(−	)[1] ⊗ π∗2O(x0) ∼= L ∨[1].

Equations (3.12) and (3.13) show that (TOTOx0
)6 ∼= [2]. Therefore one can define a



BRAID GROUP ACTIONS 69

homomorphism

S̃L(2,Z) −→ Auteq
(
Db(X)

)

by mapping the generators a1, a2, t to TO , TOx0
, and the translation [1]; this already

occurs in Mukai’s paper [37], slightly disguised by the fact that he uses a different

presentation of SL(2,Z). The functorsLx, Rx yield another homomorphismX×X→

Auteq(Db(X)); and one can combine the two constructions into a map

γ ′ : G′
def
= (X ×X) ⋊ S̃L(2,Z) −→ Auteq

(
Db(X)

)
. (3.18)

Here the semidirect product is taken with respect to the S̃L(2,Z)-action on X × X

indicated by (3.14)–(3.17); explicitly, it is given by the matrices

a1 �−→

(
1 1

0 1

)
, a2 �−→

(
1 0

−1 1

)
, t �−→ id . (3.19)

lemma 3.18

The group G in (3.8) is isomorphic to the group G′ in (3.18).

Proof

Introduce complex coordinates z1 = r1+ir4, z2 = r2−ir3 on R
4/Z4. Then the action

of S̃L(2,Z) described in (3.9) becomes C-linear and is given by the same matrices as

in (3.19). This is sufficient to identify the two semidirect products that define G and

G′. We should point out that although the argument is straightforward, the change

of coordinates is by no means obvious from the geometric point of view; a look

back at the definition of G shows that z1, z2 mix genuine symplectic automorphisms

with the extra symmetries ofDb Fuk(M, β) which come from tensoring with flat line

bundles.

The way in which this fits into the general philosophy is that one expects to have a

commutative diagram, with the right vertical arrow given by Kontsevich’s conjecture:

G
γ

∼=

Auteq
(
Db Fuk(M, β)

)

∼=

G′
γ ′

Auteq(Db(X))

(3.20)

To be accurate, one should adjust the modular parameter of X and the volume of

(M, β), eventually introducing a complex part βC as in Remark 1.4, so that they

are indeed mirror dual. This has not played any role up to now since the groups G

and G′ are independent of the parameters, but it would become important in further

study. A theorem of Orlov [41] says that γ ′ is always injective and that it is an
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isomorphism if and only if X has no complex multiplication. Only the easy part

of the theorem is important for us here. If X has complex multiplication, then its

symmetries induce additional automorphisms of Db(X), which are not contained in

the image of γ ′. Therefore, if the picture (3.20) is correct, the derived Fukaya category

for the corresponding values of βC must admit exotic automorphisms that do not come

from symplectic geometry or from flat line bundles. It would be interesting to check

this claim, especially because similar phenomena may be expected to occur in higher

dimensions.

We now apply the intuition provided by the general discussion to the specific

topic of braid group actions. To a simple closed curve S on (M, β), one can associate

a Dehn twist τS ∈ Symph(M, β) which is unique up to Hamiltonian isotopy. This is

defined by taking a symplectic embedding ι of (U, θ) = ([−ǫ; ǫ] ×R/Z, ds1 ∧ ds2)

into M for some ǫ > 0, with ι({0} × R/Z) = S, and by using a local model

τ : U −→ U, τ(s1, s2) =
(
s1, s2 − h(s1)

)
,

where h ∈ C∞(R,R) is some function with h(s) = 0 for s ≤ −ǫ/2, h(s) = 1

for s ≥ ǫ/2, and h(s) + h(−s) = 1 for all s. The interesting fact is that the Dehn

twists along two parallel geodesic lines are not Hamiltonian isotopic; they differ by

a translation that depends on the area lying between the two lines. Now take

S1 = R/Z× {0}, S2 = {0} × R/Z, S3 = R/Z× {1/2}.

This is an (A3)-configuration of circles. Hence the Dehn twists τS1, τS2 , τS3 define

a homomorphism from the braid group B4 to π0(Symph(M, β)). However, this is

not injective; τ−1S3
τS1 is Hamiltonian isotopic to a translation that has order 2, so the

nontrivial braid (g−13 g1)
2 ∈ B4 gets mapped to the identity element. The natural lift of

this homomorphism to Symph,gr(M, β) has the same noninjectivity property. Guided

by mirror symmetry, one translates this example into algebraic geometry as follows:

E1 = Ox0 , E2 = O, E3 = Ox ∈ Db(X), where x �= x0 is a point of order 2 on X,

form an (A3)-configuration of spherical objects. Hence their twist functors generate

a weak action of B4 on Db(X). By (3.11), T −1E3
TE1

is the functor of tensoring with

O(x − x0). Since the square of this is the identity functor, we have the same relation

as in the symplectic case, so that the action is not faithful.

3.5. K3 surfaces

Let X be a smooth complex K3 surface. Consider, as in Example 3.5, a chain of

embeddings ι1, . . . , ιm : P
1→ X whose images Ci satisfy Ci ·Cj = 1 for |i−j | = 1

and Ci ∩Cj = 0 for |i− j | ≥ 2. One can then use the structure sheaves OCi
to define

a braid group action on Db(X). However, this is not the only way.
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proposition 3.19

For each i = 1, . . . , m, choose Ei to be either O(−Ci) or OCi
(−1) := (ιi)∗OP1

(−1).

Then the Ei form an (Am)-configuration of spherical objects in Db(X) and hence

generate a weak braid group action on that category.

The choice can be made for each Ei independently. These multiple possibilities are

relevant from the mirror symmetry point of view. This is explained in [53], so we

only summarize the discussion here.

Suppose that X is elliptically fibred with a section S. Its mirror should be the

symplectic 4-manifold (M, β) with M = X and where β is the real part of some

holomorphic 2-form on X (hyper-Kähler rotation). The smooth holomorphic curves

in M are precisely the Lagrangian submanifolds in (M, β) which are special (with

respect to the calibration given by the Kähler form of a Ricci-flat metric on X). In

particular, the curves Ci turn into an (Am)-configuration of Lagrangian 2-spheres;

hence the generalised Dehn twists along them generate a homomorphism Bm+1 →

π0(Sympgr(M, β)). One can wonder what the corresponding braid group action on

Db(X) should be. This question is not really meaningful without a distinguished

equivalence between the derived Fukaya category of (M, β) and that of coherent

sheaves on X, which is not what is predicted by Kontsevich’s conjecture. But if we

adopt the Strominger-Yau-Zaslow [51] picture of mirror symmetry, then conjecturally

there should be a distinguished full and faithful embedding of triangulated categories

Db Fuk(M, β) →֒ Db(X)

induced by the particular special Lagrangian torus fibration of M which comes from

the elliptic fibration of X. (This fibration may, of course, not be distinguished.) That

this is an embedding, and not an equivalence, is a feature of even-dimensional mirror

symmetry. This embedding should be an extension of the FMT which takes special

Lagrangian submanifolds of M (algebraic curves in X) to coherent sheaves on X

using the relative Poincaré sheaf on X×P1 X that comes from considering the elliptic

fibres to be self-dual using the section (see, e.g., [53]).

Assuming this, it now makes sense to ask what spherical objects of Db(X)

correspond to the special Lagrangian spheres C1, . . . , Cm. The FMT takes any special

Lagrangian submanifold C that is a section of the elliptic fibration to the invertible

sheaf O(S −C); if C lies in a fibre of the fibration, it goes to the structure sheaf OC .

If we assume that all curves Ci fall into one of these two categories and that S

intersects all those that lie in one fibre, then the FMT takes the special Lagrangian

submanifolds C1, . . . , Cm in (M, β) to sheaves E1, . . . , Em as in Proposition 3.19,

tensored with O(S). Then, up to the minor difference of tensoring by O(S), one of

the braid group actions mentioned in that proposition would be the correct mirror

dual of the symplectic one.
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As mentioned in Section 3.2, such configurations of curves Ci are the exceptional

loci in the resolution of any algebraic surface with an (Am)-singularity. Now, (Am)-

configurations of Lagrangian 2-spheres occur as vanishing cycles in the smoothing

of the same singularity. Thus, in a sense, mirror symmetry interchanges smoothings

and resolutions. A more striking, though maybe less well-understood, instance of

this phenomenon is H. Pinkham’s interpretation of Arnold’s strange duality (see, e.g.,

[42]), which has been interpreted as a manifestation of mirror symmetry by a number

of people (P. Aspinwall and D. Morrison, M. Kobayashi, I. Dolgachev, W. Ebeling,

and so on). Each of the 14 singular affine surfaces S(c1, c2, c3) on Arnold’s list has

a natural compactification S(c1, c2, c3) which has four singular points. One of these

points is the original singularity at the origin; the other three are quotient singularities

lying on the divisor at infinity, which is a P
1. One can smooth the singular point

at the origin; the intersection form of the vanishing cycles obtained in this way is

T (c1, c2, c3) ⊕ H , where T (c1, c2, c3) is the matrix associated to the Dynkin-type

diagram (see Figure 1) and H =
(
0 1
1 0

)
. On the other hand, one can resolve the three

c1 c2

c3

Figure 1

singular points at infinity. Inside the resolution this yields a configuration of smooth

rational curves of the form T (b1, b2, b3) for certain other numbers (b1, b2, b3). One

can also do the two things together; this removes all singularities, yielding a smooth

K3 surface X(c1, c2, c3) with a splitting of its intersection form as

T
(
c1, c2, c3

)
⊕H ⊕ T

(
b1, b2, b3

)
.

Strange duality is the observation that the numbers (b1, b2, b3) associated to one

singularity on the list occur as (c1, c2, c3) for another singularity, and vice versa.

Kobayashi [29] (extended by Ebeling [12] to more general singularities) explains

this by showing that the K3’s, X(c1, c2, c3) and X(b1, b2, b3), belong to mirror

dual families. The associated map on homology interchanges the T (c1, c2, c3) and

T (b1, b2, b3) summands of the intersection form. (The extra hyperbolic of vanishing
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cycles goes to the H 0 ⊕ H 4 of the other K3 surface.) Thus the smoothing of the

singular point at the origin in S(c1, c2, c3) corresponds, in a slightly vague sense,

to the resolution of the divisor at infinity of S(b1, b2, b3). From our point of view,

since the rational curves at infinity in X(b1, b2, b3) can be used to define a braid

group action on its derived category, one would like to have a similar configuration

of Lagrangian 2-spheres (vanishing cycles) in the finite part of X(c1, c2, c3). On the

level of homology, such a configuration exists of course, but it is apparently unknown

whether it can be realized geometrically. (Recall that Lagrangian submanifolds can

have many more nonremovable intersection points than their intersection number

suggests.)

3.6. Singularities of 3-folds

Throughout the following discussion, all varieties are smooth projective 3-folds that

are Calabi-Yau in the strict sense. (Some singular 3-folds also occur, but they are

specifically designated as such.) Let X be such a variety.

Examples 3.20

Any invertible sheaf on X is a spherical object in Db(X). If S is a smooth connected

surface in X with H 1(S,OS) = H 2(S,OS) = 0 (e.g., a rational surface or Enriques

surface), the structure sheaf OS is a spherical object, by Lemma 3.4. Similarly, for C

a smooth rational curve in X with normal bundle νC ∼= OP1(−1)⊕OP1(−1) (usually

referred to as a (−1,−1)-curve), OC is spherical. The ideal sheaf JC of such a curve

is also a spherical object; this follows from JC[1] ∼= TO (OC).

Supposing the ground field to be k = C, we now return to the conjectural duality

between smoothings and resolutions that played a role in Section 3.5 and that has

been considered by many physicists. (Of course, our interest in this is in trying to

mirror Dehn twists on smoothings, which arise as monodromy transformations around

a degeneration of the smoothing collapsing the appropriate spherical vanishing cycle,

by twists on the derived categories of the resolutions.) To explain the approach of

physicists (as described in [36], for instance), it is better to adopt the traditional point

of view in which mirror symmetry relates the combined complex and (complexified)

Kähler moduli spaces of two varieties, rather than Kontsevich’s conjecture, which

considers a fixed value of the moduli variables. Then the idea can be phrased as

follows. Moving towards the discriminant locus in the complex moduli space of a

variety X, which means degenerating it to a singular variety Y , should be mirror dual

to going to a “boundary wall” of the complexified Kähler cone of the mirror X̂ (the

annihilator of a face of the Mori cone), thus inducing an extremal contraction X̂→ Ŷ .

A second application of the same idea, with the roles of the mirrors reversed, shows
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that an arbitrary crepant resolution Z → Y should be mirror dual to a smoothing Ẑ

of Ŷ . A case that is reasonably well understood is that of the ordinary double point

(ODP: x2+ y2+ z2+ t2 = 0 in local analytic coordinates) singularity. ODPs should

be self-dual, in the sense that if Y has d distinct ODPs, then so does Ŷ . (This can be

checked for Calabi-Yau hypersurfaces in toric varieties, for instance.) We now review

briefly C. Clemens’s work in [9] on the homology of smoothings and resolutions of

such singularities.

A degeneration of X to a variety Y with d ODPs determines d vanishing cycles

in X and hence a map v : Zd → H3(X). Let v∨ : H3(X)→ Z
d be the Poincaré dual

of v. Suppose that Y has a crepant resolution Z that, in local analytic coordinates near

each ODP, looks like the standard small resolution. This means that the exceptional

set in Z consists of d disjoint (−1,−1)-curves. By [9] and [16], one has

H3(Z) ∼=
ker
(
v∨
)

im(v)

and exact sequences

H3(X)
v∨

−−→ Z
d −→ H2(Z) −→ H2(X) −→ 0,

0 −→ H4(X) −→ H4(Z) −→ Z
d v
−→ H3(X).

Thus, if there are r relations between the vanishing cycles (the image of v is of rank

d − r), the Betti numbers are

b2(Z) = b2(X)+ r, b3(Z) = b3(X)− 2(d − r), b4(Z) = b4(X)+ r.

(3.21)

Topologically, Z arises from X through codimension 3 surgery along the vanishing

cycles, and the statements above can be proved, for example, by considering the stan-

dard cobordism between them. More intuitively, one can explain matters as follows.

Going from X to Y shrinks the vanishing cycles to points; at the same time, the rela-

tions between vanishing cycles are given by 4-dimensional chains that become cycles

in the limit Y because their boundaries shrink to points. This means that we lose

d − r generators of H3 and get r new generators of H4. In Z there are d − r relations

between the homology classes of the exceptional P
1’s; these relations are pullbacks

of closed 3-dimensional cycles on Y which do not lift to cycles on Z, so going from Y

to Z adds r new generators to H2 while removing another d − r generators from H3.

Finally, H4(Z) = H4(Y ) for codimension reasons. Mirror symmetry exchanges odd-

and even-dimensional homology, so if X and Z have mirrors X̂ and Ẑ, then

b2(Ẑ) = b2(X̂)− (d − r), b3(Ẑ) = b2(X̂)+ 2r, b4(Ẑ) = b4(X̂)− (d − r).
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The suggested explanation, in the general framework explained above, is that Ẑ

should contain d vanishing cycles with d − r relations between them, obtained from

a degeneration to a variety Ŷ with d ODP, and that X̂ should be a crepant resolution

of Ŷ . Thus mirror symmetry exchanges ODPs with the opposite number of relations

between their vanishing cycles. Moreover, to the d vanishing cycles in the original

variety X correspond d rational (−1,−1)-curves in its mirror X̂. It seems plausible

to think that the structure sheaves or ideal sheaves of these curves (possibly twisted

by some line bundle) should be mirror dual to the Lagrangian spheres representing

the vanishing cycles in X; however, as in the K3 case, such a statement is not really

meaningful unless one has chosen some specific equivalence Db(X) ∼= Db Fuk(X̂).

Remark 3.21

When r = 0, H2(Y ) ∼= H2(X), so the exceptional cycles in Y are homologous to

zero. This is not possible if the resolution is algebraic, so we exclude this case and

also the case d = r to avoid the same problem on the mirror.

Going a bit beyond this, we now propose a possible mirror dual to the (A2d−1)-

singularity. Let X be a variety that can be degenerated to some Y with an (A2d−1)-

singularity, and let v1, . . . , v2d−1 ∈ Hn(X) be the corresponding vanishing cycles.

The signs are fixed in such a way that vi ·vi+1 = 1 for all i. We impose two additional

conditions. One is that Y should have a partial smoothing Y ′ (equivalently,X a partial

degeneration) having d ODPs, built according to the local model

x2 + y2 + z2 +

d∏

i=1

(t − ǫi)
2 = 0

with the ǫi’s distinct and small. This means that in the (A2d−1)-configuration of

vanishing cycles in X, one can degenerate the 1st, 3rd, . . . , (2d − 1)th to ODPs. The

second additional condition is that Y ′ should admit a resolution Z′ of the standard

kind considered above. Then, according to Remark 3.21, there is at least one relation

between v1, v3, . . . , v2d−1. In fact, since the intersection matrix of all vi has only a

1-dimensional nullspace, there must be precisely one relation.

Remark 3.22

This relation is in fact v1+v3+· · ·+v2d−1 = 0. The corresponding situation on Z′ is

that all the exceptional P
1’s are homologous. This should not be too surprising; they

can be moved back together to give the d-times thickened P
1 in the resolution of the

original (A2d−1)-singularity that one gets by taking the d-fold branch cover t �→ td

of the resolution of the ODP x2 + y2 + z2 + t2 = 0. We note in passing that out of

the 2d possible ways of resolving the ODPs in Y ′ (differing by flops), at most two
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can lead to an algebraic manifold since an exceptional P
1 cannot be homologous to

minus another one.

In view of our previous discussion, we expect that the mirror X̂ of X admits a

contraction X̂ → Ŷ ′ to a variety with d ODPs; any smoothing Ẑ′ of Ŷ ′ should

contain d vanishing cycles with (d − 1) relations between them. By (3.21), these

give rise to a (d − 1)-dimensional subspace of H4(X̂;C) ∼= H 1,1(X̂). There is a

natural basis for the relations between the exceptional P
1’s in Z′, which comes from

the even-numbered vanishing cycles v2i . The corresponding basis of the subspace

of H 1,1(X̂) can be represented by divisors S2, S4, . . . , S2d−2 such that S2i intersects

only the (i − 1)th and ith exceptional P
1. Based on these considerations and others

described below, we make a concrete guess as to what X̂ looks like.

Definition 3.23

An (Â2d−1)-configuration of subvarieties inside a smooth 3-fold consists of embedded

smooth surfaces S2, S4, . . . , S2d−2 and curves C1, C3, . . . , C2d−1 such that

(1) the canonical sheaf of the 3-fold is trivial along each S2i ;

(2) each S2i is isomorphic to P
2 with two points blown up;

(3) S2i ∩ S2j = ∅ for |i − j | ≥ 2;

(4) S2i−2, S2i are transverse and intersect in C2i−1, which is a rational curve and

exceptional (i.e., has self-intersection −1) both in S2i−2 and S2i .

Note that the last condition implies that C2i−1 is a (−1,−1)-curve in the 3-fold.

What we postulate is that the mirror X̂ contains such a configuration of subvarieties,

with the C2i−1 being the exceptional set of the contraction X̂ → Ŷ ′. Apart from

being compatible with the informal discussion above, there are some more feasibility

arguments in favour of this proposal. First, such configurations exist as exceptional

loci in crepant resolutions of singularities; Figure 2 represents a toric 3-fold with

trivial canonical bundle containing such a configuration. The thick lines represent the

C2i−1’s joining consecutive surfaces S2i−2, S2i , which are themselves represented

by the nodes. Removing these nodes and lines gives the singularity of which it is a

resolution by collapsing the whole chain of surfaces and lines; this singularity we

think of as the dual of the (A2d−1)-singularity.

We could have deformed the (A2d−1)-singularity in X differently, for instance,

by degenerating an even-numbered vanishing cycle v2i to an ODP. This should corre-

spond to contracting a P
1 in X̂. Assuming that our guess is right, so that X̂ contains an

(Â2d−1)-configuration, this should be the other exceptional curve in the S2i besides

C2i−1 and C2i+1 (i.e., the line that we call C2i
∼= P

1 joining C2i−1 and C2i+1; in Fig-

ure 2 these are represented by the vertical lines). Contracting these curves while not
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Figure 2

contracting C2i−1, C2i+1 turns S2i into a P
1 × P

1. The whole 4-cycle S2i contracts to

a lower dimensional cycle only when we contract another of the P
1’s in it, leaving the

final P
1 (over which the surface fibres) still uncontracted (on X, this corresponds to

degenerating two consecutive vanishing cycles while leaving the others finite). Thus

there are contractions of X̂ mirroring various possible partial degenerations of X.

A final argument in favour of our proposal, and much of the motivation for it, is

that it leads to braid group actions on derived categories of coherent sheaves. These

are of interest in themselves, independent of whether or not they can be considered to

be mirror dual to the braid groups of Dehn twist symplectomorphisms on smoothings

of (A2d−1)-singularities.

proposition 3.24

Let X be a smooth quasi-projective 3-fold, and let S2, S4, . . . , S2d−2, C1, C3, . . . ,

C2d−1 be an (Â2d−1)-configuration of subvarieties in X. Then taking Ei = OCi
if

i is odd, or OSi if i is even, gives an (A2d−1)-configuration (E1, E2, . . . , E2d−1) of

spherical objects in Db(X).

The assumption that the Si are P
2’s with two points blown up can be weakened con-

siderably for this result to hold; any other rational surface will do. Proposition 3.24

is a 3-dimensional analogue of Example 3.5 and hence, as a comparison with our

discussion of K3 surfaces shows, possibly too naive from the mirror symmetry point

of view. There is an alternative way of constructing spherical objects, closer to Propo-

sition 3.19.

proposition 3.25

Let X be a smooth projective 3-fold that is Calabi-Yau in the strict sense, containing

an (Â2d−1)-configuration as in Proposition 3.24. Take rational curves L2i in S2i such

that L2i ∩C2j+1 = ∅ for all i, j . (The inverse image of the generic line in P
2 is such

a rational curve in the blow-up of P
2.) Choose
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Ei =

{
OCi

(−1) or JCi
if i is odd,

OSi (−Li) or OX(−Si) if i is even.

Then the Ei , i = 1, 2, . . . , 2d−1, form an (A2d−1)-configuration of spherical objects

in Db(X).

Here OCi
(−1) is shorthand for ι∗(OP1(−1)), where ι : P

1 → X is some embed-

ding with image Ci , and OSi (−Li) should be interpreted in the same way. As in

Lemma 3.19, the choice of Ei can be made independently for each i.

There are many other interesting configurations of spherical objects which arise

in connection with 3-fold singularities. Their mirror symmetry interpretations are

mostly unclear. For instance, a slight variation of the situation above yields braid

group actions built only from structure sheaves of surfaces.

proposition 3.26

Let X be a smooth quasi-projective 3-fold, and let S1, S2, . . . , Sm be a chain of

smooth embedded rational surfaces in X with the following properties: Si ∩ Si+1 is

transverse and consists of one rational curve whose self-intersection in Si and Si+1

is either zero or −2; Si ∩Sj = ∅ for |i− j | ≥ 2; and ωX|Si is trivial. Then Ei = OSi

is an (Am)-configuration of spherical objects in Db(X).

The conditions actually imply that every intersection Si∩Si+1 is a rational curve with

normal bundle ∼= OP1 ⊕OP1(−2) in X. Note also that the presence of rational curves

with self-intersection zero forces at least every second of the surfaces Si to be fibred

over P
1. Configurations of this kind are the exceptional loci of crepant resolutions of

suitable toric singularities.

In a different direction, I. Nakamura’s resolutions of abelian quotient singulari-

ties using Hilbert schemes of clusters, with their toric representations as tessellations

of hexagons (see [39], [10]), lead to situations similar to Proposition 3.24. The nodes

of the hexagons in Figure 3 represent surfaces that are the blow-ups of P
1 × P

1 in

two distinct points; the six lines emanating from a node represent the six exceptional

P
1’s in the surface, in which it intersects the other surfaces represented by the other

nodes that the lines join. The structure sheaves of these curves and surfaces give rise
to twists on the derived category satisfying braid relations according to the Dynkin-

type diagram obtained by adding a vertex in the middle of each edge. (These added

vertices represent the structure sheaves of the curves; see Figure 3.) The McKay cor-

respondence (see Section 3.2) translates this into a group of twists on the equivariant

derived category of the 3-fold on which the finite group acted.
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Figure 3

4. Faithfulness

4.1. Differential graded algebras and modules

The notions discussed in this section are, for the most part, familiar ones; we collect

them here to set up the terminology and also for the reader’s convenience. A de-

tailed exposition of the general theory of differential graded modules can be found in

[1, Section 10].

Fix a field k, and fix an integer m ≥ 1. Take the semisimple k-algebra R = km

with generators e1, . . . , em and relations e2i = ei for all i, eiej = 0 for i �= j

(so 1 = e1 + · · · + em is the unit element). R plays the role of ground ring in the

following considerations. In particular, by a graded algebra we always mean a Z-

graded unital associative k-algebra A, together with a homomorphism (of algebras,

and unital) ιA : R → A0. This equips A with the structure of a graded R-bimodule,

and the multiplication becomes a bimodule map. For the sake of brevity, we denote the

bimodule structure by eia and aei (a ∈ A) instead of ιA(ei)a, respectively, a ιA(ei).

All homomorphisms A → B between graded algebras are required to commute

with the maps ιA, ιB . A differential graded algebra (dga) A = (A, dA) is a graded

algebra A together with a derivation dA of degree 1, which satisfies d2
A = 0 and

dA ◦ ιA = 0. The cohomology H(A ) of a dga is a graded algebra. A homomorphism

of dgas is called a quasi-isomorphism if it induces an isomorphism on cohomology.

Two dgas A ,B are called quasi-isomorphic if there is a chain of dgas and quasi-

isomorphisms A ← C1→ · · · ← Ck → B connecting them. (In fact, it is sufficient

to allow k = 1 since the category of dgas admits a calculus of fractions; see [26,

Lemma 3.2].)

A dga A is called formal if it is quasi-isomorphic to its own cohomology algebra

H(A ), thought of as a dga with zero differential.

By a graded module over a graded algebra A, we always mean a graded right

A-module. Through the map ιA, any such module M becomes a right R-module;

again, we write xei (x ∈ M) instead of xιA(ei). A differential graded module (dgm)

over a dga A = (A, dA) is a pair M = (M, dM) consisting of a graded A-module
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M and a k-linear map dM : M → M of degree 1 such that d2
M = 0 and dM(xa) =

(dMx)a + (−1)deg(x)x(dAa) for a ∈ A. The cohomology H(M ) is a graded module

over H(A ). For instance, A is a dgm over itself, and as such it splits into a direct

sum of dgms

Pi =
(
eiA, dA|eiA

)
, 1 ≤ i ≤ m. (4.1)

By definition, a dgm homomorphism M → N is a homomorphism of graded

modules which is at the same time a homomorphism of chain complexes. Dgms

over A and their homomorphisms form an abelian category Dgm(A ). One can also

define chain homotopies between dgm homomorphisms. The category K(A ), with

the same objects as Dgm(A ) and with the homotopy classes of dgm homomorphisms

as morphisms, is triangulated. The translation functor in it takes M = (M, dM)

to M [1] = (M[1],−dM), with no change of sign in the module structure. Exact

triangles are all those isomorphic to one of the standard triangles involving a dgm

homomorphism and its cone.

Having mentioned cones, we use the opportunity to introduce a slight general-

isation, which is used later on. Assume that one has a chain complex in Dgm(A ),

namely, dgms Ci , i ∈ Z, and dgm homomorphisms δi : Ci → Ci+1 such that

δi+1δi = 0. Then one can form a new dgm C by setting C =
⊕

i∈Z
Ci[i] and

dC =




· · ·

δi−1 (−1)i dCi

δi (−1)i+1 dCi+1

δi+1 · · ·


 .

We refer to this as collapsing the chain complex (it can also be viewed as a special case

of a twisted complex; see, e.g., [3]), and we write C = {· · · → Ci → Ci+1 → · · · };

for complexes of length 2, it specializes to the cone of a dgm homomorphism.

Inverting the dgm quasi-isomorphisms inK(A ) yields another triangulated cate-

gory D(A ), in which any short exact sequence of dgms can be completed to an exact

triangle. As usual, D(A ) can also be defined by inverting the quasi-isomorphisms

directly in Dgm(A ), but then the triangulated structure is more difficult to see. We

call D(A ) the derived category of dgms over A .

Warning

Even though we use the same notation as in ordinary homological algebra, the ex-

pressionsK(A ) andD(A ) have a different meaning here. In particular,D(A ) is not

the derived category, in the usual sense, of Dgm(A ).

For any dga homomorphism f : A → B there is a “restriction of scalars” functor

Dgm(B) → Dgm(A ). This preserves homotopy classes of homomorphisms, takes
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cones to cones, and commutes with the shift functors. Hence it descends to an exact

functor K(B) → K(A ). Moreover, it obviously preserves quasi-isomorphisms, so

that it also descends to an exact functor D(B) → D(A ); we denote any of these

functors by f ∗. The next result, taken from [1, Theorem 10.12.5.1], shows that two

quasi-isomorphic dgas have equivalent derived categories.

theorem 4.1

If f is a quasi-isomorphism, f ∗ : D(B)→ D(A ) is an exact equivalence.

Let A be a dga. The standard twist functors t1, . . . , tm from Dgm(A ) to itself are

defined by

ti(M ) =
{
M ei ⊗k Pi −→M

}
.

The tensor product of M ei = (Mei, dM |Mei ) with the dgm Pi of (4.1) is one of

complexes of k-vector spaces; it becomes a dgm with the module structure inher-

ited from Pi . The arrow is the multiplication map Mei ⊗k eiA → M , which is

a homomorphism of dgms, and we are taking its cone; ti descends to exact func-

tors K(A ) → K(A ) and D(A ) → D(A ), for which we use the same notation.

This is straightforward for K(A ). As for D(A ), one needs to show that ti preserves

quasi-isomorphisms; this follows from looking at the long exact sequence

· · · −→ H(M )ei ⊗k eiH(A ) −→ H(M ) −→ H(ti(M )) −→ · · ·.

lemma 4.2

Let f : A → B be a quasi-isomorphism of dgas. Then the following diagram

commutes up to isomorphism, for each 1 ≤ i ≤ m:

D(B)
ti

f ∗

D(B)

f ∗

D(A )
ti

D(A )

Proof

Let M = (M, dM) be a dgm over B. Consider the commutative diagram of dgms

over A :

M ei ⊗k eiA

id⊗(f |eiA)

f ∗M

id

M ei ⊗k f
∗(eiB) f ∗M

The upper horizontal arrow is m⊗ a �→ mf (a), and the lower one is multiplication.
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The cone of the upper row is ti(f
∗(M )), while that of the lower one is f ∗(ti(M )). The

two vertical arrows combine to give a quasi-isomorphism between these cones.

Now let S′ ⊂ S be as in Section 2.1, and let K be the category from Definition 2.2.

Let E1, . . . , Em be objects of K, and let E be their direct sum. The chain complex of

endomorphisms

end(E) := hom(E,E) =
⊕

1≤i, j≤m

hom
(
Ei, Ej

)

has a natural structure of a dga. Multiplication is given by composition of homomor-

phisms; ιend(E) maps ei ∈ R to idEi
∈ hom(Ei, Ei), so left multiplication with ei is the

projection to hom(E,Ei), while right multiplication is the projection to hom(Ei, E).

In the same way, for any F ∈ K, the complex hom(E, F ) is a dgm over end(E). The

functor hom(E,−) : K→ K(end(E)) defined in this way is exact because it carries

cones to cones. The objects Ei get mapped to the dgms hom(E,Ei) = ei end(E),

which are precisely the Pi from (4.1). We define a functor .E to be the composition

K
hom(E,−)
−−−−−−−→ K

(
end(E)

) quotient functor
−−−−−−−−−→ D

(
end(E)

)
.

lemma 4.3

Assume that E1, . . . , Em satisfy the conditions from Definition 2.5, so that the twist

functors TEi
are defined. Then the following diagram is commutative up to isomor-

phism, for each 1 ≤ i ≤ m:

K
TEi

.E

K

.E

D
(
end(E)

) ti
D
(
end(E)

)

Proof

For F ∈ K, consider the commutative diagram of dgms over end(E),

hom(Ei, F )⊗k hom(E,Ei) hom(E, F )

id

hom
(
E, hom(Ei, F )⊗k Ei

)
hom(E, F )

with the following maps: the horizontal arrow in the first row is the composition;

that in the second row is induced by the evaluation map hom(Ei, F ) ⊗k Ei → F .

The left-hand vertical arrow is the first of the canonical maps from (2.1), which is a

quasi-isomorphism since hom(Ei, F ) has finite-dimensional cohomology. The cone
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of the first row is ti(.E(F )), while that of the second row is.E(TEi
(F )). The vertical

arrows combine to give a natural quasi-isomorphism between these cones.

Later on, in our application, the Ei occur as resolutions of objects in Db(S′). The

next two lemmas address the question of how the choice of resolutions affects the

construction. This is not strictly necessary for our purpose, but it rounds off the

picture.

lemma 4.4

Let Ei , E
′
i (1 ≤ i ≤ m) be objects in K such that Ei

∼= E′i for all i. Then the dgas

end(E) and end(E′) are quasi-isomorphic.

Proof

Choose for each i a map gi : Ei → E′i which is a chain homotopy equivalence. Set

Ci = Cone(gi), and let C be the direct sum of these cones; this is the same as the

cone of g = g1 ⊕ · · · ⊕ gm. Let end(C) be the endomorphism dga of C1, . . . , Cm.

An element of end(C) of degree r is a matrix

φ =

(
φ11 φ12

φ21 φ22

)

with φ11 ∈ homr(E,E), φ21 ∈ homr−1(E,E′), φ12 ∈ homr+1(E′, E), φ22 ∈

homr(E′, E′). The differential in end(C) maps φ to

(
−dEφ11 + (−1)rφ11 dE − (−1)rφ12g −dEφ12 − (−1)rφ12 dE

gφ11 − (−1)rφ22g + dE′φ21 + (−1)rφ21 dE gφ12 + dE′φ22 − (−1)rφ22 dE′

)
.

Let C ⊂ end(C) be the subalgebra of matrices that are lower-triangular (φ12 = 0).

The formula above shows that this is closed under the differential and hence again a

dga. The projection π2 : C → end(E′), π2(φ) = φ22, is a homomorphism of dgas.

Its kernel is isomorphic (as a complex of k-vector spaces, and up to a shift) to the

cone of the composition with g map

g ◦ − : hom(E,E) −→ hom(E,E′).

Since g is a homotopy equivalence, this cone is acyclic, so that π2 is a quasi-

isomorphism of dgas. A similar argument shows that the projection π1 : C →

end(E), π1(φ) = (−1)deg(φ)φ11, is a quasi-isomorphism of dgas. The two maps

together prove that end(E) and end(E′) are quasi-isomorphic.

As a consequence of this and Theorem 4.1, the categoriesD(end(E)) andD(end(E′))

are equivalent. Actually, we have shown a more precise statement: any choice of
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gi : Ei → E′i yields, up to isomorphism of functors, an exact equivalence (π∗2 )
−1π∗1 :

D(end(E))→ D(end(E′)). We now see that this equivalence is compatible with the

functors .E , .E′ .

lemma 4.5

In the situation of Lemma 4.4, (π∗2 )
−1π∗1 ◦.E

∼= .E′ .

Proof

The obvious short exact sequence 0 → E′ → C → E[1] → 0 induces, for any

F ∈ K, a short exact sequence of dgms over C :

0 −→ π∗1 hom(E, F )[−1] −→ hom(C, F ) −→ π∗2 hom(E′, F ) −→ 0.

In the derived category D(C ), this short exact sequence can be completed to an exact

triangle by a morphism

π∗2 hom(E′, F ) −→ π∗1 hom(E, F ). (4.2)

One can define such a morphism explicitly by replacing the given sequence with a

(canonically constructed) quasi-isomorphic one, for which the corresponding mor-

phism can be realized by an actual homomorphism of dgms (cf. [14, Proposition

III.3.5]). The advantage of this explicit construction is that (4.2) is now natural in F .

Since C is a contractible complex, hom(C, F ) is acyclic, which implies that (4.2) is

an isomorphism in D(C ) for any F . This shows that the diagram

K
.E .E′

D
(
end(E)

) π∗1
D(C ) D

(
end(E′)

)π∗2

commutes up to isomorphism, as desired.

4.2. Intrinsic formality

Applications of dga methods to homological algebra often hinge on constructing a

chain of quasi-isomorphisms connecting two given dgas. For instance, in the sit-

uation explained in Section 4.1, one can try to use the dga end(E) to study the

twists TEi
via the functor .E . What really matters for this purpose is only the quasi-

isomorphism type of end(E). In general, quasi-isomorphism type is a rather subtle

invariant. However, there are some cases where the cohomology already determines

the quasi-isomorphism type.
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Definition 4.6

A graded algebra A is called intrinsically formal if any two dgas with cohomology

A are quasi-isomorphic or, equivalently, if any dga B with H(B) ∼= A is formal.

For instance, one can show easily that any graded algebra A concentrated in degree

zero is intrinsically formal. (This particular example can be viewed as the starting

point for J. Rickard’s theory of derived Morita equivalences (see [46]), as recast in

dga language by B. Keller [25].) However, our intended application is to algebras of

a rather different kind.

An augmented graded algebra is a graded algebra A together with a graded

algebra homomorphism ǫA : A → R which satisfies ǫA ◦ ιA = idR . Its kernel is

a 2-sided ideal, called the augmentation ideal; we write it as A+ ⊂ A. A special

case is when A is connected, which means Ai = 0 for i < 0 and ιA : R → A0 is

an isomorphism; then there is of course a unique augmentation map, and A+ is the

subspace of elements of positive degree.

theorem 4.7

Let A be an augmented graded algebra. If HH q(A,A[2 − q]) = 0 for all q > 2,

then A is intrinsically formal.

We remind the reader that the Hochschild cohomology HH ∗(A,M) of a graded

A-bimodule M is the cohomology of the cochain complex

Cq(A,M) = HomR−R




q︷ ︸︸ ︷
A+ ⊗R · · · ⊗R A+,M


 ,

(∂qφ)
(
a1, . . . , aq+1

)
= (−1)ǫa1φ

(
a2, . . . , aq+1

)

+

q∑

i=1

(−1)ǫiφ
(
a1, . . . , aiai+1, . . . , aq+1

)

− (−1)ǫqφ
(
a1, . . . , aq

)
aq+1,

where HomR−R denotes homomorphisms of graded R-bimodules. (By definition,

these are homomorphisms of degree zero.) The signs are ǫ = q deg(a1), ǫi =

deg(a1)+· · ·+deg(ai)− i. The bimodules relevant for our application areM = A[s]

with the left multiplication twisted by a sign: a ·x ·a′ = (−1)s deg(a)axa′ for a, a′ ∈ A

and x ∈ M . Note that the chain complex C∗(A,A[s]) depends on s, so the cohomol-

ogy groups that occur in Theorem 4.7 belong to different complexes.

We give a proof of Theorem 4.7 for lack of an accessible reference, and also

because our framework (in which dgas may be nonzero in positive and negative
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degrees) differs slightly from the usual one. However, the result is by no means new.

Originally, the phenomenon of intrinsic formality was discovered by Halperin and

Stasheff [19] in the framework of commutative dgas. They constructed a series of

obstruction groups whose vanishing implies intrinsic formality. Later D. Tanré [52]

identified these obstruction groups as Harrison cohomology groups. To the best of our

knowledge, the noncommutative version, in which Hochschild cohomology replaces

Harrison cohomology, is due to T. Kadeishvili [23], who also realized the importance

of A∞-algebras in this context. A general survey of A∞-algebras and applications

is [27]. It is difficult to find a concrete counterexample, but apparently Theorem 4.7

is not true without the augmentedness assumption. This is related to the problem that

a general A∞-algebra with unit might not be quasi-isomorphic to a dga with unit.

(We do not know if this question has been settled, but the construction of X below

would not work.) Let A be an augmented graded algebra, and let B = (B, dB) be a

dga. An A∞-morphism γ : A → B is a sequence of maps of graded R-bimodules

γq ∈ HomR−R((A
+)⊗Rq , B[1− q]), q ≥ 1, satisfying the equations

dBγq
(
a1, . . . , aq

)
=

q−1∑

i=1

(−1)ǫi
(
γq−1

(
a1, . . . , aiai+1, . . . , aq

)

− γi
(
a1, . . . , ai

)
γq−i(ai+1, . . . , aq

))
.

(Eq )

The ǫi are as in the definition of HH ∗(A,M) above. The first two of these equa-

tions are

dBγ1(a1) = 0, (E1)

dBγ2
(
a1, a2

)
= (−1)deg(a1)−1

(
γ1(a1a2)− γ1(a1)γ1(a2)

)
. (E2)

This means that γ1, which need not be a homomorphism of algebras, nevertheless

induces a multiplicative map (γ1)∗ : A
+ → H(B). In a sense, the nonmultiplica-

tivity of γ1 is corrected by the higher order maps γq , so that A∞-morphisms are

“approximately multiplicative maps.”

From a more classical point of view, one can see A∞-morphisms simply as a

convenient way of encoding dga homomorphisms from a certain large dga canonically

associated to A, a kind of “thickening of A.” Consider V = A+[1] as a graded R-

bimodule, and let T +V =
⊕

q≥1 V
⊗Rq be its tensor algebra, without unit. We write

〈a1, . . . , aq〉 ∈ T +V instead of a1 ⊗ · · · ⊗ aq . Now consider W = T +V [−1] as

a graded R-bimodule in its own right, and form its tensor algebra with unit TW =

R⊕
⊕

r≥1 V
⊗Rr . The elements of TW (apart from R ⊂ TW ) are linear combinations

of expressions of the form

x =
〈
a11, a12, . . . , a1,q1

〉
⊗ · · · ⊗

〈
ar1, . . . , ar,qr

〉

with r > 0, q1, . . . , qr > 0, and aij ∈ A+. The degree of such an expression is
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degTW (x) =
∑

ij degA(aij )−
∑

i qi + r . One defines a dga X = (X, dX) by taking

X = TW with the tensor multiplication and taking dX to be the derivation that acts

on elements of W as follows:

dX
〈
a1, . . . , aq

〉
=

q−1∑

i=1

(−1)ǫi
(〈
a1, . . . , aiai+1, . . . , aq

〉

−
〈
a1, . . . , ai

〉
⊗
〈
ai+1, . . . , aq

〉)
.

The passage from A to X is usually written as a composition of the bar and cobar

functors, which go from augmented dg algebras to dg coalgebras and back (see, e.g.,

[35]). We can now make the above-mentioned connection with A∞-morphisms.

lemma 4.8

For anyA∞-morphism γ : A→ B, one can define a dga homomorphismŴ :X→ B

by setting Ŵ | R to be the unit map ιB , and Ŵ(〈a1, . . . , aq〉) = γq(a1, . . . , aq).

Ŵ is a quasi-isomorphism if and only if ιB ⊕ γ1 induces an isomorphism between

R ⊕ A+ ∼= A and H(B).

Proof

The first part follows immediately from comparing the equations (Eq) with the def-

inition of the differential dX. As for the second part, a classical computation due

to J. Moore [34, Théorème 6.2], [35] shows that the inclusion R ⊕ A+ →֒ ker dX

induces an isomorphism R ⊕ A+ ∼= H(X ). This implies the desired result.

As a trivial example, let A = (A, 0) be the dga given by A with zero differential,

and take the A∞-morphism γ : A → A given by γ1 = id : A+ → A, γq = 0 for

all q ≥ 2. Then Lemma 4.8 shows that the corresponding map Ŵ : X → A is a

quasi-isomorphism of dgas.

The next lemma is an instance of “homological perturbation theory” (see, e.g.,

[18]). Let A be an augmented graded algebra, let B be a dga, and let φ : A→ H(B)

be a homomorphism of graded algebras. This makes the cohomology H(B) into a

graded A-bimodule.

lemma 4.9

Assume that HH q(A,H(B)[2 − q]) = 0 for all q > 2. Then there is an A∞-

morphism γ : A→ B such that the induced map (γ1)∗ : A
+ → H(B) is equal to

φ|A+.

Proof

Choose a map of graded R-bimodules γ1 : A
+→ ker dB ⊂ B which induces φ|A+.
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Since γ1 is multiplicative on cohomology, we can find a map γ2 such that (E2) is

satisfied. From here onwards the construction is inductive. Suppose that γ1, . . . , γq−1,

for some q ≥ 3, are maps such that (E1), . . . , (Eq−1) hold. Denote the right-hand

side of equation (Eq) for these maps by ψ : (A+)⊗Rq → B[2−q]. One can compute

directly that

dBψ
(
a1, . . . , aq

)
= 0 (4.3)

for all a1, . . . , aq ∈ A+ and that

γ1(a1)ψ
(
a2, . . . , aq+1

)
+

q∑

i=1

(−1)ǫiψ
(
a1, . . . , aiai+1, . . . , aq+1

)

− (−1)ǫqψ
(
a1, . . . , aq

)
γ1
(
aq+1

)

= dB

(
q∑

i=1

(−1)ǫiγi
(
a1, . . . , ai

)
γq+1−i

(
ai+1, . . . , aq+1

)
)
.

(4.4)

By (4.3), ψ induces a map ψ̄ : (A+)⊗Rq → H(B)[2− q], which is just an element

of the Hochschild chain group Cq(A,H(B)[2 − q]). Equation (4.4) says that ψ̄

is a Hochschild cocycle. By assumption, there is an η̄ ∈ Cq−1(A,H(B)[2 − q])

such that ∂q−1η̄ = ψ̄ . Choose any map of graded R-bimodules η : (A+)⊗Rq−1 →

(ker dB)[1− q] which induces η̄, and set γ new
q−1 = γq−1−η. The equations (E1), . . . ,

(Eq−1) continue to hold if one replaces γq−1 by γ new
q−1. Moreover, if ψnew denotes the

right-hand side of (Eq) after this replacement, one computes that
(
ψ − ψnew

)(
a1, . . . , aq

)
= (−1)deg(a1)γ1(a1)η

(
a2, . . . , aq−1

)

+

q−1∑

i=1

(−1)ǫiη
(
a1, . . . , aiai+1, . . . , aq

)
(4.5)

− (−1)ǫqη
(
a1, . . . , aq−1

)
γ1(aq).

This means that ψ̄new = ψ̄ − ∂q−1η̄ = 0. Clearly, the vanishing of ψ̄new ensures that

one can extend the sequence γ1, . . . , γq−2, γ
new
q−1 by a map γq such that (Eq) holds.

This completes the induction step.

Note that in the qth step only the (q − 1)st of the given maps γi is changed.

Therefore the sequence that we construct does indeed converge to anA∞-morphism γ .

Proof of Theorem 4.7

Let B be a dga whose cohomology algebra is isomorphic to A. Choose an isomor-

phism φ : A→ H(B). By Lemma 4.9, there is an A∞-morphism γ : A→ B such

that γ1 induces φ | A+. This obviously means that (ιB ⊕ γ1)∗ : R ⊕ A+ → H(B)

is an isomorphism. Hence, by Lemma 4.8, the induced map Ŵ : X → B is a
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quasi-isomorphism of dgas. We have already seen that there is a quasi-isomorphism

X → A = (A, 0). This shows that B is quasi-isomorphic to A and hence is

formal.

4.3. The graded algebras Am,n

We assume from now on that m ≥ 2; this assumption is retained throughout this

section and the following one. In addition, choose an n ≥ 1. Let Ŵ be a quiver (an

oriented graph) with vertices numbered 1, . . . , m, and with a “degree” (an integer

label) attached to each edge. One can associate to it a graded algebra k[Ŵ], the path

algebra, as follows. As a k-vector space, k[Ŵ] is freely generated by the set of all

paths (not necessarily closed, of arbitrary length greater than or equal to zero) in Ŵ.

The degree of a path is the sum of all “degrees” of the edges along which it runs. The

product of two paths is their composition if the endpoint of the first one coincides with

the starting point of the second one, and zero otherwise. The map ιk[Ŵ] : R→ (k[Ŵ])0

maps ei to the path of length zero at the ith vertex.

1 2 3 m

d1 d2

n− d1 n− d2

Figure 4

The example we are interested in is the quiver Ŵm,n shown in Figure 4. Paths

of length l ≥ 0 in this quiver correspond to (l + 1)-tuples (i0| · · · |il) with iν ∈

{1, . . . , m} and |iν+1 − iν | = 1. The product of two paths in k[Ŵm,n] is given by

(i0| · · · |il)(i
′
0| · · · |i

′
l′
) = (i0| · · · |il |i

′
1| · · · |i

′
l′
) if il = i′0, or zero otherwise. The grad-

ing is deg(i) = 0, deg(i|i + 1) = di , deg(i + 1|i) = n− di , where we set

di =





1

2
n if n is even,

1

2

(
n+ (−1)i

)
if n is odd.

(4.6)

We introduce a 2-sided homogeneous ideal Jm,n ⊂ k[Ŵm,n] as follows. If m ≥ 3,

then Jm,n is generated by (i|i − 1|i)− (i|i + 1|i), (i − 1|i|i + 1), and (i + 1|i|i − 1)

for all i = 2, . . . , m− 1; in the remaining case m = 2, Jm,n is generated by (1|2|1|2)

and (2|1|2|1). Now define Am,n = k[Ŵm,n]/Jm,n. This is again a graded algebra. It is

finite-dimensional over k; an explicit basis is given by the (4m− 2) elements



90 SEIDEL AND THOMAS





(1), . . . , (m),

(1|2), . . . , (m− 1|m),

(2|1), . . . , (m|m− 1),

(1|2|1), (2|3|2) = (2|1|2), . . . ,
(
m− 1|m|m− 1

)

=
(
m− 1|m− 2|m− 1

)
,
(
m|m− 1|m

)
.

(4.7)

Here we have used the same notation for elements of k[Ŵm,n] and their images in

Am,n. We will continue to do so in the future; in particular, (i|i ± 1|i) is used to

denote the image of both (i|i + 1|i) and (i|i − 1|i) in Am,n.

We now explain why these algebras are relevant to our problem. Let K be a

category as in Definition 2.2, and let E1, . . . , Em ∈ K be an (Am)-configuration of

n-spherical objects.

lemma 4.10

Suppose that for each i = 1, . . . , m − 1 the 1-dimensional space Hom∗(Ei+1, Ei)

is concentrated in degree di . Then the cohomology algebra of the dga end(E) is

isomorphic to Am,n.

We should say that the assumption on Hom∗(Ei+1, Ei) is not really restrictive since,

given an arbitrary (Am)-configuration, it can always be achieved by shifting each Ei

suitably.

Proof

Since each Ei is n-spherical, the pairings

Hom∗
(
Ei+1, Ei

)
⊗ Hom∗

(
Ei, Ei+1

)
−→ Homn

(
Ei, Ei

)
∼= k,

Hom∗
(
Ei, Ei+1

)
⊗ Hom∗

(
Ei+1, Ei

)
−→ Homn

(
Ei+1, Ei+1

)
∼= k

(4.8)

are nondegenerate for i = 1, . . . , m − 1. Hence Hom∗(Ei, Ei+1) ∼= k is con-

centrated in degree n − di . Choose nonzero elements αi ∈ Hom∗(Ei+1, Ei) and

βi ∈ Hom∗(Ei, Ei+1). Then, again because of the nondegeneracy of (4.8), one has

αiβi = ci
(
βi−1αi−1

)
(4.9)

in Hom∗(E,E) for some nonzero constants c2, . . . , cm−1 ∈ k. Without changing

notation, we multiply each βi with c2c3 · · · ci ; then the same equations (4.9) hold

with all ci equal to 1. Since Hom∗(Ei, Ej ) = 0 for all |i − j | ≥ 2, we also have

βiβi−1 = 0, αi−1αi = 0 for all i = 2, . . . , m − 1. If m ≥ 3, then this shows that

there is a homomorphism of graded algebras Am,n → Hom∗(E,E) which maps (i)

to idEi
, (i|i+1) to αi , and (i+1|i) to βi . One sees easily that this is an isomorphism.

In the remaining case m = 2, one has to consider
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β1α1β1 ∈ Hom2n−d1
(
E1, E2

)
, α1β1α1 ∈ Homn+d1

(
E2, E1

)
. (4.10)

By assumption Hom∗(E1, E2) is concentrated in degree n − d1 < 2n − d1, and

Hom∗(E2, E1) is concentrated in degree d1 < n+ d1. Hence both elements in (4.10)

are zero, which allows one to define Am,n→ Hom∗(E,E) as before. The proof that

this is an isomorphism is again straightforward.

An inspection of the preceding proof shows that the result remains true for any

other choice of numbers di in the definition of Am,n. Our particular choice (4.6)

makes the algebra as “highly connected” as possible; Am,n/R · 1 is concentrated in

degrees greater than or equal to [n/2]. This is useful in the Hochschild cohomology

computations of Section 4.5.

Let Am,n be the dga given by Am,n with zero differential. We now consider the

properties of the functors ti on the category D(Am,n).

lemma 4.11

The functors ti : D(Am,n)→ D(Am,n), 1 ≤ i ≤ m, are exact equivalences.

Proof

This is closely related to the parallel statements in [28] and in Section 2.2. The

strategy, as in Proposition 2.10, is to introduce a left adjoint t ′i of ti , and then to prove

that the canonical natural transformations Id→ ti t
′
i , t
′
i ti → Id are isomorphisms.

Set A = Am,n and Qi = Pi[n] ∈ Dgm(A ). Define functors t ′i (1 ≤ i ≤ m)

from Dgm(A ) to itself by

t ′i(M ) =
{
M

ηi
−−→M ei ⊗k Qi

}
,

where M is placed in degree zero, and ηi(x) = x(i|i ± 1|i) ⊗ (i) + x(i + 1|i) ⊗

(i|i+1)+x(i−1|i)⊗ (i|i−1)+x(i)⊗ (i|i±1|i). (In this formula, the second term

should be omitted for i = m and the third term for i = 1; the same convention is used

again later on.) To understand why ηi is a module homomorphism, it is sufficient to

notice that the element

(i|i ± 1|i)⊗ (i)+ (i + 1|i)⊗ (i|i + 1)+ (i − 1|i)⊗ (i|i − 1)

+ (i)⊗ (i|i ± 1|i) ∈ Aei ⊗ eiA
(4.11)

is central, in the sense that left and right multiplication (with respect to the obvious

A-bimodule structure of Aei ⊗ eiA) with any a ∈ A have the same effect on it. The

same argument as for ti shows that t ′i descends to exact functors onK(A ) andD(A ).

For any M ∈ Dgm(A ), consider the complex of dgms

C−1 =M ei ⊗Pi

δ−1
−−−→ C0 =M ⊕

(
M ei ⊗ eiAei ⊗Qi

) δ0
−−→ C1 =M ei ⊗Qi,
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where δ−1(x⊗a) = (xa, x⊗a(i|i±1|i)⊗(i)+x⊗a(i+1|i)⊗(i|i+1)+x⊗a(i−

1|i)⊗(i|i−1)+x⊗a(i)⊗(i|i±1|i)) = (xa, x⊗(i)⊗(i|i±1|i)a+x⊗(i|i±1|i)⊗a)

and δ0(x, y⊗a⊗b) = (ηi(x)−ya⊗b). The reason why the second expression for δ−1

is equal to the first one is again that the element (4.11) is central. A straightforward

computation (including some tedious sign checking) shows that the dgm C obtained

by collapsing this complex is equal to t ′i ti(M ).

The algebra eiAei = k(i)⊕k(i|i±1|i) is simply a 2-dimensional graded k-vector

space, nontrivial in degrees zero and n. Take the homomorphism of dgms

C0 =M ⊕
(
M ei ⊗ eiAei ⊗Qi

)
−→M ,

(
x, y1 ⊗ (i)⊗ b1 + y2 ⊗ (i|i ± 1|i)⊗ b2

)
�−→ x − y2b2.

(4.12)

Extending this by zero to C−1,C1 yields a dgm homomorphismψM : C = t ′i ti(M )→

M because (4.12) vanishes on the image of δ−1. This homomorphism is surjective for

any M , and a computation similar to that in Proposition 2.10 shows that the kernel

is always an acyclic dgm. Since ψM is natural in M , we have indeed provided an

isomorphism t ′i ti
∼= IdD(A ). The proof that ti t

′
i
∼= IdD(A ) is parallel.

lemma 4.12

The functors ti on D(Am,n) satisfy the braid relations (up to graded natural isomor-

phism)

ti ti+1ti ∼= ti+1ti ti+1 for i = 1, . . . , m− 1,

ti tj ∼= tj ti for |i − j | ≥ 2.

Proof

The second relation is easy (it follows immediately from the fact that eiAm,nej = 0

for |i − j | ≥), and we therefore concentrate on the first one. Moreover, we only

explain the salient points of the argument. (A different version of it is described in

[28] with full details.) Note that the approach taken in Proposition 2.13 cannot be

adapted directly to the present case since we have not developed a general theory of

twist functors on derived categories of dgms.

SetA = Am,n andRi =Pi[−n]. For anyM ∈ Dgm(A ), consider the complex

of dgms

C−3
δ−3
−−−→ C−2

δ−2
−−−→ C−1

δ−1
−−−→ C0, (4.13)

where

C−3 =M ei ⊗Ri,

C−2 =
(
M ei ⊗ eiAei ⊗Pi

)
⊕
(
M ei ⊗ eiAei+1 ⊗Pi+1

)

⊕
(
M ei+1 ⊗ ei+1Aei ⊗Pi

)
,
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C−1 =
(
M ei ⊗Pi

)
⊕
(
M ei+1 ⊗Pi+1

)
⊕
(
M ei ⊗Pi

)
,

C0 =M ,

and

δ−3 : (x ⊗ a) �−→



−x ⊗ (i|i + 1|i)⊗ a

x ⊗ (i|i + 1)⊗ (i + 1|i)a

x(i|i + 1)⊗ (i + 1|i)⊗ a


 ,

δ−2 :




x1 ⊗ a1 ⊗ b1

x2 ⊗ (i|i + 1)⊗ b2

x3 ⊗ (i + 1|i)⊗ b3


 �−→




x1 ⊗ a1b1 + x2 ⊗ (i|i + 1)b2

−x2(i|i + 1)⊗ b2 + x3 ⊗ (i + 1|i)b3
−x1a ⊗ b1 − x3(i + 1|i)⊗ b3


 ,

δ−1 :



x1 ⊗ a1

x2 ⊗ a2

x3 ⊗ x3


 �−→ x1a1 + x2a2 + x3a3.

As in the proof of Lemma 4.11, one can contract this complex to a single dgm, which is

in fact canonically isomorphic to ti ti+1ti(M ). Now, one can map the whole complex

(4.13) surjectively to an acyclic complex (concentrated in degrees −3 and −2)

M ei ⊗Ri
id
−−→M ei ⊗Ri .

This is done by taking the identity map on C−3 together with the homomorphism

C−2 ⊃M ei ⊗ eiAei ⊗Pi →M ei ⊗Ri , m1⊗ (i)⊗ b1+m2⊗ (i|i + 1|i)⊗ b2 �→

−m2 ⊗ b2 and extending this by zero to the other summands of C−2 and to C−1, C0.

The kernel of the dgm homomorphism defined in this way is a certain subcomplex

of (4.13). When writing this down explicitly (which we do not do here), one notices

that it contains an acyclic subcomplex isomorphic to

M ei ⊗Pi
id
−−→M ei ⊗Pi,

located in degrees −2 and −1. If one divides out this acyclic subcomplex, what

remains is the complex

(
M ei ⊗ eiAei+1 ⊗Pi+1

)
⊕
(
M ei+1 ⊗ ei+1Aei ⊗Pi

)

δ′−1
−−−→

(
M ei ⊗Pi

)
⊕
(
M ei+1 ⊗Pi+1

) δ′0
−−→M ,

(4.14)

with δ′−1(x1⊗ (i|i+ 1)⊗ b1, x2⊗ (i+ 1|i)⊗ b2) = (x1⊗ (i|i+ 1)b1− x2(i+ 1|i)⊗

b2,−x1(i|i + 1)⊗ b1 + x2 ⊗ (i + 1|i)b2), δ
′
0(x1 ⊗ a1, x2 ⊗ a2) = x1a1 + x2a2. The

remarkable fact about (4.14) is that it is symmetric with respect to exchanging i and

i+ 1. Indeed, one can arrive at the same complex by starting with ti+1ti ti+1(M ) and

removing acyclic parts. This shows that ti+1ti ti+1(M ) and ti ti+1ti(M ) are quasi-
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isomorphic for all M . We leave it to the reader to verify that the argument provides a

chain of exact functors and graded natural isomorphisms between them, with ti ti+1ti

and ti+1ti ti+1 at the two ends of the chain.

4.4. Geometric intersection numbers

Consider the weak braid group action ρm,n : Bm+1 → Auteq(D(Am,n)) generated

by t1, . . . , tm. The aim of this section is prove a strong form of faithfulness for it.

theorem 4.13

Let R
g
m,n be a functor representing ρm,n(g) for some g ∈ Bm+1. If R

g
m,n(Pj ) ∼=Pj

for all j , then g must be the identity element.

We begin by looking at the center of Bm+1. It is infinite cyclic and generated by

an element that, in terms of the standard generators g1, . . . , gm, can be written as

(g1g2 · · · gm)
m+1.

lemma 4.14

For any 1 ≤ j ≤ m, (t1t2 · · · tm)
m+1(Pj ) is isomorphic to Pj [2m − (m + 1)n] in

D(Am,n).

Proof

For each 1 ≤ j ≤ m there is a short exact sequence of dgms

0 −→Pj [−n]
α
−→ ejAm,nej ⊗k Pj

multiplication
−−−−−−−→Pj −→ 0,

where α(x) = (j |j ±1|j)⊗x− (j)⊗ (j |j ±1|j)x. This implies that the cone of the

multiplication map, which is tj (Pj ), is isomorphic to Pj [1− n] in D(Am,n). Note

also that ti(Pj ) ∼=Pj whenever |i − j | ≥ 2.

Consider the m+ 1 differential graded modules

M0=
{
P1[n−1]−→P2[2n−1−d1]−→· · ·−→Pm

[
mn−1− d1 − · · · − dm−1

]}
,

M1 =P1,

M2 =P2[1− d1],

M3 =P3[2− d1 − d2],

. . .

Mm =Pm

[
m− 1− d1 − · · · − dm−1

]
.

The definition of M0 is given by collapsing the complex of dgms in which

P1[n−1] is placed in degree zero, and where the maps are given by left multiplication

with (i + 1|i). We prove that
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(
t1t2 · · · tm

)(
M0

)
∼=M1,(

t1t2 · · · tm
)(

Mi

)
∼=Mi+1 for 1 ≤ i < m,

(
t1t2 · · · tm

)(
Mm

)
∼=M0

[
2m− (m+ 1)n

]
,

(4.15)

which clearly implies the desired result. By the definitions of ti and t ′i , the second of

which is given in the proof of Lemma 4.11, one has

ti+1(Pi) =
{
Pi+1[−di] −→Pi

}
∼= t ′i

(
Pi+1

)
[1− di],

where Pi is placed in degree zero and the arrow is left multiplication with (i|i + 1).

This shows that ti ti+1(Pi) ∼= Pi+1[1 − di], and since ti(Pj ) ∼= Pj whenever

|i− j | ≥ 2, it proves the second equation in (4.15). To verify the other two equations

one computes

(
t1t2 · · · tm

)(
Pm[n− 1]

)

∼=
(
t1t2 · · · tm−1

)(
Pm

)

∼=
(
t1t2 · · · tm−2

)({
Pm−1

[
− n+ dm−1

]
−→Pm

})

∼=
(
t1t2 · · · tm−3

)

·
({

Pm−2

[
− 2n+ dm−2 + dm−1

]
−→Pm−1

[
− n+ dm−1

]
−→Pm

})

∼= · · · ∼=M0

[
m(1− n)+ d1 + · · · + dm−1

]

and
(
t ′m · · · t

′
2t
′
1

)(
P1

)

∼=
(
t ′m · · · t

′
2

)(
P1[n− 1]

)

∼=
(
t ′m · · · t

′
3

)({
P1[n− 1] −→P2

[
2n− 1− d1

]})

∼=
(
t ′m · · · t

′
4

)

·
({

P1[n− 1] −→P2

[
2n− 1− d1

]
−→P3

[
3n− 1− d1 − d2

]})

∼= · · · ∼=M0.

It seems likely that (t1t2 · · · tm)
m+1 is in fact isomorphic to the translation functor

[2m− (m+ 1)n], but we have not checked this.

Before proceeding further, we need to recall some basic notions from the topology

of curves on surfaces. Let D be a closed disc, and let 	 ⊂ D \ ∂D be a set of m+ 1

marked points. Diff(D, ∂D;	) denotes the group of diffeomorphisms f : D → D

which satisfy f |∂D = id and f (	) = 	. We write f0 ≃ f1 for isotopy within this

group. By a curve in (D,	), we mean a subset c ⊂ D \∂D which can be represented

as the image of a smooth embedding γ : [0; 1] → D such that γ−1(	) = {0; 1}.

In other words, c is an unoriented embedded path in D \ ∂D whose endpoints lie
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in 	, and which does not meet 	 anywhere else. There is an obvious notion of

isotopy for curves, denoted again by c0 ≃ c1. For any two curves c0, c1 there is

a geometric intersection number I (c0, c1) ≥ 0, which is defined by I (c0, c1) =

|(c′0∩c1)\	|+(1/2)|(c′0∩c1)∩	| for some c′0 ≃ c0 which has minimal intersection

with c1. (This means, roughly speaking, that c′0 is obtained from c0 by removing all

unnecessary intersection points with c1.) We refer to [28, Section 2a] for the proof

that this is well defined. Once one has shown this, the following properties are fairly

obvious:

(I1) I (c0, c1) depends only on the isotopy classes of c0 and c1;

(I2) I (c0, c1) = I (f (c0), f (c1)) for all f ∈ Diff(D, ∂D;	);

(I3) I (c0, c1) = I (c1, c0).

Note that in general I (c0, c1) is only a half-integer because of the weight 1/2

which the common endpoints of c0 and c1 contribute. The next lemma, whose proof

we omit, is a modified version of [13, Proposition III.16].

lemma 4.15

Let c0, c1 be two curves in (D,	) such that I (d, c0) = I (d, c1) for all d . Then

c0 ≃ c1.

b1 b2 bm

points of 	

Figure 5

From now on, fix a collection of curves b1, . . . , bm as in Figure 5, as well as an

orientation of D. Then one can identify π0(Diff(D, ∂D;	)) with the braid group

by mapping the standard generators g1, . . . , gm ∈ Bm+1 to positive half-twists along

b1, . . . , bm.

lemma 4.16

Let f ∈ Diff(D, ∂D;	) be a diffeomorphism that satisfies f (bj ) ≃ bj for all

1 ≤ j ≤ m. The corresponding element g ∈ Bm+1 must be of the form g =

(g1g2 · · · gm)
ν(m+1) for some ν ∈ Z.
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Proof

Since f (bj ) ≃ bj , f commutes up to isotopy with the half-twist along bj and hence

with any element of Diff(D, ∂D;	). This implies that g is central.

The next lemma, which is far more substantial than the previous ones, establishes a

relationship between the topology of curves in (D,	) and the algebraically defined

braid group action ρm,n.

lemma 4.17

For g ∈ Bm+1, let f ∈ Diff(D, ∂D;	) be a diffeomorphism in the isotopy class

corresponding to g, and let R
g
m,n be a functor that represents ρm,n(g). Then

∑

r∈Z

dimk HomD(Am,n)

(
Pi, R

g
m,n(Pj )[r]

)
= 2I

(
bi, f (bj )

)

for all 1 ≤ i, j ≤ m.

A statement of the same kind, concerning a category and braid group action slightly

different from ours, has been proved in [28, Theorem 1.1]. In principle, the proof

given there can be adapted to our situation, but verifying all the details is a rather

tedious business. For this reason we take a slightly different approach, which is to

derive the result as stated here from its counterpart in [28]. To do this, we first need

to recall the situation considered in that paper. In order to avoid confusion, objects

that belong to the setup of [28] are denoted by overlined symbols.

0
1

0

1
1

0

2
1

0

m

Figure 6

Consider the quiver Ŵm in Figure 6 with vertices numbered 0, . . . , m and whose

edges are labeled with “degrees” zero or 1. Paths of length l in Ŵm are described by

(l + 1)-tuples of numbers i0, . . . , il ∈ {0, . . . , m}; we use the notation (i0| · · · |il) for

them. The path algebra k[Ŵm] is a graded algebra, whose ground ring isR = km+1. Let

Jm be the homogeneous 2-sided ideal in it, generated by the elements (i − 1|i|i + 1),

(i + 1|i|i − 1), (i|i + 1|i) − (i|i − 1|i) (1 ≤ i ≤ m − 1), and (0|1|0). The quotient

Am = k[Ŵm]/Jm is a finite-dimensional graded algebra; a concrete basis is given by

the 4m+ 1 elements
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(0), . . . , (m), (0|1), . . . , (m−1|m) of degree zero, and

(1|0), . . . , (m|m− 1), (1|2|1) = (1|0|1), . . . , (m− 1|m− 2|m− 1)

= (m− 1|m|m− 1), (m|m−1|m) of degree 1.

(4.16)

Am is evidently a close cousin of our algebras Am,n. We now make the relationship

precise on the level of categories. Let Am-mod be the abelian category of finitely

generated graded right modules overAm, and letDb(Am-mod) be its bounded derived

category. (In contrast to the situation in Section 4.1, this is the derived category in

the ordinary sense, not in the differential graded one.) There is an automorphism {1}

that shifts the grading of a module up by 1. This descends to an automorphism of

Db(Am-mod), which is not the same as the translation functor. In particular, for any

X, Y ∈ Db(Am-mod) there is a bigraded vector space

⊕

r1,r2

HomDb(Am-mod)

(
X, Y {r1}[r2]

)
.

We denote by P i ∈ Am-mod the projective modules (i)Am for 0 ≤ i ≤ m. Let

P ⊂ Am-mod be the full subcategory whose objects are direct sums of P i{r} for

i = 1, . . . , m and r ∈ Z; the important thing is that P 0 is not allowed. We write

Kb(P) for the full subcategory of Kb(Am-mod) whose objects are finite complexes

in P. This is an abuse of notation since P is not an abelian category; however,Kb(P)

is still a triangulated category because it contains the cone of any homomorphism.

lemma 4.18

There is an exact functor T : Kb(P)→ D(Am,n) with the following properties:

(1) T(P i) is isomorphic to Pi up to some shift;

(2) there is a canonical isomorphism of functors T ◦ {1} ∼= [−n] ◦T;

(3) the natural map, which exists in view of property 2,

⊕

r2= nr1

HomKb(P)

(
X, Y {r1}[r2]

)
−→ HomD(Am,n)

(
T(X),T(Y )

)
,

is an isomorphism for all X, Y ∈ Kb(P).

Proof

As a first step, consider the functor T′ : P → Dgm(Am,n) defined as follows. The

objectP i{r} goes to the dgmPi[σi−nr], where σi = −d1−d2−· · ·−di−1, and this is

extended to direct sums in the obvious way. LetA
d

m be the space of elements of degree

d inAm. Homomorphisms of graded modules P i{r} → P j {s} correspond in a natural

way to elements of (j)A
r−s
m (i). On the other hand, dgm homomorphisms between

Pi[σi − nr] and Pj [σj − ns] correspond to elements of degree σj − σi − n(s − r)
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in (j)Am,n(i). There is an obvious isomorphism, for any 1 ≤ i, j ≤ m and d ∈ Z,

(j)A
d

m(i)
∼= (j)A

σj−σi+n d
m,n (i) (4.17)

which sends any basis element in (4.16) of the form (i0| · · · |iν) to the corresponding

element (i0| · · · |iν) ∈ Am,n; one needs to check, case by case, that the degrees turn

out right. We use (4.17) to defineT′ on morphisms; this is obviously compatible with

composition, so that the outcome is indeed a functor. Note that T′ ◦ {1} ∼= [−n] ◦T′.

Now take a finite chain complex in P. ApplyingT′ to each object in the complex

yields a chain complex in Dgm(Am,n), which one can then collapse into a single

dgm. This procedure yields a functor Kb(P) → K(Am,n), which is exact since it

carries cones to cones. We define T to be the composition of this with the quotient

functor K(Am,n) → D(Am,n). Properties (1) and (2) are now obvious from the

definition of T′. The remaining property (3) can be reduced, by repeated use of the

five lemma, to the case when X = P i{r}, Y = P i{s}; then it comes down to the fact

that (4.17) is an isomorphism.

Define exact functors t̄1, . . . , t̄m from Db(Am-mod) to itself by

t̄i(X) =
{
X(i)⊗k P i −→ X

}
. (4.18)

Here X(i) is considered as a complex of graded k-vector spaces; tensoring with

P i over k makes this into a complex of graded Am-modules, and the arrow is the

multiplication map. We now state the results of [28].

lemma 4.19

The functors t̄1, . . . , t̄m are exact equivalences and generate a weak braid group

action ρ̄m : Bm+1→ Auteq(Db(Am-mod)).

lemma 4.20

For g ∈ Bm+1, let f ∈ Diff(D, ∂D;	) be a diffeomorphism in the isotopy class

corresponding to g, and let R
g

m be a functor that represents ρ̄m(g). Then

∑

r1,r2

dimk HomDb(Am-mod)

(
P i, R

g

m

(
P j

)
{r1}[r2]

)
= 2I

(
bi, f (bj )

)

for all 1 ≤ i, j ≤ m.

Lemma 4.19 essentially summarizes the contents of [28, Section 3], and Lemma 4.20

is [28, Theorem 1.1]. The notation here is slightly different. (Our Am, P i , and t̄i are

the Am, Pi , and Ri of that paper.) We have also modified the definitions very slightly;

namely, we use right modules instead of left modules as in [28], and the coefficients
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are k instead of Z. These changes do not affect the results at all. (A very conscientious

reader might want to check that inversion of paths defines an isomorphism between

Am and its opposite, and that a result similar to Lemma 4.18 can be proved for an

algebra Am defined over Z.)

Proof of Lemma 4.17

Since the modules P i are projective, the obvious exact functorK
b(P)→Db(Am-mod)

is full and faithful. To save notation, we consider Kb(P) simply as a subcategory of

Db(Am-mod). An inspection of (4.18) shows that the t̄i preserve this subcategory,

and the same is true of their inverses, defined in [28]. In other words, the weak braid

group action ρ̄m restricts to one on Kb(P). It follows from the definition of T that

T ◦ t̄i |K
b(P) ∼= ti ◦ T. Hence, if R

g

m and R
g
m,n are functors representing ρ̄m(g),

respectively, ρm,n(g), the diagram

Kb(P)
R
g
m

T

Kb(P)

T

D
(
Am,n

) R
g
m,n

D
(
Am,n

)

commutes up to isomorphism. Using this, Lemma 4.18(3), and Lemma 4.20, one sees

that

∑

r

dimk HomD(Am,n)

(
Pi, R

g
m,n

(
Pj

)
[r]
)

=
∑

r

dimk HomD(Am,n)

(
T
(
P i

)
,TR

g

m

(
P j

)
[r]
)

=
∑

r1,r2

dimk HomDb(Am-mod)

(
P i, R

g

m

(
P j

)
{r1}[r2]

)

= 2I
(
bi, f (bj )

)
.

Proof of Theorem 4.13

For g ∈ Bm+1, choose f and R
g
m,n as in Lemma 4.17. Take also another element

g′ ∈ Bm+1 and, correspondingly, f ′ and R
g′

m,n. Applying Lemma 4.17 to (g′)−1g

shows that

I
(
f ′(bi), f (bj )

)
= I

(
bi, (f

′)−1f (bj )
)

=
1

2

∑

r

dimk Hom
(
Pi,

(
R
g′

m,n

)−1
R
g
m,n

(
Pj

))

and, assuming that R
g
m,n(Pj ) ∼=Pj for all j ,
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=
1

2

∑

r

dimk Hom
(
Pi,

(
R
g′

m,n

)−1(
Pj

))

= I
(
bi, (f

′)−1(bj )
)
= I

(
f ′(bi), bj

)
.

Since i and f ′ can be chosen arbitrarily, it follows from Lemma 4.15 that f (bj ) ≃ bj

for all j . Hence, by Lemma 4.16, g = (g1g2 · · · gm)
ν(m+1) for some ν ∈ Z. But then

R
g
m,n(Pj ) ∼=Pj [ν(2m− (m+1)n)] by Lemma 4.14. In view of the assumption that

R
g
m,n(Pj ) ∼=Pj , this implies that ν = 0 and hence that g = 1.

4.5. Conclusion

The graded algebras Am,n are always augmented. For n ≥ 2 they are even connected,

so that there is only one choice of augmentation map. This makes it possible to apply

Theorem 4.7.

lemma 4.21

Am,n is intrinsically formal for all m, n ≥ 2.

The proof is by a straight computation of Hochschild cohomology. (It would be nice

to have a more conceptual explanation of the result.) Its difficulty depends strongly

on the parameter n. The easy case is when n > 2, since then already the relevant

Hochschild cochain groups are zero; this is no longer true for n = 2. At first sight the

computation may appear to rely on our specific choice (4.6) of degrees di , but in fact

this only serves to simplify the bookkeeping; the Hochschild cohomology remains

the same for any other choice. Throughout, we write Ŵ,A instead of Ŵm,n, Am,n.

Proof for n > 2

Note that the “degree” label on any edge of Ŵ is greater than or equal to [n/2].

Moreover, the labels on any two consecutive edges add up to n. These two facts

imply that the degree of any nonzero path (i0| · · · |il) of length l in k[Ŵ] is greater

than or equal to [(nl)/2]. Now, any element of (A+)⊗Rq can be written as a sum of

expressions of the form

c =
(
i1,0| · · · |i1,l1

)
⊗
(
i2,0| · · · |i2,l2

)
⊗ · · · ⊗

(
iq,0| · · · |iq,lq

)
,

with all lq > 0. Because the tensor product is over R, such a c can be nonzero only

if the paths (iν,0| · · · |iν,lν ) match up, in the sense that iν,lν = iν+1,0. Then, using the

observation made above, one finds that

deg(c) = deg
(
i1,0| · · · |i1,l1 |i2,1| · · · |i2,l2 |i3,1| · · · |iq,lq

)
≥

[
n

(
l1 + · · · + lq

)

2

]
.

Hence (A+)⊗q is concentrated in degrees greater than or equal to [(nq)/2]. On the
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other hand, A[2−q] is concentrated in degrees less than or equal to n+q−2, which

implies that

Cq
(
A,A[2− q]

)
= HomR−R

(
(A+)⊗Rq , A[2− q]

)
= 0 if n ≥ 4 or q ≥ 4.

We now focus on the remaining case (n, q) = (3, 3). Then (A+)⊗R3 is concentrated

in degrees greater than or equal to 4, while A[−1] is concentrated in degrees less than

or equal to 4. The degree 4 part of (A+)⊗R3 is spanned by elements c = (i0|i1) ⊗

(i1|i2) ⊗ (i2|i3), which obviously satisfy i3 �= i0. It follows that as an R-bimodule,

the degree 4 part satisfies ei((A
+)⊗R3)4ei = 0. On the other hand, the degree 4 part

of A[−1] is spanned by the elements (i|i±1|i), so it satisfies eiA[−1]
4ej = 0 for all

i �= j . This implies that there can be no nonzero R-bimodule maps between (A+)⊗R3

and A[−1] and hence that C3(A,A[−1]) is after all trivial.

Proof for n = 2

Consider the relevant piece of the Hochschild complex,

Cq−1
(
A,A[2− q]

) ∂q−1

−−−→ Cq
(
A,A[2− q]

) ∂q

−−→ Cq+1
(
A,A[2− q]

)
;

Cq+1(A,A[2 − q]) is zero for degree reasons. In fact, since all edges in Ŵ have

“degree” labels 1, paths are now graded by their length, so that (A+)⊗Rq+1 is con-

centrated in degrees greater than or equal to q + 1, while A[2− q] is concentrated in

degrees less than or equal to q. In contrast, Cq(A,A[2−q]) is nonzero for all even q.

To give a more precise description of this group, we use the basis of A from (4.7) and

the basis of (A+)⊗Rq derived from that. Let (i0| · · · |iq), iq = i0, be a closed path of

length q in Ŵ. Define φi0,...,im ∈ Cq(A,A[2− q]) by setting

φi0,...,iq (c) =

{(
i0|i0 ± 1|i0

)
if c =

(
i0|i1

)
⊗ · · · ⊗

(
iq−1|iq

)
,

0 on all other basis elements c.

We claim that the elements defined in this way, with (i0| · · · |iq) ranging over all closed

paths, form a basis of Cq(A,A[2 − q]). To prove this, note that there is only one

degree, which is q, where both (A+)⊗q and A[2 − q] are nonzero. The degree q

part of (A+)⊗q is spanned by expressions c = (i0|i1) ⊗ · · · ⊗ (iq−1|iq), with iq

not necessarily equal to i0. The degree q part of A[2 − q] is spanned by elements

(i|i± 1|i). Hence, an argument using the R-bimodule structure shows that if iq �= i0,

then φ(c) = 0 for all φ ∈ Cq(A,A[2 − q]). This essentially implies what we have

claimed.

We now turn to Cq−1(A,A[2 − q]); for this group we do not need a complete

description, but only some sample elements. Given a closed path (i0| · · · |iq) as before

in Ŵ, we define φ′ ∈ Cq−1(A,A[2 − q]) by setting φ′(c) = (i0|iq−1) if c = (i0|i1)

⊗ · · · ⊗ (iq−2|iq−1), and zero on all other basis elements c. A simple computa-
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tion shows that δq−1(φ′) = −φi0,...,iq − φiq−1,i0,i1,...,iq−1 . Also, for any closed path

(i0| · · · |iq) with i2 = i0 and i1 = i0 + 1, define φ′′ ∈ Cq−1(A,A[2 − q]) by setting

φ′′(c) = (i0|i0 ± 1|i0) for c = (i0|i1|i2) ⊗ (i2|i3) ⊗ · · · ⊗ (iq−1|iq), and again zero

for all other basis elements c. Then δq−1(φ′′) is equal to −φi0,i1,...,iq −φi0,i1−2,i2,...,iq
for i0 > 1, and to −φi0,i1,...,iq for i0 = 1.

To summarize, we have now established that the following relations hold in

HH q(A,A[2− q]):

(1) [φi0,...,iq ] = −[φiq−1,iq ,i1,...,iq−1] for all closed paths (i0| · · · |iq) in the quiver Ŵ;

(2) [φi0,...,iq ] = −[φi0,i1−2,i2,...,iq ] whenever i0 = i2 ≥ 2 and i1 = i0 + 1;

(3) [φi0,...,iq ] = 0 whenever i0 = i2 = 1 and i1 = 2.

Take an arbitrary element φi0,...,iq . By applying (1) repeatedly, one can find an-

other element φi′0,...,i
′
q
that represents the same Hochschild cohomology class, up to a

sign, and such that i′1 is maximal among all i′ν . This implies that i′0 = i′2 = i′1 − 1. If

i′1 = 2, then we can apply (3) to show that our Hochschild cohomology class is zero.

Otherwise, pass to φi′0,i
′
1−2,...,i

′
q
, which represents the same Hochschild cohomology

class up to sign due to (2), and repeat the argument. The iteration terminates after

finitely many moves because the sum of the iν decreases by 2 in each step. Hence

HH q(A,A[2− q]) is zero for all q ≥ 1.

Proof of Theorem 2.18

We first need to dispose of the trivial case m = 1. In that case, choose a resolution

F1 ∈ K of E1. Pick a nonzero morphism φ : F1 → F1[n]. This, together with idF1
,

determines an isomorphism of graded vector spaces Hom∗(F1, F1) ∼= k⊕ k[−n] and

hence an isomorphism in K between F1⊕F1[−n] and Hom∗(F1, F1)⊗F1. Consider

the commutative diagram

TF1
(F1)[−1] Hom∗(F1, F1)⊗ F1

ev
F1

F1[−n]
(−φ,id)

F1 ⊕ F1[−n]

∼=

(id,φ)
F1

id

The upper row is a piece of the exact triangle which comes from the definition of

TF1
as a cone, and the lower row is obviously also a piece of an exact triangle. By

the axioms of a triangulated category, the diagram can be filled in with an isomor-

phism between F1[−n] and TF1
(F1)[−1]. Transporting the result to Db(S′) yields

TE1
(E1) ∼= E1[1 − n]. Since n ≥ 2 by assumption, it follows that T r

E1
(E1) �∼= E1

unless r = 0.

From now on, suppose that m ≥ 2. After shifting each Ei by some amount, we

may assume that Hom∗(Ei+1, Ei) is concentrated in degree di for i = 1, . . . , m− 1.

(Shifting does not affect the statement because TEi [j ] is isomorphic to TEi
for any
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j ∈ Z.) Choose resolutionsE′1, . . . , E
′
m ∈ K forE1, . . . , Em. Lemma 4.10 shows that

the endomorphism dga end(E′) has H(end(E′)) ∼= Am,n. By Lemma 4.21, end(E′)

must be quasi-isomorphic to Am,n. Define an exact functor . to be the composition

Db(S′)
∼=
←−− K

.E′
−−−→ D

(
end(E′)

) ∼=
−−→ D

(
Am,n

)
.

The first arrow is the standard equivalence, and the last one is the equivalence induced

by some sequence of dgas and quasi-isomorphisms. By construction, .(Ei) ∼= Pi

for i = 1, . . . , m. In the diagram

Db(S′)

TEi

K
.E′∼=

TE′
i

D
(
end(E′)

) ∼=

ti

D
(
Am,n

)

ti

Db(S′) K
.E′∼=

D
(
end(E′)

) ∼=
D
(
Am,n

)

the first square commutes because that is the definition of TEi
, the second square by

Lemma 4.3, and the third one by Lemma 4.2. Now let g be an element of Bm+1,

Rg : Db(S′) → Db(S′), a functor that represents ρ(g), and R
g
m,n : D(Am,n) →

D(Am,n), a functor that represents ρm,n(g). By applying the previous diagram several

times, one sees that

R
g
m,n ◦. ∼= . ◦ Rg.

Assume thatRg(Ei) ∼= Ei for all i; then alsoR
g
m,n(Pi) = R

g
m,n.(Ei) ∼= .Rg(Ei) ∼=

.(Ei) ∼=Pi . By Theorem 4.13, it follows that g must be the identity.

We have not tried to compute the Hochschild cohomology of Am,n for n = 1. How-

ever, an indirect argument using the nonfaithful B4-action of Section 3.4 shows

that A3,1 cannot be intrinsically formal. More explicitly, if one takes the sheaves

Ox,O,Oy used in that example and if one chooses injective resolutions by quasi-

coherent sheaves for them, then the resulting dga end(E′) is not formal. One can give

a more direct proof of the same fact by using essentially the same Massey product

computation as Polishchuk in [44, p. 3].
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Addendum. The results here were first announced at the Harvard Winter School on

Mirror Symmetry in January of 1999 (see [53]). In the meantime, a preprint by

R. Horja [22] has appeared which is inspired by similar mirror symmetry consid-

erations. While there is little actual overlap ([22] does not operate in the derived

category), Horja uses monodromy calculations to predict corresponding conjectural

mirror Fourier-Mukai transforms that ought to be connected to our work, linking it

to the toric construction of mirror manifolds.
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