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Abstract

We describe presentations of braid groups of type ADE and show how these presentations
are compatible with mutation of quivers. In types A and D these presentations can be under-
stood geometrically using triangulated surfaces. We then give a categorical interpretation of the
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categories of Ginzburg dg-algebras of quivers with potential.
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1 Introduction

Braid groups are fundamental objects in mathematics. Although they are of a topological and geo-
metric nature, they have an algebraic interpretation: a simple presentation by generators and relations
which is just based on adjacency of integers [Ar]. This can be encoded in a line graph, and from
there one can generalize to define a group from any finite graph, known as the Artin braid group.

The most well-known groups defined from graphs are the Coxeter groups (we restrict to the simply
laced cases, for simplicity). These are closely related to Artin braid groups: each Coxeter group is a
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quotient of a corresponding Artin braid group in a natural way. In particular, the symmetric group
on n letters is a quotient of the classical braid group on n strands. Coxeter groups naturally split into
two distinct classes: those of finite type, corresponding to the Dynkin diagrams of type ADE, and
those of infinite type. Although all Artin braid groups are infinite, the Artin braid groups of Dynkin
type have a different character to those not of Dynkin type, and are known as Artin groups of ‘finite
type’.

This dichotomy also arises in another area of mathematics which has generated a lot of interest in the
recent years: cluster algebras. In this theory, there is a notion of finite-type cluster algebras, which
again correspond to the Dynkin diagrams [FZ2]. Cluster algebras are specified by a directed graph,
known as a quiver, together with other information. A key ingredient in the definition is the notion of
mutation, which changes the arrows in a quiver in a non-obvious manner which generalizes reflection
at a source or sink. Barot and Marsh [BM] have given new presentations of Coxeter groups of finite
type based on quivers obtained from Dynkin diagrams under finite sequences of mutations. Our first
result generalizes this to braid groups:

Theorem A. (Theorem 2.12) Let Q be a quiver, with vertices 1, 2, ... , n, obtained from a Dynkin
quiver by a finite sequence of mutations. Let BQ be the group with generators s1, s2, ... , sn, subject
to the relations:

(a) si sj = sjsi if there is no arrow between i and j (in either direction);

(b) si sjsi = sjsi sj if there is an arrow between i and j (in either direction);

(c) si1 si2 · · · sinsi1 · · · sin−2 = si2 si3 · · · sinsi1 · · · sin−1 = · · · , whenever i1 → i2 → · · · → in → i1 is a
chordless cycle in Q.

Then BQ is isomorphic to the Artin braid group of the same Dynkin type as Q.

We prove our result via isomorphisms between abstractly defined groups, which can be thought of as
mutations of groups, even though the resulting groups are isomorphic. The Artin group presentations
we obtain induce presentations of the corresponding Coxeter groups which are distinct from those
in [BM]; we also give a compatibility result which shows the relationship between the two presentations.
Why have we chosen to use presentations which don’t agree with the earlier work? This is explained
in the following two sections of the paper, as we now detail.

Certain cluster algebras can be understood using pictures. A (tagged) triangulation of a Riemann
surface with marked points on its boundary defines a quiver [FZ1, FoSTh]; see also [CCS]. Then
mutation of the quiver has a natural interpretation in terms of swapping one diagonal of a given
quadrilateral for the other. So these cluster algebras have a topological interpretation. In particular,
such descriptions are available for the infinite families of Dynkin type. A natural question is: can we
understand the generators above, and the isomorphisms corresponding to mutations, in terms of the
geometry of the surface? The answer is yes:

Theorem B. (Theorem 3.6) Let ∆ be a Dynkin diagram of type An or type Dn. In the former case,
let (X , M) be a disk with n + 3 marked points on its boundary. In the latter case, let (X , M) be a
disk with n marked points on its boundary and one marked point in its interior, taken to be a cone
point of order 2 (so X is an orbifold in this case).

Let T be a tagged triangulation of (X , M). Let GT be the graph in (X , M) dual to T . For each
vertex i of the quiver QT associated to T as in [FZ1, FoSTh], let σi be the braid of (X , M) associated
to the edge of GT crossing the tagged arc in T corresponding to i (see Definition 3.3). Then there
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is an isomorphism between the subgroup HT of the braid group generated by the σi and the group
BQ defined above, taking σi to si .

Furthermore, in type An, HT coincides with the braid group of (X , M), while in type Dn, HT is of
index two in the braid group of (X , M).

As well as the original combinatorial and commutative algebraic approach to cluster algebras, and
the geometric approach described above, there is a third approach which has proved very power-
ful: the representation theoretic approach [BMRRT, CCS]. This approach uses finite dimensional
(noncommutative) algebras and ideas from categorification to better understand cluster algebras,
and has received intense study. Braid groups also appear in representation theory and categorifica-
tion [RZ, ST]: in many important situations there are actions of braid groups on derived categories
via spherical twists. One example of this is given by certain derived categories of differential graded
algebras [Gin, KY] which are known to cover the categories appearing in the representation theoretic
approach to cluster algebras [Am]. One might hope that these categorical braid group actions are
related to our presentations of braid groups, and we show that this is indeed the case.

First, we make a connection between the categorical and the geometric situations. The relevant
differential graded algebras are defined by use of a quiver together with a formal sum of cycles in that
quiver known as a potential [Gin]. Mutation of quivers of potential has been defined [DWZ] and, in the
situations where our cluster algebra comes from a Riemann surface, the mutation of potentials also has
a geometric interpretation [LF09]. Relying heavily on results of Labardini-Fragoso [LF09, LF12], we
observe that the potential defined on mutation-Dynkin quivers according to the geometric procedure
is equivalent to the ‘obvious’ potential that one might guess (Proposition 4.4). So, while the potential
is important, it is in fact entirely determined by the quiver in types A and D. Note that this result
could also be proved relatively easily via a direct calculation.

Next we show that we do indeed obtain an action of the groups BQ (defined using mutation-Dynkin
quivers) on derived categories of Ginzburg differential graded algebras in which the generators act via
spherical twists. After setting up all the technical machinery correctly, the main difficulty in proving
this is to check that the mutation procedure for the groups BQ , which relates the group associated
to a quiver to the group associated to a mutated quiver, actually lifts to the categorical setting as a
natural isomorphism of functors. We do this, using important results of Keller and Yang [KY]. From
here, we can use the earlier theory developed here to show that the generators si of finite type Artin
braid groups from Theorem A can be viewed as derived autoequivalences:

Theorem C. (Theorem 4.16) Let (Q, W ) be a mutation-Dynkin quiver with potential of type ADE ,
and let ΓQ,W be the corresponding Ginzburg differential graded algebra. Let Dfd(ΓQ,W ) denote the
full subcategory of the derived category D(ΓQ,W ) on objects with finite-dimensional total homology.
Then there is a group homomorphism

BQ → Aut Dfd(ΓQ,W )

si 7→ Fi

sending the group generator associated to the vertex i of Q to the spherical twist Fi at the simple
ΓQ,W -module Si .

Since we started work on this project, we have become aware of independent work by other authors.
A. King and Y. Qiu have a related project, and were aware of the new relations between spherical
twists and a topological interpretation of the spherical twist group; see [Qiu], particularly Section 10.1.
In particular, an independent proof of a version of Theorem 2.10 in types A and D was announced
in [Qiu]. A key difference in our approach is the use of an orbifold with cone point of degree two in
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type D. In [Nag, §2.2], K. Nagao refers to an action of the mapping class group of a marked surface
on the derived category of a Ginzburg dg-algebra associated to a triangulation.

Since we released the first draft of this article, the preprint [HHLP] has appeared, where the authors
give a presentation (different from the one given here) of the Artin braid group for each diagram of
finite type (in the cluster-theoretic sense). This includes the non-simply-laced cases (not considered
here) but does not include a topological or categorical interpretation.

2 Presentations of braid groups

2.1 Braid groups

Let ∆ be a graph of ADE Dynkin type, i.e., ∆ is a graph of type An for n ≥ 1, Dn for n ≥ 4, E6, E7,
or E8.

Type An: •1 •2 •3 •n − 1 •n

Type Dn:

•1

•2
•3 •4 •n − 1 •n

In particular, ∆ has no double edges or cycles. Let I be the set of vertices of ∆. We can associate
a group B∆ to ∆, which we call the braid group of ∆. It has a distinguished set of generators
S∆ = {si}i∈I , and the relations depend on whether or not two vertices are connected by an edge.
They are as follows:

(i) si sj = sjsi if
i•

j
• ;

(ii) si sjsi = sjsi sj if
i•

j
• ;

If ∆ is of type An then we recover the “usual” braid group, sometimes denoted Bn+1. Its generators
can be visualized as follows:

si =

•1 •2 •i •i + 1 •n •n + 1

•
1

•
2

•
i

•
i + 1

•
n

•
n + 1

and the relations of type (i) record the fact that crossings of far-apart adjacent pairs of strings
commute, while relations of type (ii) record a Reidemeister 3 move.

If we also impose the relation that s2
i = 1 for all i ∈ I then we recover the Coxeter group of type ∆.

More information on Coxeter groups and braid groups can be found in [Hum] and [KT].
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2.2 Mutation of quivers

A quiver is just a directed graph. Throughout this article we will only work with quivers with finitely
many vertices and finitely many arrows that have no loops or oriented 2-cycles. For a given quiver
Q, we again denote its set of vertices by I .

There is a procedure to obtain one quiver from another, called quiver mutation, due to Fomin and
Zelevinsky [FZ1, §4]. Fix Q and let k ∈ I . Then we obtain the mutated quiver µk(Q) as follows:

(i) for each pair of arrows i → k → j through k, add a formal composite i → j ;

(ii) reverse the orientation of all arrows incident with k;

(iii) remove a maximal set of 2-cycles (we may have created 2-cycles in the previous two steps).

It is a basic but important observation that quiver mutation does not change the set of vertices. One
can also check that mutation is an involution.

We call a cycle in an unoriented graph (or in the underlying unoriented graph of a quiver) chordless
if the full subgraph on the vertices of the cycle contains no edges which are not part of the cycle. We
call a quiver Dynkin if its underlying unoriented graph is a Dynkin graph of type ADE , and mutation-
Dynkin if it can be obtained by mutating a Dynkin quiver finitely many times. By a theorem of
Fomin and Zelevinsky [FZ2, Thm. 1.4], there are only finitely many quivers that can be obtained by
mutating a given Dynkin quiver.

The following fact will be useful to us.

Proposition 2.1 (Fomin-Zelevinsky). In any mutation-Dynkin quiver, there are no double arrows and
all chordless cycles are oriented.

Proof: By [FZ2, Theorem 1.8], the entries in the corresponding exchange matrix B satisfy |BxyByx | ≤
3 for all x , y (known as being 2-finite). Hence there cannot be any double arrows in the quiver.

Now let Q be a mutation-Dynkin quiver and C a chordless cycle in Q. Then, since Q is 2-finite, so
is C . By [FZ2, Proposition 9.7], C must be an oriented cycle. 2

2.3 Groups from quivers

Let Q be a mutation-Dynkin quiver.

Definition 2.2. From the quiver Q with vertex set I , we define the group BQ as follows: it has a
distinguished generating set SQ = {si}i∈I and the relations given by:

(i) si sj = sjsi if
i•

j
• ;

(ii) si sjsi = sjsi sj if
i• // j• or

i•
j
•oo ;
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(iii) if we have an oriented chordless n-cycle

1 // 2

��

n

OO

. . .oo

then

s1s2 ... sns1s2 ... sn−2 = s2s3 ... sns1 ... sn−1

= · · ·
= sns1s2 ... sns1s2 ... sn−3

Remark 2.3. If Q is a Dynkin quiver, then BQ is (isomorphic to) the Artin braid group of the
corresponding Dynkin type.

This presentation is symmetric but not minimal:

Lemma 2.4. For each single chordless n-cycle, in the presence of the relations of type (i) and (ii),
any one of the relations of type (iii) implies all the others.

Proof: It is enough to show that if the relation

s1s2 · · · sns1s2 · · · sn−2 = s2s3 · · · sns1s2 · · · sn−1 (1)

holds then

s1s2 · · · sns1s2 · · · sn−2 = s3s4 · · · sns1s2 · · · sn.

So, we assume that (1) holds. Then we have:

s−1
2 s1s2 · · · sns1s2 · · · sn−2sn = s3 · · · sns1s2 · · · sn−1sn.

The left hand side can be rewritten, using relations of type (i) and (ii), as:

s−1
2 s1s2 · · · sns1s2 · · · sn−2sn = s1s2s−1

1 s3 · · · sns1s2 · · · sn−2sn

= s1s2s3 · · · sn−1s−1
1 sns1s2 · · · sn−2sn

= s1s2 · · · sn−1sns1s−1
n s2 · · · sn−2sn

= s1s2 · · · sns1s2 · · · sn−2,

and the result follows. 2

Though the relations look different, by taking an appropriate quotient we can obtain the groups
defined by Barot and Marsh [BM] directly:

Lemma 2.5. If we also impose the relations s2
i = 1 for all i ∈ I , then the group BQ becomes

isomorphic to the group ΓU(Q) defined in [BM, Section 3], where U(Q) is the underlying graph of Q.

Proof: As our definition gives the usual definition of the braid group for a Dynkin quiver, this will
follow from results in [BM] and the results below on how our groups change with quiver mutation.
But it is straightforward to give a direct proof, so we do so.
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(a)

◦
i

◦
j

•k
µk

◦
i

◦
j

•k
(b)

◦
i

◦
j

•k
µk

◦
i

◦
j

•k

Figure 1: Mutation of a quiver of mutation Dynkin type.

We need to show that, in the presence of relations (i), (ii), and s2
i = 1 for all i ∈ I , our extra relation

(iii) holds if and only if the relation

(s1s2 ... sn−1snsn−1 ... s2)2 = 1

and its rotations hold for each n-cycle 1 → 2 → · · · → n → 1. By symmetry, it is enough to check
that the relation above is equivalent to s1s2 ... sns1s2 ... sn−2 = s2s3 ... sns1 ... sn−1.

Using that si = s−1
i , we see that our our relation is equivalent to

s1s2 ... sns1s2 ... sn−2sn−1sn−2 ... s1sn ... s3s2 = 1.

Multiplying out the Barot-Marsh relation, we see that it is equivalent to

s1s2 ... sn−1snsn−1 ... s2s1s2 ... sn−1snsn−1 ... s2 = 1.

Cancelling out n terms on the left and n − 1 terms on the right of these two expressions, it just
remains to show that

s1s2 ... sn−2sn−1sn−2 ... s2s1 = sn−1sn−2 ... s2s1s2 ... sn−2sn−1.

As there is an arrow i → i + 1 for each i and the cycle is chordless, the symmetric group on n letters
maps onto the subgroup generated by s1, ... , sn−1 with the transposition which swaps i and i + 1
being sent to si . It is easy to see that the corresponding relation holds in the symmetric group, with
both sides of the equation representing the transposition which swaps 1 and n. 2

We will justify our choice of relations in Remark 4.19.

2.4 Mutation of groups

Let BQ be the group associated to the mutation-Dynkin quiver Q, as above, and let k be a vertex
of Q. Denote µk(Q) by Q ′. Our aim in this section is to show that BQ is isomorphic to BQ′ . We
will do this by using a group homomorphism ϕk : BQ → BQ′ defined using a formula which lifts the
formula used in [BM, §5].

The following lemma follows from results in [FZ2] (see [BM, §2]).

Lemma 2.6. Let Q be a quiver of mutation-Dynkin type, and fix a vertex k of Q. Suppose that
k has two neighbouring vertices. Then the possibilities for the induced subquiver of Q containing
vertex k and its neighbours are shown in Figure 1. The effect of mutation is shown in each case.

The following lemma follows from [BM, Lemma 2.5].
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Lemma 2.7. Let Q be a quiver of mutation-Dynkin type, and fix a vertex k of Q. Let C be an
oriented cycle in Q. Then C is one of the following. In each case we indicate what happens locally
under mutation at k.

(a)

◦
i

◦
j

•k

C

µk

◦
i

◦
j

•k
(b)

◦i1 ◦ ir

•k

◦i2

◦
◦ ir−1

◦

C

µk

◦i1 ◦ ir

•k

◦i2

◦
◦ ir−1

◦

(c)

◦i1 ◦ ir

•k

◦i2

◦
◦ ir−1

◦

C

µk

◦i1 ◦ ir

•k

◦i2

◦
◦ ir−1

◦

(d) An oriented cycle containing exactly one neighbour of k. Mutation at k reverses the arrow
between k and its neighbour in C .

(e) An oriented cycle containing no neighbours of k. Mutation at k does not affect C .

Recall that BQ is defined using generators si for i ∈ I . We denote the corresponding generating set
for BQ′ by ti , i ∈ I . Let FQ be the free group on the generators si for i ∈ I .

Definition 2.8. Let ϕk : FQ → BQ′ be the group homomorphism defined by

ϕk(si ) =

{
tkti t

−1
k if i → k in Q;

ti otherwise.

Proposition 2.9. The group homomorphism ϕk induces a group homomorphism (which we also
denote by ϕk) from BQ to BQ′ .

Proof: Let us write s̃i = ϕk(si ). We must show that the elements s̃i in BQ′ satisfy the defining
relations of BQ . Note that the ti satisfy the defining relations for BQ′ .

Firstly, we check the relations (ii) for an arrow incident with k. Suppose that there is an arrow i → k .
We have the following, using the fact that ti tkti = tkti tk :

s̃i s̃k s̃i = tkti tkti t
−1
k

= t2
k ti tkt−1

k = t2
k ti .

Also,
s̃k s̃i s̃k = t2

k tkti t
−1
k tk = t2

k ti .

So
s̃i s̃k s̃i = s̃k s̃i s̃k ,

as required.
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If there is an arrow i ← k , then we have

s̃i s̃k s̃i = ti tkti = tkti tk = s̃k s̃i s̃k .

Next, we consider relations (i) and (ii) for all other arrows in Q. Relations of this kind involving
pairs of vertices which are not neighbours of k follow immediately from the corresponding relations
in BQ . If only one of the vertices in the relation is a neighbour of k, the relation again follows
immediately since tk commutes with any generator corresponding to a vertex not incident with k in
Q ′ (equivalently, in Q). So we only need to consider the case where both of the vertices in the pair
is incident with k and we can use Lemma 2.6.

Going in either direction in part (a) of Lemma 2.6, the relation s̃i s̃j = s̃j s̃i follows from the relation
ti tj = tj ti in BQ′ , so we consider part (b), firstly from left to right. The cycle in Q ′ gives the relation
tkti = tj tkti tj t

−1
k t−1

j . Also applying the relation t−1
k t−1

j t−1
k = t−1

j t−1
k t−1

j , we obtain

s̃i s̃j = tkti t
−1
k tj

= tj tkti tj t
−1
k t−1

j t−1
k tj

= tj tkti t
−1
k = s̃j s̃i .

Going from right to left in part (b), we have, using tj tktj = tktj tk , ti tj = tj ti and ti tkti = tkti tk ,

s̃j s̃i s̃j = tktj t
−1
k ti tktj t

−1
k

= t−1
j tktj ti t

−1
j tktj

= t−1
j tkti tktj

= t−1
j ti tkti tj

= ti t
−1
j tktj ti

= ti tktj t
−1
k ti

= s̃i s̃j s̃i .

Next, we have to check that the s̃i satisfy the relations of type (iii) for Q, so we need to consider
each the types of cycle described in Lemma 2.7. By Lemma 2.4, it is enough to check that, for any
given cycle in Q, one of the relations in (iii) holds.

For part (a), we have

s̃k s̃i s̃j s̃k = tkti tktj t
−1
k tk

= tkti tktj ,

while

s̃i s̃j s̃k s̃i = ti tktj t
−1
k tkti

= ti tktj ti

= ti tkti tj ,

which is equal to s̃k s̃i s̃j s̃k as required.
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For part (b) we have, applying a relation for the cycle in Q ′ in the fourth step:

s̃i1 s̃i2 · · · s̃ir s̃i1 s̃i2 · · · s̃ir−2 = tkti1 t−1
k ti2 · · · tir tkti1 t−1

k ti2 · · · tir−2

= t−1
i1

tkti1 ti2 · · · tir tkti1 t−1
k ti2 · · · tir−2

= t−1
i1

tkti1 ti2 · · · tir tkti1 ti2 · · · tir−2 t−1
k

= t−1
i1

ti1 ti2 · · · tir tkti1 ti2 · · · tir−2 tir−1 t−1
k

= ti2 · · · tir tkti1 t−1
k ti2 · · · tir−2 tir−1

= s̃i2 · · · s̃ir s̃i1 s̃i2 · · · s̃ir−2 s̃ir−1 .

For part (c), we have, applying a relation for the cycle in Q ′ in the fourth step:

s̃i1 s̃i2 · · · s̃ir−1 s̃ir s̃k s̃i1 · · · s̃ir−1 = ti1 ti2 · · · tir−1 tktir t
−1
k tkti1 · · · tir−1

= ti1 ti2 · · · tir−1 tktir ti1 · · · tir−1

= ti1 tkti2 · · · tir−1 tir ti1 · · · tir−1

= ti1 tkti1 ti2 · · · tir−1 tir ti1 · · · tir−2

= tkti1 tkti2 · · · tir−1 tir ti1 · · · tir−2

= tkti1 ti2 · · · tir−1 tktir t
−1
k tkti1 · · · tir−2

= s̃k s̃i1 s̃i2 · · · s̃ir−1 s̃ir s̃k s̃i1 · · · s̃ir−2 ,

and we are done. 2

Theorem 2.10. ϕk : BQ → BQ′ is a group isomorphism.

Proof: As mutation is an involution, we can consider the composition

ϕk : BQ
ϕk→ BQ′

ϕk→ BQ .

Fix some i ∈ I . Note that mutation at k does not change whether i and k are connected in the
quiver: it just swaps the direction of any arrow that may exist between i and k. So if we have i → k
then si 7→ tkti t

−1
k 7→ sksi s

−1
k . If we have i ← k then si 7→ ti 7→ sksi s

−1
k . And if there is no arrow

between i and k then si 7→ ti 7→ si . But in this case si and sk commute, so si = sksi s
−1
k . Hence

in every case ϕk(si ) = sksi s
−1
k , so ϕk is just a conjugation map and therefore ϕk : BQ → BQ′ is an

isomorphism. 2

Remark 2.11. The inverse of ϕk is the group isomorphism ϕ−1
k : BQ′

∼→ BQ defined by

ϕ−1
k (ti ) =

{
s−1
k si sk if i → k in Q;

si otherwise.

Noting Remark 2.3, we have the following:

Theorem 2.12. If Q is a mutation-Dynkin quiver of type ∆ then BQ
∼= B∆.

3 Topological interpretation of the generators

3.1 Braid groups

In this section we consider quivers Q which are mutation-equivalent to an orientation of the Dynkin
diagram of type ∆, where ∆ = An or Dn. By Theorem 2.12, BQ is isomorphic to the Artin braid

10



group B∆ of the same Dynkin type. In other words, BQ gives a presentation of B∆. In this section
we give a geometric interpretation of this presentation.

We associate an oriented Riemann surface S (with boundary) together with marked points M to ∆, as
follows. If ∆ = An, we take S to be a disk with n−3 marked points on its boundary, as in [FZ1, FZ2].
If ∆ = Dn, we take S to be a disk with one marked point in its interior and n marked points on
its boundary, as in [FoSTh, Sch]. In each case, it was shown that every quiver of the corresponding
mutation type arises from a triangulation of (S , M) (tagged, in the type Dn case) in the following
way. We follow [FoSTh], in a generality great enough to cover both cases (noting that there is at
most one interior marked point).

A (simple) arc in (S , M) is a curve in S (considered up to isotopy) whose endpoints are marked
points in M and which does not have any self-crossing points, except possibly at its endpoints. Apart
from these endpoints, it must be disjoint from M and the boundary of S , and it must not cut out an
unpunctured one- or two-sided polygon.

Two arcs are said to be compatible if they are non-crossing in the interior of S . A maximal set of
compatible arcs is a triangulation.

A tagged arc in (S , M) is an arc which does not cut out a once-punctured monogon; each of its ends
is tagged, either plain or notched. Plain tags are omitted, while notched tags are displayed using
the bow-tie symbol ./. An end incident with a boundary marked point is always tagged plain. Two
tagged arcs α,β are compatible if

(i) the untagged arcs underlying α and β are compatible, and

(ii) if the untagged versions of α and β are different but share an endpoint, then the corresponding
ends of α and β are tagged in the same way.

A tagged triangulation T of (S , M) is a maximal collection of tagged arcs in (S , M). Note that if
none of the marked points in M lies in the interior of S , every end of an arc in a tagged triangulation
must be tagged plain, and tagged triangulations of S can be identified with triangulations of S .

The set M of marked points divides the boundary components of (S , M) into connected components,
which we call boundary arcs. Note that the boundary arcs do not lie in a triangulation or tagged
triangulation of (S , M), by definition.

The tagged triangulation T can be built up by gluing together puzzle pieces of the two types shown
in Figure 2 (see [FoSTh, Rk. 4.2]) by gluing together along boundary arcs. Note that the puzzle piece
of type II can only occur in the type Dn case, and then it occurs exactly once.

If α is an arc in a tagged triangulation T , then the flip of T at α is the unique tagged triangulation
containing T \ {α} but not containing α. By [FoSTh], the set of tagged triangulations of (S , M) is
connected under flips.

The quiver QT of a tagged triangulation T has vertices corresponding to the arcs in T . The quiver
is built up by associating a quiver to each puzzle piece; see Figure 2. If a boundary arc in the puzzle
piece is also a boundary arc of (S , M), then the corresponding vertex in the quiver is omitted, together
with all incident arrows. The quivers are then glued together by identifying vertices whenever the
corresponding edges are glued together in the puzzle pieces.

In order to discuss braid groups, we need to consider more general curves in (S , M). We define a
path in (S , M) to be a (possibly non-simple) curve whose endpoints lie in S (not necessarily in M).

11
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Definition 3.1. Let T be a tagged triangulation of (S , M). We associate a graph to T , which we
call the braid graph GT of T , as follows. The vertices VT of GT are in bijection with the connected
components of the complement of T in (S , M) and, whenever two such connected components have
a common tagged arc on their boundaries, there is an edge in GT between the corresponding vertices.
Thus the edges in GT are in bijection with the arcs in T .

We choose an embedding ι of GT into (S , M), mapping each vertex to an interior point of the
corresponding connected component of the complement of T in (S , M) and each edge to a path
between the images of its endpoints transverse to the corresponding edge in T . We identify GT with
its image under ι.

Note that in the type A case the braid graph is the tree from Section 3.1 of [CCS].

We associate an orbifold X to S as follows. In the type An case, we just take X = S , and in the
type Dn case we take X to be S with the interior marked point of S interpreted as a cone point of
order two. In each case, the set M of marked points induces a corresponding set of marked points
in X , which we also denote by M. Each arc or tagged arc α in (S , M) induces a corresponding arc
or tagged arc in (X , M) which we also denote by α. Thus each (tagged) triangulation T of (S , M)
induces a corresponding set T of (tagged) arcs in (X , M).

Note also that orbifolds have been used to model cluster algebras in [FeSTu]. In this approach, the
model for Bn is an orbifold with a cone point of order 2, regarded as a folding of Dn, where Dn is
modelled by a disk with a single interior marked point (see also Lecture 15 of [Thu], which was given
by A. Felikson).

We denote by X ◦ the orbifold X with the cone point (if there is one) removed (so X ◦ = X in type
An). Given any set V of vertices in X ◦, we may consider the corresponding braid group, Γ(X , V )
as defined in [All]. Each element of Γ(X , V ) (or braid) can be regarded as a permutation g of V
together with a tuple γ = (γv )v∈V of paths γv : [0, 1]→ X ◦ such that γv (0) = v and γv (1) = g(v)
for each v ∈ V . In addition, for each t ∈ [0, 1], the points γv (t) for v ∈ V must all be distinct for

12
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Figure 3: Thickening of the path π (π is the middle path)

π

π

Figure 4: The braid σπ

all v ∈ V . Braids are considered up to isotopy, and two braids can be multiplied by composing the
paths in a natural way; we compose braids from right to left, as for functions.

Remark 3.2. Suppose V and V ′ are two sets of points in X ◦ and there is a bijection ρ : V → V ′.
Suppose also that there is a set of paths δv : [0, 1]→ X ◦, for v ∈ V , with δv (0) = v and δv (1) = ρ(v)
for all v ∈ V . Suppose furthermore that that the points γv (t) for v ∈ V and t ∈ [0, 1] are all distinct.
Then the maps δv induce a natural isomorphism between Γ(X , V ) and Γ(X , V ′).

Definition 3.3. Each path π in X ◦ with endpoints v1, v2 in V determines a braid σπ in Γ(X , V ) as
follows (see [FN, §7]). We thicken the path π along its length (avoiding the other vertices), closing
it off at the end points to form a (topological) disk. We give the boundary of the disk the clockwise
orientation. The vertices v1 and v2 divide the boundary of the disk into two paths, one from v1 to v2

and the other from v2 to v1. We define γv1 to be the former and γv2 to be the latter. See Figure 3.
For v ∈ V such that v 6= v1, v2, we define γv (t) to be v for all t ∈ [0, 1]. Then σπ is the braid
(γv )v∈V . Note that σπ only depends on the isotopy class of the image of π in (X , V ). In particular,
it is unchanged if π is reversed.

An example of a braid σπ is displayed as a picture (in the same way as in [All]) in Figure 4. In this
figure only, we display π as a dashed line to distinguish it from the braid σπ.

3.2 Interpretation of the generators

Let T be a triangulation of (S , M). Let QT be the quiver of T . Then QT has vertices I corresponding
to the arcs in T . We denote the arc in T associated to i ∈ I by αi . The corresponding edge in GT is
denoted πi . Let σi = σπi ∈ Γ(X , VT ) be the corresponding braid. We define HT to be the subgroup
of Γ(X , VT0 ) generated by the braids σi for i ∈ I .

Let T0 be an initial triangulation of (S , M) defined as follows. In the type An case, we choose a
marked point P in M and take noncrossing arcs between P and each of the other marked points in
M not incident with a boundary arc incident with P. In the type Dn case, we choose two marked
points P, Q on the boundary of S . We take two arcs between the interior marked point and Q, one
tagged plain at the interior marked point and the other one tagged notched, and an arc between P

13
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Figure 5: Initial triangulations and the corresponding braid graphs and quivers

and Q (not homotopic to a boundary arc). We then take (noncrossing) arcs between P and every
other marked point in M on the boundary of S not incident with a boundary arc incident with P.
See Figure 5. Then the quiver QT0 associated to QT0 is a Dynkin quiver of type ∆. By Remark 2.3,
BQT0

is isomorphic to the Artin braid group of type ∆.

Proposition 3.4. Let T0 be the triangulation of (X , M) defined as above. Then there is an isomor-
phism from HT0 to BQT0

taking the braid σi to the generator si of BQT0
. Furthermore, in type An,

HT0 coincides with Γ(X , VT0 ), while in type Dn, HT0 is a subgroup of Γ(X , VT0 ) of index two.

Proof: For type An, see [FN] and the explanation in [All, §4]. For type Dn, note that the elements
σi for i ∈ I coincide with the generators hi defined in [All, §1] (via an isomorphism of the kind in
Remark 3.2). The result then follows from [All, Thm. 1]. 2

The following lemma appears in [Ser, Théorème, part (iv)].

Lemma 3.5. Let A, B, C be three distinct points in X ◦ and suppose there is a topological disk in
X ◦, with A, B and C lying in order clockwise around its boundary. Let AB denote the arc on this
boundary between A and B. We define BC and CA similarly. Then σABσBC = σBCσCA.

Theorem 3.6. Let T be an arbitrary tagged triangulation of (X , M). Then there is an isomorphism
from HT to BQT taking the braid σi to the generator si of BQT . Furthermore, in type An, HT
coincides with Γ(X , V ), while in type Dn, HT is a subgroup of Γ(X , V ) of index two.

Proof: The result holds for T = T0 by Proposition 3.4. Note that any triangulation can be obtained
from T0 by applying a finite number of flips of tagged triangulations. We show that the theorem is
true for an arbitrary tagged triangulation T by induction on the number of flips required to obtain T
from T0. To do this, it is enough to show that if the theorem holds for a tagged triangulation T and
αi is a tagged arc in T then the theorem also holds for the flip of T at αi .
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Figure 6: Flip involving an arc (α1) where two puzzle pieces of type I are glued

So we assume the result holds for a tagged triangulation T . Thus there is an isomorphism ψT :
HT → BQT sending σi to si . We denote the corresponding elements of HT ′ by τi and ti . The tagged
arcs in T are denoted by αi , for i ∈ I , and we denote the corresponding tagged arcs in T ′ by βi , for
i ∈ I . The edges of GT are denote πi , and we denote the edges of GT ′ by ρi .

We define:

τ̃i =

{
σ−1
k σiσk , if i → k in Q;

σi , otherwise.

Then it is easy to see that HT is generated by the τ̃i for i ∈ I .

We consider the possible types of flip that can occur, which are determined by the fact that T can
be constructed out of puzzle pieces. Suppose first that T ′ is the flip of T at an arc α where two
puzzle pieces of type (I) are glued together. We label the corresponding vertices in I by 1, 2, 3, 4, 5,
for simplicity, and suppose we are flipping at the edge in T dual to α1. The braid graph local to the
flip is shown in the left hand diagram in Figure 6. Applying Lemma 3.5, we see that the middle figure
shows paths π̃i with the property that τ̃i = σπ̃i

for i = 1, 2, 3, 4, 5.

Rotating vertices A and B clockwise, to get the right hand diagram in Figure 6, we obtain, via
Remark 3.2, an isomorphism from HT to HT ′ taking τ̃i to τi for all i ∈ I . The inverse is an
isomorphism from HT ′ to HT taking τi to σ−1

k σiσk if there is an arrow i → k in Q and to σi otherwise.
Composing with the isomorphism ϕk ◦ψT , where ϕk is the isomorphism in Proposition 2.9, we obtain
an isomorphism from HT ′ to BQT ′ taking τi to ti as required. This proves the required result in type
A, so we are left with the type D case, where puzzle pieces of type II may occur.

We next consider a flip inside a puzzle piece of type II. We can apply essentially the same argument: see
Figures 7 and 8. Here we draw the puzzle piece together with the two adjacent triangles, necessarily
of type I (since there is only one cone point). We use the fact that in the right hand diagram of
Figure 8, the resulting path π̃1 is isotopic to the path ρ1 in GT ′ , using the fact that the cone point
has order two.
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Figure 9: Flip involving an arc (α3) where puzzle pieces of type I and II are glued, first case

Note that the adjoining type I puzzle pieces (in Figures 7 and 8) may not occur, but the argument is
easily modified to cover these cases. We also need to consider the flips from the right hand diagram
in each case to the corresponding left hand one. We omit the details: a similar argument can be
applied in these cases.

Finally, we need to consider a flip involving an arc where a puzzle piece of type I and a puzzle piece
of type II have been glued together. These cases are shown in Figures 9 and 10: Figure 9 illustrates
the case where the puzzle piece of type I is on the left of the puzzle piece of type II (when it is drawn
as shown), while Figure 10 illustrates the case where it is on the right. Again, a similar argument
applies in the case of flips from the right hand diagram to the left hand one in these cases. 2

4 Actions on categories

4.1 Quivers with potential

Fix an algebraically closed field F. To any quiver Q we can associate the path algebra FQ, which,
as an F-vector space, has basis given by all paths in Q of length ≥ 0, and the multiplication of two
paths p1 and p2 is their concatenation p1p2 if p1 ends and p2 starts at the same vertex, and is zero
otherwise.

Let FQ≥n be the ideal of FQ generated by the paths in Q of length at least n. We can take the

completion F̂Q of FQ with respect to FQ≥1, which is defined as follows:

F̂Q = lim←−
n

FQ

FQ≥n
= {(an + FQ≥n)∞n=1 | an ∈ FQ,ϕn(an + FQ≥n) = an−1 + FQ≥n−1}

where the limit is taken along the chain of epimorphisms

FQ

FQ≥1

�
ϕ2

FQ

FQ≥2

�
ϕ3

FQ

FQ≥3

� · · ·
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Figure 10: Flip involving an arc (α4) where puzzle pieces of type I and II are glued, second case

Let F̂Qcyc denote the subspace of (possibly infinite) linear combinations of cycles in Q. Recall that a

potential for a quiver Q is an element W of F̂Qcyc, regarded up to cyclic equivalence (and for which
no two cyclically equivalent paths in Q occur in the decomposition of W ). The pair (Q, W ) is called
a quiver with potential [DWZ], which we occasionally abbreviate to QP. The following definition is
[DWZ, Definition 4.2].

Definition 4.1 (Derksen-Weyman-Zelevinsky). Let Q1 and Q2 be two quivers with the same vertex
set I and (Q1, W1) and (Q2, W2) be two QPs. A right equivalence between (Q1, W1) and (Q2, W2)

is an algebra isomorphism ϕ : F̂Q1 → F̂Q2 such that ϕ(W1) is cyclically equivalent to W2 and ϕ is

the identity when restricted to the semisimple subalgebra FI of F̂Q1.

A quiver with potential (Q, W ) with W containing paths of length two or more is trivial if Q is a

disjoint union of 2-cycles and there is an algebra automorphism of k̂Q preserving the span of the
arrows of Q (a change of arrows) which takes W to the sum of the 2-cycles in Q. A quiver with
potential (Q, W ) is said to be reduced if W is a linear combination of cycles in Q of length 3 or
more.

The splitting theorem [DWZ, Thm. 4.6] states that every quiver with potential can be written as a
direct sum of a reduced quiver with potential and a trivial quiver with potential which are unique up
to right equivalence.

Let (Q, W ) be a quiver with potential, and let k be a vertex of Q not involved in any 2-cycles. By
replacing W with a cyclically equivalent potential on Q if necessary, we can assume that none of
the cycles in the decomposition of W start or end at k. We denote by µ̃k(Q, W ) the non-reduced
mutation of (Q, W ) at k in Q, as defined in [DWZ, §5]. Then the right equivalence class of µ̃k(Q, W )
is determined by the right equivalence class of (Q, W ) by [DWZ, Thm. 5.2]. The mutation µk(Q, W )
of (Q, W ) at k is then defined to be the reduced component of µ̃k(Q, W ), and is uniquely determined
up to right equivalence, given the right equivalence class of (Q, W ).

As before, we will say that a quiver with potential (Q, W ) is Dynkin if the underlying unoriented
graph of Q is an orientation of a Dynkin quiver (and hence W = 0). We shall say that a quiver with
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potential (Q ′, W ′) is mutation-Dynkin if it can be obtained by repeatedly mutating a Dynkin quiver
with potential in the above sense. For the rest of Section 4.1 we will restrict to Dynkin types A and
D.

Let (S , M) be the Riemann surface with marked points associated to ∆ as in Section 3. So, if
∆ = An, we take S to be a disk with n − 3 points on its boundary, and if ∆ = Dn, we take S to be
a disk with one marked point in its interior and n marked points on its boundary.

Let Q be a mutation-Dynkin quiver. By [FoSTh], Q = QT for some tagged triangulation T of (S , M).
Let W , W ′ be the sum of the terms coming from local configurations in T as shown in Figure 11
(where in (c) and (d) there are at least three arcs incident with the interior marked point).

Then WT is the potential given by taking the sum of the induced cycles in QT (i.e. induced subgraphs
of QT which are cycles), and W ′

T is the potential associated to T in [LF12, §3], taking the parameter
associated to the internal marked point (if there is one) to be equal to −1. Then we have the
following:

Lemma 4.2. The potentials WT and W ′
T are right equivalent.

Proof: We assume we are in case Dn, since the two potentials coincide in case An. If the interior
marked point is as in case (c) of Figure 11 (with at least 3 arcs incident with it), then there is a
unique triangle in T with sides 1 and 2. We label the arrows in the corresponding 3-cycle in WT or

W ′
T by a, x , y , in order around the cycle. Then the automorphism ϕ of k̂QT negating a and x and

taking each other arrow to itself gives a right equivalence between WT and W ′
T , since a and x are

not involved in any other terms in any of these potentials.

If the interior marked point is as in case (d), then WT and W ′
T coincide. 2

We recall the following special case of [LF12, Thm. 8.1].

Theorem 4.3. [LF12] Let T , T ′ be triangulations of (S , M). If T ′ is obtained from T by flipping at
an arc αk then µk(QT , W ′

T ) is right equivalent to (QT ′ , W ′
T ′).

By [DWZ, Thm. 7.1], it follows from this that the quiver of µk(QT , WT ) coincides with the quiver
obtained from QT by Fomin-Zelevinsky quiver mutation at k.

Hence we can effectively ignore potentials:

Proposition 4.4. Any mutation-Dynkin quiver with potential (Q̃, W̃ ) of type A or D is right equiv-

alent to (Q̃, WQ̃), where WQ̃ is the sum of all chordless cycles in Q̃.

Proof: Note that a Dynkin quiver with zero potential is of the form (QT , WT ) for some triangulation

T (see [FoSTh]). Suppose that (Q̃, W̃ ) is obtained from a Dynkin quiver with zero potential by

iterated mutation in the sense of [DWZ]. Then, by Theorem 4.3 and Lemma 4.2, (Q̃, W̃ ) is right
equivalent to (QT , WT ) for some triangulation T of (S , M). 2

Note that an alternative proof of Proposition 4.4 would be to compute the mutation of a quiver with
potential (QT , W ′

T ) directly, and show that it is right equivalent to (QT ′ , W ′
T ′). This is not too

difficult to do, but requires consideration of several cases and still requires arguments dealing with
changes of sign as in Lemma 4.2, so we instead refer to [LF12] above.
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4.2 Differential graded algebras and modules

Let F be an algebraically closed field. We think of F as a graded F-algebra concentrated in degree
0. If V =

⊕
Vi is a graded F-module then let V [j ] be the graded F-module with (V [j ])i = Vi+j .

If f : V → W is a map of graded vector spaces with homogeneous components fi : Vi → Wi

then let f [j ] : V [j ] → W [j ] be the map of graded vector spaces with homogeneous components
f [j ]i : V [j ]i → W [j ]i defined by f [j ]i (v) = (−1)j fi+j(v) for v ∈ V [j ]i = Vi+j . Thus [1] is an
endofunctor of the category of graded F-modules, called the shift functor.

We say that a map f : V → W of graded vector spaces has degree i to mean that f is a map
V → W [i ]. We use the Koszul sign rule for graded F-algebras, so if f : V → V ′ and g : W → W ′

are maps of graded F-modules of degree m and n then

(f ⊗ g)(v ⊗ w) = (−1)inf (v)⊗ g(w)

for v ∈ Vi and w ∈W .

A unital differential graded algebra (or dg-algebra, or dga) over F is a graded F-algebra A =
⊕

i∈Z Ai

with multiplication m : A ⊗F A → A of degree 0 together with a unit ι : F ↪→ A and an F-linear
differential d : A→ A of degree +1. These should satisfy the following relations:

• the associativity relation m ◦ (1⊗m) = m ◦ (m ⊗ 1);

• the boundary relation d2 = 0;

• the Leibniz relation d ◦m = m ◦ (1⊗ d + d ⊗ 1);

• the unital relation m◦ (idA⊗ ι) = m◦ (ι⊗ idA), which should agree with the F-algebra structure
of A.

We often denote our dga by (A, d), or simply by A. Each dga (A, d) has an underlying unital graded
algebra, obtained by simply forgetting the differential, which we denote u(A).

A left module M for A is a graded left F-module M with a left action mM : A ⊗M → M of u(A)
together with a map dM : M → M of degree +1, called a differential, such that

dM ◦mM = mM ◦ (1⊗ dM + d ⊗ 1).

We always have the regular module M = A with dM = d and mM = m. Similarly, a right module
M for A is a graded right F-module M with a right action mM : M ⊗ A → M of u(A) together
with a differential dM such that dM ◦ mM = mM ◦ (1 ⊗ d + dM ⊗ 1). If (M, dM) is an A-module,
then (M[1], dM [1]) is also an A-module, which we sometimes just write as M[1]. Modules for A are
modules for u(A), simply by forgetting the differential.

A map f : M → N of left A-modules is a degree 0 map of u(A)-modules such that f commutes with
the differentials: dN ◦ f = f ◦dM . We thus obtain a category A -Mod of left A-modules, and we write
the morphism spaces in this category as HomA -Mod(M, N). A -Mod is an F-category: each morphism
space is an F-module.

Given two differential algebras (A, dA) and (B, dB), an A-B-bimodule (M, dM) is a graded F-module
which is a left (A, dA)-module with left action m` and a right (B, dB)-module with right action mr

where the two actions commute: mr ◦ (m` ⊗ idB) = m` ◦ (idA ⊗mr ). We will always assume that F
acts centrally. Under this assumption we can, and will, identify left A-modules with A-k-bimodules

21



and A-B-bimodules with left A⊗F Bop-modules, where Bop denotes the algebra B with the order of
multiplication reversed. A map of bimodules should commute with the differential on both the left
and the right, and we obtain an F-category A -Mod- B of A-B-bimodules.

Given a map f : M → N of left A-modules, we can construct a new left A-module called the cone
of f , denoted cone(f ). As a left module for u(A), we have cone(f ) = N ⊕M[1]. The differential is
given by: (

dN 0
f [1] dM[1]

)
.

If L is isomorphic to cone(f ) for some map f : M → N, we say that L is an extension of M by L[−1].

We will use the following lemma, whose proof follows immediately from the definitions, repeatedly.

Lemma 4.5. Let f : M → N be a map in A -Mod.

(i) Let F : A -Mod→ B -Mod be an additive functor which commutes with the shift functor. Then
we have an isomorphism cone(Ff ) ∼= F cone(f ) in B -Mod.

(ii) For any commutative diagram

M
f //

ϕM∼
��

N

ϕN∼
��

M ′
f ′ // N ′

in A -Mod where both ϕM and ϕN are isomorphisms, we have an isomorphism ϕN ⊕ ϕM [1] :
cone(f )→ cone(f ′) of A-modules.

Let (A, dA), (B, dB), and (C , dC ) be dgas. If (M, dM) is an A-B-bimodule and (N, dN) is an A-C -
bimodule then let Homi

A(M, N) be the space of all graded left u(A)-module maps f : M → N of
degree i . Note that we do not require that these maps commute with the differential. We define
HomA(M, N) =

⊕
i∈Z Homi

A(M, N), and this is a graded u(B)-u(C )-bimodule. We also have a
version for right modules, which we write as HomAop (M, N).

Note the distinction between HomA(M, N) and the hom spaces in the category A -Mod. With the
differential d(f ) = dN ◦f −(−1)i f ◦dM for f ∈ Homi

A(M, N), HomA(M, N) becomes a B-C -bimodule.
Similarly, if (M, dM) is an B-A-bimodule and (N, dN) is a C -A-bimodule, HomAop (M, N) is a C -B-
bimodule. HomA(−,−) is the internal hom in the bimodule category, and we can recover the hom
spaces in A -Mod as the 0-cycles of HomA(M, N).

If (M, dM) is an A-B-bimodule and (N, dN) is a B-C -bimodule then let M ⊗B N denote the space
M ⊗u(B) N. It is a graded u(A)-u(C )-bimodule: if m ∈ Mi and n ∈ Nj then m ⊗ n has degree i + j .
With the differential dM ⊗ idN + idM ⊗ dN , it becomes an A-C -bimodule.

For an A-B-bimodule (M, dM), we thus have functors M⊗B− : B -Mod→ A -Mod and HomA(M,−) :
A -Mod→ B -Mod. The functor M⊗B− is left adjoint to HomA(M,−). For (N, dN) a left A-module,
the counit evN : M ⊗B HomA(M, N) → N of the adjunction is the evaluation map, which acts as

x ⊗ f 7→ (−1)ij f (m) for x ∈ Mi and f ∈ Homj
A(M, N).

4.3 Derived categories

Our references are [Kel94, Kel06].
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If A is a graded vector space and d is a differential, i.e., a degree +1 endomorphism of A which
satisfies d2 = 0, then the ith homology of A, denoted Hi (A), is the subquotient ker di/ im di−1,
where di : Ai → Ai+1 denotes the restriction of d to Ai . If (A, d) is a dga then the homology
H(A) =

⊕
Hi (A) is a graded algebra, and if M is a left A-module then H(M) =

⊕
Hi (M) is a left

H(A)-module. In fact, taking homology is a functor from the category of A-modules to the category
of graded H(A)-modules. We say that a left A-module M is acyclic if H(M) = 0, and that a map
f : M → N of A-modules is a quasi-isomorphism if H(f ) is an isomorphism.

The category up to homotopy of A -Mod, denoted K(A), is the F-category whose objects are all left
A-modules and whose morphism spaces, for M, N ∈ A -Mod, are HomK(A)(M, N) = H0 HomA(M, N).
The derived category of A, denoted D(A), is the F-category obtained by localizing K(A) at the full
subcategory of acyclic A-modules. As a map of modules is a quasi-isomorphism if and only if its
cone is acyclic, this is equivalent to localizing K(A) at the class of all quasi-isomorphisms. So we
have a canonical functor K(A)→ D(A), which we call the projection functor. The finite-dimensional
derived category, denoted Dfd(A), is the full subcategory of D(A) on objects with finite-dimensional
total homology, i.e., on A-modules M such that H(M) is a finite-dimensional F-vector space.

Let (A, dA) be a dga. We say that:

• P ∈ A -Mod is indecomposable projective if it is an indecomposable direct summand of the
regular module,

• P ∈ A -Mod is relatively projective if it is a direct sum of shifts of indecomposable projective
modules, and

• P ∈ A -Mod is cofibrant if, for each surjective quasi-isomorphism f : M → N, the map
HomA -Mod(P, f ) : HomA -Mod(P, M)→ HomA -Mod(P, N) is surjective.

The following result (see [Kel94, Section 3] and [KY, Proposition 2.13]) characterizes cofibrant mod-
ules.

Proposition 4.6 (Keller). An A-module P is cofibrant if and only if it is an iterated extension of a
relatively projective module by other relatively projective modules, possibly infinitely many times.

Let A -cofib denote the full subcategory of K(A) on the cofibrant objects. The projection functor
K(A) → D(A) induces an equivalence A -cofib

∼→ D(A). Each A-module M has a cofibrant replace-
ment, defined up to quasi-isomorphism and denoted p M, which can be realized as the image of M
under the left adjoint D(A)→ K(A) to the canonical projection functor [Kel06, Proposition 3.1].

Let (B, dB) be another dga and let F : A -Mod→ B -Mod be an additive functor. Then F preserves
chain homotopies, so induces a functor K(F ) : K(A)→ K(B). If K(F ) preserves quasi-isomorphisms
then, by the universal property of localization, it induces a functor D(F ) : D(A) → D(B). If P ∈
A -Mod- B is cofibrant as a left A-module then, by [Kel94, Theorem 3.1(a)] and [KY, Proposition
2.13], HomA(P,−) preserves acyclic modules, and so preserves quasi-isomorphisms. By imitating the
proof of [Kel94, Theorem 3.1(a)] we see that if P ∈ A -Mod- B is cofibrant as a right B-module
then P ⊗B − also preserves acyclic modules. We often write P ⊗B − and HomA(P,−), instead of
D(P ⊗B −) and D(HomA(P,−)), for the induced functors D(B)→ D(A) and D(A)→ D(B).

For an arbitrary M ∈ A -Mod- B, we can obtain a functor M ⊗L
B − : D(B) → D(A), known as the

left derived functor of M ⊗B −, by composing the cofibrant replacement functor D(B)→ K(B), the
tensor functor K(M ⊗B −) : K(B) → K(A), and the projection functor K(A) → D(B). By [Kel94,
Lemma 6.3(a)], we have an isomorphism M ⊗L

B N ∼= p M ⊗B N for all N ∈ D(B). The following
basic, but useful, lemma says that this isomorphism is natural.
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Lemma 4.7. Let M ∈ Mod- B.

(i) We have a natural isomorphism of functors p M ⊗B − ∼= M ⊗L
B −.

(ii) If M is cofibrant then we have a natural isomorphism of functors M ⊗B − ∼= M ⊗L
B −.

Proof:

(i) We need to show that for each N ∈ B -Mod there is a quasi-isomorphism ϕN : p M ⊗B N →
M ⊗B p N such that, for all maps f : N → N ′, the diagram

p M ⊗B N
ϕN //

p M⊗f
��

M ⊗B p N

M⊗p f

��
p M ⊗B N ′

ϕN′ // M ⊗B p N ′

commutes. Consider the following diagram:

p M ⊗B p N

p M⊗πN

��

πM⊗p N

��

p M ⊗B p N ′

p M⊗πN′

��

πM⊗p N′

��

p M ⊗B N
ϕN //________

p M⊗f

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY M ⊗B p N

M⊗p f

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

p M ⊗B N ′
ϕN′ //________ M ⊗B p N ′

As p M and p N are cofibrant and πM and πN are quasi-isomorphisms, both p M ⊗ πN and
πM ⊗ p N are quasi-isomorphisms, so we can define ϕN = (πM ⊗ p N) ◦ (p M ⊗ πN)−1 and it
is a quasi-isomorphism. Then to check naturality we need to show that

(M ⊗ p f ) ◦ (πM ⊗ p N) ◦ (p M ⊗ πN)−1 = (πM ⊗ p N ′) ◦ (p M ⊗ πN′)−1 ◦ (p M ⊗ f ).

By the bifunctoriality of the tensor product, the left hand side is equal to

(πM ⊗ p N ′) ◦ (p M ⊗ p f ) ◦ (p M ⊗ πN)−1

so we just need to show that
p f ◦ π−1

N = π−1
N′ ◦ f

but this follows from the functoriality f ◦ πN = πN′ ◦ p f of the cofibrant replacement functor
p.

(ii) We just need to show that, for M cofibrant, there is a natural isomorphism M⊗B− ∼= p M⊗B−,
and then the result will follow by part (i) of the lemma. This follows because πM : p M → M
is a quasi-isomorphism and by the bifunctoriality of the tensor product.

2
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If the functor M ⊗L
B − is an equivalence D(B)

∼→ D(A), we say that M is a tilting module.

We say that a module M is of finite projective dimension if its cofibrant replacement is an iterated
extension of finitely many shifted indecomposable projective modules.

The following basic lemma will also be useful. It can be found as [Kel94, Lemma 6.2(a)]. We include
a proof for the convenience of the reader.

Lemma 4.8. Let M be a left A-module of finite projective dimension and let P be its cofibrant
replacement. Then we have a natural isomorphism of functors

HomA(P, A)⊗A −
∼→ HomA(P,−) : A -Mod→ F -Mod .

Proof: First note that, for any P ∈ A -Mod, we always have a natural transformation

HomA(P, A)⊗A − → HomA(P,−)

obtained by staring with the map

ev⊗1 : (P ⊗F HomA(P, A))⊗A M → A⊗A M,

using the associativity isomorphism to obtain a map

P ⊗F (HomA(P, A)⊗A M)→ A⊗A M,

using the adjunction

HomF(HomA(P, A)⊗A M, HomA(P, A⊗A M)) ∼= HomA(P ⊗F (HomA(P, A)⊗A M) , A⊗A M),

and finally using the natural isomorphism A⊗A M ∼= M.

To show that our natural transformation is an isomorphism, we use induction on the number of times
we need to extend a summand of the regular module to obtain P. We handle the base case as follows:
the natural transformation is certainly an isomorphism when P is the regular module and so, as hom
functors commute with finite direct sums, it is an isomorphism for all summands of the regular module.
For our inductive step, suppose the lemma holds for P1 and P2, and let P = cone(f ) for some map
f : P1 → P2. Then, for M ∈ A -Mod, one can check that the map HomA(P, A)⊗AM → HomA(P, M)
comes from the commutative diagram

HomA(P1, A)⊗A M

��

HomA(P2, A)⊗A M
Hom(f ,A)⊗Moo

��
HomA(P1, M) HomA(P2, M)

Hom(f ,M)oo

as in the construction from the second half of Lemma 4.5, where the vertical maps come from
the natural transformation described above. Therefore, as both vertical maps are isomorphisms by
induction, HomA(P, A)⊗A M → HomA(P, M) is an isomorphism. 2

4.4 Spherical twists

Our references are [ST, RZ, Gra1].

Let (A, d) be a dga and M be a left A-module with finite dimensional total homology. Let d ∈ Z.
Following [ST], we say that M is d-spherical if:
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• M is a d-Calabi-Yau object, i.e., we have an isomorphism

HomDfd(A)(M, N) ∼= HomDfd(A)(N, M[d ])∗

which is functorial in N, and

•
⊕

i∈Z HomDfd(A)(M, M[i ]) is isomorphic as a graded algebra to F[x ]/〈x2〉, with x in degree d .

Associated to any spherical object M, we have a spherical twist functor FM : Dfd(A)→ Dfd(A) which
is defined as follows. First, let P = p M be a cofibrant replacement of M. Then let XM be the cone
of the following map of A-A-bimodules:

P ⊗F HomA(P, A)
ev→ A

where the nonzero map is the obvious evaluation map. As both HomA(P, A) and A are cofibrant, XM

is cofibrant as a right A-module. Then we define the spherical twist at M by

FM = XM ⊗A − : Dfd(A)→ Dfd(A).

The spherical twist is an autoequivalence of Dfd(A) (so XM is a tilting module).

Note that, by Lemmas 4.5 and 4.8, if M has finite projective dimension then

FM(N) ∼= P ⊗F HomA(P, N)
ev→ N.

We will need a simple result on the commutation relation of spherical twists with derived equivalences.
It is a generalization of [ST, Lemma 2.11].

Proposition 4.9. Let A, B be dgas. Let T ∈ B -Mod- A be a tilting module and Φ = T ⊗L
A − :

Dfd(A) → Dfd(B) be the associated derived equivalence. Let M ∈ A -Mod have finite dimensional
total homology and suppose it is d-spherical, for some d ∈ Z. Suppose that Φ(M) ∈ B -Mod has
finite dimensional total homology. Then Φ(M) is also d-spherical and we have an isomorphism of
functors

Φ ◦ FM
∼= FΦ(M) ◦ Φ : Dfd(A)

∼→ Dfd(B).

In particular, we have an isomorphism

FΦ(M)
∼= Φ ◦ FM ◦ Φ−1 : Dfd(B)

∼→ Dfd(B)

where Φ−1 is the quasi-inverse functor of Φ.

Proof: As Φ : Dfd(A)→ Dfd(B) is a derived equivalence it has quasi-inverse Φ−1 : Dfd(B)→ Dfd(A),
and so we have isomorphisms

HomDfd(B)(Φ(M), Φ(M)[i ]) ∼= HomDfd(A)(M, M[i ])

and

HomDfd(B)(Φ(M), N) ∼= HomDfd(A)(M, Φ−1(N))

∼= HomDfd(A)(Φ−1(N), M[d ])∗

∼= HomDfd(B)(N, Φ(M)[d ])∗,

the second natural in N ∈ Dfd(B), using the facts that M is a d-Calabi-Yau object and the shift
functor [d ] commutes with all triangulated functors. Thus Φ(M) is d-spherical.
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By Lemma 4.7 we may assume that T is cofibrant as a right B-module and that Φ = T ⊗A −. We
want to show that T ⊗A XM ⊗A − ∼= XΦ(M) ⊗B T ⊗A −, so it is enough to check that we have an
isomorphism T ⊗A XM

∼= XΦ(M) ⊗B T in Dfd(B ⊗F Aop). To construct this isomorphism, we use the
following extension of Lemma 4.5, which follows from the triangulated 5-lemma: for any commutative
diagram

M
f //

ϕM∼
��

N

ϕN∼
��

M ′
f ′ // N ′

in B -Mod- A with ϕM and ϕN both quasi-isomorphisms, we have a quasi-isomorphism ϕN ⊕ ϕM[1] :
cone(f )→ cone(f ′).

As above, write P = p M. Then, by the first part of Lemma 4.5, we just need to find two vertical
maps which are quasi-isomorphisms and make the following diagram commute:

T ⊗A P ⊗F HomB(T ⊗A P, B)⊗B T
ev⊗1T //

∼
���
�
�

B ⊗B T

∼
���
�
�

T ⊗A P ⊗F HomA(P, A)
1T⊗ev // T ⊗A A

Our plan is to do this in stages: we will show that the vertical maps in the following diagram exist,
and are quasi-isomorphisms, and that the diagram commutes:

T ⊗A P ⊗F HomB(T ⊗A P, B)⊗B T
ev⊗1T //

∼
��

B ⊗B T

=

��
T ⊗A P ⊗F HomB(T ⊗A P, B ⊗B T )

ev //

∼
��

B ⊗B T

∼
��

T ⊗A P ⊗F HomB(T ⊗A P, T ⊗A A)
ev //

∼
��

T ⊗A A

=

��
T ⊗A P ⊗F HomA(P, A)

1T⊗ev // T ⊗A A

Let us show that the first square commutes. We’ll introduce some temporary notation for the rest
of this proof. Let F and G denote the functors F = T ⊗A P ⊗F − and G = HomB(T ⊗A P,−), so
F is left adjoint to G , and let H denote the functor −⊗B T . Then we have unit and counit natural
transformations ε : FG → 1 and η : 1→ GF , and a natural isomorphism ζ : HF

∼→ FH coming from
the associativity isomorphism for tensor products. We first need to define a map

HFGB = T ⊗A P ⊗F HomB(T ⊗A P, B)⊗B T → T ⊗A P ⊗F HomB(T ⊗A P, B ⊗B T ) = FGHB

We define this as the composite

HFGB
ζGB→ FHGB

FηHGB→ FGFHGB
FGζ−1GB→ FGHFGB

FGHεB→ FGHB.

One checks that this is an isomorphism using the same argument as in Lemma 4.8. To see that the

27



diagram commutes, we break it up into smaller diagrams as follows:

HFGB

∼ζGB

��

HεB // HB

FHGB
1 //

FηHGB

��

FHGB

∼

ζ−1GB %%JJJJJJJJJ

FGFHGB

∼FGζ−1GB
��

εFHGB

88rrrrrrrrrr
HFGB

HεB

CC����������������

FGHFGB
FGHεB //

εHFGB

44iiiiiiiiiiiiiiiii
FGHB

εHB

OO

Now we see that both squares commute by the naturality of ε, the triangle commutes by the triangle
identity εF ◦ Fη = 1F , and the pentagon commutes because the isomorphisms are defined by ζ and
its inverse.

To define the second square we use the obvious composite isomorphism B ⊗B T
∼→ T

∼→ T ⊗A A.
This commutes because the evaluation map is a counit, and therefore a natural transformation.

To show that the third square commutes, we introduce some more notation. Let F ′ and G ′ denote
the functors F ′ = P⊗F− and G ′ = HomA(P,−), so F ′ is left adjoint to G ′, and let H ′ and I ′ denote
the functors H ′ = T ⊗A − and I ′ = HomB(T ,−), so H ′ is left adjoint (in fact, quasi-inverse) to I ′.
We denote the counit and unit maps of the first adjunction by ε′ : F ′G ′ → 1 and η′ : 1→ G ′F ′, and
of the second adjunction by ε′′ : H ′I ′ → 1 and η′′ : 1 → I ′H ′. Note that, because H ′ induces an
equivalence of derived categories, ε′′ and η′′ give quasi-isomorphisms when applied to any object.

Using the associativity isomorphism for tensor products we have a natural isomorphism of functors
F ∼= H ′F ′, and by the uniqueness of right adjoints (or by using the tensor-hom adjunctions directly)
this gives us another natural isomorphism G ∼= G ′I ′.

We now redraw our final square, breaking it up into smaller diagrams:

FGH ′A
ε′
H′A //

∼
��

H ′A

H ′F ′G ′I ′H ′A
H′ε′

I ′H′A // H ′I ′H ′A

ε′′H′A

::ttttttttt

H ′F ′G ′A
H′ε′A //

H′F ′G ′η′′A

OO

H ′A
H′η′′A

ddJJJJJJJJJ

1

OO

Here, the top square commutes by definition of the isomorphisms F ∼= H ′F ′ and G ∼= G ′I ′, the
triangle commutes by the triangle identity ε′′H ′ ◦ H ′η′′ = 1H′ , and the bottom square commutes by
the naturality of ε′. 2

We now describe the braid relations for spherical twists, as in Propositions 2.12 and 2.13 of [ST] (see
also [RZ, Gra2]).

Proposition 4.10. Suppose that M and N are spherical objects of Dfd(A) and let

(M, N) = dimF
⊕
n∈Z

HomDfd(A)(M, N[n]).

Let FM , FN : Dfd(A)
∼→ Dfd(A) be the associated spherical twists.
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• If (M, N) = 0 then FM ◦ FN
∼= FN ◦ FM ;

• if (M, N) = 1 then FM ◦ FN ◦ FM
∼= FN ◦ FM ◦ FN .

4.5 Ginzburg dg-algebras

There is a by now well-known method to associate a differential graded algebra to a quiver with
potential ([Gin, Section 5], [KY, Section 2.6]).

Let (Q, W ) be a quiver with potential. Construct a new quiver Q by adding arrows to Q: for each
arrow a : i → j in Q we add a new arrow a∗ : j → i , and for each vertex i in Q we add a new arrow
ti : i → i . We view Q as a graded quiver with the arrows of Q in degree 0, the arrows a∗ in degree
−1, and the arrows ti in degree −2. This induces a grading on the path algebra FQ of Q such that
the degree 0 part (FQ)0 is just the path algebra of FQ of Q. Let J denote the ideal of FQ generated

by the arrows of Q, and let F̂Q denote the completion of the graded algebra FQ with respect to J,
as in Section 4.1.

We define a differential d on F̂Q by imposing that d is zero on each idempotent ei associated to a

vertex i of Q, specifying how d acts on arrows of Q, and then extending to the rest of F̂Q using
the Leibniz rule and continuity. For degree reasons, we must have d(a) = 0 for each arrow a of Q.
For arrows a∗, we set d(a∗) = ∂aW , where ∂a denotes the cyclic derivative. For arrows ti , we set

d(ti ) = ei (
∑

aa∗ − a∗a) ei , where we sum over all arrows a of Q. Then ΓQ,W = (F̂Q, d) is called
the Ginzburg dga of (Q, W ).

Note that [KY, Lemma 2.9] if (Q1, W1) and (Q2, W2) are right equivalent, then we have an isomor-
phism of dgas ΓQ1,W1

∼= ΓQ2,W2 . Hence, if we are working with quivers with potential of mutation type
A or D, by Proposition 4.4 we only need to consider the Ginzburg dgas ΓQ,WQ

, and so can denote
them ΓQ .

Keller and Yang showed [KY, Theorem 3.2] that QP-mutation lifts to equivalences of derived cat-
egories of Ginzburg dgas. Suppose that (Q, W ) is a QP and that (Q ′, W ′) = µk(Q, W ) for some
k ∈ I .

Theorem 4.11 (Keller-Yang). There is a tilting complex T which gives an equivalence of triangulated
categories

µk = HomΓQ′ ,W ′ (T ,−) : D(ΓQ′,W ′)→ D(ΓQ,W )

and it restricts to an equivalence of triangulated categories

µk = HomΓQ′ ,W ′ (T ,−) : Dfd(ΓQ′,W ′)→ Dfd(ΓQ,W ).

Recall that, for a dga A, the finite-dimensional derived category Dfd(A) is d-Calabi-Yau if there exists
a bifunctorial isomorphism

HomDfd(A)(M, N) ∼= HomDfd(A)(N, M[d ])∗

where (−)∗ denotes the k-linear dual. We will need the following important result [KVdB, Theorem
6.3 and Theorem A.12]:

Theorem 4.12 (Keller, Van den Bergh). The category Dfd(ΓQ,W ) is 3-Calabi-Yau.

29



Let (Q, W ) be a QP and Γ = ΓQ,W . Associated to each vertex i of Q, we have the one-dimensional
simple left Γ-module, which we denote Si . In [KY, Section 2.14], Keller and Yang explain how to
construct the cofibrant replacement of Si : as long as we remember the differential, we can proceed
as if the Ginzburg dga were an ordinary hereditary algebra, and the underlying u(Γ)-module of p Si is
the direct sum of one copy of the projective Pi and one copy of the shifted projective Pj [1] for each
arrow j → i in Q. Using this, they show [KY, Lemma 2.15]:

Lemma 4.13. Let i , j ∈ I and n ∈ Z and Γ = ΓQ,W . Then HomDfd(Γ) (Si , Sj [n]) = 0 if n 6= 0, 1, 2, 3,
and

dimF HomDfd(Γ) (Si , Sj [n]) =


δij if n = 0;

#{arrows i → j in Q} if n = 1;

#{arrows j → i in Q} if n = 2;

δij if n = 3.,

where δij is the Kronecker delta.

4.6 Relations between functors

By Theorem 4.12, every object of Dfd(ΓQ,W ) is a 3-Calabi-Yau object. By Lemma 4.13,⊕
j∈Z

HomDfd(ΓQ,W )(Si , Si [j ]) ∼= F[x ]/〈x2〉

with x in degree 3. Hence Si is 3-spherical, and we have a spherical twist FSi associated to Si . We
will sometimes write Fi instead of FSi .

Let k be a vertex of Q, and write (Q ′, W ′) = µk(Q, W ). Then write Γ = ΓQ,W and Γ′ = ΓQ′,W ′ for
the associated Ginzburg dgas. Write Ti for the left Γ′-module associated to the vertex i of Q ′ and
Gi for the associated autoequivalence FTi of Dfd(Γ′). In this section we will study how the spherical
twists Fi : Dfd(Γ)

∼→ Dfd(Γ) interact with the mutation functors µk : Dfd(Γ′)
∼→ Dfd(Γ). Our key

tools will be Proposition 4.9 and the results on the images of the simple modules under the mutation
functors [KY, Lemma 3.12(a)], which we will describe below.

If A is a dga and M, N ∈ Dfd(A), we have a natural map

M ⊗F HomDfd(A)(M, N)→ N

in Dfd(A) given by evaluation. For any graded vector space V , we have biadjoint functors − ⊗F V
and −⊗F V ∗, and these respect the left A-module structure, so we also obtain a natural map

M → N ⊗F HomDfd(A)(M, N)∗

in Dfd(A). Now let L, N ∈ A -Mod. The universal extension of N by L is the cone of the natural map

N[−1]→ L⊗F HomDfd(A)(N[−1], L)∗

and the universal coextension of L by N is the cone of the natural map

N[−1]⊗F HomDfd(A)(N[−1], L)→ L.

The following result is contained in the proof of [KY, Lemma 3.12(a)]:
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Lemma 4.14 (Keller-Yang). We have µk(Tk) ∼= Sk [1] and, for i 6= k, µk(Ti ) is the universal extension
of Si by Sk .

The following result should be compared to Definition 2.8.

Proposition 4.15. If Q has no double arrows then we have a natural isomorphism of functors

Fµ−1
k (Si )

∼=
{

GkGiG
−1
k if i → k in Q;

Gi otherwise.

Proof: We first use Lemma 4.14 to calculate the images of the simple Γ′-modules under the inverse
mutation functor µ−1, where µ = µk . We know that µ(Tk) ∼= Sk [1], so µ−1(Sk) ∼= Tk [−1]. By
assumption, there is at most one arrow between any two vertices in Q. If i 6= k and there is no arrow
i → k in Q then, by Lemma 4.14, HomDfd(Γ)(Si [−1], Sk) = 0 and so µ(Ti ) ∼= cone(Si [−1]→ 0) ∼= Si ,
thus µ−1(Si ) ∼= Ti .

If i 6= k and there is an arrow i → k in Q then HomDfd(Γ)(Si [−1], Sk) is 1-dimensional and so
µ(Ti ) ∼= cone(Si [−1] → Sk), with the nonzero map determined up to a scalar. We can then use
Lemma 4.5 to calculate µ(cone(Tk [−1] → Ti ): this is cone(µ(Tk)[−1] → µ(Ti )) where, as µ
is an equivalence, the map must again be nonzero and determined up to scalar. We know that
µ(Tk)[−1] ∼= Sk and µ(Ti ) is Si ⊕ Sk with appropriate differential. One can check that the injection
Sk ↪→ Si⊕Sk respects the differentials, and so this must be our nonzero map. This is quasi-isomorphic
to the map 0 → Si , and so µ(cone(Tk [−1] → Ti )) ∼= Si and hence µ−1(Si ) ∼= cone(Tk [−1] → Ti ).
Note that this is the universal coextension of Ti by Tk .

Now we check that the formula holds. If i = k then Fµ−1(Si ) = FTi [1], and as the shift functor on
Dfd(Γ′) is naturally isomorphic to Γ′[1]⊗Γ′− we see that, by Proposition 4.9, FTi [1]

∼= [1]◦Gi ◦ [−1] ∼=
Gi . If i 6= k and there is no arrow i → k in Q then µ−1(Si ) ∼= Ti so Fµ−1(Ti ) = Gi .

Finally, suppose i 6= k and there is an arrow i → k in Q. As mutation at k reverses all arrows incident
with k , and can never change the number of arrows incident with k, there must be exactly one arrow
k → i in Q ′. We first calculate Gk(Ti ): this is

cone(p Tk ⊗F HomΓ′(p Tk , Ti )→ Ti ).

As HomΓ′(p Tk , Ti ) is a differential graded F-module, it is quasi-isomorphic to its homology, which
is the direct sum

⊕
HomK(Γ′)(Tk , Ti [n]) with HomK(Γ′)(Tk , Ti [n]) ∼= HomDfd(Γ′)(Tk , Ti [n]) in degree

n. So by Lemma 4.14 the homology is only nonzero in degree 1, where it is 1-dimensional, and thus

Gk(Ti ) ∼= cone(Tk ⊗F F[−1]→ Ti ).

So we see that µ−1(Si ) ∼= Gk(Ti ) and thus, using Proposition 4.9 again, Fµ−1(Si )
∼= GkGiG

−1
k . 2

We are now able to show that our braid groups BQ act via spherical twists on the category Dfd(Γ).

Theorem 4.16. Let (Q, W ) be a mutation-Dynkin quiver with potential of type ADE . Then we
have a group homomorphism

BQ → Aut Dfd(ΓQ,W )

si 7→ Fi

sending the group generator associated to the vertex i ∈ I to the spherical twist at the simple
ΓQ,W -module Si .
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Proof: As (Q, W ) is mutation-Dynkin, it is obtained by mutating a quiver with potential (Q ′′, 0)
finitely many times, where Q ′′ is a Dynkin quiver. Then we have a group homomorphism BQ′′ →
Aut Dfd(ΓQ′′,0) by Remark 2.3, Proposition 4.10, and Lemma 4.13. This gives the base case of an
inductive argument, so we need to show that if the spherical twists Fi on Γ = ΓQ,W satisfy the
relations of BQ for a mutation-Dynkin quiver with potential (Q, W ) then the spherical twists Gi on
Γ′ = ΓQ′,W ′ satisfy the relations of BQ′ .

Assume the functors Fi : Dfd(Γ) → Dfd(Γ) satisfy the relations of BQ and let µ = µk : Dfd(Γ′) →
Dfd(Γ) be the Keller-Yang derived equivalence. Then the functors µ−1 ◦ Fi ◦ µ : Dfd(Γ′) → Dfd(Γ′)
also satisfy the relations of BQ . By Proposition 4.9 we have µ−1 ◦Fi ◦µ ∼= Fµ−1(Si ), i.e., the following
diagram commutes:

Dfd(Γ′)
µ //

Fµ−1(Si )

��

Dfd(Γ)

FSi

��
Dfd(Γ′)

µ // Dfd(Γ)

So we have a group homomorphism ρ : BQ
ρ→ Aut Dfd(Γ′) sending si to Fµ−1(Si ). As, by Proposition

2.1, Q has no double arrows, we can use Proposition 4.15 to write ρ as

BQ
ρ→Aut Dfd(Γ′)

si 7→
{

GkGiG
−1
k if i → k in Q;

Gi otherwise.

Precomposing this with the group isomorphism ϕ−1
k : B ′Q

∼→ BQ of Remark 2.11, we obtain the group
homomorphism

BQ′
ϕ−1

k // BQ
ρ // Aut Dfd(Γ′)

ti
� //

{
s−1
k si sk if i → k in Q;

si otherwise;

}
� //

{
G−1
k GkGiG

−1
k Gk if i → k in Q;

Gi otherwise;

}
∼= Gi

as required. 2

Remark 4.17. Known results on the faithfulness of braid group actions can be transferred to our
setting. Suppose Q ′′ is an orientation of an ADE graph and the usual action BQ′′ → Aut Dfd(ΓQ′′,0)
is faithful. From the proof of Theorem 4.16 we see that our actions of BQ where Q is of mutation
type ADE are just built by precomposing group isomorphisms with the action of BQ′′ , and so these
are also faithful under this assumption.

It was shown by Seidel and Thomas [ST, Theorem 2.18], building on work of Khovanov and Seidel
[KS], that given a collection of d-spherical objects, with d ≥ 2, in a type An-configuration the action
of the braid group by spherical twists is faithful. Thus the actions of Theorem 4.16 are faithful in
mutation type A. The faithfulness result of Seidel and Thomas was extended to all collections of 2-
spherical objects in type ADE configurations by Brav and Thomas [BT], using the Garside structure of
the braid monoid, but it is not immediately clear how to generalize their argument to the 3-Calabi-Yau
situation.

Remark 4.18. Although we have shown that our braid groups of mutation-Dynkin quivers can be
realized categorically, this is not a categorification of our earlier results because we cannot decategorify
(see, for example, [BD]): we cannot recover Theorem 2.10 from Theorem 4.16 because we use
Theorem 2.10 to prove Theorem 4.16. The problem is that, for an arbitrary mutation-Dynkin quiver
with potential (Q, W ), we do not in advance know the relations satisfied by the spherical twist functors
Fi . This question will be addressed in a forthcoming paper [Gra3].
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Remark 4.19. The arguments of [Gra2] generalize to show that, if vertices i and j of Q are joined
by an arrow, then FiFjFi

∼= FjFiFj can be realized as a single periodic twist. Similarly, one can show
that if i → j → k → i is a 3-cycle in Q then F1F2F3F1

∼= F2F3F1F2
∼= F3F1F2F3 can be realized

as a single periodic twist. This exhausts the possibilities in type A; type D will be studied further in
[Gra3].
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