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Braided Convolutional Codes: A New Class of

Turbo-Like Codes
Wei Zhang, Member, IEEE, Michael Lentmaier, Member, IEEE, Kamil Sh. Zigangirov, Fellow, IEEE,

and Daniel J. Costello, Jr., Life Fellow, IEEE

Abstract—We present a new class of iteratively decodable
turbo-like codes, called braided convolutional codes. Construc-
tions and encoding procedures for tightly and sparsely braided
convolutional codes are introduced. Sparsely braided codes ex-
hibit good convergence behavior with iterative decoding, and a
statistical analysis using Markov permutors shows that the free
distance of these codes grows linearly with constraint length, i.e.,
they are asymptotically good.

Index Terms—braided convolutional codes, turbo-like codes,
codes on graphs, iterative decoding, convolutional permutor, free
distance.

I. INTRODUCTION

Braided block codes (BBC’s) [1] were first introduced in

[2] [3]. These codes can be viewed as a sliding version

of product codes [4] or expander codes [5] [6]. In braided

codes, information symbols are checked by two component

encoders, and the parity symbols of one component encoder

are used as inputs to the other component encoder. The con-

nections between the two component encoders are defined by

the positions where information symbols and parity symbols

are stored in a two-dimensional array. Braided codes form

a class of continuously decodable codes defined on graphs

[2], and thus iterative decoding can be employed. Owing

to the continuously decodable property of these codes, the

decoder can be implemented using a highly efficient pipeline

structure. Therefore braided codes are well suited for high

speed continuous data transmission.

In [3], short block codes such as Hamming codes were

employed as component codes. Two families of BBC’s were

proposed based on the density of the storage array, i.e., tightly

braided block codes (TBBC’s) and sparsely braided block

Manuscript received May 31, 2006; revised January 30, 2009.
This work was supported in part by NSF Grant CCR02-05310, Army grant

DAAD16-02-C-0057, and NASA grant NNG05GH73G.
The material of this paper was presented in part at the 2005 IEEE Inter-

national Symposium on Information Theory, Adelaide, Australia, September
2005.

W. Zhang was with the Department of Electrical Engineering, University
of Notre Dame, Notre Dame, IN 46556 USA. He is now with QUALCOMM
Incorporated, San Diego, CA (e-mail:wzhang@qualcomm.com).

M. Lentmaier was with the Department of Electrical Engineering, Univer-
sity of Notre Dame, Notre Dame, IN 46556 USA. He is now with Vodafone
Chair Mobile Communications Systems, Dresden University of Technology,
01062 Dresden, Germany (e-mail: Michael.Lentmaier@ifn.et.tu-dresden.de).

K. Sh. Zigangirov is with University of Notre Dame, Notre Dame, IN
46556 USA, Lund University, Lund, Sweden, and the Institute for Problems
of Information Transmission, Moscow, Russia (e-mail: kzigangi@nd.edu).

D. J. Costello, Jr. is with the Department of Electrical Engineer-
ing, University of Notre Dame, Notre Dame, IN 46556 USA (e-mail:
Daniel.J.Costello.2@nd.edu).

Communicated by T. Richardson, Associate Editor for Coding Theory.

codes (SBBC’s), and it was shown that iterative decoding

performance is greatly improved with SBBC’s.

In this paper, we study a new class of braided codes, braided
convolutional codes (BCC’s), first introduced in [7]. In contrast

to BBC’s, which are described in detail in [1], we use convo-

lutional codes as component codes. Convolutional permutors,

an important ingredient of BCC’s, are introduced in Section II,

and code constructions are described in Section III. Analogous

to BBC’s, a tightly braided convolutional code (TBCC) results

when a dense array is used to store the information and parity

symbols. Sparsely braided convolutional codes (SBCC’s) are

then proposed to overcome the short cycles in the Tanner graph

representation [8] of TBCC’s. The storage array of SBCC’s

has a lower density, resulting in improved iterative decoding

performance. In Section IV a syndrome former matrix is

defined, and SBCC’s are shown to be a type of low density

parity check (LDPC) convolutional code. Then in Section V a

pipeline decoder architecture for high speed continuous data

transmission is presented. In Section VI, a blockwise version

of BCC’s is proposed for applications involving packetized

data. The performance of rate R = 1/3 SBCC’s is then

evaluated by computer simulation in Section VII. By means

of a Markov permutor analysis [9], a numerical method is

developed in Section VIII to compute a lower bound on free

distance for the ensemble of BCC’s. The free distance bound

shows linear growth in free distance as a function of constraint

length. This implies that BCC’s, in contrast to turbo codes or

serially concatenated codes, are asymptotically good in terms

of distance growth. Finally, we present some conclusions in

Section IX.

II. CONVOLUTIONAL PERMUTORS

An essential part of the encoder for BCC’s is a convolutional

permutor (also called a convolutional scrambler [10]). In

this section, we briefly review the basic theory of multiple

convolutional permutors given in [1].

A symmetric multiple convolutional permutor (MCP) of

multiplicity k can be described by a semi-infinite matrix

P = (pt,t′), t, t′ ∈ Z
+, which has k ones in each row and in

each column starting from the ∆th column. The other entries

are zeros. The matrix P also satisfies the causality condition,

i.e.,

pt,t′ = 0, t′ < t. (1)
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We use the following representation for P :

P =













p0,δ p0,δ+1 · · · p0,∆

. . .
. . .

pt,t+δ pt,t+δ+1 · · · pt,t+∆

. . .
. . .













,

(2)

and we assume that pt,t+δ = 1 for at least one value of t and

pt,t+∆ = 1 for at least one value of t. The parameter δ ≥ 0
is called the minimal permutor delay and ∆ ≥ 0 is called

the maximal permutor delay. As in convolutional coding, we

call the maximal delay the memory m of the permutor, i.e.,

m = ∆. The value w = ∆ − δ + 1 is called the permutor
width. A single convolutional permutor has multiplicity k = 1.

If w = 1 and pt,t = 1 ∀t, a single permutor is the identity
permutor. If pt,t+δ = 1 ∀t, a single permutor is the delay
permutor with delay δ. If a multiple permutor is described

by the matrix P, the inverse permutor is described by the

transpose matrix [P]T.

With this matrix representation, we can describe a single

convolutional permutor as follows. Let x = (x0, x1, . . .) be

the input sequence to the permutor. Then the output sequence

y = (y0, y1, . . .) is given by

y = xP. (3)

In this way, the mapping between the input and output is

defined as yt = xt′ , where t′ is determined by the permutation

function f
P
(·) associated with P, i.e.,

t′ = f
P
(t). (4)

Equation (3) describes the operation of a single convolutional

permutor, but the operation of a multiple (k > 1) convolutional

permutor can’t be described as the multiplication of a vector

by a matrix.

In the case of a multiple permutor, the 1 entries in the

matrix P represent memory units that can store an input

symbol. The input sequence X entering the MCP is di-

vided into k-tuples, i.e., X = (x0,x1, . . . ,xt, . . .), where

xt = (xt,1, xt,2, . . . , xt,k)T. The blocks xt, t = 0, 1, . . ., are

written to the memory units row by row. The output sequence

Y = (y0,y1, . . . ,yt, . . .), where yt = (yt,1, yt,2, . . . , yt,k)T,

is read out column wise. Since there are the same number of

ones in each row and column, every input symbol occurs once

and only once in the output sequence.

To describe the operation of a multiple convolutional per-

mutor, a matrix permutation operator or permutation tensor
P can be introduced. (Refer to [1] for details.) Similar to a

single convolutional permutor, we define the mapping between

inputs and outputs as

yt,i = xt′,i′ , 1 ≤ i ≤ k, (5)

where t′ and i′ are determined by the permutation functions

f
P
(·, ·) and g

P
(·, ·) associated with the permutation operator

P as follows

t′ = f
P
(t, i), (6)

i′ = g
P
(t, i). (7)

These permutation functions are stored in a ROM for imple-

mentation.

To reduce the storage space required by the permutation

functions, periodic permutors are assumed. In this case,

pt,t′ = pt+T,t′+T , ∀ t, t′. (8)

The minimal T for which (8) is satisfied is called the period
of a periodic convolutional permutor.

In [11], [1], a method was proposed to construct periodic

multiple convolutional permutors from multiple block permu-

tors. A T × T block permutor of multiplicity k is described

by a T × T square matrix having k ones in each row and

each column. A periodic multiple convolutional permutor with

period T is then constructed from the basic multiple block
permutor of size T ×T and multiplicity k using the so-called

unwrapping procedure [1].

Example 1: The construction of a single convolutional per-

mutor with period T = 6, minimal delay δ = 0, and maximal

delay ∆ = 5, from a 6×6 basic block permutor of multiplicity

k = 1 is illustrated in Figure 1. First divide the 6 × 6
permutation matrix describing the basic block permutor below

the diagonal as shown in Figure 1(a), then unwrap the lower

part of the matrix as shown in Figure 1(b), and finally replicate

the unwrapped matrix diagonally as shown in Figure 1(c).

1

1

1

1
1

1

(a) Basic block permutor.

1

1
1

1
1

1

(b) Unwrapped block permutor.

1

1
1

1

1
1

1
1

1
1

1
1

1

(c) Convolutional permutor.

Fig. 1. Construction of a single periodic convolutional permutor.

The convolutional permutor introduced in Example 1 is a

single periodic convolutional permutor. Single convolutional

permutors are used in this paper to describe rate R = 1/3
BCC’s. An example of an MCP with multiplicity k = 2 and

period T = 5 constructed using the unwrapping procedure is

shown in Figure 2.

From the unwrapping procedure, we see that a single pe-

riodic convolutional permutor constructed as described above

may not always have minimal delay δ = 0 and maximal delay

(memory) ∆ = m = T − 1. In other words, its width is not

necessarily T . However, as shown in [1], if a block permutor

of multiplicity k is chosen randomly, then with probability
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1 1

1 1

1 1
1

1

1

1

(a) Multiple block permutor.

1 1

1

1

1 1

11
1

1

(b) Unwrapped block permutor.

1 1

1

1

1 1

11
1

1

1 1

1

1

1 1

11
1

1

(c) Multiple convolutional permutor.

Fig. 2. Construction of a multiple periodic convolutional permutor.

≈ 1− (1/e)k the maximal delay (memory) of the unwrapped

multiple convolutional permutor of multiplicity k equals T−1.

The memory m is an important parameter characterizing

the behavior of a convolutional permutor. Another important

parameter is its overall constraint length M . For a given t,
we introduce the set

Pt = {pi,j : i ≤ t, j > t} , t ∈ Z
+ . (9)

The overall constraint length of the convolutional permutor is

then defined by

M = w
H

(Pt), (10)

where w
H

(Pt) is the Hamming weight of the set Pt. It follows

that M is equal to the maximum number of symbols that is

stored in a realization of the permutor at any time, analogous

to the definition of overall constraint length for convolutional

codes [10], [12]. For single convolutional permutors, since

each row and column of P have only a single “1”, the weight

of Pt does not depend on the time index t, and we can omit t in

defining M . Thus the overall constraint length is independent

of t for single convolutional permutors.

Example 2: Figure 3 illustrates a single convolutional per-

mutor with the same parameters, T = 6, δ = 0, and ∆ = 5, as

the convolutional permutor shown in Figure 1(c). Its overall

constraint length is M = 4. By contrast, the convolutional

permutor in Figure 1(c) has overall constraint length M = 1.

1
1

1
1

1
1

1

1
1

1
1

1

1

Fig. 3. A single periodic convolutional permutor with T = 6, δ = 0, ∆ = 5,
and M = 4.

For w > 1, the overall constraint length of a single

convolutional permutor must satisfy

0 ≤ M ≤ T − 2. (11)

The single convolutional permutors for the BCC’s con-

sidered in this paper were constructed from a basic block

permutor (permutation matrix) chosen randomly, assuming

that all T ! possible permutation matrices of size T × T are

equiprobable. The delays of the corresponding convolutional

permutors then satisfy 0 ≤ δ ≤ ∆ ≤ T − 1, and we

note that the identity permutor has parameters T = 1 and

δ = ∆ = M = 0. Multiple convolutional permutors of

multiplicity k for BCC’s can be constructed from sets of

k2 permutation matrices by using the operations of row- and

column-interleaving and unwrapping (see [1] for details).

Convolutional permutors constructed from T × T block

permutors cannot have period larger than T . Their periods

can be T , T/2, T/3, . . ., and so on. If the period is T/2 (T
even), then the (T/2 + i)-th row of the basic block permutor

is a cyclic shift of the i-th row, for 1 ≤ i ≤ T/2. Similar

arguments are valid for periods of T/3, T/4, . . ., and so on.

The probability that the cyclic shift condition is satisfied goes

to zero as T → ∞ for randomly chosen permutors.

An MCP of multiplicity k constructed from a T × T block

permutor is called typical [1] if it has period T , maximal delay

(memory) ∆ = T − 1, and overall constraint length

M = k(T − 1)/2 . (12)

Shifting a typical MCP of multiplicity k by a > 0 symbols,

i.e., pt,t′ → pt+a,t′+a, we obtain an MCP with additional

delay a. For this permutor, the minimal delay is δ + a, the

maximal delay is ∆ + a, and the overall constraint length is

M = ka + k(T − 1)/2. (13)

In general, a single convolutional permutor with maximal

delay ∆ can be implemented with a shift register of length ∆.

The permutation function f
P
(·) associated with the permutor

is stored in a controller to indicate the output indices of

the register stages. At each time unit, the permutor selects

an output from one of the stored symbols according to the

permutation function. Then it deletes the right most symbol

and shifts all other symbols one stage to the right. The new

input symbol is placed into the left most position.

III. CONSTRUCTION OF BRAIDED CONVOLUTIONAL

CODES

In this section, we describe the construction of BCC’s. In

general, braided codes, including BBC’s [2] [3] and BCC’s,

represent a sliding version of classic product codes [4]. As

illustrated in Figure 4, product codes are constructed based on

a rectangular array that stores the coded symbols. The k1k2

information (systematic) symbols are located in the upper-left

corner of the array. The symbols in each row form a codeword

of a horizontal component code C1(n1, k1). Meanwhile, the

symbols of each column form a codeword of a vertical
component code C2(n2, k2). In contrast, braided codes are

constructed on an infinite two-dimensional array. Furthermore,
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the horizontal and vertical encoders are linked through parity

feedback. In this manner, the systematic and parity symbols

are “braided” together.

bitsInformation
parityC2(n1; k1)Column ParityonparityparityRow C1(n1; k1)k 2 k1 n1

n 2
Fig. 4. An (n1n2, k1k2) product code.

A. Rate R = 1/3 Braided Convolutional Codes

v̂(2)t�1 v̂(1)tutv̂(2)t ut+1 v̂(1)t+1v̂(2)t+1[P(2)℄T P(0)

t0
t P(1)v̂(1)t�1

Fig. 5. Array representation of a rate R = 1/3 TBCC.

Depending on the density of the array, we can distinguish

two types of BCC’s – TBCC’s and SBCC’s. An example of a

rate R = 1/3 TBCC is illustrated in Figure 5. Similar to turbo

codes, recursive systematic convolutional (RSC) encoders with

rate R = 2/3 are used as horizontal and vertical component

encoders. The array consists of three diagonal ribbons, each of

width one symbol. Each entry in the array is characterized by

a pair of position indices (t, t′): the vertical position t and the

horizontal position t′, t − 1 ≤ t′ ≤ t + 1. The information

symbols ut are placed in the central ribbon with position

indices (t, t′), where t = t′, corresponding to an identity

permutor P(0). The parity symbols v̂
(1)
t of the horizontal

encoder (encoder 1) are stored in the upper ribbon with

position indices (t, t + 1). We may consider that the upper

ribbon is described by a delay-1 permutor and is denoted P(1).

The parity symbols v̂
(2)
t of the vertical encoder (encoder 2)

are stored in the lower ribbon with position indices (t + 1, t).
The lower ribbon corresponds to the transpose of a delay-

1 permutor and is denoted [P(2)]T. The dark entries in the

array indicate the previous inputs and outputs of the encoders

that are known at time t. Note that at time 0, when the first

information symbol arrives, the previous parity symbols are

assumed to be 0, i.e., v̂
(1)
t and v̂

(2)
t are zeros for t < 0. At

time t, the horizontal encoder encodes the current information

symbol ut and its left neighbor v̂
(2)
t−1. The output symbol v̂

(1)
t

depends on v̂
(2)
t−1, ut, and the convolutional encoder state. The

vertical encoder performs its encoding analogously. So the

t-th row of the array contains v̂
(2)
t−1, ut, and v̂

(1)
t , and the

t-th column of the array contains v̂
(1)
t−1, ut, and v̂

(2)
t . The

encoding procedure continues in this fashion as the horizontal

and vertical encoders slide down and to the right along the di-

agonal. The code sequence of the horizontal encoder is v(1) =

(v
(1)
0 ,v

(1)
1 , . . . ,v

(1)
t , . . .), where v

(1)
t = (v

(1)
t,1 , v

(1)
t,2 , v

(1)
t,3 ),

v
(1)
t,1 = ut, v

(1)
t,2 = v̂

(2)
t−1, and v

(1)
t,3 = v̂

(1)
t . The code sequence

of the vertical encoder is v(2) = (v
(2)
0 ,v

(2)
1 , . . . ,v

(2)
t , . . .),

where v
(2)
t = (v

(2)
t,1 , v

(2)
t,2 , v

(2)
t,3 ), v

(2)
t,1 = ut, v

(2)
t,2 = v̂

(1)
t−1, and

v
(2)
t,3 = v̂

(2)
t . The code sequence transmitted over the channel

is v = (v0,v1, . . . ,vt, . . .), where vt = (vt,1, vt,2, vt,3), and

vt,i =











ut , i = 1

v̂
(1)
t , i = 2

v̂
(2)
t , i = 3

. (14)

The rate of the TBCC is R = 1/3. During the encoding

process, two previously encoded parity bits are stored in the

array, and thus the overall constraint length is M = 2.

Short cycles are generated in the Tanner graph of TBCC’s

due to their dense array structure. Thus iterative decoding

performance can be improved if the cycle length is increased.

This motivates the construction of SBCC’s, in which in-

formation symbols and parity symbols are spread out in a

sparse array. An example of the array representation of a rate

R = 1/3 SBCC is illustrated in Figure 6. Each row and

column of the array contains one information symbol, one

parity symbol from the vertical encoder, and one parity symbol

from the horizontal encoder. Analogous to TBCC’s, the sparse

array retains the three-ribbon structure and three correspond-

ing convolutional permutors. We assume that the permutors

P(j) = (p
(j)
i,k) are periodic with periods Tj , j = {0, 1, 2},

and that they are constructed using the unwrapping procedure

described in Section II, with the width of each ribbon equal

to the period of the corresponding permutor. Thus the widths

of the central, upper, and lower ribbons are T0, T1, and T2,

respectively.

All the entries in the array are again indexed by coordinates

(t, t′), where t and t′ represent the times of the horizontal and

vertical encodings, respectively, as shown in Figure 6. The

information symbols ut are placed in the central ribbon. The

structure of the central ribbon is defined by the permutor P(0).

If p
(0)
t,t′ = 1, then the t-th input symbol ut of the encoder is

placed in the array entry with index (t, t′). This means that

ut enters the horizontal encoder at time t, and the permuted

symbol ũt′ enters the vertical encoder at time t′. Based on the

analysis in Section II, a typical permutor P(0) has an overall

constraint length of M0 = (T0 − 1)/2. The parity symbols

v̂
(1)
t of the horizontal encoder are placed in the t-th row of

the upper ribbon. The structure of the upper ribbon is defined

by permutor P(1). To match the ribbon structure of the array,

this permutor has an additional delay of T0 symbols, and its

overall constraint length is M1 = T0 + (T1 − 1)/2. If p
(1)
t,t′ =

1, then the parity symbol v̂
(1)
t is placed in the position with

index (t, t′). Since p
(1)
t,t′ = 0 for t > t′, the permuted parity
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Fig. 6. Array representation for SBCC’s.

symbol ṽ
(1)
t′ will enter the vertical encoder at time t′ when it

leaves permutor P(1). The parity symbols v̂
(2)
t of the vertical

encoder are placed in the t-th column of the lower ribbon,

whose structure depends on permutor P(2). To match the array

structure, P(2) has minimal delay 1, maximal delay T2, and

overall constraint length M2 = (T2 − 1)/2 + 1. If p
(2)
t,t′ = 1,

then the parity symbol v̂
(2)
t is placed in the position with index

(t′, t). Since p
(2)
t,t′ = 0 for t > t′, the permuted parity symbol

ṽ
(2)
t′ will enter the horizontal encoder at time t′ when it leaves

permutor P(2).

The memory of the encoder is defined as the maximal

number of time units that a symbol stays in the encoder. The

overall constraint length M of an SBCC encoder is defined

as the total number of symbols stored in the encoder. Thus, if

all permutors P(0), P(1), and P(2) are typical, then

M =
T0 − 1

2
+

T1 − 1

2
+

T2 − 1

2
+ T0 + 1. (15)

If the permutors are all typical and T0 = T1 = T2 = T , the

total width of the three ribbons in a BCC is 3T , and the total

number of symbols stored in the memory of the permutors is

given by

M = 5(T − 1)/2 + 2. (16)

The implementation of a rate R = 1/3 BCC encoder

is shown in Figure 7. The encoder consists of two rate

Rcc = 2/3 RSC component encoders, the horizontal encoder

(encoder 1) and the vertical encoder (encoder 2), and three

convolutional permutors P(0), P(1), and P(2) are employed.

The information sequence u = (u0, u1, . . . , ut, . . .) enters the

first input of encoder 1 directly, and the permuted information

sequence ũ at the output of convolutional permutor P(0)

enters the first input of encoder 2. Encoder 1 generates the

parity sequence v̂(1) = (v̂
(1)
0 , v̂

(1)
1 , . . . , v̂

(1)
t , . . .) and encoder 2

generates the parity sequence v̂(2) = (v̂
(2)
0 , v̂

(2)
1 , . . . , v̂

(2)
t , . . .).

The permuted parity sequence ṽ(1) at the output of convo-

lutional permutor P(1) is fed back to the second input of

encoder 2, and the permuted parity sequence ṽ(2) at the output

of convolutional permutor P(2) is fed back to the second

input of encoder 1. The information sequence u and the

parity sequences v̂(1) and v̂(2) are multiplexed into the output

sequence of the encoder v = (v0,v1, . . . ,vt, . . .), where

vt = (vt,1, vt,2, vt,3), and

vt,i =











ut , i = 1

v̂
(1)
t , i = 2

v̂
(2)
t , i = 3

. (17)

Enoder 1Rate 2/3

Enoder 2Rate 2/3
P(1)
P(2)P(0)

MUXut vt
~ut

v̂(1)t
v̂(2)t

~v(1)t
~v(2)t

Fig. 7. Encoder for a rate R = 1/3 braided convolutional code.

B. Generalized Braided Convolutional Codes

Generalizing the rate R = 1/3 BCC’s in Section III-A to

other rates is straightforward. In principle, we can use different

component encoders for the horizontal and vertical encodings.

If we employ a rate

R(1)
cc =

k(0) + k(2)

k(0) + k(1) + k(2)
(18)

horizontal encoder and a rate

R(2)
cc =

k(0) + k(1)

k(0) + k(1) + k(2)
(19)

vertical encoder, where k(0), k(1), and k(2) are positive inte-

gers, the rate of the resulting BCC is

R =
k(0)

k(0) + k(1) + k(2)
. (20)

The array representation is shown in Figure 8. The central

ribbon is described by an MCP P(0) of multiplicity k(0), and

the upper and lower ribbons are described by MCP’s P(1) and

[P(2)]T of multiplicity k(1) and k(2), respectively. Horizontal

and vertical encoding proceeds by row and column in the

same fashion as for rate R = 1/3 BCC’s. If the convolutional

permutors are constructed from block permutors as described

in Section II and they are typical, then the overall constraint

length of the encoder is given by

M =
k(0)(T0 − 1)

2
+

k(1)(T1 − 1)

2
+

k(2)(T2 − 1)

2
+k(1)T0+k(2),

(21)



IEEE TRANSACTIONS ON INFORMATION THEORY, ACCEPTED FOR PUBLICATION 6

P(0)multipliity-k(0)multipliity-k(1)P(1)[P(2)℄Tmultipliity-k(2)
Fig. 8. Array representation of generalized BCC’s.

where T0, T1, and T2 are the periods of P(0), P(1), and P(2),

respectively.

As illustrated in Figure 9, the structure of the encoder

for generalized BCC’s is similar to the rate R = 1/3 case,

except that the permutors may now be MCP’s. The horizontal

encoder (encoder 1) has k(0) + k(2) inputs. At time instant t,
the k(0)-tuple information block ut = (ut,1, ut,2, . . . , ut,k(0))
of the information sequence u = (u0,u1, . . . ,ut, . . .) enters

the first k(0) inputs of the horizontal encoder. Meanwhile,

the vertical encoder produces a block of k(2) parity symbols

v̂
(2)
t = (v̂

(2)
t,1 , v̂

(2)
t,2 , . . . , v̂

(2)

t,k(2)) that enters the MCP P(2). The

output ṽ
(2)
t = (ṽ

(2)
t,1 , ṽ

(2)
t,2 , . . . , ṽ

(2)

t,k(2)) of P(2) appears in the

t-th row of the lower ribbon and provides the remaining k(2)

inputs to the horizontal encoder. In parallel, the information

sequence u = (u0,u2, . . . ,ut, . . .) enters the MCP P(0). The

output sequence of P(0) is ũ = (ũ0, ũ2, . . . , ũt, . . .), where

ũt = (ũt,1, ũt,2, . . . , ũt,k(0)). The vertical encoder (encoder

2) has k(0) + k(1) inputs. The block ũt enters the first k(0)

inputs of vertical encoder at the time instant t. This block

appears in the t-th column of the central ribbon. Meanwhile,

the horizontal encoder produces a block of k(1) parity symbols

v̂
(1)
t = (v̂

(1)
t,1 , v̂

(1)
t,2 , . . . , v̂

(1)

t,k(1)) that enters the MCP P(1). The

output ṽ
(1)
t = (ṽ

(1)
t,1 , ṽ

(1)
t,2 , . . . , ṽ

(1)

t,k(1)) of P(1) appears in the t-

th column of the upper ribbon and provides the remaining k(1)

inputs to the vertical encoder. The combination of the blocks

ut, v̂
(1)
t , and v̂

(2)
t , consisting of k(0) + k(1) + k(2) bits, forms

the output code block vt = (vt,1, vt,2, . . . , vt,k(0)+k(1)+k(2)) of

the generalized BCC encoder. The multiplexing rule is defined

as

vt,i =











ut,i , 1 ≤ i ≤ k(0)

v̂
(1)

t,i−k(0) , 1 ≤ i − k(0) ≤ k(1)

v̂
(2)

t,i−k(0)−k(1) , 1 ≤ i − k(0) − k(1) ≤ k(2)

. (22)

We can also denote the output code sequences of

the horizontal (e = 1) and vertical (e = 2) en-

coders as v(e) = (v
(e)
0 ,v

(e)
1 , . . . ,v

(e)
t , . . .), where v

(e)
t =

(v
(e)
t,1 , v

(e)
t,2 , . . . , v

(e)

t,k(0)+k(1)+k(2) ). Here, the mapping rules be-

tween the inputs and outputs of each generalized BCC com-

ponent encoder can be described by

v
(1)
t,i =











ut,i , 1 ≤ i ≤ k(0)

ṽ
(2)

t,i−k(0) , 1 ≤ i − k(0) ≤ k(2)

v̂
(1)

t,i−k(0)
−k(2) , 1 ≤ i − k(0) − k(2) ≤ k(1)

(23)

and

v
(2)
t,i =











ũt,i , 1 ≤ i ≤ k(0)

ṽ
(1)

t,i−k(0) , 1 ≤ i − k(0) ≤ k(1)

v̂
(2)

t,i−k(0)
−k(1) , 1 ≤ i − k(0) − k(1) ≤ k(2)

. (24)

At the receiver, these mapping rules determine the demulti-

plexing requirements of the component decoders.

Encoder 2

P
(1)

P
(2)

P
(0)

MUX

ut
vt

u
(1)
t

v̂
(1)
t

v̂
(2)
t

ṽ
(1)
t

ṽ
(2)
tũt

R =
k(0)+k(2)

k(0)+k(1)+k(2)

R =
k(0)+k(1)

k(0)+k(1)+k(2)

Encoder 1

Fig. 9. Encoder for generalized BCC’s.

IV. SYNDROME FORMER REPRESENTATION OF BRAIDED

CONVOLUTIONAL CODES

In this section, we derive a canonical representation of

BCC’s using the syndrome former matrix. The syndrome

former is useful for interpreting the structural properties of

BCC’s. In particular, we show that the sparsity of the per-

mutors in the BCC encoder insures that the overall BCC

syndrome former is sparse, thus making BCC’s suitable for

iterative decoding. We consider first some examples of the

construction of syndrome formers for convolutional codes.

Example 3: Consider a rate Rcc = 1/2 RSC encoder with

generator matrix

G(D) =

(

1
1

1 + D + D2

)

. (25)

The input sequence of the encoder is u = (u0, u1, . . . , ut, . . .)
and the output sequence is v = (v0, v1, . . . , vt, . . .). We

denote the two individual outputs of the encoder by v(0) =

(v
(0)
0 , v

(0)
1 , . . . , v

(0)
t , . . .) and v(1) = (v

(1)
0 , v

(1)
1 , . . . , v

(1)
t , . . .).

Since the encoder is systematic, v(0) = u. A parity check

matrix for this encoder is given by H(D) =
(

1 H(1)(D)
)

=
(

1 1 + D + D2
)

. Corresponding to H(1)(D), we introduce
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the semi-infinite matrix

[

H(1)
]T

=





















1 1 1
1 1 1

1 1 1
. . .

. . .





















, (26)

which we call the partial syndrome former matrix. Then

the encoder’s parity constraint is described by the following

equation

v(0)I + v(1)
[

H(1)
]T

= 0, (27)

where I is a semi-infinite identity matrix.

In order to obtain the usual description of a convolutional

syndrome former, we will use the operations of row- and
column- interleaving. These operations were introduced in

[10] for two matrices and generalized in [1] for a larger

number of matrices. The row-interleaving of the set of ma-

trices
(

P(1),P(2), . . . ,P(k)
)

(see Definition 2.2 in [1]) we

designate as

P = ⊟

(

P(1),P(2), . . . ,P(k)
)

. (28)

Analogously, the column-interleaving of the set of matrices
(

P(1),P(2), . . . ,P(k)
)

(see Definition 2.3 in [1]) we desig-

nate as

P = ⊟

(

P(1),P(2), . . . ,P(k)
)

. (29)

In Example 3, the output code sequence v =

(v0,v1, . . . ,vt, . . .), where vt = (v
(0)
t , v

(1)
t ), can be repre-

sented as an interleaved version of sequences v(0) and v(1). If

we row-interleave the matrices I and
[

H(1)
]T

, then we obtain

the syndrome former HT = ⊟

(

I,
[

H(1)
]T

)

of the encoder in

Example 3, i.e., vHT = 0.

Example 4: Consider a rate Rcc = 1/2 RSC encoder with

generator matrix

G(D) =

(

1
1 + D2

1 + D + D2

)

. (30)

With input sequence u = (u0, u1, . . . , ut, . . .), the out-

put sequence v = (v0,v1, . . . ,vt, . . .), where vt =

(v
(0)
t , v

(1)
t ), can be represented as an interleaved version of

sequences v(0) and v(1), where v(0) = u and v(1) =

(v
(1)
0 , v

(1)
0 , . . . , v

(1)
t , . . .). A parity check matrix is given by

H(D) =
(

H(0)(D) H(1)(D)
)

=
(

1 + D2 1 + D + D2
)

.

Then we have

v(0)
[

H(0)
]T

+ v(1)
[

H(1)
]T

= 0, (31)

where

[

H(0)
]T

=





















1 0 1
1 0 1

1 0 1
. . .

. . .





















(32)

corresponds to H(0)(D), and
[

H(1)
]T

is defined in (26). The

syndrome former in the conventional form is then given by

HT = ⊟

(

[

H(0)
]T

,
[

H(1)
]T

)

, and vHT = 0.

Example 5: Consider a rate Rcc = 2/3 RSC encoder with

generator matrix

G(D) =







1 0
1

1 + D + D2

0 1
1 + D2

1 + D + D2






. (33)

The input sequences are denoted as u(0) =

(u
(0)
0 , u

(0)
1 , . . . , u

(0)
t , . . .) and u(1) = (u

(1)
0 , u

(1)
1 , . . . , u

(1)
t , . . .).

The output sequence is v = (v0,v1,v2, . . . ,vt, . . .),

where vt = (v
(0)
t , v

(1)
t , v

(2)
t ). Since the encoder is

systematic, v(0) = (v
(0)
0 , v

(0)
1 , . . . , v

(0)
t , . . .) = u(0),

v(1) = (v
(1)
0 , v

(1)
1 , . . . , v

(1)
t , . . .) = u(1), and

v(2) = (v
(2)
0 , v

(2)
1 , . . . , v

(2)
t , . . .) is the parity sequence.

A parity check matrix is given by H(D) =
(

1 H(0)(D) H(1)(D)
)

=
(

1 1 + D2 1 + D + D2
)

. Then

we have

v(0)I + v(1)
[

H(0)
]T

+ v(2)
[

H(1)
]T

= 0, (34)

where I is an semi-infinite identity matrix and
[

H(0)
]T

and
[

H(1)
]T

are defined in (32) and (26), respectively. The

syndrome former is then given by

HT = ⊟

(

I,
[

H(0)
]T

,
[

H(1)
]T

)

. (35)

We now describe the construction of the syndrome former

for the BCC of Figure 7. For simplicity, we assume that

component encoders 1 and 2 are given by the generator

matrix in (33). Let u = v(0) be the information sequence

and v̂(e) = (v̂
(e)
0 , v̂

(e)
1 , . . . , v̂

(e)
t , . . .), e ∈ {1, 2}, where

v̂
(e)
t = (v̂

(e)
t,1 , v̂

(e)
t,2 , v̂

(e)
t,3 ), be the output parity sequences of

encoder 1 (horizontal) and encoder 2 (vertical), respectively.

Then they must satisfy the following parity constraints:

v(0)I + v̂(1)
[

H(1)
]T

+ v̂(2)P(2)
[

H(0)
]T

= 0, (36)

v(0)P(0) + v̂(1)P(1)
[

H(0)
]T

+ v̂(2)
[

H(1)
]T

= 0. (37)

Equation (36) describes the horizontal encoder. The syndrome

former HT
hor of the horizontal encoder is

HT
hor = ⊟

(

I,
[

H(1)
]T

,P(2)
[

H(0)
]T

)

, (38)

and it follows that vHT
hor = 0, where v is the output

sequence of the BCC encoder shown in Figure 7. Similarly,

(37) describes the vertical encoder. Its syndrome former is

HT
ver = ⊟

(

P(0),P(1)
[

H(0)
]T

,
[

H(1)
]T

)

, (39)

and vHT
ver = 0.

It follows that the syndrome former HT of the rate R = 1/3
BCC in Figure 7 with rate Rcc = 2/3 component encoders

given by (33) is

HT = ⊟

(

HT
hor,H

T
ver,

)

(40)
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and hence vHT = 0. Now we have a conventional rep-

resentation of the syndrome former matrix. If the periods

T0, T1, and T2 of permutors P(0), P(1), and P(2) are large

enough, P(0), P(2)
[

H(0)
]T

, and P(1)
[

H(0)
]T

are also sparse.

Thus the syndrome former matrix HT is sparse, and the

corresponding BCC can be considered as a special case of

an LDPC convolutional code [11]. The syndrome former for

generalized BCC’s can be expressed in a similar way by

making use the row and column interleaving operations.

The model we have considered so far assumes the trans-

mission of an infinite length information sequence. Since

real communication systems transmit finite length information

sequences, the encoding of BCC’s should be terminated so

that the information bits at the end of the input sequence

are adequately protected. In convolutional coding, the normal

method of termination is to add a tail to the information

sequence that forces the encoder to the zero state. The tail

depends both on the encoder structure and the encoder state.

The tail bits can be computed by a simple termination circuit

if the encoder is based on a partial syndrome realization, as

developed for LDPC convolutional codes in [13] and applied

to BBCs in [1]. Given a syndrome former representation of a

specific code, the parameters for this termination circuit can

be precomputed by solving a system of linear equations.

For the turbo-like encoder structure shown in Figure 7, the

state of the BCC encoder depends not only on the states of the

component encoders, but also on the states of the convolutional

permutors. The determination of tail bits that drive the overall

encoder to the zero state is in this case not straightforward. A

suboptimal but simple way of terminating such an encoder is

to append a tail of zero bits to the information sequence. In

this case, only the parity bits in the tail must be transmitted.

For BCC’s with period T convolutional permutors, a length

2T zero tail has been determined to be sufficient in practice.

In this case, if the length of the information sequence is L for

a rate R = 1/3 BCC, the resulting code rate of the terminated

code is given by

R =
1

3

L

L + 4T/3
. (41)

V. PIPELINE DECODER ARCHITECTURE

A pipeline decoder architecture for LDPC convolutional

codes was first proposed in [11], where the continuously

decodable property of these codes was exploited to accelerate

the decoding speed. By employing a number of processors

equal to the number of iterations to execute the decoding

algorithm in parallel, the pipeline decoder yields estimated

outputs at each execution cycle after some initial decoding

delay. Since BCC’s are a special class of LDPC convolutional

codes, they can be decoded using the pipeline architecture. In

this section, we describe the pipeline structure for continuous

decoding of BCC’s.

Assume that the generalized BCC encoder

described in Section III-B is used. The code

sequence is v = (v0,v1, . . . ,vt, . . .), where

vt = (vt,1, vt,2, . . . , vt,k(0)+k(1)+k(2)). After transmitting

over a memoryless channel, such as an additive

white Gaussian (AWGN) channel, the received

sequence is r = (r0, r1, . . . , rt, . . .), where

rt = (rt,1, rt,2, . . . , rt,k(0)+k(1)+k(2)). Using the conditional

probability p(r|v) of receiving the signal r given the

transmitted signal v, we can calculate the channel log-

likelihood ratio’s (LLR’s) l = (l0, l1, . . . , lt, . . .), where

lt = (lt,1, lt,2, . . . , lt,k(0)+k(1)+k(2)), for the coded bits:

lt,i = log
p(rt,i|vt,i = 0)

p(rt,i|vt,i = 1)
, t ≥ 0, 1 ≤ i ≤ k(0) + k(1) + k(2).

(42)

According to the mapping rules (23) and (24), these

LLR’s are demultiplexed into two streams. For component

encoder e, e ∈ {1, 2}, the channel LLR’s corresponding

to the outputs v(e) = (v
(e)
0 ,v

(e)
1 , . . . ,v

(e)
t , . . .),

where v
(e)
t = (v

(e)
t,1 , v

(e)
t,2 , . . . , v

(e)

t,k(0)+k(1)+k(2)), are

given by l(e) = (l
(e)
0 , l

(e)
1 , . . . , l

(e)
t , . . .), where

l
(e)
t = (l

(e)
t,1 , l

(e)
t,2 , . . . , l

(e)

t,k(0)+k(1)+k(2)).

Let L(0) = (L0(0),L1(0), . . . ,Lt(0), . . .), where Lt(0) =
(Lt,1(0), Lt,2(0), . . . , Lt,k(0)+k(1)+k(2)(0)), be the set of apri-
ori LLR’s for the code sequence v. In this way, we denote

the apriori LLR for the coded bit vt,k as Lt,k(0). The apriori
LLR’s for the code sequence v are given by

Lt,i(0) =

{

∞, t < 0

0, t ≥ 0
, 1 ≤ i ≤ k(0) + k(1) + k(2). (43)

Analogously, let L(1)(0) and L(2)(0) be the set of apriori
LLR’s for the code sequences v(1) and v(2) from the horizon-

tal and vertical encoders, respectively. Since there is a one-one

mapping between the symbols of the sequences v and v(1) and

v(2) according to (22), (23), and (24), we can also find the

values for L(1)(0) and L(2)(0).
When the transmitted signals arrive at the receiver, the

channel LLR’s are calculated and placed into parallel buffers

along with the apriori LLR’s. The component codes are then

decoded using a parallel bank of 2I a posteriori probability

(APP) processors using the windowed BCJR algorithm [14]

[15], where I is the number of iterations to be performed.

Based on the channel LLR’s l(1) and the apriori LLR’s

L(1)(0), the first APP processor B
(1)
1 obtains the extrinsic

LLR’s L(1)(1) for a window of W coded symbols of the

sequence v(1) from the horizontal encoder. Then the extrinsic

LLR’s L(1)(1) are reordered to L(2)(1) according to the order

of the code sequence v(2) of the vertical encoder, based on

the mapping rules in (23) and (24). During the reordering,

the extrinsic LLR’s in L(1)(1) for ut, ṽ
(2)
t , and v̂

(1)
t are

permuted by P(0),
[

P(2)
]T

, and P(1), respectively. L(2)(1) is

used as apriori LLR’s for the code sequence v(2) by the APP

processor B
(2)
2 . In the same manner as for the first processor

B
(1)
1 , processor B

(2)
2 calculates the extrinsic LLR’s L(2)(2) for

a window of W symbols of the sequence v(2). The extrinsic

LLR’s L(2)(2) are then reordered to L(1)(2) according to the

order of the code sequence v(1) of the horizontal encoder,

based on the mapping rules in (24) and (23). During the

reordering, the extrinsic LLR’s in L(2)(2) for ũt, ṽ
(1)
t , and

v̂
(2)
t are permuted by

[

P(0)
]T

,
[

P(1)
]T

, and P(2), respectively.

The third APP processor B
(1)
3 then uses L(1)(2) as apriori

LLR’s. The following APP processors work in a similar
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fashion as described above. A pipeline decoder comprised

of 2I APP processors to perform I iterations of decoding is

shown in Figure 10. Processors B
(1)
2j−1 and B

(2)
2j , 1 ≤ j ≤ I ,

perform horizontal and vertical component decoding, respec-

tively. Each processor performs the windowed BCJR algorithm

on a window of size W , where W should be large compared to

the constraint length of the component encoder [16]. In order

to avoid different processors working on overlapping sets of

coded bits at the same time, a separation delay of τ coded

symbols is imposed between adjacent processors so that the

apriori values are updated without memory conflicts. If T is

the period of all the permutors, it is sufficient to set

τ = 3T. (44)

Eventually the received sequence flows through the series

of processors B
(1)
1 , B

(2)
2 , B

(1)
3 , . . ., B

(2)
2I , which update the

apriori values for the coded bits 2I times. The last processor

B
(2)
2I makes hard decisions for the information bits based on

its output APP values. Using this pipeline structure, we can

process 2I information symbols in parallel, thus achieving

high speed decoding.
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Demux
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l

L
(1)(1) decisions
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Demux

W τ

hard

L
(1)(2)L

(2)(1) L
(2)(2I − 1)L

(1)(0)

Fig. 10. Pipeline decoder for BCC’s.

This procedure is similar to the decoding of turbo codes.

The major difference is that the pipeline decoder uses a

windowed BCJR decoder and calculates APP values for all

the code symbols instead of only the information symbols.

A drawback of pipeline decoding is that it has a large initial

decoding delay. Only after the last processor in the pipeline

has filled up does the decoder start making hard decisions on

the information bits. Thus there is an initial delay (latency) of

2I(W + τ) coded symbols, or about 2.5I times the overall

constraint length of the encoder. Nevertheless, we obtain

continuous decoding outputs after this initial delay.

In the next section, we consider blockwise BCC’s. In this

case, we assume that the information sequence enters the

encoder in a block by block manner with a relatively large

block size. This corresponds to many practical applications in

which the data stream is transmitted in finite length packets.

In this sense, the BCC’s introduced in the previous sections

are referred to as bitwise BCC’s.

VI. BLOCKWISE BRAIDED CONVOLUTIONAL CODES

To encode a blockwise BCC the information sequence

is divided into blocks of length N symbols, i.e., u =
(u0,u1, . . . ,ut, . . .), where ut = (ut,1, ut,2, . . . , ut,N ). To

simplify the description, we suppose that the whole block

ut is sent to the encoder at time instant t. If we allow for

some change of notation, a rate R = 1/3 blockwise BCC

encoder can still be described by Figure 7. In particular,

P(0), P(1), and P(2) now denote block permutors of size N
rather than convolutional permutors. The information symbol

ut at the encoder input is replaced by the block ut, the

parity symbol v̂
(1)
t of the horizontal encoder is replaced by

the parity block v̂
(1)
t = (v̂

(1)
t,1 , v̂

(1)
t,2 , . . . , v̂

(1)
t,N ), and the parity

symbol v̂
(2)
t of the vertical encoder is replaced by the parity

block v̂
(2)
t = (v̂

(2)
t,1 , v̂

(2)
t,2 , . . . , v̂

(2)
t,N). As component encoders

we consider now rate R = 2/3 tail-biting convolutional

encoders that start from and end in the same state. This

way the trellises are decoupled between different blocks and

the component decoding can be performed independently for

different time instants t. A termination of the encoders to the

zero state within each time instant might slightly improve the

performance but at the cost of a loss in rate.

At the 0-th time instant, information block u0 and its

permuted version ũ0 = u0P
(0) enter the first inputs of encoder

1 and encoder 2, respectively. Meanwhile, blocks ṽ
(2)
−1 and

ṽ
(1)
−1, consisting of N zeros each, enter the second inputs of

encoder 1 and encoder 2, respectively. Encoders 1 and 2 then

generate the length N parity blocks v̂
(1)
0 and v̂

(2)
0 . Blocks

v
(0)
0 = u0, v

(1)
0 = v̂

(1)
0 , and v

(2)
0 = v̂

(2)
0 are sent over the

channel. At the t-th time instant, parity block v
(1)
t is calculated

by encoder 1 as a function of ut and ṽ
(1)
t = v

(2)
t−1P

(2).

Similarly, parity block v
(2)
t is calculated by encoder 2 as a

function of ũt = utP
(0) and ṽ

(2)
t = v

(1)
t−1P

(1). The blocks

v
(0)
t = ut, v

(1)
t = v̂

(1)
t , and v

(2)
t = v̂

(2)
t are multiplexed into

the code sequence

v = (v0,v1, . . . ,vt, . . .), (45)

where

vt = (v
(0)
1 , v

(1)
1 , v

(2)
1 , v

(0)
2 , v

(1)
2 , v

(2)
2 , . . . , v

(0)
N , v

(1)
N , v

(2)
N ).

(46)

In the following example, we use partial syndrome for-

mer matrices to describe the encoding process for blockwise

BCC’s.

Example 6: Consider the rate R = 2/3 encoder with

generator matrix given by (33). In Examples 3–5 , (27), (31),

and (34) describe the constraints implied by the encoders given

in (25), (30), and (33). Suppose that the encoder in (33) is used

as a tail-biting rate R = 2/3 encoder to encode the length N
information sequences u(1) and u(2). The partial syndrome

formers are N × N matrices

[

H̄(0)
]T

=



















1 0 1
1 0 1

. . .

1 0 1
1 1 0
0 1 1



















(47)
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and

[

H̄(1)
]T

=



















1 1 1
1 1 1

. . .

1 1 1
1 1 1
1 1 1



















, (48)

where the overbars on H̄(0) and H̄(1) indicate the tail-biting

versions of the syndrome formers. Then the code sequence

(v(0),v(1),v(2)), where v(0) = u(0) and v(1) = u(1), satisfies

the constraint

v(0) + v(1)
[

H̄(0)
]T

+ v(2)
[

H̄(1)
]T

= 0. (49)

We assume that two such tail-biting convolutional encoders

are used in the rate R = 1/3 blockwise BCC encoder. Then

v
(0)
t + v

(2)
t−1P

(2)
[

H̄(0)
]T

+ v
(1)
t

[

H̄(1)
]T

= 0, (50)

v
(0)
t P(0) + v

(1)
t−1P

(1)
[

H̄(0)
]T

+ v
(2)
t

[

H̄(1)
]T

= 0. (51)

Given v
(0)
t , v

(1)
t−1, and v

(2)
t−1, (50) and (51) define the code

blocks v
(1)
t and v

(2)
t . These equations for v

(1)
t and v

(2)
t can

be uniquely solved if and only if the matrix
[

H̄(1)
]T

has a

right inverse G(1). Then

v
(1)
t = v

(0)
t G(1) + v

(2)
t−1P

(2)
[

H̄(0)
]T

G(1), (52)

v
(2)
t = v

(0)
t P(0)G(1) + v

(1)
t−1P

(1)
[

H̄(0)
]T

G(1). (53)

We can use the same techniques as in Section IV to construct

the syndrome former for blockwise BCC’s. The following

matrices are derived from the row-interleaving operation,

H̄T
hor = ⊟

(

Ī,
[

H̄(1)
]T

,P(2)
[

H̄(0)
]T

)

, (54)

H̄T
ver = ⊟

(

P(0),P(1)
[

H̄(0)
]T

,
[

H̄(1)
]T

)

, (55)

where Ī is the N × N identity matrix. By means of the

Kronecker product [17], the syndrome former matrices for the

horizontal and vertical component codes is then given by

HT
hor = I⊗ H̄T

hor (56)

and

HT
ver = I ⊗ H̄T

ver, (57)

respectively, where I is the semi-infinite identity matrix so that

the block matrices H̄T
hor and H̄T

ver are replicated infinitely

along the diagonal. Corresponding to the code sequence v

given by (45) for a rate R = 1/3 blockwise BCC, the syn-

drome former is obtained by column-interleaving the matrices

HT
hor and HT

ver , i.e.,

HT = ⊟

(

HT
hor,H

T
ver

)

. (58)

If N is large, the syndrome former matrix HT of the blockwise

BCC is sparse, and blockwise BCC’s can be considered as

special cases of LDPC convolutional codes.

Similar to bitwise BCC’s, termination is used to give protec-

tion to the information blocks at the end of the input sequence

for blockwise BCC’s. To reduce the encoding complexity,

we again use termination with a tail of all-zero blocks for

blockwise BCC’s. In this case, after the information blocks

u[0,L−1] = (u0,u1, . . . ,uL−1) (59)

enter the blockwise BCC encoder, Λ additional all-zero blocks

uL, . . . ,uL+Λ−1 enter the encoder. Since these Λ blocks are

not sent over the channel, the component encoders have, in

fact, rate R = 1/2 instead of R = 2/3. The resulting rate of

the BCC including the tail is

R =
1

3

L

L + 2Λ/3
, (60)

where a tail length Λ = 2 blocks (2N bits) has been

determined to be sufficient in practice.

VII. SIMULATION RESULTS

In this section, the bit-error-rate (BER) performance of rate

R = 1/3 BCC’s is evaluated on an additive white Gaussian

noise (AWGN) channel using computer simulation.

We consider first bitwise SBCC’s with two identical rate

Rcc = 2/3, memory mcc = 2, low complexity (4-state) RSC

component encoders. The generator matrix of the component

encoders is given by

G(D) =







1 0
1

1 + D + D2

0 1
1 + D2

1 + D + D2






. (61)

The three convolutional permutors P(0), P(1), and P(2) used

in the encoder were constructed randomly with the same

period T . We assumed that transmission consists of an in-

formation sequence of length 50T and a tail of 2T zero tail

bits. Thus we have a rate loss of 2.67%, i.e., the effective

rate is about 0.325. In the pipeline BCJR decoder, a window

length of T and I = 100 decoding iterations were used1. The

results are presented in Figure 11, where we view the effect

of the period T of the convolutional permutors on the error

performance as a function of the signal-to-noise ratio (SNR)

Eb/N0. We see that the performance of iterative decoding

improves dramatically as the permutor period increases, an

effect equivalent to the “interleaver gain” of turbo codes [18].

The SBCC achieves a BER of 10−5 at an Eb/N0 of 0.4dB

with permutor period T = 8000, which is about 1dB from the

capacity of the binary-input AWGN channel with code rate

0.325.

We also studied the performance of rate R = 1/3 blockwise

BCC’s. The tail-biting version of the encoder whose generator

matrix is given in (61) was employed. The three block per-

mutors used in the encoder were chosen randomly with the

same size N . As above, the transmission of 50 information

blocks is terminated with 2 all-zero blocks. The parameters

for decoding are the same as for the bitwise SBCC case,

1A value of W = T was chosen for convenience, but in a practical
implementation, a much smaller value of W can be chosen to minimize
latency [16].
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with a separation delay τ = N . The BER performance is

shown in Figure 12, where we changed the size of the block

permutors from N = 100 to 8000. Similar to the bitwise case,

the performance of blockwise BCC’s improves as we increase

the size of the block permutors. Furthermore, we see that

the performance of blockwise BCC’s is close to the bitwise

case when the block permutor size equals the convolutional

permutor period. Finally, the blockwise BCC was compared to

a rate R = 1/3 turbo code with 4-state [1, 5/7] (octal format)

component encoders and permutor size 8192. The turbo code

exhibits an error floor at a BER of 10−6 and Eb/N0 = 0.5dB.

By contrast, the blockwise BCC’s achieve a BER of 10−6

at Eb/N0 = 0.3dB with permutor size N = 8000 and error

floor did not show in the simulation. These results suggest

that BCC’s have good minimum distance properties. In the

next section, we present a distance analysis for the ensemble

of BCC’s that confirms this observation.

Figure 13 shows the performance of the same block-

wise BCC’s for a continuous pipeline decoder without any

termination. The corresponding density evolution threshold

at 0.98dB has been estimated by tracking the probability

density functions of the decoder output LLR’s with Monte

Carlo methods, as described in [19]. Although a different,

protograph-based BCC ensemble [20] is considered in [19],

the structure of the computation tree and, consequently, the

asymptotic threshold are the same as for our bitwise and

blockwise ensembles2. Already for permutor size N = 500 the

blockwise BCC’s achieve BER levels below 10−5 at an Eb/N0

that is less than 0.02dB away from the estimated threshold.

For larger permutors, like for BBCs [1], it can be observed

that terminated blockwise BCC’s have better performance

and even outperform the thresholds of continuous BCC’s.

This again indicates that terminated convolutional codes have

better thresholds than their non-terminated counterparts, as

was shown in [21].

VIII. STATISTICAL ANALYSIS OF BRAIDED

CONVOLUTIONAL CODES

One of the most important performance measures of a

convolutional code is its minimum free distance dfree, since

its large SNR performance with maximum likelihood decoding

depends on dfree. Also, with iterative decoding, a large dfree

protects against the appearance of an error floor at low BER’s.

In this section, we describe a method to compute a lower

bound on the free distance of BCC’s with sufficiently large

overall constraint length. Using a numerical analysis for a

randomized ensemble of BCC’s, we obtain a lower bound on

dfree that grows linearly with overall constraint length M as

M goes to infinity.

A. Markov Permutors

In [9], a stochastic device called a Markov permutor was

introduced to analyze the distance properties of LDPC con-

volutional codes. A Markov permutor is a time-varying non-

periodic permutor with minimal delay δ = 1 and maximal

2The threshold has been estimated to be at 1.10dB in [20]. This value was
improved to 0.98dB by improving the resolution in the representation of the
estimated probability density functions.
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Fig. 11. Error performance of rate R = 1/3 terminated sparsely braided
convolutional codes on an AWGN channel.
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Fig. 12. Error performance of rate R = 1/3 terminated blockwise braided
convolutional codes and turbo codes on an AWGN channel.

delay ∆ = ∞. It stores a fixed number of symbols M , i.e.,

the overall constraint length of the Markov permutor is M .

To find a lower bound on free distance for the ensemble of

BCC’s based on Markov permutors, we define the state of the

Markov permutor as the number of 1’s stored in the permutor.

At each time unit, the Markov permutor chooses one symbol

from the stored symbols as its output symbol. The probability

that a given stored symbol in the Markov permutor becomes

the output symbol is 1/M . Based on these assumptions, the

probability distributions of the outputs and state transitions can

be derived. In this fashion, the Markov permutor characterizes

an ensemble of randomly chosen convolutional permutors with

overall constraint length M .
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Fig. 13. Error performance of rate R = 1/3 continuous blockwise braided
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It follows that the average delay of a symbol is given by

∞
∑

i=1

i

(

1 −
1

M

)i−1
1

M
= M. (62)

This means that a Markov permutor stores each input symbol

an average of M time instants in its memory. (Note that,

in contrast to fixed convolutional permutors, where a symbol

cannot be held longer than the maximal delay ∆, a Markov

permutor can store symbols, in principle, for an infinite time.)

Consider as an example the rate R = 1/3 BCC encoder

in Figure 7, but replace each convolutional permutor with

a Markov permutor having overall constraint length M/3.

(The bound to be derived below can be extended to gener-

alized BCC’s in a straightforward manner.) At time instant

t, t = 0, 1, . . ., each permutor chooses randomly one symbol

from among the M/3 symbols that are stored in its memory

and passes this symbol to the permutor output. The permutor

P(0) replaces this symbol with a new information symbol. The

permutors P(1) and P(2) replace their outputs with new parity

symbols v
(1)
t and v

(2)
t , respectively. The ensemble of BCC

encoders with Markov permutors can be studied analytically

to determine an average distance spectrum and, consequently,

a lower bound on free distance for BCC’s. The problem in-

volves solving a system of recursive equations whose variables

represent the path weights and the states of the permutors

and the component encoders. However, this approach is quite

difficult for numerical calculation. To simplify the analysis,

we replace the three Markov permutors with one multiple
Markov permutor (MMP) of overall constraint length M and

multiplicity 3 (see Figure 14). By definition, an MMP of

multiplicity k has k inputs and k outputs per time instant.

Initially, the MMP stores M zero symbols. At each time

instant t ≥ 0, the permutor chooses uniformly three symbols

ṽ
(0)
t , ṽ

(1)
t , and ṽ

(2)
t from among the M symbols in its memory.

As shown in Figure 14, the permutor sends this three-tuple

v
(0)
t

Permutor

Multiple
Markov

Encoder 2

Rate 2/3

Encoder 1

Rate 2/3

MUX
vt

ṽ
(0)
t

u
(0)
t

ṽ
(1)
t

ṽ
(2)
t

ut

v
(1)
t

v
(2)
t

Fig. 14. Rate R = 1/3 BCC encoder with a multiple Markov permutor.

ṽt = (ṽ
(0)
t , ṽ

(1)
t , ṽ

(2)
t ) together with the information symbol

ut to encoders 1 and 2. Based on the inputs, the component

encoders calculate the parity symbols. The code symbols

v
(0)
t = ut, v

(1)
t , and v

(2)
t are then fed to the MMP input, and

code block vt = (v
(0)
t , v

(1)
t , v

(2)
t ) is sent over the channel.

Consider the ensemble of BCC’s using an MMP of multi-

plicity 3, as shown in Figure 14. By definition, the state µt of
the MMP at the t-th time instant is the number of 1’s stored

in its memory, and

µt ∈ {0, 1, . . . , M}. (63)

We assume component encoder e has memory m
(e)
cc , e ∈

{1, 2}. Let σ
(e)
t denote the state of component encoder e at

the t-th time instant, where

σ
(e)
t ∈ {0, 1, . . . , 2m(e)

cc − 1}. (64)

The composite state of the two component encoders at time t is

denoted σt = (σ
(1)
t , σ

(2)
t ). Combining the states of the MMP

and the component encoders, the state of the BCC encoder
is defined as (µt, σt). As shown in Figure 15, a super trellis

for the encoder ensemble can be constructed for analyzing the

state transitions during encoding. The branches of the super

trellis are labeled with ut/ṽtvt. The output block vt of the

encoder at time t and the composite state of the two component

encoders at time t+1 are functions of the composite state σt,

the input symbol ut, and the output of the MMP ṽt:

vt = G(σt, ut, ṽt), (65)

σt+1 = F(σt, ut, ṽt). (66)

The functions of G(·) and F(·) depend on the component

encoders. The code symbols vt are then fed back to the MMP,

and the next state of the MMP is given by

µt+1 = µt + w
H

(vt) − w
H

(ṽt). (67)

Conditioned on the permutor state µt, we can find the

probability distribution of the permutor output ṽt. From a

population of n symbols, the number of ordered samples of

size i that can be formed without replacement is given by [22]

(n)i , n(n − 1) · · · (n − i + 1)

= n!/(n − i)! .
(68)

Thus, the total number of ordered samples of the outputs from

the multiplicity-3 MMP with overall constraint length M is
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(

M
3

)

. Among them, there are
(

µt

w
H

(ṽt)

)(

M−µt

3−w
H

(ṽt)

)

ordered

samples with the same weight (number of 1’s) as ṽt. Under

the assumption that the output symbols are randomly selected

from the MMP, we have

P (ṽt|µt) =











0, if 3 − w
H

(ṽt) > M − µt or w
H

(ṽt) > µt
(

µt

w
H

(ṽt)

)(

M − µt

3 − w
H

(ṽt)

)(

M

3

)

−1

, otherwise

(69)

which follows from the fact that the number of 0’s or 1’s

in xt cannot exceed the number of 0’s or 1’s in storage.

This probability distribution is used in the next section to

recursively calculate the average distance spectrum of an

ensemble of BCC’s.

B. Calculation of the Average Distance Spectrum

In this section, we analyze the average distance spectrum

of the codes in the ensemble of BCC’s based on the Markov

permutors described above. Since BCC’s are linear, this spec-

trum coincides with the average weight spectrum of the codes

in the ensemble. We assume that initially the BCC encoder is

in the zero state, i.e., µ0 = 0, σ0 = 0. Assume an information

symbol u0 = 1 enters the encoder. Correspondingly, the MMP

transitions to the state µ1 = 1 and the component encoders

to a state σ1 6= 0. The encoding process then continues from

state (µ1, σ1). Ultimately, with probability 1, the BCC encoder

will return to the zero state (µl, σl) = (0,0) at some l-th time

instant. For the purpose of bounding the free distance, we

are interested in the weight distribution of the encoder output

sequence between the two time instants when the encoder is

in the zero state.

Let ā(d, i, l) = E[a(d, i, l)] denote the expectation of the

number of paths with codeword weight d and information

weight i that depart from the all-zero path at time instant 0
and remerge with the all-zero path at time l, l ≥ 1. The set

{ā(d, i, l)}, 0 ≤ d, i ≤ ∞, 1 ≤ l ≤ ∞, is called the average
extended weight spectrum (AEWS) of the encoder. The AEWS

is derived using a backward recursion on the super trellis. In

the backward recursion, we must consider truncated paths that

start from non-zero states, i.e., (µt, σt) 6= (0,0), where the

AEWS from state (µt, σt) is denoted as ā((µt, σt), d, i, l).
Now we describe the backward recursion. As shown in

Figure 15, we assume that the encoder is in state (µt, σt).
With input ut = {0, 1} and random outputs xt from the MMP,

several successive states (µt+1, σt+1) are possible in a one

step transition. With ut known, it follows directly from (66)

that the transition probability is

P (σt → σt+1|µt) = P (ṽt|µt), (70)

where P (ṽt|µt) is given by (69). All paths starting from

these successor states are extensions of the paths passing

through state (µt, σt). In summary, the AEWS’s from the

successor states (µt+1, σt+1) contribute to the AEWS from

state (µt, σt) in a probabilistic summation. It follows that

ā((µt, σt),d, i, l) =

1
∑

ut=0

∑

ṽt

P (ṽt|µt)

· ā((µt+1, σt+1), d − w(vt), i − ut, l − 1),

(71)

where vt, σt+1, and µt+1 are given by (65), (66), and (67),

respectively. Note that the codeword weights, information

weights, and path lengths of the AEWS’s from the successor

states must be decreased to take into account the weights on

the transition branch.

(µt, σt)

t t + 10

(µt+1, σt+1)

u
t = 1/ṽ

tv
t

ut
= 0/ṽ

t
vt

Fig. 15. State transitions on a super trellis.

In the super trellis, the path that diverges from the all-zero

path is unique since it can be caused only by an information

symbol u0 = 1 entering the encoder. Thus the probability

associated with this transition is unity. Let (µ1, σ1) denote the

corresponding successor state of the encoder, and d1 denote the

weight of the transition from (0,0) to (µ1, σ1). Substituting

these values in (71), we obtain

ā(d, i, l) = ā((µ1, σ1), d − d1, i − 1, l − 1) (72)

On the basis of the AEWS, the average weight spectrum
(AWS) is defined as

ā(d) =

∞
∑

l=1

l
∑

i=1

ā(d, i, l). (73)

As in (73), if we sum over all i and l in (71), we obtain the

following system of recursive equations for the AWS from

state (µt, σt):

ā((µt, σt), d) =

1
∑

ut=0

∑

ṽt

P (ṽt|µt)

· ā((µt+1, σt+1), d − w(vt)).

(74)

Finally, the AWS can be computed using following steps:

1) Set the overall constraint length M and generate the

super trellis {(µt, σt) → (µt+1, σt+1)} according to

(66) and (67) for the component encoders.

2) Find (µ1, σ1) and d1.

3) Set the boundary conditions

ā((0,0), d) =

{

1 d = 0

0 d ≥ 1
(75)

and

ā((µ, σ), d) = 0, ∀d < 0. (76)

For µ = 0 to M

4) For d = 0 to dmax

For µ = 0 to M
For all σ, calculate ā((µ, σ), d) based

on (74) and boundary conditions;
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End

ā(d) = ā((µ1, σ1), d − d1);
End

C. A Lower Bound on Free Distance

After deriving the AWS for given component encoders with

constraint length M , a free distance lower bound can be

obtained using the usual Gilbert-Varshamov (see, e.g., [10])

argument, as stated in the following theorem.

Theorem 1: If d̂ is the largest integer value of δ that satisfies

δ−1
∑

d=1

ā(d) < 1, (77)

then at least one code in the ensemble must have free distance

not less than d̂.

We calculate d̂, and it follows from Theorem 1 that there

exists at least one code in the ensemble for which dfree is

lower bounded by d̂. The free distance bound implied by

(77) is a function of the component encoders and the overall

constraint length M of the MMP. Recall that in Section III

we showed that a BCC encoder with three convolutional

permutors of width T has an overall constraint length of

M = 5(T − 1)/2+1. Solving for d̂ for different values of M
then gives us a numerical lower bound on dfree. We plot d̂
as a function of M , 0 < M ≤ 1000, in Figure 16. Three rate

R = 1/3 SBCC’s with identical RSC component encoders of

memory mcc = 2, 3, and 4 were considered in the calculation.

We see that the free distance bounds exhibit essentially linear

growth as a function of the overall constraint length M of the

MMP.
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Fig. 16. Lower bounds on the free distance of BCC’s with different
component encoders.

Although the numerical results plotted in Figure 16 extend

only to M = 1000, they provide strong evidence to conjecture

that asymptotically, as M goes to infinity, the ratio of the

free distance of these rate R = 1/3 BCC’s to their overall

constraint length is lower bounded by γbc, where γbc is the

average slope of the corresponding curves in Figure 16. Values

of γbc derived from Figure 16 are given in Table I for BCC’s

with rate Rcc = 2/3 component encoders of memory mcc = 2,

3, and 4. The generator polynomials are denoted in octal form.

TABLE I
FREE DISTANCE BOUND FOR RATE R = 1/3 BCC’S WITH DIFFERENT

COMPONENT ENCODERS.

Component encoder memory Generator matrix Asymptotic ratio γbc

mcc = 2

�
1 0 4/7
0 1 5/7

�
0.6069

mcc = 3

�
1 0 17/15
0 1 13/15

�
0.7230

mcc = 4

�
1 0 25/35
0 1 23/35

�
0.7341

It is interesting to compare this bound with the Costello

bound [23] on the free distance of the ensemble of convo-

lutional codes. The Costello bound states that there exists

rate R = b/c convolutional encoders of memory m with free

distance lower bounded by the following inequality

dfree

cm
≥ −

R

log2[2
1−R − 1]

+ O

(

log2 m

m

)

, (78)

which can also be written as

dfree

bm
≥ −

1

log2[2
1−R − 1]

+ O

(

log2 m

m

)

. (79)

Since the overall constraint length M of a convolutional

encoder is upper bounded by the inequality M ≤ bm, we

can write

dfree

M
≥ −

1

log2[2
1−R − 1]

+ O

(

log2 M

M

)

. (80)

Asymptotically, as M goes to infinity, we have dfree ≥
γcostM , where γcost = −1/(log2[2

1−R − 1]). In particular,

for R = 1/3, γcost = 1.3028. Note that the coefficients

γbc for BCC’s are roughly a factor of 2 less than the ratio

γcost in the Costello bound. This is consistent with the typical

reduction in distance growth rate observed when comparing

Gallager’s minimum distance bound [24] for LDPC block

codes to the Gilbert-Varshamov [10] minimum distance bound

for the ensemble of block codes.

IX. CONCLUSIONS

In this paper, we proposed a new class of turbo-like codes,

namely, braided convolutional codes, that are suitable for

high speed continuous data transmission. We presented a

construction method for tightly and sparsely braided convo-

lutional codes. For applications involving packetized data, we

also introduced a blockwise encoding structure. Computer

simulation results show that sparsely braided convolutional

codes achieve good convergence performance with iterative

decoding. Furthermore, the simulation results suggests that

braided convolutional codes have good distance properties,

in contrast to conventional turbo codes. This observation was

theoretically confirmed by an analysis of braided convolutional
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codes using a statistical Markov permutor model. For this

model, we showed that braided convolutional codes have a

free distance that grows linearly with overall constraint length,

i.e., braided convolutional codes are asymptotically good.
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