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 Introduction 

 Among the cognitive functions frequently affected in 
schizophrenia, working memory (WM) has been recog-
nized as one of the most consistent deficits  [1, 2] . Reduced 
WM accuracy for faces and emotional face expressions 
has been observed in patients with schizophrenia com-
pared to healthy participants  [3, 4] .

  There is an ongoing debate  [5–7]  about whether path-
ological changes are reflected in alterations of the BOLD 
response in frontoparietal WM networks  [8] . Against 
this, it has been argued that activity differences between 
groups are confounded by differences in task perfor-
mance and other factors such as level of education. Re-
cent studies that addressed this issue by matching groups 
on task performance reported WM performance-depen-
dent  [9]  and -independent  [10]  activity differences be-
tween patients and controls in WM-related regions. We 
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 Abstract 

  Background:  Dysfunctional working memory (WM) has 

been recognized as one of the most consistent deficits in 

schizophrenia. Studies that investigated the neural corre-

lates of WM-related pathology by comparing patients with 

schizophrenia and control participants have produced con-

troversial results, reporting task-related hyper- or hypoactiv-

ity in frontoparietal networks.  Method:  We addressed this 

question by comparing BOLD signals for accurate responses 

during a WM task for emotional faces between a homoge-

neous group of high-performing patients and a control 

group.  Results:  Our results confirm previous findings of left 

prefrontal hyperactivity contrasted with hypoactivity in 

right prefrontal cortex to support WM performance. We also 

extend previous work by reporting enhanced activity in 

higher visual areas of patients during encoding and mainte-

nance.  Conclusion:  Our findings and those of the literature 

can be integrated into a model, where preserved visual cog-
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investigated whether emotional face WM-related neural 
network activity differs between high-performing pa-
tients with mainly paranoid schizophrenia and healthy 
participants. In particular we wanted to probe whether 
activity differences between groups in disease-associat-
ed areas (e.g. prefrontal cortex, PFC) would persist under 
these conditions. For this reason we included only clini-
cally stable and homogeneous patients with at most mild 
cognitive impairments, good task performance, and 
matched patients with controls for additional confound-
ing factors. Our results revealed a frontooccipitotempo-
ral network that supported WM performance in pa-
tients.

  Methods 

 Participants 
 Ten outpatients and 2 inpatients diagnosed with schizophre-

nia spectrum disorder (1 schizoaffective, 11 paranoid schizophre-
nia) according to DSM-IV criteria were assessed with the Struc-
tured Clinical Interview for DSM-IV and recruited by a psychia-
trist (S.L.) from the Psychiatry Unit at Gwynedd Hospital. Current 
clinical symptoms were evaluated with the Positive and Negative 
Symptom Scales  [11]  and the premorbid IQ using the National 
Adult Reading Test. An equal number of healthy volunteers 
matched for gender, handedness, ethnicity, age and education 
were selected from a large control data sample for the same func-
tional magnetic resonance imaging (fMRI) paradigm  [12] . Con-
trol participants had no lifetime or family history of psychiatric 
or neurological disease. Patients and controls had normal or cor-
rected to normal vision. They provided written informed consent 
prior to participation and were paid GBP 25. The study was ap-
proved by the ethics committees at the School of Psychology, Ban-
gor University and at the North Wales NHS-Trust.

  Stimuli 
 Six adult, male, greyscale face images each displaying neutral, 

happy and angry expressions were used  [13] . Each image covered 
approximately 1.43°  !  1.36°. Scrambled greyscale face images se-
lected at random were displayed to cover the face locations during 
encoding of fewer than 4 faces.

  WM Task for Emotional Faces 
 In an event-related design we investigated visual WM for emo-

tional faces and task-related brain activity through the manipula-
tion of face expression (angry, happy, and neutral) and the num-
ber of faces to be remembered (load 1, 2, 3, 4). Each of the 12 con-
ditions consisted of 4 match and 4 non-match trials. Trials were 
distributed over 4 runs with 48 trials each to minimize fatigue ef-
fects. Face expressions and number of faces varied randomly be-
tween trials and type of face expression was kept constant within 
one trial. All trials started with fixation towards a central cross on 
the display, which served as baseline. This was followed by a 2-sec-
ond presentation of the memory array, a delay of 1 s, and the test 
face, where participants had to indicate a match or nonmatch re-

sponse via the respective button. The between-trials fixation in-
terval jittered between 4,500 and 6,000 ms. A detailed description 
of design can be found in Jackson et al.  [14] .

  Acquisition and Analysis of Behavioural and Imaging Data 
 The task was generated and behavioural data recorded with 

the E-Prime software [version 1.1;  15 ]. Scanning was performed 
with a Philips 1.5 T MRI whole-body scanner with a SENSE par-
allel head coil. Blood oxygenation level-dependent images were 
acquired by using a T 2  * -weighted gradient echo-planar sequence. 
During each of the four WM sessions 343 volumes were acquired. 
For the co-registration with functional images one high-resolu-
tion T 1 -weighted three-dimensional volume was acquired. For 
further details regarding the imaging parameters please refer to 
Jackson et al.  [14] .

  WM accuracy was assessed by calculating d �  values (d �  = z-
transformed hits – z-transformed false alarms) for each of the 12 
conditions. WM capacity for faces was measured by individual 
Cowan’s K max values for each emotion [Cowan’s K max = max-
imal K reached for this individual at any array size; Cowan’s K 
values = array size  !  (hits – FA)]  [16] .

  Imaging data analysis was performed using the BrainVoyager 
1.9.10 software (Braininnovation, Maastricht, The Netherlands). 
Functional images were co-registered with the structural three-
dimensional image, spatially normalized to the Talairach system 
 [17]  and resampled at a voxel size of 1  !  1  !  1 mm 3 , resulting in 
56 z-normalized volume time course files (eight runs could not be 
used because of motion artefacts or chance performance head 
motion  1 3 mm or chance performance; FA mean  1 0.5). Func-
tional images were scan time-corrected using sinc interpolation, 
three-dimensional motion-corrected using trilinear interpola-
tion, spatially smoothed (8-mm Gaussian kernel), and temporally 
high pass-filtered (3 cycles per time course). The general linear 
model (GLM) of the experiment was computed with predictors 
for each of the 12 conditions for all correct trials, one separate 
predictor for all error trials and 6 predictors derived from the 
head motion correction for each subject. All but the motion pre-
dictors were convolved with a two-gamma haemodynamic refer-
ence function.

  We computed a random effect (RFX-GLM), to obtain beta val-
ues per subject and condition at each voxel. These were used as 
dependent variable to compute a second-level RFX-mixed 3-fac-
tors ANOVA with the within-subject factors emotion (3 levels), 
load (4 levels) and the between-subject factor group (2 levels) to 
generate functional whole-brain three-dimensional maps for the 
main effect of group, the group  !  emotion interaction and the 
contrast load 4 minus 1. Clusters of activation were determined 
using a voxel-wise threshold at p  !  0.01 significance level and a 
cluster-based threshold of 200 voxels for the main effect of group 
in order to minimize false positive and false negative effects. The 
interaction between group  !  emotion was thresholded at p  !  0.05 
and 1,500 voxels. The contrast load 4 minus 1 was thresholded at 
p  !  0.05 and 500 voxels. The cluster thresholds were calculated 
with Brainvoyager QX Cluster-level Statistical Threshold estima-
tor based on a Monte Carlo simulation with 1,000 iterations. For 
each of the obtained clusters an RFX-GLM region of interest 
(ROI) analysis was computed to extract beta values representing 
the mean activity over the entire cluster for all 12 task conditions 
(including only correct trials) per subject for extended statistical 
analysis.
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  Statistical Analysis 
  Matching of Patients and Controls.  Independent-samples t 

tests were used to assess whether controls and patients differed 
according to age and education.

   Group Effects on WM Performance.  Mixed ANOVA [between-
subject factor: group (controls, patients); within-subject factors: 
emotion (angry, happy, neutral) and load (1–4)] was used to test 
the effect of emotion, load, group and possible interactions on ac-
curacy of WM for emotional faces. Independent-samples t test 
was calculated to test for a group effect on load 4 (averaged across 
emotions). We performed another mixed ANOVA [between-sub-
ject factor: group (controls, patients); within-subject factor maxi-
mal Cowan’s K values (all 3 emotions)] to assess group effects on 
the individual WM capacity for each emotion.

   Group Effects on Brain Activity.  Mixed ANOVAs with two with-
in-subject factors (emotion: angry, happy, neutral and load: 1–4) 
and one between-subject factor (group: controls, patients) were cal-
culated to specify the strength of effects on brain activation for 
each cluster. We then tested the group and load effect on beta 
means for each load (averaged across emotion) using mixed ANO-
VAs with the within-subject factor (load: 1–4) and one between-
subject factor (group: controls, patients). Group effects on beta 
means for each load averaged across emotions were analysed with 
two-tailed independent-sample t tests to identify at which loads 
groups differed. For the interaction between group and emotion, 
group effects on beta mean values for each emotion averaged across 
loads were analysed with two-tailed independent-sample t tests to 
analyse how groups differed for each emotion. We also used two-
tailed independent-sample t tests to compare between groups the 
percentage BOLD-signal change averaged across all 12 conditions 
for each time point. All t test results were Bonferroni-corrected.

  Results 

 Behavioural Data 
 Data from 4 patients (2 inpatients) had to be excluded 

due to head movement artefacts and/or chance task per-
formance. The clinical parameters for the remaining pa-
tients and matching details for patients and controls are 
shown in online supplementary tables 1 and 2 (www.
karger.com/doi/10.1159/000323800).

  Our patients who were all except 1 diagnosed with 
paranoid schizophrenia showed no significant perfor-
mance deficits of WM for emotional faces compared to 
healthy volunteers.

  The mixed ANOVA [between-subject factor: group 
(controls, patients); within-subject factors: emotion (an-
gry, happy, neutral) and load (1–4)] for mean accuracy 
(d � ) of WM for emotional faces comparing controls and 
patients revealed a main effect of load F(3, 42) = 84.19,
p  !  0.001 ( fig. 1 a), but no effects of group or emotion and 
no two- or three-way interaction (p  1  0.05).

  The mixed ANOVA [between-subject factor: group 
(controls, patients); within-subject factor: emotion (an-
gry, happy, neutral)] for K max values (WM capacity) 
comparing controls and patients revealed only non-sig-
nificant (p  1  0.05) results for main effects and the inter-
action ( fig. 1 b).
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  Fig. 1.   a  Comparison of d �  (WM accuracy) means for each emo-
tion (angry, happy, and neutral) at each load (1–4) between con-
trols (C) and patients with schizophrenia (P) showed no signifi-
cant differences (p  1  0.05). WM accuracy significantly (p  !  0.001) 
decreased with increasing load. Error bars show the  8 SEM.

 b  Comparison of K max mean values (WM capacity) for happy, 
angry and neutral faces between patients with schizophrenia and 
controls showed no significant differences. There were no signif-
icant differences between WM-capacities for different emotional 
faces. Error bars show the  8 SEM. 
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  Imaging Data 
 Only correct trials were included in the analysis of 

BOLD response to compare WM accuracy-related areas 
between patients and controls. There was a significant 
interaction between emotion and group in the right ven-
trolateral PFC (VLPFC,  fig. 2 , online suppl. table 5). This 
effect was driven by lower activity for neutral faces in pa-
tients compared with control participants.

  We found a main effect for group ( fig. 3, 4 , online sup-
pl. table 3) in the left occipitotemporal cortex (OTC) and 
lateral PFC (LPFC, driven by higher activation for pa-
tients), and right LPFC and medial PFC (MPFC, driven 
by higher activation in controls). Post-hoc tests revealed 
that this main effect of group on beta means for load was 
driven by significantly increased activity in patients com-
pared to controls at load 2 in the left OTC (p  !  0.01, Bon-
ferroni-corrected), and LPFC (p  !  0.05, Bonferroni-cor-
rected). The main effect of group was driven by signifi-
cantly lower activity in patients compared to controls at 
load 3 (p  !  0.05, Bonferroni-corrected) in the MPFC (p  !  

0.05, Bonferroni-corrected) and right LPFC (p  !  0.01, 
Bonferroni-corrected). The MPFC also showed a signifi-
cant effect of load, as did right and left parietal cortex 
( fig. 4 , online suppl. table 4).

  Event-related averaging showed the maximal BOLD-
signal peak 8 s after the onset of encoding in the right 
LPFC in controls and in the left LPFC in patients while 
there was neither a clear peak response in the right LPFC 
in patients nor in the left LPFC in controls ( fig. 3 ). In the 
left OTC patients showed the maximum BOLD signal 6 s 
after encoding onset while controls showed an earlier and 
smaller peak after 4 s ( fig. 3 ). In all load-sensitive areas 
both groups showed BOLD-signal peaks 8 s after the on-
set of encoding except for the right parietal cortex in con-
trols where BOLD signal peaked 6 s after onset of encod-
ing ( fig. 4 ).

  Activity in the OTC ( fig. 5 , online suppl. table 6) dif-
fered less between patients and controls in the early phase 
of encoding (reflected in the time point 13, thus 4 s after 
onset of sample presentation), than during the later stag-
es of the task (most significant differences at time point 
17). In the left LPFC ( fig. 5 , online suppl. table 6) activity 
differed between patients and controls solely during the 
later stages of the task (most significant differences at 
time point 17).

  Discussion 

 Network Activity Supporting WM in Patients 
 Patients with mainly paranoid schizophrenia com-

pared to control participants showed decreased activity in 
the right LPFC and load-sensitive MPFC. This was con-
trasted by left lateralized increased activity in the lateral-
prefrontal and the occipital-temporal region in patients 
compared to controls. Activation of the right lateral PFC 
and in particular right VLPFC for face WM has been de-
scribed for healthy populations  [14, 18–20] . Activation of 
the left PFC has been shown to support task performance 
with increasing WM load in healthy volunteers  [21] . Dys-
function of the right LPFC in patients, which also has been 
reported recently by another study  [22] , might thus result 
in compensatory recruitment of the left LPFC to support 
face WM. However, without longitudinal studies and/or 
normative data, such interpretation in terms of compensa-
tory network activation has to remain preliminary. Com-
pensatory activation of the left LPFC in schizophrenia has 
been suggested by several studies  [23–25] . A longitudinal 
study found improved WM accuracy in patients after sev-
eral weeks of clinical intervention, which was associated 
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with enhanced activation within frontal-temporal regions 
 [26] . Karlsgodt et al.  [25]  suggested that the degree of hy-
perfrontality could indicate the ability for compensatory 
adaptations in the high-performing patients.

  However, our findings of decreased right and increased 
left PFC activation in patients compared to controls could 
also be specific to the type of stimuli used in the study. 
Lower activation of the left PFC or loss of the left domi-

nance effect has been observed for verbal WM in patients 
with schizophrenia compared to controls  [27, 28] . Other 
studies have found no activity differences in the left PFC 
between patients and controls during verbal  [29–31]  and 
face WM  [31] . Interestingly one of these studies found also 
decreased activation of the right PFC at higher levels of 
task difficulty in patients versus controls  [9] . However, pa-
tients performed significantly worse than controls in all 
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four studies, which could explain why patients did not 
show the pattern of higher activation observed in the pres-
ent study. Activation of the left LPFC in patients could 
also reflect the use of verbal encoding for which left later-
alization has been shown  [32] . Hyperactivity of the occip-
ital-temporal cortex in patients compared to controls 
could indicate enhanced encoding and maintenance dur-
ing WM. Both areas have been shown to be activated for 
correct versus incorrect responses during encoding and 
maintenance  [33] . Our findings are thus consistent with 
the evidence that WM needs the interaction between 
LPFC, temporal and occipital cortex  [34, 35] .

  Controls showed a pattern of initial posterior activa-
tion in the left OTC, which was followed by right prefron-
tal activation with a lag of approximately 2 s. This is a 
common finding of fMRI studies of WM  [21]  and may 
correspond to the transfer of information from sensory to 
prefrontal areas and formation of more stable, abstract 
representations  [8] . Increased activation of the left pre-
frontal region during the later stages of the task in patients 
is comparable to the onset of increased activity in the right 
LPFC in controls. Conversely, patients showed increased 
and more sustained activity in the OTC compared to con-
trols, starting during the early stages of the task and span-
ning the maintenance phase. Patients’ strategy may thus 
rely on a more immediate visual representation, conform-
ing to their reports of more vivid mental imagery  [36] . 
Similar supporting mechanisms involving activation of 
higher visual areas have been reported during a visuospa-
tial task in patients with Alzheimer’s disease  [37] .

  A tentative interpretation of the pattern of group dif-
ferences might thus be that patients achieved similar per-
formance to controls because of increased activity in the 
left lateral PFC and occipital-temporal region to assist in-
sufficient support by the right lateral and medial prefron-

tal regions. However, we cannot exclude the possibility 
that the activation of these areas in patients was unrelated 
to WM task performance. We observed an emotion-spe-
cific decreased WM-related activity for neutral faces in 
patients compared to controls in the left LFPC, which may 
indicate that patients need more salient (emotional) stim-
uli to activate this area to the same degree as controls.

  Similar Face WM Performance in Patients and 
Controls 
 WM accuracy decreased significantly with increasing 

face load in both groups. There were no significant WM 
performance differences between patients and healthy 
participants, which are in keeping with the behavioural 
results of Quintana et al.  [23] . However, our results seem 
to be at odds with the majority of studies with larger sam-
ple size, which have reported WM performance deficits 
for a variety of tasks and stimuli  [1, 2, 38–40] . Because of 
the relatively low power of this study we cannot infer that 
patients generally do not show a WM deficit (with an ef-
fect size for the group difference of r group  = 0.16, estimat-
ed based on the present data, we would have needed 103 
subjects for each group to have 80% power). However, our 
group of patients only showed a very subtle, if any, per-
formance deficit and is thus interesting for a study of 
brain mechanisms that potentially support WM process-
es. Moreover, most of our patients were stable outpatients 
under treatment at the time of their participation, had a 
verbal IQ above 100 and a PANSS Cognitive Factor below 
8 (online suppl. table 2), indicating low cognitive deficit. 
They thus represent a relatively homogeneous and high-
functioning subgroup of patients with mainly paranoid 
schizophrenia.

  Several previous studies have attempted to match the 
performance of patients and controls through compari-
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  Fig. 5.  Comparison of percentage signal 
change means (across all conditions) be-
tween groups for each time point in the left 
OTC and LPFC revealed significant (p  !  
0.001, Bonferroni-corrected) group differ-
ences with the maximal difference at 17 s. 
Note that the difference in the left OTC 
started to become significant at 13 s (thus, 
4 s after onset of the sample array, reflect-
ing the haemodynamic delay of first-pass 
neural processing) and in the left LPFC 2 s 
later at 15 s.           
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