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Abstract

Background

The metabolic basis of Alzheimer disease (AD) is poorly understood, and the relationships

between systemic abnormalities in metabolism and AD pathogenesis are unclear. Under-

standing how global perturbations in metabolism are related to severity of AD neuropathology

and the eventual expression of AD symptoms in at-risk individuals is critical to developing

effective disease-modifying treatments. In this study, we undertook parallel metabolomics

analyses in both the brain and blood to identify systemic correlates of neuropathology and

their associations with prodromal and preclinical measures of AD progression.

Methods and findings

Quantitative and targeted metabolomics (Biocrates AbsoluteIDQ [identification and quantifi-

cation] p180) assays were performed on brain tissue samples from the autopsy cohort of

the Baltimore Longitudinal Study of Aging (BLSA) (N = 44, mean age = 81.33, % female =

36.36) from AD (N = 15), control (CN; N = 14), and “asymptomatic Alzheimer’s disease”

(ASYMAD, i.e., individuals with significant AD pathology but no cognitive impairment during

life; N = 15) participants. Using machine-learning methods, we identified a panel of 26
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metabolites from two main classes—sphingolipids and glycerophospholipids—that discrimi-

nated AD and CN samples with accuracy, sensitivity, and specificity of 83.33%, 86.67%,

and 80%, respectively. We then assayed these 26 metabolites in serum samples from two

well-characterized longitudinal cohorts representing prodromal (Alzheimer’s Disease Neu-

roimaging Initiative [ADNI], N = 767, mean age = 75.19, % female = 42.63) and preclinical

(BLSA) (N = 207, mean age = 78.68, % female = 42.63) AD, in which we tested their associ-

ations with magnetic resonance imaging (MRI) measures of AD-related brain atrophy, cere-

brospinal fluid (CSF) biomarkers of AD pathology, risk of conversion to incident AD, and

trajectories of cognitive performance. We developed an integrated blood and brain endo-

phenotype score that summarized the relative importance of each metabolite to severity of

AD pathology and disease progression (Endophenotype Association Score in Early Alzhei-

mer’s Disease [EASE-AD]). Finally, we mapped the main metabolite classes emerging from

our analyses to key biological pathways implicated in AD pathogenesis. We found that distinct

sphingolipid species including sphingomyelin (SM) with acyl residue sums C16:0, C18:1, and

C16:1 (SMC16:0, SMC18:1, SMC16:1) and hydroxysphingomyelin with acyl residue sum

C14:1 (SM (OH) C14:1) were consistently associated with severity of AD pathology at autopsy

and AD progression across prodromal and preclinical stages. Higher log-transformed blood

concentrations of all four sphingolipids in cognitively normal individuals were significantly asso-

ciated with increased risk of future conversion to incident AD: SMC16:0 (hazard ratio [HR] =

4.430, 95% confidence interval [CI] = 1.703–11.520, p = 0.002), SMC16:1 (HR = 3.455, 95%

CI = 1.516–7.873, p = 0.003), SM (OH) C14:1 (HR = 3.539, 95%CI = 1.373–9.122, p = 0.009),

and SMC18:1 (HR = 2.255, 95%CI = 1.047–4.855, p = 0.038). The sphingolipid species iden-

tified map to several biologically relevant pathways implicated in AD, including tau phosphory-

lation, amyloid-β (Aβ) metabolism, calcium homeostasis, acetylcholine biosynthesis, and

apoptosis. Our study has limitations: the relatively small number of brain tissue samples may

have limited our power to detect significant associations, control for heterogeneity between

groups, and replicate our findings in independent, autopsy-derived brain samples.

Conclusions

We present a novel framework to identify biologically relevant brain and blood metabolites

associated with disease pathology and progression during the prodromal and preclinical

stages of AD. Our results show that perturbations in sphingolipid metabolism are consis-

tently associated with endophenotypes across preclinical and prodromal AD, as well as with

AD pathology at autopsy. Sphingolipids may be biologically relevant biomarkers for the

early detection of AD, and correcting perturbations in sphingolipid metabolism may be a

plausible and novel therapeutic strategy in AD.

Author summary

Whywas this study done?

• Metabolomics, which measures the biochemical products of cell processes, can be used

to measure alterations in biochemical pathways related to AD.

Brain and blood metabolite signatures of Alzheimer disease
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• Several recent studies have applied metabolomics to explore potential blood biomarkers

for Alzheimer disease (AD).

• Prior blood biomarker studies have not linked signals in the blood to those in the brain

and have relied mainly on discriminating between AD/mild cognitive impairment

(MCI) and control samples.

• These study designs ignore the long preclinical prodrome of AD and do not provide

biological insights into the evolution of AD pathology in the brain and eventual devel-

opment of clinical symptoms.

• Our study was designed to link alterations in metabolite signals in the brain to those in

the blood, explore how those alterations were associated with distinct endophenotypes

of AD, and identify the key biological pathways implicated.

What did the research do and find?

• We used quantitative and targeted metabolomics assays on brain tissue samples (N =

44) and machine-learning methods to identify a brain metabolite signature of AD, i.e., a

26-metabolite panel that discriminated AD and control samples with accuracy, sensitiv-

ity, and specificity of 83.33%, 86.67%, and 80%, respectively.

• We then assayed the same 26 metabolites in blood from two longitudinal cohorts that

represent prodromal (Alzheimer’s Disease Neuroimaging Initiative [ADNI], N = 767)

and preclinical (Baltimore Longitudinal Study of Aging [BLSA], N = 207) AD and tested

their associations with MRI measures, CSF biomarkers, risk of conversion to incident

AD, and cognitive performance.

• We found that higher blood concentrations of sphingolipid species were consistently

associated with severity of AD pathology at autopsy and AD progression across prodro-

mal and preclinical stages.

• These metabolites map to several biologically relevant pathways in AD, including tau

phosphorylation, Aβ metabolism, calcium homeostasis, acetylcholine biosynthesis, and

apoptosis.

What do these findings mean?

• Our study design represents a novel approach for identifying markers of disease pro-

gression in AD and potential avenues for therapeutic intervention.

• Perturbations in sphingolipid metabolism are consistently associated with preclinical

and prodromal AD, as well as with AD pathology at autopsy, providing compelling evi-

dence for their significant role in AD pathogenesis.

Introduction

The relationships between systemic abnormalities in metabolism and the pathogenesis of

Alzheimer disease (AD) are poorly understood. It is unclear how global perturbations in

Brain and blood metabolite signatures of Alzheimer disease
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metabolism are related to severity of AD pathology and the eventual expression of AD symp-

toms in at-risk individuals. Understanding the metabolic basis of AD and its impact on disease

progression during the early, preclinical, and prodromal stages is likely to provide insights into

novel disease-modifying treatments for this irreversible, progressive neurodegenerative

disorder.

Metabolomics, which measures the biochemical products of cell processes downstream of

genomic, transcriptomic, and proteomic systems, has generated excitement because of its

potential to capture snapshots of the complex and multifactorial biochemical pathways that

may be altered in AD [1,2]. These include changes across multiple physiological pathways

driven by the complex interactions between behavioral, genetic, and environmental risk fac-

tors. Recent studies have applied metabolomics to examine alterations in blood metabolite

profiles in AD; such studies have the potential to both discover peripheral biomarkers as well

as identify key metabolic pathways intrinsic to AD pathogenesis [3–7]. However, one of the

key challenges in these metabolomics studies is the inability to link alterations in metabolite

signals in the blood to those in the brain. It is therefore difficult to assess whether a peripheral

signal associated with disease status is also reflected in the brain, where accumulation of dis-

tinct pathological features in specific regions is believed to trigger symptom onset. As is com-

mon with late-onset and gradually progressive diseases, there are many alterations in cell

processes due to chronic comorbid medical conditions that may be reflected in peripheral

blood metabolite concentrations. Additionally, traditional blood biomarker studies have relied

mainly on the binary discrimination of established AD/mild cognitive impairment (MCI)

from control (CN) samples. This study design ignores the long preclinical prodrome of AD,

when brain pathology is accumulating but has not yet triggered the onset of cognitive

impairment and functional decline in individuals eventually diagnosed with AD. As we have

proposed previously [8], alternative study designs in biomarker analyses, in which the primary

end points are well-established endophenotypes of AD pathology rather than binary discrimi-

nation of case versus control, offer the potential to identify biologically relevant blood bio-

markers for AD.

Here, we describe a four-step approach to the discovery of brain and blood metabolites

associated with pathology and progression of AD (Fig 1). (1) Identifying a brain metabolite sig-

nature of AD: in this phase of the study, we first used quantitative and targeted metabolomics

to identify a panel of metabolites that accurately differentiated brain tissue samples from neu-

ropathologically confirmed AD and CN subjects. (2) Testing blood metabolite associations

with AD endophenotypes: we then tested whether serum concentrations of the same metabo-

lites in two independent samples representing preclinical AD and prodromal AD were associ-

ated with distinct clinical, cognitive, neuroimaging, and cerebrospinal fluid (CSF)

endophenotypes of AD. (3) Summarizing results: we developed an integrated blood and brain

endophenotype score (Endophenotype Association Score in Early Alzheimer’s Disease

[EASE-AD]) summarizing the relative importance of specific brain and blood metabolites to

severity of AD pathology and disease progression. (4) Mapping biological pathways: we finally

mapped the main metabolite classes emerging from these analyses to key biological pathways

implicated in AD pathogenesis to understand the potential roles of these molecules and their

interactions in triggering symptom onset and progression of AD.

Methods

Participants

The Baltimore Longitudinal Study of Aging (BLSA) is a prospective cohort study of commu-

nity-dwelling participants that began in 1958 [9,10]. Detailed clinical and cognitive

Brain and blood metabolite signatures of Alzheimer disease
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evaluations, including neurological, laboratory, and radiological evaluations, were conducted

every 2 years. Since 2003, participants older than 80 years received yearly assessments. The

autopsy subsample used in Step 1 (i.e., Identifying a brain metabolite signature) to generate

the brain metabolite signature of AD included 44 participants (N = 15 AD; N = 14 CN; N = 15

asymptomatic Alzheimer’s disease [ASYMAD], described below). For Step 2 (i.e., Testing

blood metabolite associations with AD endophenotypes), metabolomic analyses in serum sam-

ples were performed on 207 BLSA (exclusion criteria described below) participants divided

into “converters” and “non-converters.” Converters were defined as participants who were

cognitively normal at the initial blood draw and developed incident AD based on consensus

clinical diagnosis (described below) during follow-up approximately 5 years later. These par-

ticipants were age and sex matched to non-converters and defined as participants who

remained cognitively normal over a similar follow-up interval. Initial serum samples were col-

lected while both groups were cognitively normal; we therefore characterize the converters in

this sample as representing “preclinical AD.” Demographic characteristics of the autopsy sam-

ple and blood study sample in the BLSA are included in Table 1. Written informed consent

was obtained at each visit; the BLSA study protocol has ongoing approval with the institutional

review board of the National Institute of Environmental Health Science (NIEHS), National

Institutes of Health.

As described below, in addition to identifying a brain metabolite signature of AD in Step 1,

the BLSA sample was used in Step 2 to test associations between blood metabolite concentra-

tions and the following AD endophenotypes: (1) differences by diagnoses (i.e., converters ver-

sus non-converters), (2) risk of conversion to incident AD, and (3) trajectories of cognitive

performance prior to onset of AD symptoms.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) sample was also used in Step 2

(i.e., Testing blood metabolite associations with AD endophenotypes). ADNI is an ongoing,

longitudinal study launched in 2003 as a public–private partnership, led by principal investiga-

tor Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial mag-

netic resonance imaging (MRI), positron emission tomography (PET), other biological

markers, and clinical and neuropsychological assessments can be combined to measure the

progression of mild cognitive impairment (MCI) and early AD. Details on study design, par-

ticipant recruitment, study approval, and informed consent procedures have been published

previously [11]. The study was approved by the institutional review boards of all of the partici-

pating institutions/study sites. The full list of participating institutions is included in S1 Table.

Informed written consent was obtained from all participants at each site. Metabolomics data

for ADNI samples were generated by the Alzheimer Disease Metabolomics Consortium and

(ADMC) deposited to LONI. The mission of the ADMC is to create a comprehensive metabo-

lomics database for AD. ADNI data used in the preparation of this article were also obtained

Fig 1. Schematic representation of study design. In Step 1, we used a quantitative and targeted metabolomics approach followed by
two machine-learning methods to identify a panel of metabolites—a “brain metabolite signature of AD”—that accurately differentiated
brain tissue samples from neuropathologically confirmed AD and CN subjects. In Step 2, using that same metabolite panel, we explored
whether blood concentrations of metabolites in two independent samples representing prodromal AD (ADNI) and preclinical AD
(BLSA) were associated with distinct clinical, cognitive, neuroimaging, and CSF endophenotypes of AD. In Step 3, we summarized
results by developing an integrated blood and brain endophenotype score capturing the relative importance of specific brain and blood
metabolites to severity of AD pathology and disease progression. In Step 4, we mapped the main metabolite classes (emerging from Step
3) to key biological pathways implicated in AD pathogenesis. Aβ1–42, amyloid beta 1–42; AD, Alzheimer disease; ADNI, Alzheimer’s
Disease Neuroimaging Initiative; ASYMAD, asymptomatic Alzheimer’s disease; BLSA, Baltimore Longitudinal Study of Aging;
CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; CN, control; CSF, cerebrospinal fluid; EASE-AD, Endophenotype
Association Score in Early Alzheimer’s disease; IDQ, Identification and Quantification; MCI, mild cognitive impairment; MRI,
magnetic resonance imaging; p-tau, phosphorylated tau; SPARE-AD, Spatial Patterns of Abnormality for Recognition of Early
Alzheimer’s disease; t-tau, total tau.

https://doi.org/10.1371/journal.pmed.1002482.g001
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from the ADNI-1 database (adni.loni.usc.edu) and included baseline blood serum metabolite

concentrations (with concurrent structural MRI data) on 767 participants and concurrent CSF

AD biomarker data on 403 participants. ADNI was enriched with participants with MCI and

therefore represents “prodromal AD” (participants with MCI at baseline who subsequently

converted back to normal cognition were excluded). Demographic characteristics of the ADNI

sample are included in Table 1.

As described below, the ADNI sample was used in Step 2 to test associations between blood

metabolite concentrations and the following AD endophenotypes: (1) MRI measures of AD-related

brain atrophy, (2) CSFmeasures of AD pathology, and (3) risk of conversion to incident AD.

Neuropathological studies: Brain tissue samples in BLSA (Step 1)

The autopsy program of the BLSA was initiated in 1986 and has been described previously

[12]. The autopsy subsample is not significantly different from the BLSA cohort as a whole in

terms of the rates of dementia and clinical stroke [13]. Postmortem brain examinations were

performed by an experienced neuropathologist. Assessment of neuritic plaques and neurofi-

brillary tangles using Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)

[14] and Braak criteria [15], respectively, have been described previously [16]. We have previ-

ously described the clinico-pathological features of BLSA participants categorized as ASYMAD

after neuropathological assessment at death [17]. Briefly, these individuals had significant AD

neuropathology at autopsy but were found to be cognitively intact, as assessed by longitudinal

neuropsychological assessments, within 1 year prior to death.

Table 1. Demographic characteristics of study samples.

BLSA: brain (autopsy) study sample

Total Sample, N = 44 CN, N = 14 ASYMAD, N = 15 AD, N = 15

Age, mean (SD) 81.33 (10.19) 80.42 (10.98) 85.19 (8.72) 78.25 (10.26)

Sex, n (% female) 16 (36.36) 3 (21.43) 5 (33.33) 8 (53.33)

Race, n (% white) 43 (97.73) 13 (92.86) 15 (100) 15 (100)

APOE e4 carrier, n (%) 7 (17.95) 1 (7.69) 3 (21.43) 3 (25.00)

Postmortem interval (hours), mean (SD) 14.93 (6.86) 15.82 (7.03) 14.79 (8.08) 14.4 (5.87)

BLSA: blood study sample

Total Sample, N = 207 Non-converters, N = 115 Converters, N = 92

Age (mean, SD) 78.68 (7.23) 77.58 (7.08) 80.05 (7.23)

Sex, n (% female) 107 (51.69) 55 (47.83) 52 (56.52)

Race, n (% white) 172 (83.09) 89 (77.39) 83 (90.22)�

APOE e4-carrier, n (%) 55 (28.65) 24 (22.64) 31 (36.05)�

Storage time in years (mean, SD) 15.30 (6.58) 13.28 (5.98) 17.84 (6.45)�

ADNI: blood study sample

Total Sample, N = 767 Normal, N = 216 MCI, N = 366 AD, N = 185

Age, mean (SD) 75.19 (6.82) 75.98 (5.05) 74.69 (7.35)# 75.26 (7.46)

Sex, n (% female) 327 (42.63) 105 (48.61) 132 (36.07)# 90 (48.65)

Race, n (% white) 713 (92.96) 199 (92.13) 341 (93.17) 173 (93.51)

APOE e4-carrier, n (%) 381 (49.67) 58 (26.85) 200 (54.64)# 123 (66.49)#

Storage time in years (mean, SD) 8.89 (0.37) 8.69 (0.42) 8.72 (0.40)

� p< 0.05 comparing non-converters and converters at baseline (both samples had normal cognition at baseline)

# p< 0.05 comparing MCI or AD to control group.

Abbreviations: AD, Alzheimer disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE e4, apolipoprotein E epsilon 4 allele; ASYMAD, asymptomatic

Alzheimer’s disease; BLSA, Baltimore Longitudinal Study of Aging; CN, control; MCI, mild cognitive impairment; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1002482.t001
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Determining cognitive status in BLSA and ADNI (Step 2)

In BLSA, cognitive status was considered at consensus diagnosis conferences after each

assessment/visit, using established procedures described previously [18]. The consensus

conferences included neurologists, neuropsychologists, and neuroimaging scientists. At

each assessment, participants underwent a battery of neuropsychological testing. Clinical

and neuropsychological data were reviewed at multidisciplinary consensus case conferences

if they made four or more errors on the Blessed Information, Memory, and Concentration

(BIMC) test, if their Clinical Dementia Rating (CDR) score was equal to or greater than 0.5,

or if concerns were raised about their cognitive status by a reliable informant. In addition,

all participants were evaluated by case conference on death or withdrawal. It is also impor-

tant to note that longitudinal data reviewed during consensus case conferences include

(besides detailed cognitive assessments) medication history, self-reported diagnoses of

comorbid medical conditions, neuroimaging data, as well as laboratory evaluation for

reversible causes of cognitive impairment such as serum TSH and B12 levels. The diagnoses

of dementia and AD were based on the Diagnostic and Statistical Manual (DSM)-III-R [19]

and the National Institute of Neurological and Communication Disorders and Stroke–Alz-

heimer’s Disease and Related Disorders Association (NINCDS-ADRDA) criteria, respec-

tively [20].

For individuals diagnosed with AD, age at onset of initial symptoms of AD was estimated at

consensus case conferences using longitudinal cognitive performance data as well as infor-

mant-based history.

In ADNI, dementia diagnosis was determined based on NINCDS-ADRDA criteria for

probable AD. MCI participants met criteria for amnestic MCI [21], and CN participants were

cognitively normal. Additional details on the ADNI protocol are available at http://www.adni-

info.org.

Blood samples in BLSA and ADNI (Step 2)

Blood serum samples were collected from BLSA participants at the NIA Clinical Research

Unit in Harbor Hospital, Baltimore. Details on collection and processing have been pub-

lished previously [7]. Briefly, venous blood samples were collected between 6 and 7 AM fol-

lowing an overnight fast. Serum samples were aliquoted into 0.5-mL volume in Nunc

cryogenic tubes and stored at −80˚C until further use. Samples were not subject to any

freeze–thaw cycles prior to metabolomic assays. Additional details on sample selection have

been published previously [7]. The average storage time of serum samples in BLSA partici-

pants was 17.84 years (SD: 6.45) in converters and 13.28 years (SD: 5.98) in non-converters

(Table 1). In order to minimize potential effects of long storage times on serum sample sta-

bility and metabolite concentrations, we excluded all samples (N = 9 non-converters; N = 34

converters) with methionine sulfoxide (Met-So) concentrations greater than 5 μM (3 SD

above average) [22,23]. The original sample included 250 participants; after excluding sam-

ples with high Met-So concentration, the final sample included 207 participants (N = 115

non-converters; N = 92 converters).

Details on collection and processing of ADNI blood serum samples have been published

previously (http://adni.loni.usc.edu/wp-content/uploads/2010/11/BC_Plasma_Proteomics_

Data_Primer.pdf). Briefly, blood was collected at 8 AM prior to CSF collection after an over-

night fast, immediately placed on dry ice, and shipped on the same day to the ADNI Bio-

marker Core at the University of Pennsylvania for processing. The final sample included 767

participants (N = 216 normal; N = 366 MCI; N = 185 AD). All samples had Met-So concentra-

tions below 5 μM and no samples were excluded.
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Brain and blood metabolomics in BLSA and ADNI (Steps 1 and 2)

Quantitative metabolomics was performed on BLSA brain and BLSA and ADNI blood sam-

ples on the Biocrates AbsoluteIDQ p180 platform. This commercially available platform

allows for the quantification of amino acids, acylcarnitines, sphingomyelins (SMs), phos-

phatidylcholines (PCs), hexoses (h1s), and biogenic amines. Details on the assays have been

published previously [24]. Briefly, the validated assay uses two different mass spectrometric

methods with isotope labeled and other internal standards for absolute quantification of

metabolites. The acylcarnitines, lipids, and h1s are analyzed by flow injection analysis-tan-

dem mass spectrometry (FIA-MS/MS). The amino acids and biogenic amines are deriva-

tized using phenylisothiocyanate and analyzed by liquid chromatography tandem-mass

spectrometry (HPLC-MS/MS) using an AB SCIEX 4000 QTrap mass spectrometer (AB

SCIEX, Darmstadt, Germany) with electrospray ionization. Concentration of each metabo-

lite was measured in μM.

For brain tissue metabolomics, regions were selected a priori in the middle frontal gyrus

(MFG), inferior temporal gyrus (ITG), and cerebellum (CBL). The MFG and ITG were sam-

pled to represent brain regions vulnerable to amyloid β and tau deposition, respectively; the

CBL was sampled to represent a brain region resistant to classical AD pathology. A sterile

4-mm-diameter tissue punch was extracted from the cortical surface of the brain tissue

regions, which were stored at −80˚C. To extract metabolites, samples were homogenized

using Precellys with ethanol phosphate buffer; samples were then centrifuged, and the

supernatant was used for analysis. Metabolite concentrations in brain tissue samples indi-

cated as less than the limit of detection (LOD) were imputed as the highest value below the

LOD. This method removed all differences below the LOD but still allowed machine-learn-

ing classifiers to pick up any differences in metabolite concentrations between those above

the LOD and those below.

For blood metabolomics, in BLSA, converter and non-converter samples were randomly

divided into 6 batches. Each batch was processed in separate runs with technicians blinded to

diagnostic status. Additional data processing and checking steps, including reproducibility

and testing for equality of coefficient of variance across metabolites, has been described in

detail previously [25]. BLSA serum samples indicated as less than LOD were not imputed due

to minimal missingness; 25/26 metabolites had 0< LOD values. ADNI data processing has

been described in detail previously and included imputing values indicated as less than the

LOD as the metabolite LOD/2, as determined by the ADMC [25]. Metabolite concentrations

from participants with duplicate measurements were averaged in all analyses.

Batch effects were controlled for using a set of CN samples. Standardized quality control

(QC) material, i.e., commercially available pooled human plasma spiked with a defined set of

metabolites, was used across all batches to control and adjust for batch effects by applying

MetIDQ software-implemented normalization procedures.

Cognitive assessments in BLSA (Step 2)

Cognitive performance was analyzed from assessments administered to BLSA participants

every two years. Memory was assessed using the California Verbal Learning Test (CVLT),

including learning (total recall over 5 learning trials), immediate free recall, and long delay free

recall. Attention was assessed using the Trails Making Test Part A and the WAIS-R Digits For-

ward test. Executive function was measured using the Trails Making Test Part B and the

WAIS-R Digit Backward test. Language was measured using letter fluency and semantic flu-

ency tests. Visuo-spatial ability was measured using the Clock Drawing Test and the Card

Rotation Test.
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Structural MRI measures in ADNI (Step 2)

MRI protocol, including scanner specifications, image acquisition, and image processing, are

described in detail at www.adni-info.org. Briefly, protocol specifications included T1 weighted

MR images, including sagittal volumetric 3DMPRAGE with 1.25 × 1.25-mm in-plane spatial

resolution, 1.2-mm thick sagittal slices, 8˚ flip angle, and target TR of about 8.9 mm and TE of

about 3.9 ms [26]. We utilized the Spatial Patterns of Abnormality for Recognition of Early

Alzheimer’s disease (SPARE-AD) index [27] as a neuroimaging measure of “AD-like” brain

atrophy patterns [28]; this measure was calculated for baseline visits of ADNI-1 participants.

CSF measures of AD pathology in ADNI (Step 2)

Participants underwent lumbar puncture in the morning following overnight fasting and

blood draws. Samples were immediately placed on dry ice and shipped to the ADNI Biomarker

Core for processing. Total tau (t-tau), phosphorylated tau (p-tau), and amyloid beta 1–42

(Aβ1–42) were measured using the multiplex xMAP Luminex platform (Luminex Corp, Austin,

TX) with Innogenetics (INNO-BIA AlzBio3, Ghent, Belgium) immunoassay kit-based

reagents. See http://adni.loni.usc.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-

Consortium-Data-Primer-FINAL1.pdf for additional details on sample collection and process-

ing, including reproducibility and data quality checks. CSF samples were available in 395 par-

ticipants (N = 109 normal; N = 186 MCI; N = 100 AD).

Statistical analysis

The first two stages of the analytic plan used for BLSA, including Step 1, Identifying a brain

metabolite signature of AD, and Step 2, Testing blood metabolite associations with AD endo-

phenotypes, were developed conceptually in May 2016 prior to any data analyses. There were

no subsequent data-driven alterations to this conceptual analytic plan; final data visualization

for Step 3, Summarizing results, was based on various iterations during analyses. The inclusion

of ADNI data occurred in fall 2016 after our data request was approved by the ADMC. Step 4,

Mapping biological pathways, occurred after we identified the principal classes of metabolites

emerging from Steps 1–3. Sensitivity analyses testing blood metabolite associations with AD

endophenotypes in BLSA (indicated below in Step 2) were conducted at the request of

reviewers.

Step 1: Identifying a brain metabolite signature of AD. Absolute brain tissue concentra-

tions of 187 targeted metabolites were generated using the quantitative metabolomic methods

described previously on the MFG, ITG, and CBL in the autopsy subsample of the BLSA. We

used two machine-learning methods, support vector machine (SVM) and random forest (RF),

to generate average values of classification accuracy, sensitivity, and specificity for discriminat-

ing between postmortem AD and CN samples in each of the three brain regions examined.

Both machine-learning methods are based on different principles (described below) and were

used in combination to avoid bias towards a particular methodology when selecting relevant

metabolites. The prediction models use the selected metabolites in combination with each

other, effectively modeling interactions between them. The primary aim of the machine-learn-

ing analyses was to discriminate between AD and CN samples, and therefore the ASYMAD

group was not included in defining the brain metabolite signature of AD.

Briefly, SVM is a classification method that attempts to find a separating surface between

two classes with maximummargin [29]. If there is no separating surface in the original feature

space, SVM uses a kernel to implicitly map the features into a higher dimensional space, in

which a separating surface can be found. The performance of an SVM classifier on test data

has rigorous theoretical bounds [29], and it is possible to limit the “complexity” of the
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prediction model to match the amount of data available. It has been shown that complex classi-

fier models that have many parameters that can be tuned to match the training data perform

poorly on test data due to overfitting. The restriction on the complexity of the SVM classifier

has been found to generalize well to test data, particularly when the number of features (p) is

much greater than the number of samples (n) [30].

Since its inception in 2001, RF has become popular in the machine-learning and bioinfor-

matics communities [31]. RF is one of the so-called ensemble methods for classification,

because a set of classifiers (instead of one) is generated and each one casts a vote for the pre-

dicted label of a given instance provided to the model. Each classifier is a tree built using the

classification and regression trees (CART) methodology [32]. RF often requires little tuning of

the parameters. RF is nonlinear, multivariate, and can deal with high-dimensional data, even

in small sample size situations. RF contains built-in metrics of variable importance, which

allow evaluating the relative relevance of each variable in a RF model. In the present report, we

used the permutation index of variable importance, which quantifies decreases in accuracy of

the estimated RF model due to random permutation of a given variable. Additional details on

using SVM and RF methodologies to discriminate between diseased and non-diseased individ-

uals in AD have been published previously [33]. To estimate metrics of performance (accuracy,

sensitivity, specificity) we used leave-one-out (LOO) cross validation.

The SVM and RF methods generated a ranked list of the top metabolites that contributed to

discriminating between AD and CN samples. The ranking for SVM was based on the number

of cross-validation iterations that each metabolite was selected in (i.e., higher numbers indicat-

ing higher rank), while that for RF was based on the mean decrease in accuracy when a partic-

ular metabolite was excluded from the prediction model. Because both methods rely on

different analytic principles and differences in feature selection, we expected that the top

metabolites from each method would not necessarily be identical; using both in combination

therefore avoided bias when defining the brain metabolite signature.

The ITG samples had the highest accuracy and sensitivity/specificity in discriminating AD

from CN samples. The top 20 ranked metabolites from each machine-learning classifier (SVM

and RF) in this region (ITG) were therefore used to define the brain metabolite signature of

AD.

Step 1: Identifying a brain metabolite signature of AD: Differences by group and associ-

ations with AD pathology. We next explored differences in concentration of each brain tis-

sue metabolite across 3 groups—AD, CN, and ASYMAD—in the ITG. Importantly, these

analyses included the ASYMAD group, which was not utilized in the development of the brain

metabolite signature of AD through the machine-learning analyses. Concentrations of brain

tissue metabolites were natural log transformed. Proportional odds ordinal logistic models, a

generalization of the Wilcoxon and Kruskal-Wallis test, were used to test for differences across

groups (i.e., AD, ASYMAD, CN) using brain tissue metabolite concentration as the outcome,

group as the nominal predictor, and age at death and sex as covariates. We then explored asso-

ciations between brain tissue metabolite concentrations and severity of AD pathology, specifi-

cally CERAD and Braak scores, again using all three groups, including ASYMAD. Spearman’s

rank correlation tests, adjusting for age at death and sex, were used to test these associations.

Step 2: Testing blood metabolite associations with AD endophenotypes: Risk of conver-

sion to incident AD in cognitively normal older adults (BLSA). In the BLSA sample, we

explored whether the natural log-transformed blood concentration of each metabolite identi-

fied in the brain metabolite signature of AD was associated with risk of conversion to incident

AD. We used Cox regression models, a class of survival models, to explore whether the initial

concentration of each metabolite (i.e., while all participants were cognitively normal) was asso-

ciated with the time to onset of conversion to AD. We included the covariates, age at initial
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blood draw and sex, in the model; individuals who remained normal (non-converters) at fol-

low-up were censored at their last visit. Hazard ratios (HRs) indicate the relative increase in

the hazard rate associated with 1 log-unit increase in concentration of the log-transformed

metabolite. An HR greater than 1.0 indicates that higher log-transformed concentration of the

metabolite is associated with increased risk, while an HR less than 1.0 indicates that lower con-

centration of the log-transformed metabolite is associated with increased risk.

Step 2: Testing blood metabolite associations with AD endophenotypes: Associations

with cognitive performance (BLSA). Using the metabolites identified in the brain metabo-

lite signature of AD, we next explored whether the natural log-transformed blood concentra-

tion of each metabolite was associated with longitudinal trajectories of cognitive performance

in cognitively normal individuals who developed incident AD. We first generated domain-spe-

cific composite scores within the following domains: memory, attention, executive function,

language, and visuospatial ability using methods described previously [24]. These methods are

also described in detail in S1 Appendix. Briefly, composite scores were calculated by summing

and averaging the standardized scores from multiple tests within each cognitive domain. Lin-

ear mixed effects regression models were used to test whether the concentration of each

metabolite was associated with longitudinal changes in domain-specific cognitive performance

in cognitively normal individuals converting to incident AD. All models included the follow-

ing predictors: natural log-transformed metabolite concentration, age at initial blood draw,

sex, time (in days between follow-up visit and baseline; baseline indicated as time = 0), and the

two-way interaction of each predictor with time. The main predictor of interest was the inter-

action of metabolite concentration with time, which indicates an increase or decrease in the

annualized rate of change in domain-specific cognitive performance associated with an

increase in metabolite concentration. As our main goal in these analyses was to examine asso-

ciations between blood metabolite concentrations and progression of AD during the early pre-

clinical stage of disease, we excluded all cognitive performance data after the onset of AD

symptoms.

Step 2: Testing blood metabolite associations with AD endophenotypes in BLSA (sensi-

tivity analyses). Due to differences in serum sample storage time among converters and

non-converters in the BLSA cohort and a greater number of converter samples excluded by

the Met-So cutoff, we performed additional sensitivity analyses within a subsample of convert-

ers and non-converters. After excluding all samples with Met-So concentration>5 μM, we

matched converter to non-converter serum samples on the duration of sample storage at

−80˚C within a range of ±2 years. This produced a matched sample of 74 converters (storage

time: 16.15 [SD: 5.83]) and 74 non-converters (storage time: 15.89 [SD: 5.90]). In these sensi-

tivity analyses, we tested whether significant associations observed in the original dataset

between serum metabolites and (i) risk of conversion to incident AD and (ii) cognitive perfor-

mance remained significant after matching on storage time.

Step 2: Testing blood metabolite associations with AD endophenotypes: Associations

with AD-like brain atrophy patterns and CSF biomarkers of AD pathology (ADNI).

Using the metabolites identified in the brain metabolite signature of AD, we next explored

cross-sectional associations between natural log-transformed blood metabolite concentrations

and the SPARE-AD index, a measure of AD-related brain atrophy derived fromMRI scans

[27]. We used multivariate linear regression, including the following predictors: natural log-

transformed baseline metabolite concentration, baseline age, and sex; the outcome was the

SPARE-AD index (higher scores represent more “AD-like” brain atrophy patterns).

In the ADNI sample, we additionally examined cross-sectional associations between natural

log-transformed baseline blood metabolite concentrations and natural log-transformed CSF

t-tau, p-tau, and Aβ1–42 concentrations. Similar to the model for the SPARE-AD analysis,
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multivariate linear regression models included the following predictors: natural log-trans-

formed baseline metabolite concentration, baseline age, and sex; the outcomes were natural

log-transformed CSF t-tau, p-tau, and Aβ1–42 concentrations.
Step 2: Testing blood metabolite associations with AD endophenotypes: Associations

with risk of conversion to incident AD (ADNI). In the ADNI sample, we explored whether

the natural log-transformed blood concentration of each metabolite identified in the brain

metabolite signature of AD was associated with risk of conversion fromMCI to incident AD.

Similar to survival models used in BLSA, Cox regression models were used to explore whether

initial metabolite concentrations in MCI participants were associated with the time to onset of

conversion to AD. We included covariates, age at baseline blood draw, and sex in the model;

individuals who remained MCI at follow-up were censored at their last visit. Similar to survival

models used in BLSA, the HR indicates the relative increase in the hazard rate associated with

1 log-unit increase in concentration of the log-transformed metabolite. An HR greater than

1.0 indicates that a higher log-transformed concentration of the metabolite is associated with

increased risk, while an HR less than 1.0 indicates that a lower concentration of the log-trans-

formed metabolite is associated with increased risk.

Step 3: Summarizing results: Calculating the EASE-AD score. In order to visually sum-

marize results from all analyses of metabolites comprising the brain metabolite signature of

AD and to explore whether metabolites clustered by class in their associations with distinct

AD-related endophenotypes, we generated a heat map indicating statistically significant asso-

ciations between ADmetabolites (y-axis) and the specific brain and blood endophenotypes (x-

axis) described above. Significant associations (p< 0.05) are highlighted in red or green indi-

cating that increased or decreased metabolite concentration, respectively, is associated with

the various AD-related endophenotypes. Nonsignificant associations are indicated in gray.

The 26-metabolite panel (brain metabolite signature of AD) was determined specifically based

on metabolite rankings from the machine-learning classifiers following rigorous cross valida-

tion and thus represent a priori hypotheses in subsequent analyses. Additionally, these second-

ary, exploratory analyses were all focused on testing the associations of these metabolites with

distinct measures of AD progression in order to identify consistent trends across two indepen-

dent cohorts [34]. For these reasons, we elected not to use a p-value correction in the second-

ary analyses.

In order to enhance ease of interpretation of the summary heat map, we collapsed all longi-

tudinal domain-specific cognitive performance tests into one category indicating significant

longitudinal associations in any domain. We included the following brain endophenotype cat-

egories: (1) Differences in brain metabolite concentrations in the ITG by diagnosis (i.e., AD,

CN, and ASYMAD) and correlations of metabolite concentrations in the ITG with (2)

CERAD and (3) Braak scores. We included the following blood metabolite versus preclinical

AD endophenotype categories (BLSA): associations of blood metabolite concentrations with

(4) risk of progression from normal to incident AD and (5) longitudinal trajectories of cogni-

tive performance. We included the following blood metabolite versus prodromal AD endophe-

notype categories (ADNI): associations of blood metabolite concentrations with (6) AD-like

brain atrophy patterns on MRI (i.e., SPARE-AD score), (7) CSF Aβ1–42, (8) CSF t-tau, (9) CSF

p-tau, and (10) risk of progression fromMCI to incident AD. We then calculated a summary

EASE-AD score indicating the number of significant associations for each ADmetabolite with

brain and blood endophenotypes (max score: 10). This score is included as the last column in

the heat map; visualized metabolites are sorted based on this score in order to explore cluster-

ing of metabolite species within main classes.
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We present detailed results for representative metabolites that showed significant associa-

tions with multiple AD phenotypes. Detailed results for all 26 ADmetabolites are included in

Supporting information tables (S3 Table–S11 Table).

Step 4: Mapping biological pathways. In order to interpret our results within the biologi-

cal context of the metabolic pathways implicated, we mapped the principal metabolite classes

emerging from our analyses to their known primary biosynthetic and catabolic pathways as

well as their known interactions through various enzymatically regulated intermediary reac-

tions (“Metabolic pathway”). We also mapped the main metabolite classes implicated to key

signaling mechanisms related to AD pathogenesis (“Signaling pathway”).

Results

Participants: Demographic characteristics

The demographic characteristics of BLSA participants in the autopsy cohort whose brain tissue

samples were used in the metabolomics assays are included in Table 1. The mean age at death

in the autopsy sample was 81.33 years (SD: 10.19), and the mean interval between last evalua-

tion and death (postmortem interval) was 14.93 h (SD: 6.86). Participants in the three groups

—CN, ASYMAD, and AD—did not significantly vary by age at death, sex, or postmortem

interval. The demographic characteristics of BLSA participants who provided blood data are

included in Table 1. Participants were aged 78.47 years (SD: 6.96) at initial blood draw and

51.69% were female. Converter and non-converter groups did not vary by age or sex. Serum

samples in the converter group were, on average, stored for four years longer than non-con-

verter samples (17.84 years [SD: 6.45] versus 13.28 years [SD: 5.98]; p< 0.05).

The demographic characteristics of ADNI participants are included in Table 1. Participants

were aged 75.19 years (SD: 6.82) at baseline, and 42.63% were female. MCI participants were

significantly younger (74.69 years [SD: 7.35]) and had fewer females (36.07%). Samples did not

vary by storage time.

Step 1: Identifying a brain metabolite signature of AD. Accuracy, sensitivity, and speci-

ficity of the machine-learning classifiers in discriminating between AD and CN samples for

the MFG, ITG, and CBL brain regions are included in Table 2. The SVM algorithm identified

a panel of metabolites that discriminated samples in the ITG with an accuracy of 83.33% and a

Table 2. Machine-learning methods to discriminate between AD and CN samples.

RF SVM

ITG

Accuracy 70.00% Accuracy 83.33%

Sensitivity 66.70% Sensitivity 86.67%

Specificity 73.30% Specificity 80.00%

MFG

Accuracy 58.60% Accuracy 31.03%

Sensitivity 60.00% Sensitivity 46.67%

Specificity 57.10% Specificity 14.29%

CBL

Accuracy 34.60% Accuracy 38.46%

Sensitivity 53.70% Sensitivity 60.00%

Specificity 9.10% Specificity 9.09%

Abbreviations: AD, Alzheimer disease; CBL, cerebellum; CN, control; ITG, inferior temporal gyrus; MFG, middle

frontal gyrus; RF, random forest; SVM, support vector machine.

https://doi.org/10.1371/journal.pmed.1002482.t002
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sensitivity/specificity of 86.67%/80.00%. The RF algorithm derived metabolites that discrimi-

nated samples in the ITG with an accuracy of 70.00% and a sensitivity/specificity of 66.70%/

73.30%. The performance metrics of metabolite concentrations in discriminating samples in

the MFG and CBL were comparatively lower.

Based on the performance of our machine-learning algorithms in the ITG, we chose the top

20 ranked metabolites from the SVM and RF algorithms from this region to define the brain

metabolite signature of AD. Out of 187 metabolites assayed, these top metabolites thus con-

tributed the most to discriminating between pathology-confirmed AD cases and CN in the

ITG. We found that 13 “consensus” metabolites were shared in the top 20 of both SVM and

RF algorithms, and 7 metabolites in each were unique to each algorithm (i.e., a total of 27

metabolites—13 consensus metabolites and 14 unique metabolites). We excluded one metabo-

lite, h1, that was not available in the ADNI dataset from subsequent analyses. Table 3 presents

Table 3. Top metabolites based on SVM and RF algorithms in the ITG.

Abbreviation Full Metabolite Name

Amino Acid

Arg Arginine

Acylcarnitine

C3 Propionylcarnitine

Glycerophospholipids

lysoPC a C17:0 Lysophosphatidylcholine with acyl residue C17:0

lysoPC a C18:0� Lysophosphatidylcholine with acyl residue C18:0

PC aa C38:4 Phosphatidylcholine with diacyl residue sum C38:4

PC aa C40:4� Phosphatidylcholine with diacyl residue sum C40:4

PC aa C40:5 Phosphatidylcholine with diacyl residue sum C40:5

PC aa C40:6� Phosphatidylcholine with diacyl residue sum C40:6

PC ae C34:0� Phosphatidylcholine with acyl-alkyl residue sum C34:0

PC ae C34:2 Phosphatidylcholine with acyl-alkyl residue sum C34:2

PC ae C36:0� Phosphatidylcholine with acyl-alkyl residue sum C36:0

PC ae C36:3 Phosphatidylcholine with acyl-alkyl residue sum C36:3

PC ae C36:4 Phosphatidylcholine with acyl-alkyl residue sum C36:4

PC ae C40:1 Phosphatidylcholine with acyl-alkyl residue sum C40:1

PC ae C42:3� Phosphatidylcholine with acyl-alkyl residue sum C42:3

Biogenic Amines

Serotonin Serotonin

Spermidine� Spermidine

Sphingolipids

SM C16:0 Sphingomyelin with acyl residue sum C16:0

SM C16:1� Sphingomyelin with acyl residue sum C16:1

SM C18:1 Sphingomyelin with acyl residue sum C18:1

SM C24:1� Sphingomyelin with acyl residue sum C24:1

SM C26:1� Sphingomyelin with acyl residue sum C26:1

SM (OH) C14:1 Hydroxysphingomyelin with acyl residue sum C14:1

SM (OH) C22:1� Hydroxysphingomyelin with acyl residue sum C22:1

SM (OH) C22:2� Hydroxysphingomyelin with acyl residue sum C22:2

SM (OH) C24:1� Hydroxysphingomyelin with acyl residue sum C24:1

� Indicates consensus metabolites common to both SVM and RF algorithms.

Abbreviations: ITG, inferior temporal gyrus; RF, random forest; SVM, support vector machine.

https://doi.org/10.1371/journal.pmed.1002482.t003
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the top 27 metabolites, including the 13 consensus metabolites; full ranked lists from both

SVM and RF algorithms from the ITG are included in S2 Table.

Step 1: Identifying a brain metabolite signature of AD: Differences by group and associ-

ations with AD pathology. A total of 16 metabolites showed brain tissue concentrations in

the ITG that differed significantly across clinical groups, i.e., CN, ASYMAD, and AD. The

majority of these were sphingolipids (8 out of 16) and glycerophospholipids (5 out of 16). The

AD group generally showed the highest or lowest metabolite concentrations, while the CN

group showed the opposite. The ASYMAD group generally showed intermediate metabolite

concentrations between the AD and CN samples. In Fig 2A, we show group differences and

global p-values for significance across clinical groups for brain tissue concentrations of 3 repre-

sentative sphingolipids: SM C16:0 (p = 0.005), SM C16:1 (p = 0.017), and SM (OH) C14:1

(p = 0.009) and three representative glycerophospholipids: PC ae C36:0 (p = 0.005), PC ae

C40:1 (p = 0.006), and PC aa C40:4 (p = 0.004). A summary of results across all metabolites is

included in S3 Table.

Brain tissue concentrations of 17 metabolites were significantly associated with severity of

neuritic plaque burden, as reflected in the CERAD scores. The majority (a total of 14 out of 17)

of these were sphingolipids (7 out of 17) and glycerophospholipids (7 out of 17). Brain tissue

concentrations of five metabolites were significantly associated with neurofibrillary pathology, as

assessed by Braak scores: three glycerophospholipids, one sphingolipid, and the amino acid, argi-

nine. Increased concentration of sphingolipids was consistently associated with greater CERAD

and Braak scores. In Fig 2B and 2C, we show correlation coefficient (ρ) and p-value results from

adjusted Spearman rank correlation tests (CERAD and Braak, respectively) for three representa-

tive sphingolipids: SM C16:0 (CERAD: ρ = 0.042, 95% CI = 0.0130–0.070, p = 0.006; Braak: ρ =

0.037, 95% CI = −0.001–0.076, p = 0.057), SM C16:1 (CERAD: ρ = 0.038, 95% CI = 0.011–0.065,

p = 0.008; Braak: ρ = 0.036, 95% CI = 0.000–0.073, p = 0.050), SM (OH) C14:1 (CERAD: ρ =

0.035, 95% CI = 0.005–0.064, p = 0.022; Braak: ρ = 0.025, 95% CI = −0.013–0.065, p = 0.191); and

three representative glycerophospholipids: PC ae C36:0 (CERAD: ρ = −0.037, 95% CI = −0.066–

−0.008, p = 0.014; Braak: ρ = −0.053, 95% CI = −0.089–−0.016, p = 0.006), PC ae C40:1 (CERAD:

ρ = −0.036, 95% CI = −0.064–−0.008, p = 0.012; Braak: ρ = −0.051, 95% CI = −0.086–−0.016,

p = 0.006), and PC aa C40:4 (CERAD: ρ = −0.039, 95% CI = −0.067–−0.011, p = 0.007; Braak:

ρ = −0.049, 95% CI = −0.085–−0.014, p = 0.008). A summary of results across all metabolites is

included in S4 Table.

Step 2: Testing blood metabolite associations with AD endophenotypes: Risk of conver-

sion to incident AD in cognitively normal older adults (BLSA). The mean interval between

initial blood sampling to the onset of AD (for converters) or follow-up (for non-converters) was

4.27 years (SD = 1.33 years). Higher blood concentrations of four sphingolipids were associated

with a significantly greater risk of future conversion to incident AD in cognitively normal older

individuals. These included SMC16:0 (HR = 4.430, 95% CI = 1.704–11.520, p = 0.002), SM C16:1

(HR = 3.455, 95% CI = 1.516–7.873, p = 0.003), SM (OH) C14:1 (HR = 3.539, 95% CI = 1.373–

9.122, p = 0.009) and SM C18:1 (HR = 2.255, 95% CI = 1.047–4.855, p = 0.038). Lower and higher

baseline blood concentrations of two glycerophospholipids, PC aa 38:4 (HR = 0.253, 95%

CI = 0.102–0.630, p = 0.003) and PC ae C34:2 (HR = 3.055, 95% CI = 1.211–7.705, p = 0.018),

respectively, were also associated with a significantly greater risk of conversion to incident AD. A

summary of results across all metabolites is included in S5 Table.

All metabolites significantly associated with greater risk of future conversion to incident

AD (i.e., 6 out of 6 metabolites) remained significant in sensitivity analyses conducted in the

subsample matched on storage time. A summary of the results from the sensitivity analyses is

included in S6 Table.
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Step 2: Exploring associations in blood with AD endophenotypes: Associations with

cognitive performance (BLSA). We found that initial blood concentrations of six metabo-

lites predicted longitudinal trajectories of domain-specific cognitive performance prior to the

onset of cognitive impairment in cognitively normal individuals converting to incident AD.

Higher baseline blood concentrations of the sphingolipids were broadly associated with greater

declines in cognition. Specifically, higher baseline blood concentration of SM C18:1 and SM

C26:1 were predictive of greater declines in attention (SM C18:1: β = −0.172, 95% CI =

−0.306–0.038, p = 0.012) and language (β = −0.533, 95% CI = −1.061–−0.005, p = 0.050),

respectively. Similarly, higher blood concentrations of the glycerophospholipids PC aa C40:6

and PC ae C40:1 were also predictive of greater declines in attention (PC aa C40:6: β = −0.122,

95% CI = −0.215–−0.030, p = 0.010) and language (PC ae C40:1: β = −0.251, 95% CI = −1.061–

−0.005, p = 0.041). Higher blood concentration of lysoPC a C18:0 were predictive of greater

declines in language (lysoPC a C18:0: β = −0.1530, 95% CI = −0.266–−0.0330, p = 0.012) and

lower blood concentration of the polyamine, spermidine, was associated with greater declines

in visuospatial ability (β = 1.220, 95% CI = 0.094–2.347, p = 0.034), and higher and lower

blood concentration of arginine were associated with greater declines in language (β = −0.142,

95% CI = −0.270–−0.013, p = 0.031) and visuospatial ability (β = 0.198, 95% CI = 0.007–0.390,

p = 0.043), respectively. Due to conflicting direction of associations between serum arginine

concentrations and cognitive performance, we arbitrarily chose to indicate the association

between arginine and language only, in the summary heat map. Significant associations are

summarized in S7 Table.

The majority of metabolites (i.e., 6 out of 8) remained significant in sensitivity analyses con-

ducted in the subsample matched on storage time. A summary of the results from the sensitiv-

ity analyses is included in S8 Table.

Step 2: Testing blood metabolite associations with AD endophenotypes:
Associations with AD-like brain atrophy patterns and CSF biomarkers of
AD pathology (ADNI)

Higher blood concentrations of sphingolipids were broadly associated with greater AD-like

brain atrophy patterns and more AD-like CSF levels of pathology. Specifically, two sphingoli-

pids, SM C16:0 (β = 0.593, 95% CI = 0.147–1.040, p = 0.009) and SM C18:1 (β = 0.466, 95%

CI = 0.0687–0.863, p = 0.022), were associated with more AD-like patterns of brain atrophy on

MRI scans measured by the SPARE-AD index. Lower blood concentration of the glyceropho-

spholipid, PC aa C40:6 (β = −0.323, 95% CI = −0.617–−0.029, p = 0.032), was associated with a

more “AD-like” pattern of brain atrophy. Fig 3A shows all significant cross-sectional associa-

tions between blood concentrations of metabolites described above and the SPARE-AD index.

A summary of results across all metabolites is included in S9 Table.

Higher blood concentrations of eight metabolites were associated with greater CSF levels of

t-tau, while higher concentrations of 10 metabolites were associated with greater CSF levels of

Fig 2. Associations between brain tissue metabolite concentration and clinical groups, CERAD scores, and Braak
scores. Please note that vertical axes scales differ across graphs in panels A and B. (A) Group differences and global p-
values for significance across clinical groups for brain tissue concentration of three representative sphingolipids and
three representative glycerophospholipids in the ITG. (B) ρs and p-values showing associations between three
representative sphingolipids and three representative glycerophospholipids and severity of neuritic plaque burden
(CERAD scores). (C) ρs and p-values showing associations between three representative sphingolipids and three
representative glycerophospholipids and severity of neurofibrillary pathology (Braak scores). ρ, correlation coefficient;
AD, Alzheimer disease; ASYMAD, asymptomatic Alzheimer’s disease; CERAD, Consortium to Establish a Registry for
Alzheimer’s Disease; CN, control; ITG, inferior temporal gyrus; OH, hydroxy; PC, phosphatidylcholine; SM,
sphingomyelin.

https://doi.org/10.1371/journal.pmed.1002482.g002
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p-tau. All significant associations were among either sphingolipids (t-tau: 6 out of 8; p-tau: 8

out of 10) or glycerophospholipids (t-tau: 2 out of 8; p-tau: 2 out of 10). Higher blood concen-

trations of two of these sphingolipids (SM C16:0 and SM [OH] C14:1) were also associated

with lower CSF levels of Aβ1–42. Lower blood concentrations of C3 and serotonin were also

associated with lower CSF levels of Aβ1–42. Fig 3B shows associations between blood concen-

trations of SM C16:0 (t-tau: β = 0.347, 95% CI = 0.103–0.592, p = 0.006; p-tau: β = 0.331, 95%

CI = 0.086–0.575, p = 0.008; Aβ1–42: β = −0.169, 95% CI = −0.328–−0.011, p = 0.036) and

SM [OH] C14:1 (t-tau: β = 0.346, 95% CI = 0.109–0.583, p = 0.004; p-tau: β = 0.416, 95%

CI = 0.179–0.653, p = 0.001; Aβ1–42: β = −0.179, 95% CI = −0.333–−0.025, p = 0.023), with all

three CSF biomarkers. We additionally show associations between blood concentrations of PC

aa C38:4 (t-tau: β = 0.279, 95% CI = 0.035–0.522, p = 0.025; p-tau: β = 0.251, 95% CI = 0.008–

0.494, p = 0.043) and PC ae C34:0 (t-tau: β = 0.358, 95% CI = 0.053–0.663, p = 0.022; p-tau: β =

0.423, 95% CI = 0.118–0.728, p = 0.007) and CSF t-tau and p-tau. A summary of significant

results across all metabolites is included in S10 Table.

Step 2: Testing blood metabolite associations with AD endophenotypes:
Associations with risk of conversion to incident AD (ADNI)

The mean interval between baseline blood sampling to the onset of AD or follow-up (for indi-

viduals who remained MCI) was 2.97 years (SD = 2.33 years). Higher blood concentration of

one sphingolipid, SM C18:1 (HR = 2.351, 95% CI = 1.268–4.360, p = 0.007), was associated

with a significantly greater risk of conversion to incident AD among individuals with MCI.

This sphingolipid was also associated with greater risk of conversion to incident AD among

cognitively normal individuals (described above in BLSA results). Higher blood concentration

of one glycerophospholipid, PC aa 38:4 (HR = 2.375, 95% CI = 1.189–4.745, p = 0.014), was

also associated with a significantly greater risk of conversion to incident AD. A summary of

results across all metabolites is included in S11 Table.

Step 3: Summarizing results: Calculating the EASE-AD score

Fig 4 shows the heat map summarizing statistically significant associations between the metab-

olites and brain and blood-specific AD endophenotypes. Metabolites are ranked (in decreasing

order) based on their EASE-AD score. P-values from each cell in Fig 4 are included in S12

Table.

Step 4: Mapping biological pathways: Exploring metabolite interactions
and their impact on AD pathology

Fig 5 summarizes the main biosynthetic and catabolic reactions (“Metabolic pathway”) of the

major metabolite classes and their interactions as well as their roles in signaling cascades (“sig-

naling pathway”) relevant to AD pathogenesis and evolution of the principal pathological fea-

tures of the disease.

Gene symbol and name. SLC5A7, solute carrier family 5 member 7; SLC1A5, solute car-

rier family 1 member 5; SLC7A5, solute carrier family 7 member 5; FATP1, fatty acid trans-

port protein-1; FATP4, fatty acid transport protein-4; FABP5, fatty acid binding protein 5;

CD36, CD36 molecule; SPTLC, serine palmitoyltransferase long chain base; KDSR, 3-ketodi-

hydrosphingosine reductase; CERS, ceramide synthase;DEGS, delta 4-desaturase, sphingoli-

pid; SGMS, sphingomyelin synthase; SML, sphingomyelinase; ACSL, acyl-CoA synthetase

long-chain family member; ELOVL, elongation of very long chain fatty acids; FADS, fatty acid

desaturase; GNPAT, glyceronephosphate O-acyltransferase; AGPS, alkylglycerone phosphate
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synthase; PLPP, phospholipid phosphatase; GPAT, Glycerol-3-phosphate acyltransferases;

AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; PPAP, phospholipid phosphatase;

PLD, phospholipase D; CHK, choline kinase; PCYT1, phosphate cytidylyltransferase 1, cho-

line; CEPT, choline/ethanolamine phosphotransferase; PLA2G2A, phospholipase A2 group II

A; PLA2G4A, phospholipase A2 group IV A; LPCAT, lysophosphatidylcholine acyltransfer-

ase;GPR132 (G2A), G protein-coupled receptor 132;GNAq, G protein subunit alpha q; PLC,

phospholipase C; CALM, calmodulin; CAMKII, calmodulin kinase II;GSK3B, glycogen

synthase kinase 3 beta; TAU, microtubule-associated protein tau; PPP2, serine/threonine pro-

tein phosphatase II; AKT, protein kinase B (PKB); BAD, BCL2 associated agonist of cell death;

BIMEL, BCL2 interacting mediator of cell death (BIM)-extra long; Aβ40–42, amyloid beta (40–

42); BACE1, beta-secretase 1; APP, amyloid protein precursor; sAPPβ, soluble amyloid pro-

tein precursor beta.

Discussion

To the best of our knowledge, this is the first study to apply quantitative and targeted metabo-

lomic analyses of both brain and blood tissue to identify metabolites associated with the sever-

ity of AD pathology as well as measures of AD progression. Our results indicate that distinct

metabolites belonging to the sphingolipid and glycerophospholipid classes are related to the

severity of AD pathology in the brain and that their concentrations in blood are associated

with preclinical disease progression. Furthermore, we were able to identify these specific

metabolites through a data-driven process that first used machine-learning methods to gener-

ate an AD-specific brain metabolite signature, and then clustered these metabolites based on

the EASE-AD summary score representing cumulative associations of each metabolite, with

outcome measures related to AD pathology and progression.

Sphingolipids and AD

This process identified sphingolipids as a class of metabolites that are consistently associated

with preclinical and prodromal AD, as well as with AD pathology at autopsy. Additionally, for

all sphingolipid species—across all endophenotypes in brain, prodromal, and preclinical blood

samples—increased concentration was associated with a more “AD-like” phenotype. Our

results add substantially to a growing body of literature suggesting that perturbations in sphin-

golipid metabolism are related to key aspects of AD pathogenesis [43,44]. SMs are a subclass of

sphingolipids that are enriched in the central nervous system as important constituents of

lipid rafts [38] and play a critical role in neuronal cell signaling [45,46]. In the brain, sphingoli-

pids mediate a diverse array of biological functions that are relevant to critical molecular

mechanisms in AD, including amyloidogeneic processing of the amyloid precursor protein

(APP) within SM-rich lipid rafts [47] and regulation of hippocampal neuronal excitability

[48]. While previous studies in postmortem human brain tissue have demonstrated altered lev-

els of total SM content in AD relative to CN [49,50], few have quantified absolute concentra-

tions of distinct SM species within brain regions differentially vulnerable to AD pathology.

Fig 3. Associations between bloodmetabolite concentration and SPARE-AD index, CSF concentrations of Aβ1–42,
t-tau, and p-tau. Please note that vertical axes scales differ across graphs in panels A and B. (A) ρs and p-values showing
associations between representative metabolites and AD-like patterns of brain atrophy onMRI scans (SPARE-AD index).
(B) ρs and p-values showing associations between representative metabolites and CSFmarkers of AD: Aβ1–42, t-tau, and
p-tau. ρ, correlation coefficient; Aβ1–42, amyloid beta 1–42; AD, Alzheimer disease; CSF, cerebrospinal fluid; MRI,
magnetic resonance imaging; OH, hydroxyl; p-tau, phosphorylated tau; PC, phosphatidylcholine; SM, sphingomyelin;
SPARE-AD, Spatial Patterns of Abnormality for Recognition of Early Alzheimer’s disease; t-tau, total tau.

https://doi.org/10.1371/journal.pmed.1002482.g003
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Fig 4. Heat map summarizing associations between metabolites and AD endophenotypes.Meanings of column headings: AD-ASY-CN, association between brain
tissue metabolite concentration and clinical diagnosis of AD; CERAD, association between brain tissue metabolite concentration and plaques measured by CERAD
score; Braak, association between brain tissue metabolite concentration and neurofibrillary tangle burden measured by Braak score; SPARE-AD, association between
blood tissue metabolite concentration in ADNI and SPARE-AD score; A Beta, association between blood tissue metabolite concentration in ADNI and CSF Aβ1–42; t-
tau, association between blood tissue metabolite concentration in ADNI and CSF (t-tau); p-tau, association between blood tissue metabolite concentration in ADNI and
CSF (p-tau); Cog perfor, association between blood tissue metabolite concentration and cognitive performance prior to AD onset; EASE-AD, sum of significant
associations across AD-related endophenotypes. ADNI Cox: association between blood tissue metabolite concentration and risk of incident AD in ADNI amongMCI
individuals. BLSA Cox: association between blood tissue metabolite concentration and risk of incident AD/MCI in BLSA among cognitively normal individuals.
Aβ1–42, amyloid beta 1–42; AD, Alzheimer disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ASY, asymptomatic Alzheimer’s disease; BLSA, Baltimore
Longitudinal Study of Aging; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; CN, control; CSF, cerebrospinal fluid; EASE-AD, Endophenotype
Association Score in Early Alzheimer’s disease; MCI, mild cognitive impairment; OH, hydroxyl; p-tau, phosphorylated tau; PC, phosphatidylcholine; SM,
sphingomyelin; SPARE-AD, Spatial Pattern of Abnormality for Recognition of Early Alzheimer’s disease; t-tau, total tau.

https://doi.org/10.1371/journal.pmed.1002482.g004
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Fig 5. Metabolic pathways and signaling cascades involving glycerophospholipids and sphingolipids: relevance to AD pathogenesis. Schematic articulation
of the core metabolic and signaling pathways in neurons, highlighting links between glycerophospholipid and sphingolipid classes of lipid species identified in the
current study to be associated with the severity of AD pathology in the brain. Nutrient transporters (SLC5A7, SLC1A5, CD36, FATPs) present both at the BBB as
well as the neuronal cell membrane mediate the uptake of amino acids, long chain fatty acids, and vitamin precursors into neurons necessary for the de novo
synthesis of glycerophospholipid and SM lipid species [35,36]. The “metabolic pathway” section of the diagram represents the core metabolic pathways involved
in the synthesis and recycling of glycerophospholipid and sphingolipid species. The “signaling pathway” section connects these lipid species to the core
representative signaling cascades implicated in mediating multiple aspects of AD pathology in the brain, such as formation of neuritic plaques, neurofibrillary
tangles, and AD-like brain atrophy. In a condition-dependent manner, incoming free fatty acids are incorporated into glycerolipids or ceramides in the
endoplasmic reticulum. Similarly, LCFAs are processed in peroxisomal organelles to generate ether lipids. Coupling with the Kennedy pathway, glycerolipids and
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Our findings are broadly consistent with those of Chan and colleagues, who demonstrated

higher levels of the SM species SM d18:1/22:1 and d18:1/26:1 in the prefrontal and entorhinal

cortices of AD patients, relative to CN [51].

Most previous studies reporting on altered blood sphingolipid levels in AD have used an

untargeted lipidomics approach (e.g., [52,53]). Some recent studies have used the p180 tar-

geted metabolomics platform to assay absolute concentrations of metabolites associated with

AD. An important distinction in the design of these previous studies and our current report is

in our use of a brain-derived ADmetabolite signature to guide focused analyses of these

metabolites in blood as well as a comprehensive exploration of their associations within both

preclinical and prodromal AD samples. Two studies [25,54] have recently reported on p180

metabolite data within blood samples in the ADNI and the Atherosclerosis Risk in Communi-

ties (ARIC) cohorts. While there is minimal overlap between these results and our current

report, it is striking to note that two sphingolipids we observe to be increased in the temporal

cortex of AD patients and identified in our brain metabolite signature of AD (SM C16:0 and

SM [OH] C14:1) were associated with brain atrophy, cognitive decline, and risk of conversion

fromMCI to AD in ADNI [25]. Similarly, blood concentrations of SM C16:0 and SM C26:1

were also associated with a diagnosis of MCI and dementia, respectively, in the predominantly

African-American ARIC cohort [54].

Our findings that blood concentration of sphingolipids represented in the brain metabolite

signature of AD are also associated with progression during preclinical and prodromal AD

suggest that these are biologically relevant, early signals of disease progression. Equally impor-

tantly, correcting perturbations in sphingolipid metabolism may represent a plausible novel

strategy for therapeutic intervention in AD. In this context, the emerging roles of sphingosine

1-phosphate (S1P)-metabolizing enzymes and S1P analogs in ameliorating Aβ-induced neu-

roinflammation in AD [55,56] are especially promising.

Glycerophospholipids and AD

The second major class of metabolites we observed to be related to measures of AD pathology

were glycerophospholipids (i.e., PCs and lysophosphatidylcholines [LysoPCs]). The majority

of associations between these metabolites were in the brain tissue samples: generally, lower

concentrations of glycerophospholipids were associated with greater severity of both amyloid

and neurofibrillary pathology; associations between glycerophospholipids and preclinical and

prodromal AD endophenotypes were sparse. In previous studies using untargeted and semi-

quantitative metabolomics, we demonstrated that AD patients show lower plasma

ether lipids are converted to either aa or ae PC species [37]. PCs are metabolized by the phospholipase or SML enzymes to recycle back phosphatidic acid or DAG
or to generate SM, respectively. These lipid species are critical in the formation of lipid rafts, which represent essential structural and functional domains for
maintaining neuronal function [38]. In AD, remodeling of lipid rafts, especially with enhanced activity of SMLs, results in an increased ceramide to SM ratio,
which facilitates Aβ production by posttranslational stabilization of BACE1 enzyme. This leads to further generation of oligomeric Aβ due to a feed forward
regulatory loop between Aβ and the SML enzymes [39]. Similarly, PC with saturated and unsaturated long-chain fatty acyl groups positively influence activity of
theƳ-secretase enzyme by modulating cell membrane thickness and the lipid microenvironment of the enzyme [40]. Meanwhile, generation of
lysophosphatidylcholine frommembrane PC by both cytosolic PLA2G4A in Land’s cycle [41] as well as the secretory soluble PLA2G2A can lead to dysregulation
of intracellular calcium signaling in a G-protein receptor (GPR132, G2A) coupled manner. Dysregulated Ca2+ signaling can result in enhanced activity of
CAMKII, which, in coordination with the ceramide–PP2A–GSK3β pathway, results in tau hyperphosphorylation, leading to the generation of PHF and enhanced
neurofibrillary tangle formation [42]. Furthermore, altered ceramide signaling by down-regulation of AKT kinase activity via PP2A can trigger neuronal
apoptosis by augmenting activity of the pro-apoptotic proteins, BAD and BIMEL. aa, diacyl; Aβ, amyloid-β; AD, Alzheimer disease; ae, acyl-alkyl; AKT, protein
kinase B; BACE1, β-secretase; BAD, BCL2 associated agonist of cell death; BBB, blood-brain barrier; BIMEL, BCL2 interacting mediator of cell death-extra long;
CAMKII, calmodulin kinase; CD36, CD36 molecule; DAG, diacylglycerol; ECF, extracellular fluid; ER, endoplasmic reticulum FATP, fatty acid transport protein;
LCFA, long-chain fatty acid; LysoPC, lysophosphatidylcholine; PC, phosphatidylcholine; PHF, paired helical filaments; PLA2G2A, phospholipase A2 group IIA;
PLA2G4A, phospholipase A2 Group IVA; PP2A, protein phosphatase; SLC1A5, solute carrier family 1 member 5; SLC5A7, solute carrier family 5 member 7; SM,
sphingomyelin; SML, sphingomyelinase.

https://doi.org/10.1371/journal.pmed.1002482.g005
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concentrations of distinct phosphatidylcholines (PC aa C36:5, PC aa C38:6, and PC aa C40:6),

relative to CN [57]. We recently extended these findings to show that reduced plasma concen-

tration of these phosphatidylcholines is also related to lower levels of cognitive performance in

non-demented older individuals and reflects resting state cerebral blood flow (rCBF), a marker

of neuronal activity, in several brain regions related to higher order cognitive processing [58].

Taken together, these prior findings and our current results add further evidence for a role of

altered phosphatidylcholine metabolism in AD pathogenesis.

Network biology: Metabolic pathway alterations in AD

In order to develop an integrated understanding of central–peripheral lipid metabolite fluxes

as well as interactions between the major metabolite classes observed in this study, we applied

a network biology approach. Fig 5 summarizes these networks, based on prior knowledge of

transport mechanisms related to these metabolites and their precursors as well as their known

biosynthetic pathways and catabolic fates. Long-chain fatty acid (LCFA) precursors for glycer-

ophospholipid and sphingolipid biosynthesis are transported both across the blood-brain bar-

rier (BBB) and through plasma membranes within the brain through protein-mediated active

transport by fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs),

fatty acid binding proteins (FABPs), and the fatty acid transporter (FAT)/CD36 [35,36]. In the

context of neurodegenerative diseases in general and AD in particular, transport of the omega-

3 (ω-3) polyunsaturated fatty acid (PUFA), docosahexaenoic acid (DHA; 22:6n-3), into the

brain is especially important [59,60]. In a recent untargeted lipidomic analysis in brain tissue

samples from the BLSA, we showed that dysregulation of fatty acid metabolism is associated

with severity of AD pathology [24]. Fig 5 also shows key enzymatically regulated steps in the

biosynthesis of phosphatidylcholines through the Kennedy pathway [37] and their reversible

conversion to LysoPCs through Land’s cycle [41]. The transfer of phosphocholine headgroups

to ceramides by the enzyme phosphatidylcholine transferase (sphingomyelin synthase

[SGMS]) is a key intermediary step in sphingolipid biosynthesis [43] and is a potentially criti-

cal link between glycerophospholipid and sphingolipid metabolism observed in our current

report.

By performing our initial discovery analyses in brain tissue samples at autopsy and subse-

quent validation in preclinical (i.e., BLSA) and prodromal (i.e., ADNI) serum samples, we

were able to ask whether metabolic changes associated with markers of AD neuropathology in

established disease are similar to blood metabolite changes in early AD pathogenesis. Broadly,

our results indicate that there are shared pathways between metabolite changes in brain and

blood, with the prodromal serum samples (i.e., ADNI) sharing more metabolites with brain

samples than the preclinical (i.e., BLSA) serum samples (see Fig 4). A plausible explanation for

these findings is that blood metabolite changes associated with later stages of AD progression

prior to symptom onset are more similar to metabolic correlates of AD pathology in estab-

lished disease. In independent analyses, we have also used the BLSA and ADNI serum samples

as discovery datasets to ask whether principal metabolites associated with preclinical and pro-

dromal AD-related endophenotypes in blood are also represented among the brain metabo-

lites (i.e., in “established disease”) reported in the current study. Among serummetabolites

previously shown to be associated with AD progression in BLSA, we find that propionylcarni-

tine (C3) concentration in serum discriminates between converter and non-converter samples

[7], and its concentration in the ITG is related to the severity of neuritic plaque pathology in

our current study (Fig 4). Among serummetabolites previously shown to be associated with

AD endophenotypes in ADNI, we find that SMC (OH) C14:1 and SM 16:0 concentrations in

serum are associated with CSF Aβ, concentration, brain atrophy, cognitive decline, and risk of
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MCI progression [25], and their concentrations in the ITG (i.e., our current report) are both

related to the severity of neuritic plaque pathology and differ across the three groups studied

(Fig 4). Taken together, while these findings suggest that there are metabolic pathways com-

mon to both AD-related neuropathology and blood-related disease progression, there are also

those that are specific to disease stage and tissue compartment. Establishing the relative impor-

tance of common and distinct metabolic pathways across tissue types and disease stages will

require subsequent studies in larger datasets.

Limitations

Our study has limitations. First, the relatively small number of brain tissue samples in our pri-

mary analyses may have limited our power to detect significant associations with other metab-

olites assayed and precluded the use of a discovery and validation dataset. The small number

reflects the challenges of assembling brain tissue samples from well-characterized, longitudi-

nally followed participants who also undergo detailed neuropathological assessment at death;

future studies in larger brain samples are needed to validate our findings. Second, while the

Biocrates AbsoluteIDQ platform is a standardized platform for multiplexed quantitative analy-

sis of 187 different metabolites, these metabolites represent only a small proportion of the

brain and blood metabolomes. Future analyses will expand our study framework across addi-

tional classes of metabolites. Third, it must be noted that we based our primary analyses on

metabolites associated with AD pathology in brain tissue samples. In future studies, it would

be important to perform similar analyses in cognitively normal individuals using primary out-

comes derived from neuroimaging/CSF-based measures of early AD pathology in prodromal/

preclinical AD. Fourth, testing of pre-analytical variables in the BLSA serum samples indicated

a potential selection bias: converter samples were subject to longer storage time at −80˚C, com-

pared to non-converter samples (approximately 17 years versus 13 years, respectively;

Table 1). Additionally, the converter group compared to the non-converter group had more

samples above the cutoff values for Met-So concentration used as an indicator of sample qual-

ity. Therefore, we performed sensitivity analyses within a subsample of converters and non-

converters matched on storage time. In these sensitivity analyses, we confirmed that 10 of the

12 metabolites associated with AD-related outcomes in the BLSA serum samples (Fig 4)

remained significant. We therefore interpret these sensitivity analyses to suggest that our

observed results on serummetabolite concentrations in BLSA are not driven primarily by

group differences in sample storage time or quality. Finally, it is important to note that the

BLSA is a predominantly Caucasian sample of highly educated and relatively healthy older

individuals. Our findings therefore merit confirmation in other cohorts with higher prevalence

of cardiovascular and cerebrovascular disease.

Conclusions

In summary, we have applied quantitative and targeted metabolomics to identify a panel of

sphingolipids, the concentrations of which, in brain tissue, are associated with severity of AD

neuropathology and, in blood, with measures of progression during preclinical and prodromal

AD. We propose that perturbations in sphingolipid metabolism may be integral to the evolu-

tion of AD neuropathology as well as to the eventual expression of AD symptoms in cogni-

tively normal older individuals. Our study design, which takes a machine-learning and data-

driven approach to identify blood metabolites associated with AD progression and explores

how those metabolites are integrated within biologically relevant pathways, suggests a novel

framework for identifying markers for early detection and potential avenues for effective ther-

apeutic intervention in AD.

Brain and blood metabolite signatures of Alzheimer disease

PLOSMedicine | https://doi.org/10.1371/journal.pmed.1002482 January 25, 2018 26 / 31

https://doi.org/10.1371/journal.pmed.1002482


Supporting information

S1 STROBE Checklist. Checklist of items that should be included in reports of observa-

tional studies.

(DOCX)

S1 Appendix. Description of methods used to generate cognitive domain-specific compos-

ite scores.

(DOCX)

S1 Table. ADNI participating institutions/study sites. ADNI, Alzheimer’s Disease Neuroim-

aging Initiative.

(DOCX)

S2 Table. Full ranking from SVM and RF algorithms from the ITG. ITG, inferior temporal

gyrus; RF, random forest; SVM, support vector machine.

(DOCX)

S3 Table. Brain endophenotype associations: Differences by group.

(DOCX)

S4 Table. Brain endophenotype associations: Associations with AD pathology. AD, Alzhei-

mer disease.

(DOCX)

S5 Table. Blood endophenotype associations: Risk of progression to incident AD in cogni-

tively normal older individuals (BLSA). AD, Alzheimer disease; BLSA, Baltimore Longitudi-

nal Study of Aging.

(DOCX)

S6 Table. Sensitivity analyses in subsample matched on storage time. Blood endophenotype

associations: risk of progression to incident AD in cognitively normal older individuals

(BLSA). AD, Alzheimer disease; BLSA, Baltimore Longitudinal Study of Aging.

(DOCX)

S7 Table. Blood endophenotype associations: Cognitive performance (BLSA). BLSA, Balti-

more Longitudinal Study of Aging.

(DOCX)

S8 Table. Sensitivity analyses in subsample matched on storage time: Blood endopheno-

type associations: Cognitive performance (BLSA). BLSA, Baltimore Longitudinal Study of

Aging.

(DOCX)

S9 Table. Blood endophenotype associations: AD-like brain atrophy patterns and CSF bio-

markers of AD pathology (ADNI). AD, Alzheimer disease; ADNI, Alzheimer’s Disease Neu-

roimaging Initiative; CSF, cerebrospinal fluid.

(DOCX)

S10 Table. Blood endophenotype associations: AD-like brain atrophy patterns and CSF

biomarkers of AD pathology (ADNI). AD, Alzheimer disease; ADNI, Alzheimer’s Disease

Neuroimaging Initiative; CSF, cerebrospinal fluid.

(DOCX)

S11 Table. Blood endophenotype associations: Risk of progression to incident AD in MCI

individuals (ADNI). AD, Alzheimer disease; ADNI, Alzheimer’s Disease Neuroimaging

Brain and blood metabolite signatures of Alzheimer disease

PLOSMedicine | https://doi.org/10.1371/journal.pmed.1002482 January 25, 2018 27 / 31

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s001
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s002
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s003
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s004
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s005
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s006
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s007
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s008
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s009
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s010
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s011
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s012
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s013
https://doi.org/10.1371/journal.pmed.1002482


Initiative; MCI, mild cognitive impairment.

(DOCX)

S12 Table. P-values for all brain- and blood-specific AD endophenotypes included in Fig 4.

AD, Alzheimer disease.

(DOCX)

Acknowledgments

We are grateful to participants in the BLSA for their invaluable contribution. We are thankful

to Dr. Luigi Ferrucci for his guidance throughout the development of the study design and

manuscript. We are additionally thankful for support from the BLSA, the Alzheimer’s Disease

Metabolomics Consortium, and the ADNI studies. Please note: data used in the preparation of

this article were obtained from the ADNI database (adni.loni.usc.edu). As such, the investiga-

tors within the ADNI contributed to the design and implementation of ADNI and/or provided

data but did not participate in the analysis or writing of this report. A complete listing of

ADNI investigators can be found at:

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgment_List.

pdf

Author Contributions

Conceptualization: Vijay R. Varma, Madhav Thambisetty.

Data curation: Vijay R. Varma, Sudhir Varma, Ramon Casanova.

Formal analysis: Vijay R. Varma, Sudhir Varma, Ramon Casanova, Yang An.

Investigation: Richard O’Brien, Jon Toledo, Rebecca Baillie, Matthias Arnold, Gabi Kasten-

mueller, Kwangsik Nho, P. Murali Doraiswamy, Andrew J. Saykin, Rima Kaddurah-Daouk,

Cristina Legido-Quigley.

Methodology: Vijay R. Varma, Anup M. Oommen, Sudhir Varma, Ramon Casanova, Yang

An, Olga Pletnikova, Juan C. Troncoso, Cristina Legido-Quigley, Madhav Thambisetty.

Supervision:Madhav Thambisetty.

Visualization: Vijay R. Varma, Anup M. Oommen, Ryan M. Andrews.

Writing – original draft: Vijay R. Varma, Madhav Thambisetty.

Writing – review & editing: Vijay R. Varma, Anup M. Oommen, Sudhir Varma, Ramon

Casanova, Yang An, Ryan M. Andrews, Richard O’Brien, Olga Pletnikova, Juan C. Tron-

coso, Jon Toledo, Rebecca Baillie, Matthias Arnold, Gabi Kastenmueller, Kwangsik Nho,

P. Murali Doraiswamy, Andrew J. Saykin, Rima Kaddurah-Daouk, Cristina Legido-Quig-

ley, Madhav Thambisetty.

References
1. Trushina E, Mielke MM. Recent advances in the application of metabolomics to Alzheimer’s Disease.

Biochimica et biophysica acta. 2014; 1842(8):1232–9. https://doi.org/10.1016/j.bbadis.2013.06.014
PMID: 23816564

2. Barba I, Fernandez-Montesinos R, Garcia-Dorado D, Pozo D. Alzheimer’s disease beyond the genomic
era: nuclear magnetic resonance (NMR) spectroscopy-basedmetabolomics. Journal of cellular and
molecular medicine. 2008; 12(5A):1477–85. https://doi.org/10.1111/j.1582-4934.2008.00385.x PMID:
18554316

Brain and blood metabolite signatures of Alzheimer disease

PLOSMedicine | https://doi.org/10.1371/journal.pmed.1002482 January 25, 2018 28 / 31

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002482.s014
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgment_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgment_List.pdf
https://doi.org/10.1016/j.bbadis.2013.06.014
http://www.ncbi.nlm.nih.gov/pubmed/23816564
https://doi.org/10.1111/j.1582-4934.2008.00385.x
http://www.ncbi.nlm.nih.gov/pubmed/18554316
https://doi.org/10.1371/journal.pmed.1002482


3. MapstoneM, Cheema AK, FiandacaMS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholip-
ids identify antecedent memory impairment in older adults. Nature medicine. 2014; 20(4):415–8. https://
doi.org/10.1038/nm.3466 PMID: 24608097

4. Kim E, Jung YS, Kim H, Kim JS, Park M, Jeong J, et al. Metabolomic signatures in peripheral blood
associated with Alzheimer’s disease amyloid-beta-induced neuroinflammation. Journal of Alzheimer’s
disease: JAD. 2014; 42(2):421–33. https://doi.org/10.3233/JAD-132165 PMID: 24898638

5. Inoue K, Tsuchiya H, Takayama T, Akatsu H, Hashizume Y, Yamamoto T, et al. Blood-based diagnosis
of Alzheimer’s disease using fingerprinting metabolomics based on hydrophilic interaction liquid chro-
matography with mass spectrometry and multivariate statistical analysis. Journal of chromatography B,
Analytical technologies in the biomedical and life sciences. 2015; 974:24–34. https://doi.org/10.1016/j.
jchromb.2014.10.022 PMID: 25463194

6. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, et al. Classification and pre-
diction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature medicine. 2007; 13
(11):1359–62. https://doi.org/10.1038/nm1653 PMID: 17934472

7. Casanova R, Varma S, Simpson B, KimM, An Y, Saldana S, et al. Blood metabolite markers of preclini-
cal Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimers Dement.
2016; 12(7):815–22. https://doi.org/10.1016/j.jalz.2015.12.008 PMID: 26806385

8. Thambisetty M, Lovestone S. Blood-based biomarkers of Alzheimer’s disease: challenging but feasible.
Biomarkers in medicine. 2010; 4(1):65–79. https://doi.org/10.2217/bmm.09.84 PMID: 20387303

9. Ferrucci L. The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the
future. The journals of gerontology. 2008; 63(12):1416–9. PMID: 19126858

10. Shock NW, Gruelich R, Andres R, Arenberg D, Costa PT, Lakatta EG, et al. Normal Human Aging: The
Baltimore Longitudinal Study of Aging. Washington, DC, USA: U.S. Government Printing Office; 1984.

11. Mueller SG,Weiner MW, Thal LJ, Petersen RC, Jack C, Jagust W, et al. The Alzheimer’s disease neu-
roimaging initiative. Neuroimaging clinics of North America. 2005; 15(4):869–77, xi-xii. https://doi.org/
10.1016/j.nic.2005.09.008 PMID: 16443497

12. O’Brien RJ, Resnick SM, Zonderman AB, Ferrucci L, Crain BJ, Pletnikova O, et al. Neuropathologic
studies of the Baltimore Longitudinal Study of Aging (BLSA). Journal of Alzheimer’s disease: JAD.
2009; 18(3):665–75. https://doi.org/10.3233/JAD-2009-1179 PMID: 19661626

13. Gamaldo A, Moghekar A, Kilada S, Resnick SM, Zonderman AB, O’Brien R. Effect of a clinical stroke
on the risk of dementia in a prospective cohort. Neurology. 2006; 67(8):1363–9. https://doi.org/10.1212/
01.wnl.0000240285.89067.3f PMID: 17060561

14. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to Establish a
Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment
of Alzheimer’s disease. Neurology. 1991; 41(4):479–86. PMID: 2011243

15. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica.
1991; 82(4):239–59. PMID: 1759558

16. Troncoso JC, Zonderman AB, Resnick SM, Crain B, Pletnikova O, O’Brien RJ. Effect of infarcts on
dementia in the Baltimore longitudinal study of aging. Annals of neurology. 2008; 64(2):168–76. https://
doi.org/10.1002/ana.21413 PMID: 18496870

17. Iacono D, Resnick SM, O’Brien R, Zonderman AB, An Y, Pletnikova O, et al. Mild cognitive impairment
and asymptomatic Alzheimer disease subjects: equivalent beta-amyloid and tau loads with divergent
cognitive outcomes. Journal of neuropathology and experimental neurology. 2014; 73(4):295–304.
https://doi.org/10.1097/NEN.0000000000000052 PMID: 24607960

18. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A. Age-specific incidence rates of Alzheimer’s
disease: the Baltimore Longitudinal Study of Aging. Neurology. 2000; 54(11):2072–7. PMID: 10851365

19. APA. Diagnostic and statistical manual of mental disorders: DSM-III-R. Washington, DC: American
Psychiatric Association; 1987.

20. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzhei-
mer’s disease: report of the NINCDS-ADRDAWork Group under the auspices of Department of Health
and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984; 34(7):939–44. PMID:
6610841

21. Petersen RC. Mild cognitive impairment as a diagnostic entity. Journal of internal medicine. 2004; 256
(3):183–94. https://doi.org/10.1111/j.1365-2796.2004.01388.x PMID: 15324362

22. Breier M, Wahl S, Prehn C, FugmannM, Ferrari U, Weise M, et al. Targeted metabolomics identifies
reliable and stable metabolites in human serum and plasma samples. PLoS ONE. 2014; 9(2):e89728.
https://doi.org/10.1371/journal.pone.0089728 PMID: 24586991

Brain and blood metabolite signatures of Alzheimer disease

PLOSMedicine | https://doi.org/10.1371/journal.pmed.1002482 January 25, 2018 29 / 31

https://doi.org/10.1038/nm.3466
https://doi.org/10.1038/nm.3466
http://www.ncbi.nlm.nih.gov/pubmed/24608097
https://doi.org/10.3233/JAD-132165
http://www.ncbi.nlm.nih.gov/pubmed/24898638
https://doi.org/10.1016/j.jchromb.2014.10.022
https://doi.org/10.1016/j.jchromb.2014.10.022
http://www.ncbi.nlm.nih.gov/pubmed/25463194
https://doi.org/10.1038/nm1653
http://www.ncbi.nlm.nih.gov/pubmed/17934472
https://doi.org/10.1016/j.jalz.2015.12.008
http://www.ncbi.nlm.nih.gov/pubmed/26806385
https://doi.org/10.2217/bmm.09.84
http://www.ncbi.nlm.nih.gov/pubmed/20387303
http://www.ncbi.nlm.nih.gov/pubmed/19126858
https://doi.org/10.1016/j.nic.2005.09.008
https://doi.org/10.1016/j.nic.2005.09.008
http://www.ncbi.nlm.nih.gov/pubmed/16443497
https://doi.org/10.3233/JAD-2009-1179
http://www.ncbi.nlm.nih.gov/pubmed/19661626
https://doi.org/10.1212/01.wnl.0000240285.89067.3f
https://doi.org/10.1212/01.wnl.0000240285.89067.3f
http://www.ncbi.nlm.nih.gov/pubmed/17060561
http://www.ncbi.nlm.nih.gov/pubmed/2011243
http://www.ncbi.nlm.nih.gov/pubmed/1759558
https://doi.org/10.1002/ana.21413
https://doi.org/10.1002/ana.21413
http://www.ncbi.nlm.nih.gov/pubmed/18496870
https://doi.org/10.1097/NEN.0000000000000052
http://www.ncbi.nlm.nih.gov/pubmed/24607960
http://www.ncbi.nlm.nih.gov/pubmed/10851365
http://www.ncbi.nlm.nih.gov/pubmed/6610841
https://doi.org/10.1111/j.1365-2796.2004.01388.x
http://www.ncbi.nlm.nih.gov/pubmed/15324362
https://doi.org/10.1371/journal.pone.0089728
http://www.ncbi.nlm.nih.gov/pubmed/24586991
https://doi.org/10.1371/journal.pmed.1002482


23. Hustad S, Eussen S, Midttun O, Ulvik A, van de Kant PM, Morkrid L, et al. Kinetic modeling of storage
effects on biomarkers related to B vitamin status and one-carbon metabolism. Clinical chemistry. 2012;
58(2):402–10. https://doi.org/10.1373/clinchem.2011.174490 PMID: 22194632

24. Snowden SG, Ebshiana AA, Hye A, An Y, Pletnikova O, O’Brien R, et al. Association between fatty acid
metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontar-
geted metabolomic study. PLoSMed. 2017; 14(3):e1002266. https://doi.org/10.1371/journal.pmed.
1002266 PMID: 28323825

25. Toledo JB, Arnold M, Kastenmuller G, Chang R, Baillie RA, Han X, et al. Metabolic network failures in
Alzheimer’s disease: A biochemical road map. Alzheimers Dement. 2017; 13(9):965–84. https://doi.
org/10.1016/j.jalz.2017.01.020 PMID: 28341160

26. Jack CR Jr., Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, et al. The Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI): MRI methods. Journal of magnetic resonance imaging: JMRI.
2008; 27(4):685–91. https://doi.org/10.1002/jmri.21049 PMID: 18302232

27. Davatzikos C, Xu F, An Y, Fan Y, Resnick SM. Longitudinal progression of Alzheimer’s-like patterns of
atrophy in normal older adults: the SPARE-AD index. Brain. 2009; 132(Pt 8):2026–35. https://doi.org/
10.1093/brain/awp091 PMID: 19416949

28. Toledo JB, Da X, Bhatt P, Wolk DA, Arnold SE, Shaw LM, et al. Relationship between plasma analytes
and SPARE-AD defined brain atrophy patterns in ADNI. PLoS ONE. 2013; 8(2):e55531. https://doi.org/
10.1371/journal.pone.0055531 PMID: 23408997

29. Cortes C, Vapnik V. Support-Vector Networks. Machine Learning. 1995; 20:273–97.

30. Pirooznia M, Yang JY, Yang MQ, Deng Y. A comparative study of different machine learning methods
on microarray gene expression data. BMC genomics. 2008; 9 Suppl 1:S13.

31. Breiman L, Friedman JH, O R.A., Stone CJ. Classification and Regression Trees: Chapman and Hall/
CRC; 1984.

32. Breiman L, Friedman JH, Olsen RA, Stone CJ. Classification and Regression Trees: Chapman & Hall/
CRC; 1984.

33. Casanova R, Varma S, Simpson B, KimM, An Y, Saldana S, et al. Blood metabolite markers of preclini-
cal Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimers Dement.
2016.

34. Perneger TV. What’s wrong with Bonferroni adjustments. BMJ (Clinical research ed. 1998; 316
(7139):1236–8. PMID: 9553006

35. Pelerin H, Jouin M, Lallemand MS, Alessandri JM, Cunnane SC, Langelier B, et al. Gene expression of
fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: dif-
ferences across development and with different DHA brain status. Prostaglandins, leukotrienes, and
essential fatty acids. 2014; 91(5):213–20. https://doi.org/10.1016/j.plefa.2014.07.004 PMID: 25123062

36. Doege H, Stahl A. Protein-mediated fatty acid uptake: novel insights from in vivo models. Physiology.
2006; 21:259–68. https://doi.org/10.1152/physiol.00014.2006 PMID: 16868315

37. Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence:
the influence of LCPUFA on neural development, aging, and neurodegeneration. Progress in lipid
research. 2014; 53:1–17. https://doi.org/10.1016/j.plipres.2013.10.002 PMID: 24334113

38. Head BP, Patel HH, Insel PA. Interaction of membrane/lipid rafts with the cytoskeleton: impact on sig-
naling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Bio-
chimica et biophysica acta. 2014; 1838(2):532–45. https://doi.org/10.1016/j.bbamem.2013.07.018
PMID: 23899502

39. Jazvinscak Jembrek M, Hof PR, Simic G. Ceramides in Alzheimer’s Disease: Key Mediators of Neuro-
nal Apoptosis Induced by Oxidative Stress and Abeta Accumulation. Oxidative medicine and cellular
longevity. 2015; 2015:346783. https://doi.org/10.1155/2015/346783 PMID: 26090071

40. Osenkowski P, YeW,Wang R,Wolfe MS, Selkoe DJ. Direct and potent regulation of gamma-secretase
by its lipid microenvironment. The Journal of biological chemistry. 2008; 283(33):22529–40. https://doi.
org/10.1074/jbc.M801925200 PMID: 18539594

41. Bankaitis VA. The Cirque du Soleil of Golgi membrane dynamics. The Journal of cell biology. 2009; 186
(2):169–71. https://doi.org/10.1083/jcb.200907008 PMID: 19635838

42. Stoica BA, Movsesyan VA, Lea PMt, Faden AI. Ceramide-induced neuronal apoptosis is associated
with dephosphorylation of Akt, BAD, FKHR, GSK-3beta, and induction of the mitochondrial-dependent
intrinsic caspase pathway. Molecular and cellular neurosciences. 2003; 22(3):365–82. PMID:
12691738

43. Haughey NJ, Bandaru VV, Bae M, Mattson MP. Roles for dysfunctional sphingolipid metabolism in Alz-
heimer’s disease neuropathogenesis. Biochimica et biophysica acta. 2010; 1801(8):878–86. https://doi.
org/10.1016/j.bbalip.2010.05.003 PMID: 20452460

Brain and blood metabolite signatures of Alzheimer disease

PLOSMedicine | https://doi.org/10.1371/journal.pmed.1002482 January 25, 2018 30 / 31

https://doi.org/10.1373/clinchem.2011.174490
http://www.ncbi.nlm.nih.gov/pubmed/22194632
https://doi.org/10.1371/journal.pmed.1002266
https://doi.org/10.1371/journal.pmed.1002266
http://www.ncbi.nlm.nih.gov/pubmed/28323825
https://doi.org/10.1016/j.jalz.2017.01.020
https://doi.org/10.1016/j.jalz.2017.01.020
http://www.ncbi.nlm.nih.gov/pubmed/28341160
https://doi.org/10.1002/jmri.21049
http://www.ncbi.nlm.nih.gov/pubmed/18302232
https://doi.org/10.1093/brain/awp091
https://doi.org/10.1093/brain/awp091
http://www.ncbi.nlm.nih.gov/pubmed/19416949
https://doi.org/10.1371/journal.pone.0055531
https://doi.org/10.1371/journal.pone.0055531
http://www.ncbi.nlm.nih.gov/pubmed/23408997
http://www.ncbi.nlm.nih.gov/pubmed/9553006
https://doi.org/10.1016/j.plefa.2014.07.004
http://www.ncbi.nlm.nih.gov/pubmed/25123062
https://doi.org/10.1152/physiol.00014.2006
http://www.ncbi.nlm.nih.gov/pubmed/16868315
https://doi.org/10.1016/j.plipres.2013.10.002
http://www.ncbi.nlm.nih.gov/pubmed/24334113
https://doi.org/10.1016/j.bbamem.2013.07.018
http://www.ncbi.nlm.nih.gov/pubmed/23899502
https://doi.org/10.1155/2015/346783
http://www.ncbi.nlm.nih.gov/pubmed/26090071
https://doi.org/10.1074/jbc.M801925200
https://doi.org/10.1074/jbc.M801925200
http://www.ncbi.nlm.nih.gov/pubmed/18539594
https://doi.org/10.1083/jcb.200907008
http://www.ncbi.nlm.nih.gov/pubmed/19635838
http://www.ncbi.nlm.nih.gov/pubmed/12691738
https://doi.org/10.1016/j.bbalip.2010.05.003
https://doi.org/10.1016/j.bbalip.2010.05.003
http://www.ncbi.nlm.nih.gov/pubmed/20452460
https://doi.org/10.1371/journal.pmed.1002482


44. Mielke MM, Bandaru VV, Haughey NJ, Rabins PV, Lyketsos CG, Carlson MC. Serum sphingomyelins
and ceramides are early predictors of memory impairment. Neurobiology of aging. 2010; 31(1):17–24.
https://doi.org/10.1016/j.neurobiolaging.2008.03.011 PMID: 18455839

45. van Echten-Deckert G, Herget T. Sphingolipid metabolism in neural cells. Biochimica et biophysica
acta. 2006; 1758(12):1978–94. https://doi.org/10.1016/j.bbamem.2006.06.009 PMID: 16843432

46. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature
reviews Molecular cell biology. 2008; 9(2):139–50. https://doi.org/10.1038/nrm2329 PMID: 18216770

47. Fabelo N, Martin V, Marin R, Moreno D, Ferrer I, Diaz M. Altered lipid composition in cortical lipid rafts
occurs at early stages of sporadic Alzheimer’s disease and facilitates APP/BACE1 interactions. Neuro-
biology of aging. 2014; 35(8):1801–12. https://doi.org/10.1016/j.neurobiolaging.2014.02.005 PMID:
24613671

48. Norman E, Cutler RG, Flannery R, Wang Y, Mattson MP. Plasmamembrane sphingomyelin hydrolysis
increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. Journal
of neurochemistry. 2010; 114(2):430–9. https://doi.org/10.1111/j.1471-4159.2010.06779.x PMID:
20456020

49. He X, Huang Y, Li B, Gong CX, Schuchman EH. Deregulation of sphingolipid metabolism in Alzheimer’s
disease. Neurobiology of aging. 2010; 31(3):398–408. https://doi.org/10.1016/j.neurobiolaging.2008.
05.010 PMID: 18547682

50. Soderberg M, Edlund C, Alafuzoff I, Kristensson K, Dallner G. Lipid composition in different regions of
the brain in Alzheimer’s disease/senile dementia of Alzheimer’s type. Journal of neurochemistry. 1992;
59(5):1646–53. PMID: 1402910

51. Chan RB, Oliveira TG, Cortes EP, Honig LS, Duff KE, Small SA, et al. Comparative lipidomic analysis of
mouse and human brain with Alzheimer disease. The Journal of biological chemistry. 2012; 287
(4):2678–88. https://doi.org/10.1074/jbc.M111.274142 PMID: 22134919

52. Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, et al. Metabolomics in early Alzheimer’s
disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE. 2011; 6
(7):e21643. https://doi.org/10.1371/journal.pone.0021643 PMID: 21779331

53. Oresic M, Hyotylainen T, Herukka SK, Sysi-Aho M, Mattila I, Seppanan-Laakso T, et al. Metabolome in
progression to Alzheimer’s disease. Translational psychiatry. 2011; 1:e57. https://doi.org/10.1038/tp.
2011.55 PMID: 22832349

54. Li D, Misialek JR, Boerwinkle E, Gottesman RF, Sharrett AR, Mosley TH, et al. Prospective associa-
tions of plasma phospholipids and mild cognitive impairment/dementia among African Americans in the
ARIC Neurocognitive Study. Alzheimers Dement (Amst). 2017; 6:1–10.

55. Kolahdooz Z, Nasoohi S, Asle-Rousta M, Ahmadiani A, Dargahi L. Sphingosin-1-phosphate Receptor
1: a Potential Target to Inhibit Neuroinflammation and Restore the Sphingosin-1-phosphate Metabo-
lism. The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques.
2015; 42(3):195–202. https://doi.org/10.1017/cjn.2015.19 PMID: 25860537

56. Asle-Rousta M, Kolahdooz Z, Oryan S, Ahmadiani A, Dargahi L. FTY720 (fingolimod) attenuates beta-
amyloid peptide (Abeta42)-induced impairment of spatial learning andmemory in rats. Journal of molec-
ular neuroscience: MN. 2013; 50(3):524–32. https://doi.org/10.1007/s12031-013-9979-6 PMID:
23435938

57. Whiley L, Sen A, Heaton J, Proitsi P, Garcia-Gomez D, Leung R, et al. Evidence of altered phosphatidyl-
choline metabolism in Alzheimer’s disease. Neurobiology of aging. 2014; 35(2):271–8. https://doi.org/
10.1016/j.neurobiolaging.2013.08.001 PMID: 24041970

58. Simpson BN, KimM, Chuang YF, Beason-Held L, Kitner-Triolo M, Kraut M, et al. Blood metabolite
markers of cognitive performance and brain function in aging. J Cereb Blood FlowMetab. 2016; 36
(7):1212–23. https://doi.org/10.1177/0271678X15611678 PMID: 26661209

59. Zhao Z, Zlokovic BV. Blood-brain barrier: a dual life of MFSD2A? Neuron. 2014; 82(4):728–30. https://
doi.org/10.1016/j.neuron.2014.05.012 PMID: 24853933

60. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for
the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014; 509(7501):503–6. https://doi.
org/10.1038/nature13241 PMID: 24828044

Brain and blood metabolite signatures of Alzheimer disease

PLOSMedicine | https://doi.org/10.1371/journal.pmed.1002482 January 25, 2018 31 / 31

https://doi.org/10.1016/j.neurobiolaging.2008.03.011
http://www.ncbi.nlm.nih.gov/pubmed/18455839
https://doi.org/10.1016/j.bbamem.2006.06.009
http://www.ncbi.nlm.nih.gov/pubmed/16843432
https://doi.org/10.1038/nrm2329
http://www.ncbi.nlm.nih.gov/pubmed/18216770
https://doi.org/10.1016/j.neurobiolaging.2014.02.005
http://www.ncbi.nlm.nih.gov/pubmed/24613671
https://doi.org/10.1111/j.1471-4159.2010.06779.x
http://www.ncbi.nlm.nih.gov/pubmed/20456020
https://doi.org/10.1016/j.neurobiolaging.2008.05.010
https://doi.org/10.1016/j.neurobiolaging.2008.05.010
http://www.ncbi.nlm.nih.gov/pubmed/18547682
http://www.ncbi.nlm.nih.gov/pubmed/1402910
https://doi.org/10.1074/jbc.M111.274142
http://www.ncbi.nlm.nih.gov/pubmed/22134919
https://doi.org/10.1371/journal.pone.0021643
http://www.ncbi.nlm.nih.gov/pubmed/21779331
https://doi.org/10.1038/tp.2011.55
https://doi.org/10.1038/tp.2011.55
http://www.ncbi.nlm.nih.gov/pubmed/22832349
https://doi.org/10.1017/cjn.2015.19
http://www.ncbi.nlm.nih.gov/pubmed/25860537
https://doi.org/10.1007/s12031-013-9979-6
http://www.ncbi.nlm.nih.gov/pubmed/23435938
https://doi.org/10.1016/j.neurobiolaging.2013.08.001
https://doi.org/10.1016/j.neurobiolaging.2013.08.001
http://www.ncbi.nlm.nih.gov/pubmed/24041970
https://doi.org/10.1177/0271678X15611678
http://www.ncbi.nlm.nih.gov/pubmed/26661209
https://doi.org/10.1016/j.neuron.2014.05.012
https://doi.org/10.1016/j.neuron.2014.05.012
http://www.ncbi.nlm.nih.gov/pubmed/24853933
https://doi.org/10.1038/nature13241
https://doi.org/10.1038/nature13241
http://www.ncbi.nlm.nih.gov/pubmed/24828044
https://doi.org/10.1371/journal.pmed.1002482

