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In spite of significant progress in pharmacotherapy the incidence of newly diagnosed cases of cardiovascular diseases
and cardiovascular morbidity is alarmingly high. Treatment of hypertension or heart failure still remains a serious
challenge. Continuous attempts are made to identify the mechanisms that decide about susceptibility to pathogenic
factors, and to determine effectiveness of a specific therapeutic approach. Coincidence of cardiovascular diseases with
metabolic disorders and obesity has initiated intensive research for their common background. In the recent years
increasing attention has been drawn to disproportionately greater number of depressive disorders and susceptibility to
stress in patients with coronary artery disease. An opposite relationship, i.e. a greater number of sudden cardiovascular
complications in patients with depression, has been also postulated. Progress in functional neuroanatomy and
neurochemistry provided new information about the neural network responsible for regulation of cardiovascular
functions, metabolism and emotionality in health and under pathological conditions. In this review we will focus on the
role of neuromodulators and neurotransmitters engaged in regulation of the cardiovascular system, neuroendocrine and
metabolic functions in health and in pathogenesis of cardiovascular diseases and obesity. Among them are classical
neurotransmitters (epinephrine and norepinephrine, serotonin, GABA), classical (CRH, vasopressin, neuropeptide Y)
and newly discovered (orexins, apelin, leptin IL-1beta, TNF-alpha, ghrelin) neuropeptides, gasotransmitters,
eicozanoids, endocannabinoids, and some other compounds involved in regulation of neuroendocrine, sympatho-adrenal
and parasympathetic nervous systems. Special attention is drawn to those factors which play a role in immunology and
inflammatory processes. Interaction between various neurotransmitter/neuromodulatory systems which may be involved
in integration of metabolic and cardiovascular functions is analyzed. The survey gives evidence for significant
disturbances in release or action of the same mediators in hypertension heart failure, obesity, diabetes mellitus, metabolic
syndrome, starvation, chronic stress, depression and other psychiatric disorders. With regard to the pathogenic
background of the cardiovascular diseases especially valuable are the studies showing inappropriate function of
angiotensin peptides, vasopressin, CRH, apelin, cytokines and orexins in chronic stress, cardiovascular and metabolic
diseases. The studies surveyed in this review suggest that multiple brain mechanisms interact together sharing the same
neural circuits responsible for adjustment of function of the cardiovascular system and metabolism to current needs.
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INTRODUCTION

Recent progress in experimental and clinical physiology
brought an impressive increase in knowledge of the molecular
processes underlying function of cells and regulatory systems of
the living organisms. At the same time, it became increasingly
evident that several factors, originally thought to affect one class
of cells or exert one type of regulatory action, may in fact exert
pluripotent effects on distant organs of the body. Research into
interaction of different regulatory mechanisms markedly
improved understanding of many vital physiological processes
and the reasons of frequent therapeutic failures in patients
suffering from two or more diseases. The purpose of the present
review is to highlight some common neurogenic mechanisms
that may be affected in the cardiovascular, metabolic,
inflammatory and affective diseases. For detailed information

regarding particular disorders we refer to other reviews and
experimental studies.

FUNCTIONAL NEUROANATOMY

Network related to cardiovascular neurons

For decades it was thought that the neural command to the
cardiovascular system originates in the cardiovascular neurons of
the brain stem. Discovery of the first synapses for the baroreceptor
and chemoreceptor reflexes in nucleus of the solitary tract (NTS)
reinforced this belief. During last fifty years multiple
neuroantomical, neurochemical and neuroimmunocytological
studies revealed that the neurons responding to changes in blood
pressure or heart rate form an extensive and complex network
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extending from the cerebral cortex to the spinal cord (1-21).
Analysis of afferent and efferent connections between the
particular groups of the cardiovascular neurons revealed that they
receive continuous information about the external and internal
environments by means of variety of receptors (visual, olfactory,
auditory, tactile, pain, and cardiovascular, respiratory, renal,
digestive and kinetosensory) (1, 22). Activity of the cardiovascular
neurons is also affected by impulses generated in the brain
structures engaged in the control of conscious and subconscious
behavior, emotional and motivated activity. Among them are the
motor, medial prefrontal, anterior cingular and insular cortex, and
several other regions located in the forebrain, midbrain, medulla
oblongata, and the circumventricular organs (Fig. 1) (1, 5-7, 11,
14, 21, 23-27). Importantly, individual parts of the heart or
vascular beds were found to be innervated by topographically
arranged groups of neurons (5, 28-30). Several shortcut
connections through the presympathetic or parasympathetic
pathways allow for rapid adjustment of the cardiovascular system
to the changing environment (5, 7). Integration of those multiple
inputs allows for adjustment of blood flow to requirements

Activity of the neuronal network controlling the
cardiovascular system is regulated by classical neurotransmitters,
neuropeptides, gasotransmitters and purines (31-40). The
regulatory effect of neurotransmitter/neuromodulator depends on
place of its release and availability of specific receptors. Thus,
each regulatory factor may exert either stimulatory or inhibitory
effect, depending on the particular place of release.

Network related to energy balance and metabolism

Alarmingly growing prevalence of obesity stimulated
intensive research on its causes, comorbidities, and methods of
prevention and treatment. Early models of caloric homeostasis
have focused on stimulation and inhibition of food intake by
signals arising in digestive system and on the unique role of
glucose, which is the main substrate for neurons in regulation of
food intake (18, 41, 42). At present it has been well established
that regulation of food intake is closely linked to the regulation
of energy stores and that the central nervous system plays a
primary role in coordination of food intake with regulation of

(energy supply, metabolites removal) of particular organs and the metabolism by the autonomic nervous system and
whole body. neuroendocrine factors (43-49).
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Fig. 1. Main structures in the brain involved in the regulation of the cardiovascular system. A1, A5 - noradrenergic regions, AV3V -
anteroventral 3" ventricle region, CVLM - caudal ventrolateral medulla, DBB - diagonal band of Broca, DVMNc - dorsal motor
nucleus of the vagus, GDA - gigantocellular depressive area, LC - locus coeruleus, NTS - nucleus of the solitary tract, PBN -

parabrachial nucleus, RVLM - rostral ventrolateral medulla.

Modified from Szczepanska-Sadowska E, Stanislaw Kowalewski “Organization of the brain and spinal cord neurons involved in the
regulation of the cardiac work and blood pressure”, In: Nervous System and Diseases of the Cardiovascular System, E Szczepanska-
Sadowska, W Ruzyllo, W Januszewicz, A Januszewicz. Medycyna Praktyczna, Cracow 2009 (in Polish).
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Fig. 2. Main factors contributing to the neurogenic regulation of the cardiovascular system, metabolism, inflammatory processes and
affective disorders and their mutual interaction. It is proposed that the cardiovascular pathology starts when the production of these
factors in the brain exceeds the critical point. See text for further explanations. Hyp - hypophysis, Hypoth - hypothalamus, IL -

interleukin, TNF - tumor necrosis factor.

Main groups of neurons involved in regulation of energy
stores are located in the paraventricular, ventromedial, arcuate and
suprachiasmatic nuclei of the hypothalamus, and in the lateral
hypothalamic area, septum, amygdala, NTS and area postrema
(41-43). Recent studies employing electrical neuroimmaging,
functional magnetic resonance, single photon emission computed
tomography (SPECT) and positron emmision tomography (PET)
revealed engagement of prefrontal, orbito-frontal, visual
association, and occipital cortex as well as some subcortical
structures (subcortical rewarding system, amygdala) in the
evaluation of rewarding and energetic value of food (48).
Transmission of signals between the groups of neurons regulating
food intake and metabolism is executed by the classical
neurotransmitters ~ (serotonin, norepinephrine, histamine,
glutamate, GABA, dopamine), neuropeptides, and
gasotransmitters. Several regulatory factors are synthesized in
peripheral organs, and in particular in the gastrointestinal system,
liver, pancreas, and in the adipose tissue (41, 43, 45-47, 49, 50).

Network related to stress and depression

Growing number of evidence indicates that chronic stress,
depression and anxiety disorders should be placed on the list of

the cardiac risk factors (51). Chronic stress and depression are
also frequently associated with obesity (52, 53).

In the early studies investigators were mainly interested in
the behavioural and neuroendocrine aspects of stress. It has been
shown that stressing stimuli of different modalities activate
neurons of the sympatho-adrenal, and hypothalamic-pituitary-
axis (54). Later studies provided evidence that the
neuroendocrine responses are under control of classical
neurotransmitters/neuromodulators released by the neurons
projecting from the forebrain, midbrain and brainstem, including
the paraventricular and dorsomedial nuclei of the hypothalamus,
periaqueductal gray, raphe pallidus, rostroventral and caudal
portions of the lateral medulla, and the nucleus of the solitary
tract (26, 54-61). In many instances neurones activated during
stress are located in the cardiovascular regions. Chronic
stressing frequently causes symptoms of depression, weight
gain, excessive accumulation of visceral fat deposits, and
sodium retention (52, 62-67). In patients suffering from
depression PET and SPECT as well as post mortem examination
frequently revealed presence of metabolic abnormalities or
damage in the paraventricular nucleus and the prefrontal cortex
- the structures engaged in the neuroendocrine and
cardiovascular control, regulation of mood and analysis of the
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rewarding value of the food (68, 69). Among classical
neurotransmitters involved in the neuroendocrine and behavioral
responses to stress are serotonin, catecholamines, dopamine,
histamine, GABA and several neuropeptides that are currently
investigated for their involvement in regulation of mood,
behaviour and food intake (see below). Several studies implicate
the anxiogenic role for CRHR1, vasopressin V1b, angiotensin 11
AT1 and IL- receptors and the anxiolytic role for oxytocin (70,
10, 71-76).

EFFECTORS OF THE CARDIOVASCULAR
AND METABOLIC REGULATION

Cardiovascular factors

As shown in the first part of the present survey function of
the cardiovascular system is regulated by the sympathetic and
parasympathetic divisions of the autonomic nervous system
which are under direct and indirect control of multiple groups of
the cardiovascular neurons located in several structures of the
brain (Fig. ). The cardiovascular neurons directly contacting
with the preganglionic sympathetic neurons are called the
presympathetic neurons (5-7). Prevailing number of these
neurons are located in the rostral ventrolateral medulla (RVLM),
nucleus paragigantocellularis, caudal raphe nuclei, the pontine
A5 noradrenergic area of the pons and the paraventricular
nucleus (PVN). Significant influence on activity of the
preganglionic sympathetic neurons is also exerted by the signals
from the noradrenergic A6 neurones of the locus coeruleus. The
parasympathetic preganglionic neurons have been identified in
the dorsal motor nucleus of the vagus (DMV), the nucleus
ambigous (AMB) and in the small groups of neurons scattered
between DMV and AMB (5-7, 8, 9, 11, 14-16, 18-21, 77).
Parallel and in cooperation with the autonomic system acts the
hypothalamo-pituitary neuroendocrine system which produces
and releases hormones regulating blood pressure, metabolism,
water electrolyte balance, behavior and immunological
responses to stress. At present it appears that activity of both
these systems is strongly affected by impulses arising in multiple
groups of neurons. The paraventricular nucleus of the brain,
which is the source of a large number of the presympathetic
neurones, and at the same time the place of synthesis of
vasopressin, oxytocin, and the hypothalamo-pituitary releasing
and inhibiting hormones is profusely innervated by the
ascending and descending fibers from several regions of the
central nervous system (5, 11, 77). Beside, it synthesizes a
number of neurotransmitters/neuropeptides which regulate
activity of the cardiovascular neurones and may affect blood
pressure and/or heart rate.

Among the neuroactive substances that have been found to
have impact on the cardiovascular system through action in the

central nervous system are classical neurotransmitters:
(acetylocholine, norepinephrine, epinephrine, dopamine,
serotonin, and histamine), neuropeptides (vasopressin,

angiotensins II, III, IV and 1-7, CRH, TRH, oxytocin,
neuropeptide Y, leptin, natriuretic peptides, endothelins, orexins,
apelin, IL-1B, TNF-a), steroids (mineralo- and corticosteroids,
estrogens, testosteron), purines, gasotransmitters (NO, SH2) and
inhibitors of ATPase (12, 15, 18, 29, 36-40, 77-89). The effect of
classical neurotransmitters is usually short-lasting and may be
either stimulatory or inhibitory depending on the type of specific
neurons and receptors and the place of their location (presynaptic
or postsynaptic). Therefore their effects in different regions of the
brain may be opposite, i. e. they may cause either a decrease or
an increase in blood pressure. Effects exerted by neuropeptides

and steroids last usually longer which is related to slower rate of
their metabolism and different mode of intracellular action,
involving transcription-translation processes. At present, it
appears that under pathological conditions neuropeptides and
steroids may significantly contribute to long-lasting tuning and
restructuring of the cardiovascular network. Among large group
of neuroactive factors which were found to affect the
cardiovascular regulation the particular attention should be given
to vasopressin, angiotensin II, orexins, apelin, leptin,
endocannabinoids, neuropeptide Y, IL-1B, TNFa, because of
their likely involvement in the regulation of metabolism and/or
inflammatory processes, and their relevance to stress and
depression.

Vasopressinergic neurons of the paraventricular nucleus
innervate several regions of the brain housing the cardiovascular
neurons (90). Possible involvement of vasopressin in centrally
mediated regulation of blood pressure was demonstrated as early
as in 1931 by Cushing who injected posterior pituitary extract to
the cerebral ventricle (91). After thirty years the central pressor
effect of synthetic vasopressin was proved by Pittman and
collaborators (92) and subsequently confirmed in several other
studies (79, 80, 82, 83, 86, 88, 93-95). Overactivation of the
vasopressinergic system in the brain and altered expression of
vasopressin receptors were found in several studies performed
on animal models of the cardiovascular hypertension such as the
spontaneous  hypertension (SHR), DOCA-dependent
hypertension, renin transgenic hypertension TGRmRen(2) and
renovascular hypertension (85, 86, 94 96-98). Central pressor
effect of vasopressin in the brain of the hypertensive animals is
partly counteracted by hypotensive effects of atrial natriuretic
peptide and nitric oxide (85, 99).

More recently enhanced stimulation of the pressor
component of the brain vasopressinergie system was found in
the post-infarct cardiac failure and in the left ventricular
hypertrophy induced by aortic constriction (79, 80, 100, 101). It
has been shown in these studies that after cerebroventricular
administration of V1 receptor antagonist resting blood pressure
is significantly reduced in the infarcted rats but not in their
sham-operated counterparts (79, 80, 100) .

Growing evidence indicates that vasopressin is among key
factors involved in the regulation of cardiovascular responses to
stress. It is now well established that the main structures engaged
in emotional aspects and mobilization of responses to stress
receive extensive vasopressinergic innervation (102, 103).
Moreover, it has been found that release of vasopressin in the
brain is enhanced in the rats manifesting exaggerated
aggressiveness or anxiety (103). Recently, it has been shown that
centrally released vasopressin plays also a significant role in the
regulation of the pressor responses to stress (38, 80, 100, 104).

Accordingly, significant elevation of the pressor and
tachycardic responses to alarming stress was found in the post-
infarct cardiac failure (79, 80) and in chronic stress (100).
Closely related to vasopressin by some common regulatory
mechanisms and the site of synthesis and release is another
hypoyhalamo-neurohypophysial hormone - oxytocin. Our recent
studies and some unpublished data indicate that with regard to
regulation of the cardiovascular responses to stress oxytocin
plays the opposite role to vasopressin, i e. it reduces the
cardioacceleration and the pressor responses to stress.
Interestingly, these effects of oxytocin are abolished in the rats
with the post-infarct heart failure (105) and even reversed in
SHR rats (Wsol ef al., unpublished).

The important role of angiotensin peptides in the central
cardiovascular regulation of the cardiovascular system, and the
presence of all components of the renin-angiotensin system and
their receptors in the brain, and in particular in the structures
involved in the regulation of the cardiovascular system have



been shown in many investigations (38, 40, 94, 106-108).
Angiotensin II (Ang II) receptors ATR may be stimulated by Ang
II which is either released from the neurons of the brain renin-
angiotensin system or penetrates from the systemic circulation
and acts on neurons of the circumventricular organs (94, 108,
109) Angiotensin II and angiotensin IV have been repeatedly
shown to exert pressor effect after central administration by
means of AT1 (AT1R) receptors (82, 94, 108, 110). Several
studies provided evidence that excessive stimulation of AT1R
significantly contributes to development of various forms of
hypertension (86, 111-115). Overstimulation of the brain AT1R
was also found in the rats with the postinfarct cardiac failure (79,
116-120). In our laboratory we have shown that vasopressin and
angiotensin II closely interact in central regulation of resting
blood pressure and cardiovascular responses to stress (75, 79,
82, 86). Namely, we found that the central pressor effect of
angiotensin is markedly reduced or even abolished when the
peptide is administered together with V1 receptors antagonist.
Moreover, in the infarcted rats the hypotensive effect of centrally
applied AT1 antagonist could not be further intensified by
concomitant blockade of central V1 receptors (79, 82, 86).

Orexins A (hypocretin-1) and B (hypocretin-2), and apelin
are newly discovered neuropeptides synthesized in the brain and
in the peripheral tissues. Originally they were thought to be
involved exclusively in the regulation of food intake and
metabolism (see blow). Recently it has become evident that they
may also play essential role in regulation of blood pressure. In
the brain orexins and their receptors are synthesized mainly in
the dorsal and ventromedial (VMN) parts of the hypothalamus.
Neural projections from PVN innervate NTS and RVLM. Orexin
receptors OX1R have been found mainly in the ventromedial
nucleus of the hypothalamus (VMN), while OX2R in PVN.
Administration of orexins into the cerebral ventricles, NTS or
RVLM elicits long lasting pressor responses associated with
strong stimulation of the renal sympathetic fibers (33, 121-126).
However, bradycardia was observed when orexin A was injected
directly into the nucleus ambiguus of the vagus. The effect was
related to inhibition of the sympathetic system (127). Thus, the
central pressor effect of orexins may be somehow restrained by
its local effect in the nucleus ambiguus.

Apelin is a recently discovered novel endogenous ligand of
APJ receptor (128, 129). Similarly, as orexin apelin is
synthesized in several systemic organs and is also present in the
central nervous system. The apelinergic system is well
represented in the brain medulla and hypothalamus, and
especially in the paraventricular and supraoptic nuclei. Apelin
was found to stimulate nurones in the supraoptic nucleus and to
cause release of vasopressin (130). It also enhances release of
CRH, ACTH and corticosterone (131). Thus far, the studies
aimed at determining the role of the brain apelin in regulation of
blood pressure have brought contradictory results. Reaux et al.
(132) were not able to demonstrate significant changes in blood
pressure while other authors reported that intracerebroventricular
injection of apelin or its topical aplication on NTS and RVLM
causes significant increase of blood pressure (133, 134). It has
been reported that in RVLM of SHR rats the expression of apelin
mRNA and protein is elevated. Furthermore, the microinjection
of apelin into RVLM causes elevation in blood pressure and
enhances the sympathetic activity (135).

Metabolic and neuroendocrine factors

Obesity, atherosclerosis and diabetes mellitus have been
placed on the list of the risk factors for cardiovascular pathology,
such as cerebrovascular, coronary and peripheral vessels
diseases. For a long time it was thought that frequent coexistence
of metabolic and cardiovascular pathology results exclusively
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from formation of the atherosclerotic plaque in a vascular wall
and inadequate perfusion of the tissue. At present it is known
that metabolism and function of the cardiovascular system are
interconnected by the several neurogenic and neuroendocrine
mechanisms. Among them are signals from the
mechanoreceptors and chemical sensors of the gastrointestinal
tract and liver, and from the visual and olfactory receptors.
Jointly, they provide information about the amount, composition
and attractiveness of food. The information is also provided by
the pancreatic and gastrointestinal hormones. Independently
from that food intake is also under control of the neural
structures responsible for emotions and motivation. Integration
of all these signals determines activity of the efferent vagal and
sympathetic fibers and release of the gastrointestinal and
pancreatic hormones responsible for digestion and metabolism
(41, 49, 136-138). In addition, stimulation of the vagal efferents
causes release of insulin, glucagon, and some of the
gastrointestinal hormones while activation of the sympathetic
fibers results in secretion of glucagon (via a receptors), insulin
(via B receptors), epinephrine, cortisol, and the gastrointestinal
hormones (41, 44, 46, 139). It is suggested that in some instances
excessive release of norepinephrine from the sympathetic fibers
may result in simultaneous secretion of glucagon and insulin; the
final result being hyperglycemia. Such pathological triad is
characteristic for the syndrome called “hyperinsulinism” (137).
Several regulatory peptides released in the wall of the
gastrointestinal system and in the pancreas are also produced
locally in the brain and regulate appetite and satiation whereas
some other (insulin, leptin, ghrelin) are synthesized in the
peripheral cells and transported to the brain by specific carriers
(44, 139). The adipose tissue is another abundant source of
highly active substances regulating food intake, metabolism and
blood pressure. Among them are leptin, resistin, visfatin,
omentin, chemerin and some cytokines (45, 47, 140).

Several factors controlling food intake are also involved in
regulation of metabolism (leptin, orexin/hypocretin, ghrelin,
insulin, CRH, glucocorticoids, norepinephrine, serotonin), and
blood pressure (leptin, IL-1B, TNFa, apelin, orexin, GLP-1,
ghrelin) (141-143). Studies on leptin-deficient ob/ob mice
revealed that leptin is necessary for normal expression of several
hypothalamic genes regulating food intake and metabolism.

Recently, apelin, vasopressin and endocannabinoids were
placed on the list of peptides regulating both blood pressure and
food intake. Apelin and its receptor APJ are synthesized in the
PVN and SON in the hypothalamus and in RVLM in the brain
stem. According to some studies, apelin increases food intake
and sensitivity to insulin and causes hyperinsulinemia (144,
145). Intraperitoneal injection of apelin was found to enhance
expression of c-fos in the hypothalamic and brain stem nuclei
involved in regulation of food intake, blood pressure, rewarding
behavior and body fluid balance (146). Interestingly, in obese
rats on normal diet centrally applied apelin maintained decreased
food ingestion but it was not effective in the rats receiving high
fat diet (147). Because, in the latter group administration of
apelin resulted in the reduction of APJ receptors in the
hypothalamus, it was possible that down-regulation of these
receptors could account for ineffectiveness of apelin in
inhibition of food intake in the rats receiving the high fat diet.
Altered regulation of systemic apelin secretion, and APJ
receptors expression were reported in morbidly obese subjects
with type 2 diabetes mellitus (144). Recently, stimulatory effect
of apelin on angiogenesis in the adipose tissue was described and
it was postulated that it may contribute to the adipogenic action
of apelin (148). Apelin interacts with some hormones regulating
blood pressure (see above). For instance, it has been shown that
it influences activity of vasopressinergic neurons and systemic
release of AVP (130). Its interaction with the angiotensin system,
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and specifically with ACE2 converting enzyme has been also
proposed (149).

With regard to the putative role of vasopressin in regulation
of food intake and energy metabolism it has been suggested that
AVP may play an important role in triggering carbohydrate
appetite and stress-induced feeding (150, 151). The authors
proposed that effect of AVP on food intake may be closely
related to its role in mobilization of endogenous carbohydrates.
Growing number of studies indicate that vasopressin contributes
to the regulation of metabolism of carbohydrates by direct
glycogenolytic effect in the liver, which is one of the organs
possessing Vla receptors (152). Beside, by means of V1b
receptors in the pituitary vasopressin stimulates ACTH-
glucocorticoids axis and may indirectly influence metabolism by
means of corticosteroids. Concentration of vasopressin is
elevated in patients with diabetes mellitus and can be normalized
after treatment with insulin (153, 154). However formerly it was
thought that hypervasopressinemia in the uncontrolled diabetes
mellitus is a result of dehydration. Recent studies on the mouse
with knock out of V1a or V1b receptors indicate that deficiency
of Vla receptors results in enhanced metabolism of fat and
greater production of glucose by the liver. This is associated with
diminished glycogen content in the liver, and glucose intolerance
of glucose during the hyperinsulinemic-euglycemic clamp test.
In contrast deficiency of V1b receptor in mouse fed with high fat
diet elicited hypoglycemia and hypoinsulinemia. Combined
removal of both types of receptors resulted in comparable
glucose intolerance as the selective deficiency of V1a receptors
(155, 156). In human subjects significant differences in the
resting blood pressure and body mass index were found between
the male carriers of CC and TT single nucloetide polymorphisms
10426 15 of Vla receptor gene. The carriers of the rs10426 15 T
allele manifested glucose intolerance. There was also increased
prevalence of diabetes in subjects on high fat diet or who were
overweight. In general, the symptoms were similar to those
found in the mouse with V1a receptor deficiency (157).

The endocannabinoid system, comprising endogenous
agonists (anandamide i.e. 2-arachidonoylglycerol) and their CB1
receptors is present both in the central nervous system (the
hypothalamus, limbic forebrain, brain stem) and peripheral
tissues. Growing evidence reveals its relevance to stimulation of
food intake, dyslipidemia and decreased energy expenditure. It
appears that it may play an important role in development of
obesity, insulin resistance and fat storage in the liver (158-160).
In addition, it is suggested that endocannabinoids may determine
the hedonic aspects of food intake and that overactivation of the
endocannabinoid system in the limbic forebrain (nucleus
accumbens) may causes hyperphagia and obesity (161).

Inflammatory neuroendocrine factors

Cytokines are a large family of more than 100 regulatory
polypeptides that includes both pro-inflammatory and anti-
inflammatory mediators. Accumulating evidence suggests that
cytokines play an important role not only in classical inflammatory
diseases such as rheumatoid arthritis, inflammatory bowel diseases
or psoriasis but also in the pathogenesis of the cardiovascular,
depressive and energy balance disorders. Basing on survey of
literature it may be hypothesized that the comorbidity of these
diseases may be explained at least partially by their common
inflammatory background in the brain. However, verification of
this hypothesis may be difficult in the nearest future since
cytokines exert wide spectrum of actions including the modulation
of synthesis and action of a number of biological mediators.
Despite the fact that the blood-brain barrier limits the access of
various mediators to the brain, cytokines may easily affect the brain
functions by at least three distinct pathways. First, synthesis of

cytokines is possible inside the blood-brain barrier (BBB), second,
blood-borne cytokines may be transported across the blood-brain-
barrier by means of specific carriers, and third, they may modulate
the activity of the peripheral neuronal afferents which project to the
brain (162-166); cytokines in the cerebrospinal fluid may interact
with their receptors present in the glial cells and neurons of the
circumventricular organs and AV3V region of the third ventricle
which lack the blood-brain barrier (167).The role of inflammation
in the cardiovascular and depressive diseases as well as in the
obesity and anorexia has been extensively reviewed elsewhere
(168-170). In the following paragraphs we will summarize current
evidence on the functions of cytokines in the brain.

Cytokines and cardiovascular diseases

It is now well established that the cardiovascular diseases
such as the ischemic heart disease, heart failure, arteriosclerosis
and hypertension are characterized by an increased synthesis of
cytokines that circulate in the blood (168, 169). Increased blood
concentration of TNF-a, and TNF-a receptors, and other pro-
inflammatory cytokines have been found in patients with
hypertension (171, 172), heart failure (173-175) and ischemic
stroke (176, 177). Recent studies have provided evidence that the
myocardial infarction causes an increase in the synthesis of
cytokines in the hypothalamus, and that in the heart failure the
pro-inflammatory cytokines modulate neurotransmission in the
PVN, contributing thereby to the sympathoexcitation in the heart
failure (178, 179). Earlier, a number of studies revealed that
infusions of pro-inflammatory cytokines into various brain
regions result in significant hemodynamic and neurohormonal
responses that are typical for cardiovascular diseases. For
example, the central infusions of interleukin-1f (IL-1p) or tumor
necrosis factor oo (TNF-at), two key mediators of inflammation,
were found to increase arterial blood pressure, sympathetic
activity and synthesis of renin, aldosterone, atrial natriuretic
peptide and vasopressin (180-182). Growing number of data
indicate that under pathological conditions TNF-a acting in PVN
may play a key role in regulation of the cardiovascular system.
Inhibition of TNF-a synthesis by pentoxyphyllin or inhibition of
TNF-a by etanercept, a modified TNF-a receptor, in rats with the
post-infarct heart failure resulted in reduced stimulation of the
PVN neurons, decreased renal sympathetic nerve activity, and
lowered plasma catecholamines (179-185). Chronic central
blockade of TNF-a in the rats with heart failure reversed changes
in the concentration of several neurotransmitters in the PVN back
to the levels seen in control animals and prevented increases in
the renal sympathetic nerve activity (186).

On the other hand, increase in the brain concentration of the
anti-inflammatory cytokines, such as interleukin-1 receptor
antagonist (IL-1ra) or interleukin-10 (IL-10) exerted the opposite
effects. Specifically, it has been found that the cerebroventricular
transfer of IL-10 gene reduces hemodynamic and humoral
indices of heart failure in the infarcted rat (187), whereas the
central infusion of IL-1ra decreased the hypertensive response to
acute stressors in the healthy rats (187, 188).

It has been suggested that cytokines exert their action in the
brain by the influence on the synthesis of other mediators
including eicosanoids, nitric oxide, Ang II or their receptors.
Especially interesting is a putative interaction between cytokines
and the brain angiotensin system, since the increased activity of
the latter has been found in animal models of hypertension and
heart failure. In our laboratory, we have demonstrated that
pretreatment with either IL-1B or TNF-o, enhances the pressor
response to centrally applied Ang II (189, 190). Sriramula and co-
workers (191) reported that the pressor and the dipsogenic effects
of Ang Il in mice requires presence of TNF-co.. In addition, the
preliminary report by the same group revealed that blockade of



TNF-a in the brain attenuates development of Ang II- induced
hypertension and reduces expression of ATl receptors in the
heart, and proinflammatory cytokines content in the PVN (192).

Cytokines in depression and stress

Increased concentration of inflammatory cytokines in the
blood, cerebrospinal fluid, and various brain regions is
positively correlated with major depression, dysthymia and
psychological stress in humans and in animals with depressive-
like behavior (193-195). Therefore, it has been suggested that
the inflammatory mediators, in particular IL-1 and TNF-a play
an important role in the pathology of depressive disorders. In
this line, several clinical and experimental studies have shown
that peripheral and central infusions of pro-inflammatory
cytokines or lipopolysaccharide, an inflammatory inducer, cause
depressive-like behavior in humans and animals. For instance,
the infusions of either IL-1B or TNF-a were found to evoke
depressive-like behavior in mice (196), whereas mice lacking
caspase 1, an enzyme necessary for the synthesis of IL-1,
manifest reduced “sickness behavior” (197). Furthermore,
Simen et al (197) have shown that deletion of the genes for TNF-
o receptors results in anti-depressive effects (198). Several
hypothesis linking depression with inflammation have been
suggested including the modulation of synaptic plasticity and
changes in synthesis, reuptake and metabolism of
neurotransmitters involved in mood regulation (199). In the
animal model of depression Grippo and co-workers (200)
showed that rats, which were subjected to chronic mild stressing
developed an anhedonia accompanied by dysfunction of the
hypothalamic-pituitary axis, and increased expression of TNF-a
and IL-1B in the hypothalamus, pituitary and plasma (200).
Similar disturbances were found in rats with the post-infarct
heart failure. In addition, peripheral inhibition of TNF-a
attenuated symptoms of anhedonia that are present in the
infarcted rats (201), and decreased expression of AT1 receptors
in the brain and sympathetic drive in the infarcted rats (184).

Interleukin-1f is also an important modulator of hormonal
and behavioral components of stress. O’Connor and
collaborators have demonstrated that an acute stressor increases
IL-1p mRNA and/or protein not only in a variety of peripheral
tissues but also in the brain, including hypothalamus and
hippocampus (202). Moreover, it has been shown that IL-1f
plays a critical role in the activation of the hypothalamo-
pituitary-adrenal axis after stress and adrenalectomy (194).
There is also some evidence that the central infusion of the IL-
Ira reduces the circulatory response to stressors (188, 203).

Obesity and anorexia

Cytokines have been traditionally linked to negative energy
balance. This approach originates from the discovery that TNF-
o (also known as cachexin) is an important mediator of cancer
anorexia and cachexia. Furthermore, results from many
experimental studies have shown that either peripheral or
central infusions of inflammatory mediators including TNF-a,
IL-1B and IL-6 produced several responses, such as anorexia,
fever, and activation of the hypothalamo-pituitary-adrenal axis
and autonomic nervous system which may promote negative
energy balance (204). However, the study of Amaral ez al. (205)
provided evidence that the regulatory role of TNF-a in the
hypothalamus may be very complex. Specifically, they found
that administration of TNF-a into the cerebral ventricle of the
rat triggered signal transduction in the hypothalamic cells and
enhanced expression of several factors, including other
proinflammatory cytokines, orexigenic (NPY, MCH) and
anorexigenic (POMC, CRH) neuropeptides, with greater effect
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on the latter. The anorexigenic effect of TNF-a was also
manifested, as shown by inhibition of food intake (205).

Interestingly, other studies have shown that the inflammatory
process in the brain may result in positive energy balance. Thus,
research performed on the rats and mice models of obesity
revealed increased concentration of inflammatory mediators both
in the adipose tissue and the hypothalamus (206, 207). Moreover,
it has been shown, that peripheral blockade of TNFR1 receptor
prevents diet-induced obesity in the rats (208). In the leptin-
resistant mice development of obesity is accompanied by the
increased expressions in mRNA of TNF-a and TNFR2 receptors
in the hypothalamus that are not associated with changes in
expression of TNFRI1 receptor (209). Pharmacological and
genetic inhibition of the inflammation cascade within the
hypothalamus resulted in reduced body weight in the mice fed
high-fat diet (206). Presumably, the mechanisms underlying this
phenomenon include development of the resistance to leptin and
insulin in the hypothalamus (206, 207).

Therefore it has been suggested that alterations in the
activity of cytokines in the brain may result in the development
of both obesity and anorexia/cachexia-like behavior, depending
on presence of other pathogenic factors (210).

PERSPECTIVES

In the present survey we emphasized overlapping regulatory
actions of the key biological compounds participating in the
neurogenic control of the cardiovascular system, and metabolism,
with relevance to their role in cardiovascular, metabolic, affective
and inflammatory disorders. As shown in Fig 2. in many
instances the same factors are involved in regulation of seemingly
remote physiological processes. Appropriate action of all these
compounds is probably necessary for optimum functioning of the
body. At present it is not possible to propose which of these
factors may be responsible for initiation of the pathological
process. Most likely under physiological conditions all of them
serve positive role in regulation of vital functions and adaptation
to the environment. It may be hypothesized that simultaneous
increase in production of several of these factors is necessary so
as to reach some critical point at which they jointly start to initiate
the pathological processes. It is likely that cytokines may play a
role of “executor” in propagation of the pathological process. To
have better insight to this complex issue future studies should
focus on more comprehensive knowledge of the regulation and
action of the particular regulatory factors and their mutual
interactions under physiological and pathological conditions.
Undoubtedly, more attention should be given to the role of the
pathological processes in the gastrointestinal system in initiation
of the inappropriate regulation of the metabolism and
cardiovascular functions by the brain neurons. Such integrative
approach should allow for better understanding of therapeutic
failures in patients suffering from two or more diseases and
elaboration of more efficient treatments in the cardiovascular,
metabolic, inflammatory and affective disorders.
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