
R E S E A R CH A R T I C L E

Brain-based ranking of cognitive domains to predict

schizophrenia

Teresa M. Karrer1 | Danielle S. Bassett2,3,4,5 | Birgit Derntl6,7 | Oliver Gruber8 |

André Aleman9 | Renaud Jardri10 | Angela R. Laird11 | Peter T. Fox12,13,14 |

Simon B. Eickhoff15,16 | Olivier Grisel17 | Gaël Varoquaux17 | Bertrand Thirion17 |

Danilo Bzdok1,6,17

1Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany

2Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania

3Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania

4Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania

5Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania

6Translational Brain Medicine, Jülich Aachen Research Alliance (JARA), Aachen, Germany

7Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany

8Department of Psychiatry, University of Heidelberg, Heidelberg, Germany

9BCN Neuroimaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

10Division of Psychiatry, University of Lille, CNRS UMR 9193, SCALab and CHU Lille, Fontan Hospital, Lille, France

11Department of Physics, Florida International University, Miami, Florida

12Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas

13South Texas Veterans Health Care System, San Antonio, Texas

14State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, China

15Institute of Systems Neuroscience, Heinrich-Heine University, Düsseldorf, Germany

16Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany

17Parietal Team, INRIA Saclay/NeuroSpin, Palaiseau, France

Correspondence

Danilo Bzdok, Department of Psychiatry,

Psychotherapy and Psychosomatics, Faculty of

Medicine, Universitätsklinikum Aachen,

Pauwelsstr. 30, 52074 Aachen, Germany.

Email: danilo.bzdok@rwth-aachen.de

Funding information

Deutsche Forschungsgemeinschaft, Grant/

Award Numbers: BZ2/2-1, BZ2/3-1, BZ2/4-1;

Paul Allen Foundation; John D. and Catherine

T. MacArthur Foundation; Alfred P. Sloan

Foundation; ISI Foundation; Exploratory

Research Space, Grant/Award Number:

OPSF449; START-Program of the Faculty of

Medicine, Grant/Award Number: 126/16;

Amazon AWS Research Grant; International

Research Training Group, Grant/Award

Number: IRTG2150

Abstract

Schizophrenia is a devastating brain disorder that disturbs sensory perception, motor

action, and abstract thought. Its clinical phenotype implies dysfunction of various

mental domains, which has motivated a series of theories regarding the underlying

pathophysiology. Aiming at a predictive benchmark of a catalog of cognitive func-

tions, we developed a data-driven machine-learning strategy and provide a proof of

principle in a multisite clinical dataset (n = 324). Existing neuroscientific knowledge on

diverse cognitive domains was first condensed into neurotopographical maps. We

then examined how the ensuing meta-analytic cognitive priors can distinguish

patients and controls using brain morphology and intrinsic functional connectivity.

Some affected cognitive domains supported well-studied directions of research on

auditory evaluation and social cognition. However, rarely suspected cognitive

domains also emerged as disease relevant, including self-oriented processing of bodily
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sensations in gustation and pain. Such algorithmic charting of the cognitive landscape

can be used to make targeted recommendations for future mental health research.
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BrainMap database, coordinate-based meta-analysis, ontology of the mind, pattern recognition,

predictive analytics, statistical learning

1 | INTRODUCTION

Schizophrenia is among the most severe mental disorders but has so

far evaded mechanistic understanding. This major psychiatric disorder

affects �1% of the world population (McGrath, Saha, Chant, &

Welham, 2008) and presents a long-enduring clinical course in many

patients (Hegarty, Baldessarini, Tohen, Waternaux, & Oepen, 1994),

including social and occupational dysfunctions (Tandon et al., 2013).

The associated economic costs per year range between $94 million

and $102 billion per country (Chong et al., 2016). Schizophrenia thus

imposes a huge burden on the affected individuals, their families, and

society at large (Charlson et al., 2018; Wittchen et al., 2011). To even-

tually improve clinical care and intervention, it will be instructive to

systematically explore the nature of the disease.

The clinical presentations of schizophrenia strongly suggest various

cognitive impairments ranging from basic sensory perception, motor

action, affective response to higher order cognition, and social

interaction (Javitt & Freedman, 2015; Taylor et al., 2012; Tost & Meyer-

Lindenberg, 2012). The advent of in vivo neuroimaging has enabled the

investigation of the neural basis of these cognitive functions and their

aberrations in disease. For more than 20 years now, functional neuroim-

aging experiments have accumulated hints about the candidate disease

processes in schizophrenia, including, for instance, impaired auditory

change detection (Erickson, Ruffle, & Gold, 2016; Umbricht & Krljes,

2005), emotional face recognition (Kohler, Walker, Martin, Healey, &

Moberg, 2010; Li, Chan, McAlonan, & Gong, 2010), and working mem-

ory (Forbes, Carrick, McIntosh, & Lawrie, 2009; Schneider et al., 2007).

Yet, today, it is still incompletely understood “where schizophrenia is

located in the brain” (Dhindsa & Goldstein, 2016; Elert, 2014; Sullivan,

2012; Weinberger & Radulescu, 2016).

Carefully designed experimental studies require that the partici-

pants attend to and execute the presented tasks for extended periods

of time. The maintenance of controlled cognitive sets has sometimes

been challenging to ascertain in psychiatric patients (Eickhoff & Etkin,

2016; Weinberger & Radulescu, 2016). Fortunately, mounting evi-

dence suggests that many of the characteristic neural activity patterns

described during defined experimental tasks have some correspon-

dence in neural activity observed during task-free resting-state scan-

ning (Bzdok et al., 2016; Cole, Bassett, Power, Braver, & Petersen,

2014; Smith et al., 2009; Tavor et al., 2016). Therefore, response-

independent brain scans in clinical populations might provide unprec-

edented insights into brain systems dedicated to different mental

operations. Additionally, despite many successes, experiments in

patients with schizophrenia that test hypotheses regarding cognitive

processes can carefully probe only a limited number of brain systems

at a time. Such circumscribed research efforts could be complemented

by computational modeling approaches that simultaneously inspect a

diverse collection of cognitive functions.

The heterogeneous clinical picture of schizophrenia patients lends

itself particularly well to take a step back and impartially test diverse

cognitive functions for their relevance in schizophrenia. To derive a

brain-informed ranking of cognitive processes implicated in schizo-

phrenia, we integrated existing neuroscientific knowledge on cogni-

tive processes into a new machine learning pipeline. For this purpose,

we capitalized on an established description system of cognitive pro-

cesses and a multisite dataset of structural and functional brain scans.

The cognitive taxonomy has previously been used to systematically

annotate roughly a quarter of the published neuroimaging experi-

ments (Derrfuss & Mar, 2009). We quantitatively summarized this

large body of evidence on the functional basis of diverse cognitive

processes using coordinate-based meta-analyses. For each particular

cognitive process, we computed the typically activated functional net-

work, henceforth “cognitive meta-prior.” To evaluate the cognitive

meta-priors for their usefulness in predicting which brain scan belongs

to a schizophrenia patient, we developed a novel machine-learning

approach.

In a first step, we built cognitive domain-specific base models to

distinguish between schizophrenia patients and healthy controls. The

cognitive meta-priors guided the extraction of information from struc-

tural and functional brain data of the schizophrenia dataset. That is,

each base model offers interpretability by extracting structural and

functional brain information according to how a particular cognitive

process maps to the brain. In a second step, we combined the cogni-

tive domain-specific models into a higher level model that puts all cog-

nitive meta-priors of varying cortical and subcortical spread on a

comparable scale. The integration into a summary model (using

“stacking”, cf. below) enabled us to benchmark diverse cognitive pro-

cesses for their importance in schizophrenia. The ranking of cognitive

meta-priors was based on combined neurobiological information from

brain structure and function to increase the generality of our results.

In the entire process, we relied on minimal pathophysiological, neuro-

biological, and statistical assumptions. In sum, we automatically com-

puted, validated, and ranked a catalog of cognitive processes for their

relative impairment in schizophrenia.
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2 | METHODS

2.1 | Cognitive description system: BrainMap

taxonomy

The cognitive science community has not yet agreed on a consensus

definition for mental operations (cf. Fox et al., 2005; Poldrack &

Yarkoni, 2016). Among other possibilities, the BrainMap initiative

provides an established means to describe the repertoire of mental

operations (Fox & Lancaster, 1994). Experts have steadily refined the

description system over two decades. Today, it is one of the most

frequently applied taxonomies in research practice (Fox & Lancaster,

2002; Laird, Eickhoff, Kurth, et al., 2009). In particular, BrainMap

offers two distinct taxonomies to categorize mental operations:

(a) mental domains that span sensory, motor, affective, and higher

level cognitive processes that are recruited during psychological para-

digms (i.e., “behavioral domains”) and (b) the types of experimental

tasks used to evoke cognitive processes of interest in a controlled

fashion (i.e., “paradigm classes”) (Laird, Eickhoff, Li, et al., 2009). Both

taxonomies have been used to systematically annotate >16,000

archived neuroimaging experiments from peer-reviewed publications

(Fox & Lancaster, 2002; Laird, Eickhoff, et al., 2011). The complete-

ness and correctness of the labeling of the neuroimaging experiments

has been verified by several members of the BrainMap team. Taken

together, BrainMap offers the unique combination of a systematic

cognitive taxonomy, designed and refined by authorities in their fields,

and its consistent application to a large repository of existing neuro-

imaging studies.

The present study capitalized on both description systems to

increase the chances of identifying the most pertinent brain–behavior

mappings in schizophrenia. To avoid conceptual overlap between the

psychological categories considered within each taxonomy, we removed

the hierarchical dependence between mental domains by excluding any

top-level classes. For example, we excluded “emotion” as an overarching

category, and instead considered the subordinates “disgust,” “fear,”

“happiness,” and “sadness.” We also disregarded rarely used cognitive

concepts, defined as those with less than 50 functional neuroimaging

experiments in the BrainMap database. By considering only cognitive

domains that can be based on a sufficient number of neuroimaging

experiments (Bossier et al., 2018; Eickhoff et al., 2016), we could con-

struct robust and meaningful brain–behavior maps, as we will describe

in detail in the next section. A final set of 34 mental domains (Figure 1)

and 50 experimental tasks (Figures 1 and S1) from BrainMap was

submitted to a computational approach to test for their utility in

schizophrenia prediction.

2.2 | Constructing cognitive meta-priors in healthy

participants: Activation likelihood estimation

meta-analysis of BrainMap taxonomy

We carried out quantitative meta-analyses to synthesize existing

neurobiological knowledge across tens of thousands of neuroimaging

experiments from healthy individuals. For each particular cognitive

domain, we derived one whole-brain signature of neural activity

changes by using coordinate-based meta-analysis. The widely used

activation likelihood estimation (ALE) approach summarized the peak

activations reported by functional imaging experiments (Eickhoff

et al., 2009; Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; Turkeltaub

et al., 2012). ALE meta-analysis treated the reported coordinates of

significant experimental neural response as centers of three-

dimensional probability distributions that capture the spatial uncer-

tainty of neuroimaging results (Eickhoff et al., 2009; Eickhoff et al.,

2012; Turkeltaub et al., 2012). The spatial extent of the Gaussian

probability distribution incorporated empirical estimates of between-

template and between-participant variance of neuroimaging peaks

(Eickhoff et al., 2009). For each BrainMap experiment, the probability

distributions of the reported peak coordinates were merged into a

modeled activation map. The use of a nonadditive approach prevented

local summation effects (Turkeltaub et al., 2012). Finally, all activation

maps associated with a particular cognitive process were united to a

probability map. The resulting ALE scores yielded the probability of

increased neural activity measured during a particular experimental

study for each gray-matter voxel. Since ALE scores are influenced by

the number of experiments that they are based on, the meta-analytic

networks were z-scored by mean centering to zero and unit-variance

scaling to one. This normalization step of each meta-analytic network

aimed at improving the comparability between different cognitive

meta-priors. Thus, we quantitatively summarized the consistent

topography of neural activity engagements pertaining to each

cognitive category of a taxonomy.

2.3 | Clinical brain-imaging resources: Multisite

schizophrenia cohort

Given the well-documented diversity of schizophrenia symptoms, we

evaluated the cognitive meta-priors in a high number of patients from

several psychiatric hospitals. We capitalized on a five-site imaging

dataset that provided brain scans from patients with schizophrenia

and matched healthy controls (n = 428). Written informed consent for

study participation was obtained from all participants. The data acqui-

sition was approved by the ethics committees of the universities of

Aachen, Albuquerque, Göttingen, Utrecht, and Lille. All patients were

diagnosed by board-certified psychiatrists according to international

statistical classification system of diseases and related health prob-

lems-10 or diagnostic and statistical manual of mental disorders-IV-TR

criteria. In healthy controls, any history of neurological or psychiatric

disorders was ruled out via structured clinical interview. The dataset

included (a) demographic indicators including age and sex,

(b) structural brain-imaging data (sMRI), and (c) resting-state functional

brain-imaging data (fMRI). All behavioral and brain-imaging informa-

tion was anonymized. The sMRI and fMRI data were acquired on com-

mon 3T scanners (see Table S1 for details). Preprocessing of the

imaging data was performed in SPM8 (Statistical Parametric Mapping,

Wellcome Department of Imaging Neuroscience, London, UK, http://

www.fil.ion.ucl.ac.uk/spm/) using MATLAB R2014a (MathWorks,

Natick, MA). In our analyses, we included only those participants for
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whom both sMRI and fMRI data were available. This step enabled us

to jointly examine neurobiological impairment in brain structure and

brain function. The final sample of 161 patients and 163 healthy

controls presented the basis for our machine-learning workflow (see

Table 1 for sample characteristics). The total 324 participants were

matched for age and sex, both within and across sites (Table 1).

2.4 | Brain structure: Voxel-based morphometry

To investigate how brain anatomy in healthy controls deviates from

brain anatomy in patients with schizophrenia, we relied on volume

information in T1-weighted brain scans (Table S1). The preprocessing of

the whole-brain morphometric maps was performed using standard

settings in the VBM8 toolbox (https://dbm.neuro.uni-jena.de/vbm). The

anatomical maps were spatially normalized to MNI space (ICBM-152

template) using the DARTEL toolbox including both affine and nonlinear

spatial transformation. We then quantified the probability of each voxel

to belong to gray matter, white matter, and cerebrospinal fluid to

segment the volumetric brain maps into the three tissue types. To rem-

edy bias-field inhomogeneities, we applied a unified segmentation

(Ashburner & Friston, 2005). Partial volume correction was carried out

to account for blurring into neighboring voxels. Furthermore, nonlinear

modulation adjusted for interindividual volumetric differences during

the warping process to MNI space. In this way, we obtained gray-matter

volume measures for each participant that were corrected for individual

brain size. Additionally, we accounted for potential confounding effects

BrainMap taxonomy

Execution

Execution - Speech

Action Imagination

Inhibition

Observation

Attention

Language

Language - Orthography

Language - Phonology

Language - Semantics

Language - Semantics

Language - Syntax

Cognition
Memory - Explicit

Memory

Memory - Working

Mental 

domains

Music

Reasoning

Social Cognition

Soma

Space

Time

Disgust

Emotion
Fear

Happiness

Sadness

Interoception Sexuality

Audition

Gustation

Olfaction

Perception Somesthesis

Somesthesis - Pain

Vision - Motion

Vision

Vision - Shape

Exemplary cognitive meta-priors

z

Inhibition

Working Memory

Fear

Vision

z

z

z

F IGURE 1 Overview of a taxonomy that compartmentalizes human cognition. (Left) Exhaustive set of mental operations used for brain-

driven ranking of altered cognitive concepts in schizophrenia. BrainMap defines two description systems: Mental domains (shown here) and

experimental tasks (Figure S1). Note that the five top classes (action, etc.) were disregarded in the present study to avoid hierarchical dependence

between the cognitive classes. This database offers results of almost a quarter of the published functional neuroimaging experiments carefully

annotated with both taxonomies. (Right) A cognition-topography map for each cognitive category was generated from the neuroimaging

database. Four examples of cognitive meta-priors are shown (z-scored for display, only voxels with positive z-scores shown) [Color figure can be

viewed at wileyonlinelibrary.com]
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of age, sex, and site to discourage the predictive algorithms from picking

up these influences of no interest.

2.5 | Brain function: Intrinsic resting-state

connectivity

To examine group differences in intrinsic neural activity, we relied on

fMRI maps acquired by resting-state echo-planar imaging (Table S1).

Before recording of the task-independent blood oxigenation level

dependent (BOLD) signal scans, the participants were asked to lie still

in the scanner and let their minds wander without thinking of any-

thing in particular. Adherence to the instructions was verified in post-

scan interviews. The first four MRI scans of each participant were

discarded to account for magnetic field saturation. The resting-state

time series were aligned by a two-pass procedure to account for par-

ticipant movements during the scanning session. After coregistration,

the functional resting-state maps were spatially registered to MNI

standard space (ICBM-152 template), analogous to the sMRI scans.

The resulting brain maps were smoothed by a 12-mm full width at half

maximum Gaussian kernel (Glahn et al., 2008; Laird, Fox, et al., 2011;

Smith et al., 2009). To further account for potential confounding

effects through head motion, we corrected the time series of each

voxel by a common set of 24 motion parameters: (a) the six motion

parameters extracted from image realignment, (b) their first deriva-

tives, and (c) the respective squared terms of original motion parame-

ters and derivatives. This specific motion correction procedure was

found to improve ensuing functional connectivity analyses by yielding

more specific and sensitive brain signals (Chai, Castanon, Ongur, &

Whitfield-Gabrieli, 2012; Satterthwaite et al., 2013). We did not apply

global signal regression (Murphy, Birn, Handwerker, Jones, &

Bandettini, 2009; Yeh, Tseng, Lin, Tsai, & Huang, 2015). The BOLD

time series were band-pass filtered for frequencies between 0.01 and

0.08 Hz using the frequency-domain filter in the CONN toolbox

(https://www.nitrc.org/projects/conn). This frequency range is com-

monly assumed to represent neural activity and to be less prone to

physiological artifacts such as respiration and heart rate (Fox &

Raichle, 2007; Lu et al., 2007). Additionally, the BOLD signal time

series of each voxel were converted to z-scores in each participant to

allow for group analyses. At the across-participant level, we finally

helped remove potential confounding influences by accounting for

age, sex, and site differences in the fMRI data.

2.6 | Sampling neurobiological characteristics of the

brain: Complementary data-extraction pipelines

The derived cognitive meta-priors guided information extraction from

structural and functional brain data by focusing on different neurobio-

logical characteristics. We wished to relax a priori assumptions on

the most relevant principle of brain organization in schizophrenia

(Weinberger & Radulescu, 2016). We therefore applied different sam-

pling procedures to accommodate common approaches to aggregate

brain data. These preprocessing steps ensured that the various cognitive

meta-priors yielded the same number of variables in each pipeline to

allow for statistical comparability in schizophrenia classification (Hastie,

Tibshirani, & Friedman, 2001). Otherwise, different model complexities

could have made it difficult to attribute lack of predictability to either

the brain data themselves or possible discrepancies of the modeling

procedure.

Three overarching strategies profited from distinct and comple-

mentary ways to aggregate neurobiological information:

1. Mining peak locations: Our “peak activation” approaches concen-

trated on the most important voxel groups of a given cognitive

meta-prior. Target voxels were extracted by searching for locations

with the highest probability of increased neural activity during the

engagement of a particular cognitive process. Hence, this simple

strategy selected a subset of the most important gray-matter voxels

from the brain maps guided by the meta-priors. Because the proce-

dure was based on inspection of single voxels in structural or func-

tional brain data, the analyses were perhaps closest, in character, to

mass-univariate analyses prevalent in neuroimaging:

a. The “highest absolute activation peaks” approach sampled

the voxels with the highest probability of increased neural

activity from each cognitive meta-prior without imposing

additional assumptions. The original meta-analytic maps of

TABLE 1 Clinical sample from different sites

Sample n (males)

Sex

differences

(p values) a
Age

(years)

Age

differences

(p values) b

Groningen

SCZ 32 (19) 33.6 ± 11.1

HC 32 (19) 0.476 31.6 ± 11.2 1

Göttingen

SCZ 32 (26) 32.3 ± 9.9

HC 29 (22) 0.889 31.9 ± 9.4 0.841

Aachen

SCZ 14 (11) 35.1 ± 11.1

HC 13 (10) 0.682 33.2 ± 12.0 0.719

Lille

SCZ 15 (9) 33.3 ± 5.0

HC 16 (11) 0.048 29.0 ± 6.3 0.894

COBRE

SCZ 68 (55) 38.2 ± 13.7

HC 73 (50) 0.270 35.8 ± 11.7 0.136

Total analyzed sample

SCZ 161 (120) 35.4 ± 11.9

HC 163 (112) 0.125 33.4 ± 11.0 0.299

Note. Patients with SCZ and matched HC; age values in mean ± SD.

Abbreviations: HC, healthy control; SCZ, schizophrenia.
aStatistical comparison of age differences between groups performed via

t test;
bStatistical comparison of sex differences between groups performed via

chi-squared test.
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the corresponding neurocognitive priors were used to extract

the voxels of generally largest signal changes.

b. The “highest specific activation peaks” approach sampled the

peak voxels after accounting for voxels with high across-

domain baseline activity by subtracting the mean neural

activity level for each voxel across meta-priors. For instance,

large-scale analyses showed regions of the saliency network

and of the frontoparietal network to have the highest task-

response probabilities (Nelson et al., 2010; Yarkoni, Poldrack,

Nichols, Van Essen, & Wager, 2011). The preference of voxels

that were specifically increased in neural activity by a particu-

lar cognitive process tended to enhance the relative differ-

ences between meta-priors.

c. The “standardized activation peaks” approach accounted for

both the mean and the variance of each voxel observed across

meta-priors. Before identifying the target voxels, we sub-

tracted the mean neural activity and scaled the voxels to unit

variance across meta-priors.

2. Mining regional characteristics: An alternative procedure was

deployed to acknowledge the perhaps still most dominant view on

brain organization (Kanwisher, 2010; Passingham, Stephan, &

Kotter, 2002). Our “regional specialization” approaches followed

the idea that the brain is partitioned into localized, nonoverlapping

regions (cf. Finn et al., 2015; Glasser et al., 2015). The perspective

emphasizes that cognitive processes may be realized by recruit-

ment of neuronal populations that occur in disjoint brain compart-

ments. Clustering methods naturally dovetail with grouping similar

voxels into distinct brain regions (Eickhoff, Thirion, Varoquaux, &

Bzdok, 2015; Thirion, Varoquaux, Dohmatob, & Poline, 2014) by

assigning each voxel to exactly one brain region only. Three com-

plementary clustering algorithms were used to merge voxels to

homogeneous clusters such that the voxels within a region are

more similar to each other than between regions:

a. K-means clustering iteratively readjusts the region centers and

then reassigns the voxels to each nearest cluster center by

minimizing the Euclidean distance of the voxels within each

cluster (Lloyd, 1957; Nanetti, Cerliani, Gazzola, Renken, &

Keysers, 2009). The partitioning procedure relied on minimal

assumptions and imposed, for instance, no spatial constraints

so that the extracted regions were not necessarily spatially

contiguous.

b. Ward clustering is a hierarchical clustering algorithm that suc-

cessively combines the most similar voxels until a number of

specified regions are reached. Ward clustering aims at minimiz-

ing the variance between voxels within each cluster (Johnson,

1967). In contrast to the more liberal constraints of k-means,

only neighboring voxels were fused which resulted in spatially

contiguous regions in the brain (Abraham et al., 2014).

c. Spectral clustering transforms the data in a nonlinear fashion,

which complements the k-means and ward clustering

approaches. The nonlinear transformation enabled the spectral

clustering algorithms to discover nonconvex clusters that con-

trasted with those obtained with k-means and ward clustering.

First, a similarity graph was constructed that represented spa-

tial proximity between the voxels (van Luxburg, 2007). Then,

the graph was partitioned such that the weight of the edges

cut was small compared to the weights of the edges inside

each cluster (Donath & Hofman, 1973; Thirion et al., 2014).

Different from the k-means clustering approach and analogous

to the ward clustering approach, only spatially contiguous

voxels were merged into region clusters.

3. Mining network characteristics: Yet another complementary pro-

cedure accommodated the organizational perspective of brain

function arising from an interplay of distributed, overlapping net-

works (cf. Smith et al., 2009). Our “distributed networks”

approaches created network variables by focusing on the func-

tional connections between distinct brain compartments that are

cross-regionally integrated (Sporns, 2014; Van Essen, Anderson, &

Felleman, 1992). This conceptualization is naturally captured by

matrix decomposition algorithms that broke down the brain into

a number of hidden distributed network components (Smith

et al., 2009). In contrast to the “regional specialization” approach,

each voxel belonged to each of the components to varying

degrees:

a. Principal component analysis (PCA) is a widespread procedure

that searches for spatially uncorrelated network components

that explain the observed variance distributed in the brain data

(Shlens, 2014). The orthogonal components consisted of linear

combinations of the voxels, while all gray-matter voxels were

assigned continuously to each network and nonlinear relation-

ships between the variables were ignored.

b. Sparse PCA is a recent variant of PCA that additionally exploits

the fact that often only a subset of voxels is relevant for

extracting coherent network components to explain most of

the observed variance in the data (Zou, Hastie, & Tibshirani,

2006). A sparse representation was accomplished by addition-

ally imposing a parsimony constraint (L1 penalty) that also

partly relaxed the orthogonality assumption of classical PCA

(Chennubhotla & Jepson, 2001).

c. Independent component analysis is able to discover the

sources of variation that independently contributed to the

observations in the brain, instead of imposing uncorrelatedness

between networks such as in the PCA approaches (Calhoun,

Adali, Pearlson, & Pekar, 2001; Hvarinen, 1999). Com-

plementing PCA, the neural signal was nonlinearly separated

into network components where a particular network node

could readily contribute to more than one network component

(Hvarinen, 1999).

In sum, our data preparation pipelines sampled complementary

aspects of brain biology by means of importantly different

dimensionality-reduction techniques. This meta-prior-guided extrac-

tion of sMRI and fMRI data enabled direct comparison of our

analytical approach in (a) brain structure, (b) brain function, and

(c) their combination. For the joint analyses of both imaging modali-

ties, we concatenated the extracted sMRI and fMRI data for each
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participant. In sum, nine complementary sampling pipelines extracted

meaningful neurobiological information from patients and controls by

guidance through the meta-priors and commonly used dimensionality-

reduction techniques.

2.7 | Confederating ensembles of cognitive

meta-priors: Model stacking for integrated prediction

For each cognitive meta-prior, we used the extracted brain informa-

tion to train a predictive model (i.e., “base model”) for disease status

classification. The collection of base models was incorporated into

one higher level predictive model (i.e., “composite model”) to stratify

the cognitive domains according to their prediction performance. This

two-step stacking strategy (Breiman, 1996; Wolpert, 1992) put each

meta-prior to a comparable scale and identified their relative rele-

vance for schizophrenia classification, despite their naturally diverging

neurobiological representations. By placing all meta-prior models on a

common scale for each taxonomy, the summary model automatically

ranked the whole set of cognitive processes according to their poten-

tial involvement in schizophrenia.

1. Base models: Separately for each cognitive category of a taxon-

omy, we fitted one simple linear classification model to disambigu-

ate the groups based on the extracted and z-scored brain data.

z-Scoring brings neurobiological variables with different distribu-

tions to a same comparable unit and thus, ensures their equal con-

tribution in the subsequent modeling process (Gelman & Hill,

2006). In analyses involving fMRI, the 25th percentile of the

highest scoring resting-state connectivity features was selected

first (in the training data, cf. below) according to the strength of

univariate relationships with the participant group. The adaption

of this feature-selection step, similar to the sMRI analyses, was

intended to improve comparability between both imaging modali-

ties. For each cognitive meta-prior, we thus fitted a logistic-

regression algorithm to the extracted sMRI and fMRI data of a

larger part of the participants (i.e., training sample). Then, we used

the built logistic regression model to predict disease status (schizo-

phrenia vs. health) in the previously left-out participants (i.e., test

sample). The evaluation of disease status in new participants

yielded practically relevant predictions because the algorithm did

not visit the participants during model estimation (Bzdok, &

Ioannidis, 2019, Gabrieli, Ghosh, & Whitfield-Gabrieli, 2015). Thus,

the base models predicted the probability for a given participant to

be affected by schizophrenia from the structural and functional

brain data. The independent (probabilistic) disease status predic-

tions of each cognitive meta-prior served as input for the inte-

grated model.

2. Composite model: The meta-prior specific predictions of the base

models were combined for training a more elaborate predictive

model. The integrative model considered the separate relevances of

all cognitive processes of a taxonomy at the same time for schizo-

phrenia detection. For this purpose, we used a random forest algo-

rithm because the classifier can capture complicated nonlinear

relationships combined with the possibility of model interpretability.

This pattern-learning algorithm involves fitting a collection of

decorrelated decision trees and uses their majority vote for predic-

tion (Breiman, 2001; Louppe, 2014). As a first advantage, the ensu-

ing committee classifier was able to quantify the single meta-priors

regarding their contribution for schizophrenia classification (Breiman,

2001; Louppe, Wehenkel, Sutera, & Geurts, 2013). As an ensuing

second advantage, random forests could uncover potential nonlinear

interactions between the meta-priors, and thus their corresponding

cognitive classes. Since we wished to reduce variability in the classifi-

cation process, we set a common choice of trees in the random for-

est to 1,000. The depth of the trees was set to 5 because higher

order interactions between cognitive processes would have evaded

ready visualization or interpretation. The maximum number of fea-

tures considered at each split in a tree was set to 1, which encour-

aged decorrelated trees and further improved the equal opportunity

between the meta-priors. This analysis setting ensured that the com-

posite model was only minimally affected by potential redundancy in

the base models corresponding to specific meta-priors. Overall, the

integration of these base models into a summary model (stacking)

enabled us to rank each taxonomy of cognitive domains in their abil-

ity to distinguish between patients and controls.

2.8 | Model evaluation: Nested 10-fold cross-

validation for single-participant prediction

For the obtained cognitive domain-overarching predictive model, we esti-

mate the capability to correctly distinguish brain data from participants

that we would observe in the future, as an approximation of external vali-

dation. To examine the performance of the neurobiologically informed

composite model in participants whom the algorithm has not seen before,

we implemented a nested, stratified 10-fold cross-validation. The partici-

pants were divided into 10 balanced data splits (folds), each preserving

the percentage of participants of both classes. The predictive model was

repeatedly fitted on 90% of the data and subsequently assessed in the

brain-data of the left-out 10% of the participants (Hastie et al., 2001;

Stone, 1974; Stone, 1978). After 10 iterations of model fitting and test-

ing, the percentage of correctly classified test participants was averaged

across folds. The nested variant of the cross-validation scheme ensured

that only actual base model predictions were fed into the composite

model as one important characteristic of stacking procedures (Hastie

et al., 2001; Wolpert, 1992). Note that we aimed at validating the practi-

cal plausibility of our approach for interpretable single-patient prediction,

instead of tuning our model toward highest-possible prediction accura-

cies. The obtained quantity yielded the cross-validated prediction

accuracy of the integrative composite model to generalize to future par-

ticipant samples from the population.

We additionally evaluated how much the obtained classification

performances in other schizophrenic patients would be expected to

vary. For this purpose, we computed their 95% population confidence

intervals using bootstrapping (Bzdok, Nichols, & Smith, 2019; Efron &

Tibshirani, 1994). The statistical procedure generates alternative

datasets by repeatedly drawing random samples of the original data
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with replacement. In 1,000 bootstrap iterations, the identical nested cross-

validation scheme was carried out on the perturbed participant samples.

This uncertainty interval estimation answered how the classification suc-

cess was expected to vary in the broader schizophrenia population. The

classification performance of the composite model enabled comparisons

between (a) different imaging modalities (sMRI, fMRI, and combined sMRI

and fMRI data), (b) the set of complementary procedures of neurobiologi-

cal sampling, and (c) two BrainMap taxonomies (mental domains and

experimental tasks). Furthermore, the model performance allowed us to

validate the composite model against models not informed by cognitive

meta-priors (cf. below). In sum, testing the generalizability of the composite

model helped us gain confidence in the robustness and potential clinical

usefulness of our data-analysis approach.

2.9 | Model inspection: Variable importance,

nonlinear effects, and predictive relevance maps

We explored the predictive contribution of the individual meta-priors

in a taxonomy in an identical process. Our stacking-model approach

allowed reverse engineering which 34 mental domains or 50 experi-

mental tasks might be most affected in schizophrenia. For the purpose

of model interpretation, the composite model was initially refitted on

the full participant sample (Hastie et al., 2001). Random forest algo-

rithms naturally afford a quantitative measure of relative importance

for each input variable (Breiman, 2001). Technically, the variable

importance of a meta-prior provides a convenient summary of the

mean decrease in the misclassification rate across all branch splits in

which a specific variable was used in a grown decision tree to sepa-

rate the healthy and schizophrenic group (Louppe et al., 2013). Since

each input variable fed into the random forest corresponded to a sin-

gle meta-prior, the variable importance of the composite model

weighted the ensemble of cognitive domains in a same step. We capi-

talized on these relative importance weights to assign each meta-prior

a ranking position according to its disease discriminability. The highest

values of importance indicated the first rank. To quantitatively esti-

mate the precision of the ranking positions of the meta-priors in the

general population, we estimated the 95% confidence intervals in

1,000 bootstrap iterations by repeatedly fitting the final model to res-

ampled alternative datasets. Since the model evaluation revealed that

none of the nine pipelines were uniformly superior, we averaged the

ranking positions across all of them to enhance impartiality of neuro-

biological assumptions. As an overall uncertainty estimate accounting

for random sampling effects, the 95% confidence intervals were calcu-

lated from the bootstrapped distributions of the variable importances

across pipelines. In addition to the relative contribution to schizophre-

nia, the random forest also allowed the investigation of potential

nonlinear interactions between the cognitive meta-priors. As two-way

interactions are easier to understand by humans than higher order

interactions, we detailed the interaction surface for each pair of cogni-

tive domains after accommodating the remaining cognitive meta-

priors contribution to the prediction of schizophrenia. To additionally

capture discriminative characteristics of schizophrenia on the neurobio-

logical level, we investigated which brain regions were most pertinent

for disease classification. For this purpose, we multiplied each (z-scored)

cognitive meta-prior with its respective importance weight of the com-

posite model. Then, we averaged the ensuing maps corresponding to

the cognitive domains to provide a global predictive relevance map for

schizophrenia. Across neurobiological sampling pipelines, we thus

inspected the predictive value of the cognitive domains, their interac-

tion in disease classification, and their neurobiological basis.

2.10 | Testing the cognitive specificity

of schizophrenia predictability: Comparison to a null

model

A negative test ensured the fit for purpose of the final predictive model

across imaging modalities (Kuhn & Johnson, 2013). This sanity check

answered the question “Did we successfully distinguish patients from

controls because the summary model captured the individual configu-

rations of cognitive facets rather than other characteristics of our par-

ticipant sample?” To this end, we examined the null hypothesis that no

coherent relation exists between the configuration of cognitive facets

of healthy controls and schizophrenia patients. The placebo hypothe-

sis was put to the test by a nonparametric permutation procedure

(Efron, 2012; Winkler, Ridgway, Douaud, Nichols, & Smith, 2016). We

specifically corrupted cognition-related structure in the data, while

leaving the other joint probabilities intact. That is, we only perturbed

variance in the data related to the alternative hypothesis of individual

expressions of cognitive meta-priors achieving disease classification.

We randomly exchanged the importance of individual meta-priors

between participants, separately in patients and controls, before they

were fed into the composite model. This permutation scheme pre-

served the manner in which each cognitive meta-prior scored and the

disease structure of our sample. Yet, the procedure was targeted at

altering the participant-level pattern of meta-prior expressions. Put

differently, the permutation changed how the meta-prior relevance

co-occurred in combinations within patients and within controls.

Based on these slightly permuted data, the same composite model

was fit 1,000 times to compute a distribution of classification perfor-

mances that occur under the null hypothesis. Subsequently, we com-

pared the actually obtained prediction accuracy of our meta-model

against the no-effect distribution. In each data analysis pipeline, the

comparison of the composite model to the performance of a null

model allowed us to ascertain that our disease classification was based

on the combined cognitive facets in individual participants.

2.11 | Scientific-computing implementation

Our data-processing workflow was implemented in Python 2.7. We chose

the open-source programming language to enable the reproducibility of

our results and encourage reuse of our code in future projects. All compu-

tational analyses relied on unit-tested implementations of most recent

machine-learning algorithms as provided by scikit-learn 18.1 (Pedregosa

et al., 2011). The application of the predictive models to high-dimensional

neuroimaging data was facilitated by nilearn 3.0 (Abraham et al., 2014).

The full analysis workflow completed after >7 days on our computing
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cluster hosted at the Rechenzentrum of RWTH Aachen University with

52 cores and 512 GB working memory. All data analysis scripts are pub-

licly available for transparency and reuse at https://github.com/

TMKarrer/domain_ranking_scz.

3 | RESULTS

3.1 | Constructing cognitive meta-priors from a

large-scale neuroimaging database

We jointly screened a set of cognitive functions for their predictive

value in schizophrenia. For this purpose, we capitalized on a large

database of functional neuroimaging experiments that have been

expert-labeled according to two complementary taxonomies

(Figure 2a): mental domains (Figure 1) and experimental tasks (Fig-

ure S1). For each cognitive category of a taxonomy, we used quantita-

tive meta-analyses to summarize the annotated functional

neuroimaging findings observed in thousands of healthy individuals

from the BrainMap database (Figure 2b). We generated whole-brain

maps of robust neural activity changes for each of 34 mental domains

and 50 experimental tasks. On average, the cognitive meta-priors

underlying the mental domains quantitatively synthesized 265 (ranging

from 50 to 1,123) database experiments, whereas the neurocognitive

primitives associated with experimental tasks synthesized 167 (ranging

F IGURE 2 Overview of our analysis workflow. Illustrates our approach to automatically rank a set of commonly studied cognitive processes

for their predictive relevance in schizophrenia (SCZ). (a) We capitalized on two types of data resources. The BrainMap database provided existing

neuroscience knowledge in form of robust neural activity changes reported in published neuroimaging experiments. Each experiment was labeled

with the examined cognitive processes by means of a comprehensive cognitive taxonomy. Additionally, we built on structural and functional

magnetic resonance imaging data (sMRI and fMRI) from a multisite dataset of patients with SCZ and healthy controls (HCs). (b) From the

neuroimaging database, we quantitatively summarized the topography of consistently evoked neural activity changes associated with each

cognitive domain (e.g., pain) into a “cognitive meta-prior.” (c) The ensuing set of cognitive meta-priors served as masks to extract cognitive

domain-specific information from structural and functional brain scans of SCZ patients and HCs. The data extraction followed nine

complementary ways to aggregate neurobiological information, such as mining peak locations, local region, and integrative network

characteristics. (d) To impartially rank the cognitive meta-priors for their predictive value in SCZ, we used a two-step approach. First, we built

several base models to test each particular cognitive meta-prior separately for its capability of telling patients and controls apart. Second, we

combined the collection of all base model predictions into a higher level summary model encapsulating the entire cognitive taxonomy. The

summary model put all meta-priors on the same scale and could thus directly compare a variety of cognitive processes in their usefulness for

detecting SCZ from brain scans. The resulting rankings of cognitive processes were averaged across the nine different neurobiological sampling

strategies. (e) Finally, we validated the ability of the built predictive model to distinguish patients and controls in the future based on previously

unseen, left-out participants (10-fold cross-validation scheme) [Color figure can be viewed at wileyonlinelibrary.com]
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from 50 to 701) neuroimaging studies in BrainMap (Tables S2 and S3).

As expected, the cognitive concepts clearly differed in their spatially dis-

tributed set of responsive brain regions.

Regarding mental domains (Figure 1; see Figure S1 for experimen-

tal tasks), a database of studies linked to motor inhibition, for example,

consistently engaged mainly the bilateral supplementary motor area

and posterior insula, but also involved the putamen, frontal eye field,

and intraparietal sulcus in most individuals. Working memory pro-

cesses, instead, robustly recruited a distributed set of bilateral brain

regions, including the dorsolateral frontal cortex and dorsal anterior

cingulate cortex but also the inferior parietal lobe and precuneus. The

neural responses coherently observed across experiences of fear were

located in the bilateral amygdala, extending into the neighboring hip-

pocampus as well as bilateral anterior cingulate cortex, and ventrome-

dial frontal cortex and the right posterior insula. The neural activity

pertaining to visual perception was prominent in the bilateral inferior

and middle occipital gyri of the early visual cortex, extending into the

fusiform gyri, and posterior parietal lobe, as well as middle and inferior

temporal gyri (not shown). For both BrainMap taxonomies, the cogni-

tive meta-priors encapsulated quantitatively dissociable patterns of

whole-brain activity underlying a class of cognitive processes.

We made several general observations across the synthesis of

neurocognitive priors underpinning mental domains and experimental

tasks. Various cognitive processes related to basic perception cor-

responded to bilateral activity increases in primary sensory and associ-

ation cortices and insula, but also mapped onto the putamen as well

as superior and medial frontal gyri. Different cognitive processes asso-

ciated with motor action primarily elicited bilateral activity increases

in the precentral gyri and thalamus, and also recruited insula and

medial frontal gyri. Emotion-related processes were mainly subserved

by the bilateral amygdala and both anterior and posterior cingulate

cortex but also frequently involved the medial prefrontal cortex. Many

higher level cognitive processes tended to predominantly evoke

increases in neural activity in bilateral prefrontal regions and posterior

cingulate cortex, and further involved bilateral inferior and superior

parietal lobe and middle temporal gyri. Across domains of both taxon-

omies, mental domains and experimental tasks, we observed that

many cognitive functions were underpinned by a distributed constel-

lation of higher and lower level brain systems.

3.2 | Estimating model performance across imaging

modalities and brain sampling approaches

The cognitive meta-priors guided the extraction of structural (sMRI)

and functional (fMRI) brain data in a five-site schizophrenia dataset

(n = 324, mean age = 35.4 ± 11.5 years; Table 1). We retrieved the

neurobiological information using nine complementary data aggrega-

tion strategies that sampled neural activity changes (a) at peak loca-

tions, (b) in brain regions, and (c) distributed brain networks

(Figure 2c). For each cognitive meta-prior, the thus aggregated brain

information was used to build one dedicated predictive model. That is,

each such base model was informed by one cognitive process when

applied to the whole-brain sMRI and fMRI data to separate patients

from controls. These domain-specific models exclusively learned from

brain information that was linked to a particular cognitive process.

The domain-specific models served as building blocks to form a

domain-spanning predictive model (Figure 2d). This summary model

put all cognitive meta-priors on a same scale, which is an important

prerequisite to impartially rank them according to their relevance for

schizophrenia. Initially, we wished to assess the ability of the summary

model to predict disease status in new participants. For this purpose,

we repeatedly tested the predictive model in previously left-out par-

ticipants who were not seen by any predictive model before (10-fold

cross-validation; Figure 2e). Across brain structure and function and

complementary brain sampling tactics, the domain-integrating

summary model performed consistently better than chance (50%) in

classifying new individuals (Figure S2).

We first compared the classification performance across imaging

modalities (Figure S2). We observed that predictive models only

informed by brain structure correctly predicted disease status in

73.2% (SD = 2.1%, across brain sampling approaches) of new individ-

uals for mental domains and in 73.5% (SD = 1.9%) for experimental

tasks on average. Predictive models aware of interindividual differ-

ences in brain structure outperformed predictive models based on

functional and combined imaging modalities in four of nine brain sam-

pling approaches in mental domains and in five of nine approaches in

experimental tasks. We further observed that the average classifica-

tion accuracy of predictive models of meta-priors informed by brain

function reached 70.9% (SD = 1.6%) for mental domains and 70.8%

(SD = 1.4%) for experimental tasks. The predictive models that only

had access to brain function were found to be superior to structural

and combined imaging modalities in 1 of 9 brain sampling approaches

in mental domains and in zero of nine brain sampling approaches in

experimental tasks. In combined brain structure and function, we

found mean classification performances of 73.4% (SD = 1.9%) in men-

tal domains and 73.6% (SD = 2.1%) in experimental tasks. The predic-

tive model tuned to combined information from brain structure and

brain function performed better than predictive models based on a

single imaging modality in some but not all brain sampling approaches

in both mental domains and experimental tasks. Across different types

of brain information, these slight differences in classification perfor-

mance were not statistically significant at p < .05 as indicated by our

bootstrapped 95% confidence intervals. On average, however, predic-

tive models utilizing both brain structure and brain function achieved

the highest classification performances.

We then examined the outcome of different brain sampling

approaches (Figure S2). We observed varying prospective classifica-

tion performances depending on the type of brain data. In combined

brain structure and function, for instance, the classification perfor-

mance ranged from 69.8% ([57.6%; 81.3%], bootstrapped 95% CI) to

75.9% ([62.5%; 84.4%]) across mental domains. Among experimental

tasks, in turn, the prediction accuracy ranged from 69.8% ([60.6%;

81.3%]) to 75.9% ([68.8%; 87.9%] across different data-extraction

approaches. Comparing the different brain sampling approaches,

different activation-, region-, or network-focused strategies were
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advantageous in different settings for separating patients from con-

trols, without a consistent winner.

It is important to note that our analyses were based on brain data

after adjusting for age, sex, and data acquisition site to prevent the

predictive model from capturing variation due to variables of no inter-

est. In brain data without this confound removal step, we observed

instances of slightly elevated classification performance of the predic-

tive model. This piece of evidence suggests that the predictive model

learned useful information from nuisance variables. Nevertheless, the

uncorrected subanalyses yielded a comparable ranking order, which

provided evidence that the relevant brain variation was mostly inde-

pendent of age, sex, and site.

3.3 | Testing the cognitive specificity of

schizophrenia predictability

Next, we performed a negative test to further ensure that the predic-

tive model captured the individual constellation of cognitive domains

instead of potential confounding influences. We formally compared the

classification performance of the domain-spanning model against a

cognition-naïve null model. In 1,000 random permutations, we specifi-

cally permuted how domain combinations co-occurred within patients

with schizophrenia or healthy controls. By preserving all other data

characteristics, we tested whether the constellation of cognitive

functions of the participants were relevant for group classification. The

nonparametric hypothesis test revealed that the summary model

discriminated between patients and controls significantly better than

the null model across brain sampling approaches at a level of p < .05 for

mental domains and p < .01 for experimental tasks (Figure 3). That is,

we observed our actual or a higher prediction accuracy in less than

50 of 1,000 cases in mental domains and in less than 10 in 1,000 cases

in experimental tasks if there was no systematic relation between an

individual's cognitive relevance and group detection. In short, our nega-

tive test ascertained that the successful classification performance of

the composite predictive model could be defensibly ascribed to the

participant-specific configurations of cognitive aspects.

3.4 | Determining contributions to schizophrenia

predictability across cognitive domains

The domain-spanning summary model enabled the direct comparabil-

ity of the cognitive meta-priors despite their naturally varying cortical

and subcortical spread. That is, the taxonomy-level predictive model

enabled us to impartially contrast the cognitive processes in their rela-

tive contribution to schizophrenia classification.

Informed by both brain structure and function, the rankings of

mental domains (Figure 4) and experimental tasks (Figure 5) clearly

demonstrated that some candidate processes were often more rele-

vant for schizophrenia detection than others. Regarding mental

domains, for instance, the top-scoring domains of gustatory percep-

tion, pain perception, and experience of sadness were found to be

statistically significantly more predictive of schizophrenia than

F IGURE 3 Validation of our data-analysis framework. The final predictive model classified healthy versus schizophrenic individuals

statistically significantly better than a cognition-naive null model in each of two taxonomies. We estimated the null distribution by selectively

corrupting the participant pattern of cognitive indices while leaving other structure in the data intact. To ascertain that the final predictive model

captured participant-specific cognitive facets instead of confounding variables. Purple diamonds indicate the (out-of-sample) classification

performance of the composite model based on (a) mental domains and (b) experimental tasks using combined structural (sMRI) and functional

(fMRI) brain information. The dots show 1,000 model performances realized under the null hypothesis. The gray boxplots show bold lines for

median (50th percentile), the lower and upper quartile (25th and 75th percentiles), and whiskers for the interquartile distance (25th–75th

percentiles) besides the box. In each of nine ways to sample brain information, the composite model performed significantly better than the null

model (p < .05 for mental domains and p < .01 for experimental tasks). If the individual combinations of cognitive expressions were not relevant,

we would only observe our actually obtained prediction performance (purple diamond) in at most 50 out of 1,000 cases for mental domains and

in at most 10 out of 1,000 cases for experimental tasks. The negative test implies that the successful individualized decisions of our predictive

model can be ascribed to participant-specific cognitive alterations rather than other characteristics of the participant sample [Color figure can be

viewed at wileyonlinelibrary.com]
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attention, temporal reasoning, and visual perception at p < .05

(Figure 4). Regarding experimental tasks, mental processes related

to pain discrimination, face discrimination, and visual tracking

were significantly more discriminable of disease status than the

lowest ranked mental operations underlying listening to and pro-

ducing music, visuospatial attention, and the Stroop task at a level

of p < .05 (Figure 5). Across both taxonomies, we observed that

cognitive functions related specifically to social affective

(e.g., experience of sadness and face discrimination tasks) and

internally oriented perception processes (e.g., pain perception and

pain discrimination tasks) emerged as most critical for schizophre-

nia classification. Thus, we quantitatively identified common and

distinct elements of cognition in MRI-based imaging of brain

structure and function in their utility for the study of

schizophrenia.

F IGURE 4 Quantified predictive value of mental domains in

schizophrenia (SCZ). We systematically screened for dysregulated

cognitive processes to facilitate the development of personalized

diagnoses and new treatment strategies. Relative contribution of

mental domains in disambiguating patients with SCZ and healthy

controls. Thirty-four mental domains ordered according to their

average ability to forecast disease status. Joyplot shows weighted

importance ranks for each domain (colored mountains). Red diamonds

depict mean ranking position across brain sampling strategies (see

Figure S3 for pipeline-specific domain ranks). Certainty of

discriminability position was assessed by estimating bootstrapped

95% population intervals (red lines). For instance, gustation was highly

predictive across complementary approaches to sample

neurobiological information, whereas the relevance of audition was

more dependent on the sampling pipeline. Some intensively studied

concepts of attention (e.g., Braff, 1993) and working memory

(e.g., Forbes et al., 2009; Lee & Park, 2005) have been situated among

the cognitive classes least predictive for SCZ. All results based on

combined sMRI and fMRI data [Color figure can be viewed at

wileyonlinelibrary.com]

F IGURE 5 Quantified predictive value of experimental tasks in

schizophrenia (SCZ). We broadly screened for distinctive experimental

paradigms to facilitate the development of personalized diagnoses

and new treatment strategies. Relative contribution of experimental

tasks in disambiguating patients with SCZ and healthy controls. Fifty

experimental tasks were ordered according to their average ability to

forecast disease status across brain sampling strategies (see Figure 4

for pipeline-specific domain ranks). Joyplot shows weighted

importance ranks for each domain (colored mountains). Red diamonds

depict mean position in relevance. Certainty of discriminability

position was assessed by estimating 95% population intervals (red

lines). Precision estimates computed by repeatedly resampling

participants with replacement (bootstrapping). All results based on

combined sMRI and fMRI data [Color figure can be viewed at

wileyonlinelibrary.com]
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We further elaborated this evidence from combined brain struc-

ture and function in predictive models that drew on a single imaging

modality. In brain volume alone, 7 of the top 10 mental domains were

in agreement with the top 10 mental domains found in combined

sMRI and fMRI data. However, knowledge of speech, sensing sexual

needs, and speaking were ranked among the top 10 mental domains

in brain structure instead of pain perception, knowledge of language,

and body knowledge. Similarly, 5 of the top 10 ranked experimental

tasks in brain structure were also counted among the top 10 experi-

mental tasks in combined brain structure and function. Yet, mental

processes elicited by film viewing, encoding, theory of mind, passive

viewing, and Wisconsin Card Sorting Test tasks emerged as more dis-

ease relevant in brain structure than mental operations involved in

visual tracking, visual attention, task switching, numerical operations,

and classical conditioning experiments. In intrinsic functional connec-

tivity alone, 6 of the top 10 mental domains corresponded to the top

10 mental domains in combined sMRI and fMRI data. However, motor

execution, motion perception, experience of fear, and auditory per-

ception were counted among the top 10 mental domains in brain

function instead of knowledge of language, body knowledge, experi-

ence of disgust, and social cognition. Similarly, 7 of the top 10 ranked

experimental tasks in brain function were concordant with the top

10 found in combined brain structure and function. Here, mental

operations related to flexing and extending movements, rapid eye

movements, and passive viewing tasks arose as more discriminable of

schizophrenia in brain function than mental processes elicited by face

discrimination, task switching, and numerical operations paradigms.

Despite several modality-specific relevances of cognitive domains in

schizophrenia, the obtained utility rankings were largely overlapping

based on different types of brain data.

3.5 | Isolating nonlinear predictive relationships

across cognitive domains and predictive

relevance maps

Finally, we wished to explore how cognitive processes act in more compli-

cated ways together in distinguishing between patients and controls

(Figure 6). For this purpose, we estimated the nonlinear interaction of cog-

nitive domain pairs in schizophrenia prediction. The so-called “partial

dependence” estimation quantified the relationship between two cogni-

tive meta-priors in predicting disease status, after accounting for the

effects of the remaining domains of the taxonomy. In other words, we

investigated the joint contribution of two cognitive processes in schizo-

phrenia prediction while accommodating the influence of the remaining

domains. Charting these two-way interactions of the most predictive

mental domains and experimental tasks showed various types of links

between schizophrenia classification and single cognitive concepts.

Besides approximately linear links to schizophrenia prediction (n-back task

and passive listening), we also observed somewhat logarithmic (experi-

ence of sadness), exponential (pain perception and pain discrimination),

and polynomial (gustatory perception and face discrimination) nonlinear

relationships. Similarly, we found different qualities of relationships such

as of approximately linear (semantic discrimination and Stroop task),

logarithmic (visual perception), exponential (temporal reasoning), and poly-

nomial kind (listening to and producing music) among the lowest ranked

domains (Figure S5). The comparison of the more-than-linear effects of

two top ranked and two less successful domains also showed that schizo-

phrenia classification relied more heavily on statistical dependencies

among the top ranked domains as compared to the lowest ranked

domains. When we directly contrasted top and lowest ranked domains,

we again found stronger contributions of the top ranked domains on the

classification of health versus disease compared to the lowest ranked

domains (e.g., gustatory perception vs. attention, and face discrimination

vs. Stroop task). Across imaging modalities and cognitive description cata-

logs, we observed that cognitive functions contributed in complex ways

to schizophrenia classification, that is, patterns in brain data to which

purely linear Pearson correlation and regression-type analyses are blind.

After contrasting the individual meta-priors for their differences,

we wished to explore common characteristics across the cognitive

classes of a taxonomy in schizophrenia prediction. To examine which

brain areas were most discriminative of disease status across cognitive

domains, we globally mapped the importance of each cognitive meta-

prior onto the brain. In both mental domains and experimental tasks,

we observed largely overlapping patterns of brain regions that were

most relevant for disease classification (Figure 7). This similarity across

two distinct ways to catalog cognitive functions serves as post hoc

validation of our approach.

4 | DISCUSSION

How can we derive principled recommendations for psychology and neu-

roscience experiments from brain recordings that can be measured at

scale? We have introduced a machine-learning strategy to stratify a cata-

log of cognitive classes according to their utility in identifying schizophre-

nia. We first distilled existing neurobiological knowledge on constituent

elements of the human mind into couples of cognitive concept and quin-

tessential neural representation. In a data-driven fashion, these cognitive

meta-priors were contrasted in their capacity to distinguish between

patients and controls based on easily acquired and commonly available

structural and functional brain scans of a multisite study of a large schizo-

phrenia cohort. Each domain-specific classifier was exclusively based on

brain information with a pre-established link to a specific cognitive

domain. The analytical framework was impartial in giving each cognitive

category the same opportunity to be selected as most important in identi-

fying schizophrenia. The data-guided ranking highlighted certain cognitive

categories that were more discriminative for this major psychiatric disor-

der than other types of mental activity. It is key outcome that we found

both frequently investigated and largely untapped disease concepts to be

relevant in schizophrenia.

Among the traditionally examined concepts, our across-systems

analysis underscored the critical role of tones and speech appraisal

(passive listening) as third most relevant among 50 experimental tasks

and the sense of hearing (audition) as 11th among 34 mental domains,

on the one hand. This quantitative evidence from structural and func-

tional brain scans confirms the long-standing clinical emphasis on
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auditory hallucinations as a hallmark symptom of schizophrenia

patients. Hearing malevolent voices and other auditory mispercep-

tions (Lim, Hoek, Deen, & Blom, 2016; Llorca et al., 2016; McCarthy-

Jones et al., 2017) might be mediated by impaired preattentive

filtering mechanisms (Javitt, 2009; Javitt & Freedman, 2015; Javitt &

Sweet, 2015; Rissling & Light, 2010). Additionally, neuroimaging stud-

ies have consistently shown abnormalities of auditory brain regions in

schizophrenia using meta-analyses: (a) structural neuroimaging studies

found reduced volume in parts of the auditory cortex in the superior

temporal gyrus (Honea, Crow, Passingham, & Mackay, 2005; Modinos
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F IGURE 6 Domain–domain interactions in detecting schizophrenia (SCZ). Inspects in more detail potentially complicated relationships in the

predictability of (a) mental domains and (b) experimental tasks after accounting for the influence of the remaining domains (instead of ignoring

them). Partial dependence of SCZ predictability (z-axis) on the joint distribution of two selected cognitive domains (x- and y-axis) in predicting

whose brain scans are from a SCZ patient (Principal component analysis [PCA] pipeline). Pairs of the top three cognitive processes are shown for

both taxonomies (see Figure S5 for further examples). All results based on combined brain imaging types (sMRI and fMRI data) [Color figure can

be viewed at wileyonlinelibrary.com]
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et al., 2013) and (b) functional investigations have reported increased

neural activity in areas related to speech perception, language, and

memory during active sensations of speech hallucinations (Allen et al.,

2012; Jardri, Pouchet, Pins, & Thomas, 2011).

A relation of auditory processing systems with language and mem-

ory was suggested by theories that ascribe the formation of auditory

hallucinations to intrusive memories and the external misattribution

of inner speech (Curcic-Blake et al., 2017; Jardri et al., 2011). In line

with these notions, our stratified prediction experiment revealed the

relevance of memory and language systems (explicit memory and lan-

guage). Besides the auditory system, also visual processing (e.g., shape

vision and visual tracking) emerged as disease-relevant—a sense com-

monly affected by hallucinations and psychosis (Waters et al., 2014).

The disturbance of these basic sensory processes might lead to defi-

cits in higher level cognition and thus impact functional outcome in

patients, which is supported by a recent structural equation modeling

study (Javitt & Freedman, 2015; Thomas et al., 2017). Difficulties in

the interpretation of speech prosody were argued to potentially entail

problems in social interaction (Javitt & Freedman, 2015; Javitt &

Sweet, 2015). Our large-scale analyses provide evidence for the

potential of MRI-facilitated clinical control especially for distressing

and at times dangerous voice hallucinations.

Furthermore, viewing or evaluating information from others' faces

(face discrimination) as a core element of social cognition was attributed

second highest importance among 50 experimental tasks pooling across

brain structure and function. Concurrently, emotional processing, as

another important aspect of social behavior (Green, Horan, & Lee, 2015;

Ochsner, 2008), emerged as relevant for schizophrenia: appraisal of envi-

ronmental cues with affective valence (emotion induction) was ranked

sixth among 50 experimental tasks, while the experience of two negative

basic emotions, sadness, and disgust, were ranked third and ninth among

34 mental domains. The more general concept of information processing

related to fellow humans (social cognition), was 10th among 34 mental

domains. By carrying out a quantitative cognitive screening, we endorse

the broader relevance of social-affective thought and behavior in schizo-

phrenia. This comparably recent research trend in psychiatry and neuro-

science is currently gaining momentum for several reasons: (a) previous

studies have hinted at a broad spectrum of social dysfunctions in patients

with schizophrenia (see Savla, Vella, Armstrong, Penn, and Twamley

(2013) for a meta-analysis), (b) such dysfunctions seem to be time-

enduring and already present in prodromal phases of the disease (Bora,

Yucel, & Pantelis, 2009; Green et al., 2012), and (c) the deficits in social

cognition are intimately related to poor work and community functioning

(Couture, Penn, & Roberts, 2006; Fett et al., 2011; McCleery et al., 2016).

Moreover, aberrations in socio-emotional processing circuits seem to

mediate the impact of social environmental risk factors such as urbaniza-

tion and migration on schizophrenia (Tost & Meyer-Lindenberg, 2012).

Our quantitative outcomes are also supported by earlier docu-

mentation of emotional processing disturbances in schizophrenia

(Aleman & Kahn, 2005; Derntl et al., 2009; Derntl et al., 2012). Several

emotion recognition studies reported larger impairments in the

processing of faces with negative, rather than positive, emotions such

(a) (b)Mental domains Experimental tasks
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thalamus

FEF
AI

AI

TPJ

MCC

thalamus

AI
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0.15 0.20
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importance across meta-priors

F IGURE 7 Predictive relevance maps for schizophrenia (SCZ). Quantifies the average extent to which individual brain regions contributed to

disease classification across (a) 34 mental domains and (b) 50 experimental tasks. Whole-brain maps depict relative importance values of the

cognitive meta-priors across nine brain sampling strategies. In both taxonomies, nodes of the dorsal attention network (e.g., frontal eye field [FEF]

and intraparietal sulcus [IPS]) and saliency network (e.g., anterior insula [AI] but not mid cingulate cortex [MCC]) as well as thalamus were highly

pertinent in distinguishing patients from controls. Left and right temporo-parietal junction (TPJ), however, emerged as discriminative in mental

domains but not in experimental tasks. Both taxonomies provided largely overlapping but still distinct brain patterns underlying SCZ classification.

This converging evidence across two independent cognitive taxonomies further strengthens the validity of our approach. Brain maps were

smoothed (FWHM = 6mmm) and thresholded for display (see https://neurovault.org/collections/4074/ for unthresholded predictive brain maps).

All results are based on combined sMRI and fMRI data [Color figure can be viewed at wileyonlinelibrary.com]
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as sadness and disgust (Kohler et al., 2010). The predominance of

impaired negative emotion recognition was also reflected in our

results by higher disease discriminability of negative emotions such as

sadness, disgust, and fear as opposed to the positive emotion happi-

ness. In line with our evidence, a meta-analysis of structural MRI stud-

ies in schizophrenia highlighted gray matter decreases in amygdala

and insula (Ellison-Wright, Glahn, Laird, Thelen, & Bullmore, 2008).

Another MRI study found a positive correlation between amygdala

volume and performance in recognizing sad faces (Namiki et al.,

2007). Furthermore, a meta-analysis of functional MRI studies rev-

ealed reduced brain activation in amygdala, parahippocampal gyrus,

and fusiform gyrus, but increased activity in left insula during

emotional face processing (Li et al., 2010).

The aberration of social-affective brain systems in schizophrenia

also translates into various clinical symptoms. Patients often exhibit

negative symptoms, such as diminished emotional expression and apa-

thy, which tend to have enduring trajectories compared to the more

episodic positive symptoms. Indeed, impairments in social cognition

have been proposed to have a stronger impact on functional outcome

than other cognitive impairments (Carrión et al., 2016; Fett et al.,

2011). The collective outcomes of our cognitive charting underscore

the potential of clinical interventions that target affective impairments

in schizophrenia such as social rehabilitation and training regimens in

various social skills (Kurtz & Richardson, 2012).

Besides reinforcing currently studied forms of thinking aberration,

certain cognitive domains emerged as critical to schizophrenia

patients that have so far seldom been the center of investigation. For

instance, the appraisal of pain-related cues was ranked as the first

most predictive experimental task (pain discrimination) and second

most affected mental domain (pain perception). Despite a docu-

mented decrease in the sensitivity of patients to pain stimuli in the

clinical setting, this phenomenon has been the object of very few

experimental studies (Dworkin, 1994; Stubbs et al., 2015). A recent

review on the limited available literature suggested the existence of

impairments in the sensory-discriminative, affective, and cognitive

components of pain processing (Stubbs et al., 2015). Similarly, one of

the few existing neuroimaging studies on the topic reported

decreased recruitment of pain-responsive brain regions such as the

anterior insula and increased recruitment of sensory-processing-tuned

brain systems such as the primary somatosensory cortex during pain

processing in patients with schizophrenia (de la Fuente-Sandoval,

Favila, Gomez-Martin, Pellicer, & Graff-Guerrero, 2010).

Combining these streams of evidence, we used our cognitive rank-

ing outcomes to identify a critical role of pain and emotion appraisal in

schizophrenia. In combination with the highly scored domains related

to processing external and internal bodily feedback such as skin sensa-

tions (somatic cognition and somesthesis), many of the most predic-

tive cognitive classes can be considered as impaired interoceptive

integration. This contention of a key role of binding bodily information

is further supported by the first rank of the sense of tasting (gusta-

tion). Indeed, misperceptions of imagined tactile or bodily cues

(e.g., feeling of insects on the skin) are an often-encountered clinical

symptom in schizophrenia patients (McCarthy-Jones et al., 2017;

Thomas et al., 2007). More broadly, this major psychiatric disease is

often considered to be a disorder of the self and subjective experience

(Fletcher & Frith, 2009). Colloquially, these patients may suffer from a

misbalance in “how the body listens to itself”—how it senses, inte-

grates, and prepares reactions to somatic signals. Alterations of intero-

ceptive capacity might also give rise to misattribution of inner signals

to external sources, which is a frequently observed clinical feature of

patients with schizophrenia. Dysregulated processing of nociceptive

and autonomic signals has very recently been raised as a potential

mechanism involved in schizophrenia pathophysiology and potentially

other mental disorders (Ardizzi et al., 2016; Khalsa et al., 2017;

Owens, Allen, Ondobaka, & Friston, 2018). More generally, pain insen-

sitivity can lead to poor help-seeking behavior. Hence, future research

endeavors enlightening pain processing in schizophrenia might help to

reduce the high morbidity and mortality observed among schizophre-

nia patients (Dworkin, 1994; Stubbs et al., 2014; Stubbs et al., 2015).

Both pain appraisal and gustation are exemplary instances of the used

taxonomy that shares the processing of internal bodily information

and associated feedback loops. Taken together, the identification of

these highly discriminative cognitive classes stresses the research

potential of elucidating how bodily signals from the internal organs

which may expose a currently underappreciated disease mechanism.

This interpretation is in line with another quantitative finding of a yet

mostly unexplored domain. Tasting or imagining the flavor of food

reached the first position among 34 candidate mental domains which

probably relates to epidemiological studies that estimate 7–31% of

patients with schizophrenia experience some form of gustatory

hallucination (Baethge et al., 2005; Connolly & Gittleson, 1971;

Lewandowski, DePaola, Camsari, Cohen, & Ongur, 2009; Thomas et al.,

2007). The scarce studies directly examining gustation in patients with

schizophrenia reported a significant deficit in their sensitivity for different

tastes (Balderston et al., 2003), such as the bitter-tasting antiheroic com-

pound phenylthiocarbamide (Moberg et al., 2005; Moberg et al., 2007).

Additionally, there is some tentative evidence for abnormalities in brain

regions related to gustation including the insula, thalamus, and

orbitofrontal cortex (Balderston et al., 2003). For instance, taste chemore-

ceptors responses seem to be reduced in the dorsolateral prefrontal cor-

tex (Ansoleaga et al., 2015). The subordinate role of gustatory

hallucinations in common clinical assessments, as opposed to other sen-

sory misperceptions, may be one reason why research on disturbed gusta-

tory processing in schizophrenia may still be in its infancy.

While our study capitalized on the BrainMap database, alternative

coordinate-based databases hosting task fMRI results need to be

mentioned. As a key representative, Neurosynth hosts a large amount

of task fMRI studies with their foci of significant peak neural activity

changes (neurosynth.org). In stark contrast to BrainMap, Neurosynth

labels the neuroimaging results in a bottom-up fashion by searching

for cognitive terms mentioned by the authors themselves throughout

their scientific papers. This automated text-mining strategy has the

important advantage to extract annotations of published neuroimag-

ing experiments in a fast and efficient way. This allows a natural scal-

ing to collect always more neuroimaging publications. However,

NeuroSynth's approach yields drawbacks for our specific goal to
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systematically test diverse cognitive functions for their relevance in

schizophrenia. First, a given cognitive term can refer to different cog-

nitive processes (e.g., “speech” can refer to both the motor action of

speaking and the semantic processing underlying language production

as explicitly distinguished by the BrainMap taxonomy). Second, differ-

ent commonly used cognitive terms can denote identical or similar

cognitive processes due to the lack of a consensus definition among

neuroscientists (e.g., “emotional,” “affective,” and “motivational”).

Third, the authors mentioning a cognitive term somewhere in the

paper text does not guarantee that this cognitive process was directly

examined in the experiment, or that it is necessarily mentioned within

the context of the conducted experimental contrast whose coordi-

nates are extracted. To alleviate some of these inadequacies,

BrainMap has cataloged each experiment in accordance with two

expert-developed and continuously refined cognitive description

systems. In addition, all taxonomy assignments were verified by differ-

ent scientists to strive toward a clean and consistent annotation of

the neuroimaging experiments with the cognitive categories. As such,

the BrainMap database and annotation principle was more suitable

for the question at the heart of our present investigation.

While we provide valuable meta-level insights into what cognitive

processes might be most dysfunctional in schizophrenia, our computa-

tional modeling approach reached somewhat lower performance in dis-

ease classification than certain previous machine-learning studies that

were solely focused on prediction performance alone (e.g., Silva et al.,

2014). This observation was entirely expected. In statistical data analysis

in general, there is a widely recognized tension between predictive perfor-

mance and model interpretability (Bishop, 2006; Danilo Bzdok & Yeo,

2017; Hastie et al., 2001). Machine-learning algorithms are particularly

suited to achieve highly accurate predictions in a brute-force fashion,

which is why they might be promising for precision psychiatry (Danilo

Bzdok & Meyer-Lindenberg, 2018; Chekroud, Lane, & Ross, 2017). How-

ever, such purely data-driven approaches were sometimes criticized for

offering less direct insight into the cognitive or neurobiological architec-

ture of schizophrenia. Acknowledging the often-incompatible goals of

revealing the underpinnings of a disease and best-possible bare prediction

outcomes, our study prioritized the interpretability of the statistical frame-

work. The introduction of condensed neuroscientific knowledge in a prin-

cipled fashion enabled the study of compromised cognitive processes in a

major psychiatric disease. The compression of the original brain informa-

tion into interpretable summaries came at the expense of best-possible

prediction accuracy (Hastie et al., 2001; Kuhn & Johnson, 2013; Shmueli,

2010). Additionally, the classification performance of our predictive model

might be compromised by using a multisite dataset. Such samples often

introduce additional sources of variance that differ across sites

(e.g., scanner software) (Dansereau et al., 2017; Nielsen et al., 2013). Nev-

ertheless, clinical samples with patients from several sites are often more

representative of the general population and are hence more likely to pro-

vide clinically relevant and reproducible results (Abraham et al., 2017;

Costafreda, Brammer, David, & Fu, 2008).

A further strength of our computational neurocognitive assay lies in

leveraging accumulated neurobiological knowledge of executed behaviors

and their recruited neural systems to build a single-patient prediction

framework (Arbabshirani, Plis, Sui, & Calhoun, 2017; Huys, Maia, & Frank,

2016; Stephan et al., 2017). Such integration of data-driven and theory-

assisted analysis tactics allowed us to discover the most impaired

cognitive domains in a rich schizophrenia sample while relying on minimal

additional statistical, pathophysiological, and neurobiological assumptions.

In this way, our study exemplified hypothesis mining on which components

of human cognition might be particularly affected in a particular psychiat-

ric disorder. These most promising candidate neural systems can provide

a well-founded basis for explicit hypotheses testing on multiple levels of

observations, such as genomics, neurotransmitters, and neuropharmacol-

ogy. We are optimistic that such computational psychiatry investigations

could be readily extended to many brain disorders and potentially inform

priority agendas in health research (Oquendo et al., 2012).
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