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Abstract

Post-traumatic stress disorder (PTSD) is a prevalent, debilitating and sometimes deadly 

consequence of exposure to severe psychological trauma. Although effective treatments exist for 

some individuals, they are limited. New approaches to intervention, treatment and prevention are 

therefore much needed. In the past few years, the field has rapidly developed a greater 

understanding of the dysfunctional brain circuits underlying PTSD, a shift in understanding that 

has been made possible by technological revolutions that have allowed the observation and 

perturbation of the macrocircuits and microcircuits thought to underlie PTSD-related symptoms. 

These advances have allowed us to gain a more translational knowledge of PTSD, have provided 

further insights into the mechanisms of risk and resilience and offer promising avenues for 

therapeutic discovery.

Post-traumatic stress disorder (PTSD) is, from a historical point of view, a recent diagnosis. 

There are loose strands of the idea that trauma may inflict psychological distress throughout 

ancient Western literature; however, more recent works have been mostly silent on the topic 

of the syndrome we have come to call PTSD, a situation that may have arisen as a result of 

cultural norms and social stigma surrounding trauma survival1. This silence is especially 

true for the suffering of women after trauma2. The establishment of PTSD as a medical 

diagnosis in 1980 (REF3) has allowed for its acceptance by the wider culture and has 

facilitated research into this previously neglected psychiatric disorder.
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It is now widely accepted that there is considerable genetic heritability in the development of 

PTSD (Box 1). Recently, the groundwork has been laid for the establishment of large-scale 

genome-wide association studies (GWAS) that aim to identify the genes that contribute to 

PTSD risk4. However, when compared with other psychiatric disorders (such as 

schizophrenia and autism), there has been relatively little progress made in our 

understanding of the definitive molecular changes involved in determining vulnerability to 

PTSD. As a result, there are few identified therapeutic targets for pharmacological 

intervention in this disorder.

Increasingly, psychiatric disorders — including PTSD — are becoming understood as 

disorders of circuits5. Indeed, most of the recent advances in PTSD research have come from 

the elucidation of the brain circuits implicated in the disorder. Functional neuroimaging of 

human patients has identified brain regions with altered activity and connectivity6. In 

parallel, the expansion of the use of optogenetics, chemogenetics, fibre photometry and 

other circuit-perturbing and circuit-monitoring tools in animal models has led to terrific 

progress in our understanding of the microcircuitry that underlies the normal behavioural 

processes that become per turbed in PTSD. These include those involved in fear and threat 

detection7, reward processing8,9 and valence representation10, among others.

Alongside the growing emphasis on circuits, there has also been a move away from a 

categorical under standing of psychiatric illness towards a dimensional approach, as 

embodied within the Research Domain Criteria (RDoC) issued by the National Institute of 

Mental Health5. If circuits control behaviours and there is a dimensional continuum between 

normal and mala daptive processes, then it becomes important to under stand how normal 

circuits function in both humans and animal models. This understanding will allow us to 

develop better hypotheses about how circuits are altered to produce maladaptive behaviours 

and will also provide avenues for future therapeutic discovery by suggesting how circuits 

can be targeted to restore normal function.

In this Review, we will examine the brain circuit mechanisms underlying each of the main 

clusters of symptoms identified in the Diagnostic and Statistical Manual of Mental 
Disorders, fifth edition (DSM-5)11 classification of PTSD by considering evidence from 

human neurobiological studies and animal model approaches (Figs 1,2). Although there 

have been recent reviews of PTSD that have included a discussion of the functional 

neuroimaging literature12 and several recent reviews of the microcircuitry involved in brain 

regions implicated in PTSD-related circuits7,8,10, there has not yet been an attempt to bridge 

human and animal literatures in the discussion of PTSD pathophysiology. Because the 

DSM-5 remains dominant in clinical academic medicine, we have chosen to structure this 

Review according to its criteria rather than the categories outlined in the RDoC; however, we 

provide an attempt to align the DSM-5 criteria with the current RDoC matrix (TABLE 1). 

We also offer a brief summary of progress in our under standing of the genetics underlying 

PTSD risk and suggest future strategies for research. We hope to convey our belief that the 

intersection of PTSD biology and neuro science is driving these fields towards interesting 

and potentially feasible new neurobiology-driven approaches to treatment and prevention.
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Symptoms and diagnosis

Epidemiological studies show that PTSD is quite prevalent, with lifetime estimates ranging 

from 1.3% to 12.2% depending on the population studied13. PTSD is also very costly to our 

society in terms of both treatment cost and loss of productivity14. Furthermore, PTSD is 

highly comorbid with depression, other anxiety disorders and substance abuse and is a 

leading cause of suicide. Women are at much greater risk of developing PTSD than men and 

suffer from more debilitating symptoms after trauma15.

A diagnosis of PTSD according to DSM-5 relies upon several key criteria: an individual 

must have been exposed to a death, threatened death, actual or threatened serious injury, or 

actual or threatened sexual violence (criterion A) and this must have been followed by 

ongoing symptoms of intrusive re-experiencing (criterion B, at least one such symptom 

required), avoidance (criterion C, at least one such symptom required), negative cognitions 

and mood (criterion D, at least two such symptoms required) and arousal and reactivity 

(criterion E, at least two such symptoms required), resulting in functional impairment and 

not being caused by other medical or psychiatric illness11. However, evidence suggests that 

considerable heterogeneity exists within the syndrome and that the set of symptoms present 

is dependent on factors including the timing of the traumatizing events (in childhood versus 

adulthood, for example) and the type of exposure. For example, early-onset chronic 

interpersonal trauma and adult sexual assault are associated with more severe PTSD 

symptoms and more emotional dysregulation than late-onset or single-event traumas16–17. 

Recent neurobiological evidence of a dissociative subtype of PTSD and its subsequent 

addition to DSM-5 confirms that considerable heterogeneity remains within the syn drome18 

(Box 2). Within the RDoC, these DSM-5-defined symptoms of PTSD can be seen to be 

distributed across multiple domains, including systems related to negative valence, positive 

valence, cognition, social processing and arousal19 (TABLE 1).

Intrusion symptoms

Criterion B of the DSM-5 criteria for PTSD diagnosis focuses on intrusion symptoms, in 

which the traumatic event is persistently re-experienced11. This re-experiencing can occur in 

a number of ways, including recurring, involuntary intrusive memories, dissociative 

reactions (such as flashbacks), distressing dreams and physiological reactivity11. It has been 

suggested that these intrusive symptoms are a product of emotional under modulation — 

that is, a failure of the cortex to inhibit the limbic system20. In support of this theory, 

individuals with PTSD often demonstrate increased activity in the amygdala and decreased 

medial prefrontal cortex (mPFC) activity during symptom provocation studies when 

compared with individuals without PTSD21–30. The amygdala is a key limbic structure 

involved in emotional reactivity, over which regions of the mPFC exert an inhibitory 

effect31. Furthermore, reports of in-the-moment re-experiencing symptoms in individuals 

with PTSD have shown some association with increased insula activity and decreased rostral 

anterior cingulate cortex (rACC) and inferior frontal cortex activity32. The insula is thought 

to be involved in interoception and bodily awareness33, whereas the rACC and lateral 

prefrontal cortex are often involved in attention, emotion and arousal regulation34. Together, 

these results suggest that, in PTSD, there is a failure of top-down cortical inhibition (from 
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the mPFC or rACC, for example) of the reactivation of memory traces associated with 

trauma-related thoughts and feelings, many of which may be centred around the visceral 

experience of one’s body (in which the amygdala and insula have a role).

The failure of such top-down cortical inhibition has also been suggested to be related to 

impairments of fear extinction35. In classical conditioning theory, fear conditioning occurs 

when a neutral cue (such as a tone or an image) is paired with an intrinsically aversive cue 

(such as an electric shock). Subsequent presentations of the neutral cue provoke a fear 

response. Fear extinction refers to the gradual decrement of the fear response to a 

conditioned stimulus when it fails to be reinforced (by the repeated presentation of the 

conditioned stimulus in the absence of the aversive cue, for example)36. There is strong 

evidence that fear extinction involves the formation of a competing new memory that 

inhibits the fear response, rather than an erasure of the original memory36,37; however, fear 

memories may also weaken during recall through a process called reconsolidation38. There 

have been studies showing that individuals with PTSD are able to encode such new fear 

extinction memories but have difficulty retaining them35,39–41, suggesting that deficits in 

fear extinction retention underlie PTSD. Furthermore, there is evidence that the size and 

activity of the ventromedial prefrontal cortex (vmPFC) is associated with the extent of fear 

extinction deficits in individuals with PTSD42 as well as evidence for changes to the 

functional connectivity between the left vmPFC and the amygdala in individuals with 

PTSD43. Given that vmPFC-mediated inhibition of the amygdala is thought to be necessary 

for fear extinction31, these changes could offer a mechanistic basis for the decrements in 

extinction retention observed in PTSD subjects. There is also some evidence to support the 

idea that patients with PTSD might exhibit an increased capacity for fear conditioning 

itself44 or a greater propensity for increased fear generalization45–47; however, there have 

been no longitudinal studies of these traits in patients at risk of developing PTSD, making it 

unclear whether these characteristics are a cause or an effect of developing PTSD.

Animal models of fear conditioning and fear extinction have highlighted the importance of 

the relation ship between the vmPFC and the amygdala in both the expression and extinction 

of fear behaviours (BOX 3). Although there is some debate among comparative 

neuroanatomists regarding the precise homologies of the human and rodent prefrontal cortex 

(PFC), projection patterns and cytoarchitecture suggest that the vmPFC in rodents is 

composed of the prelimbic and infralimbic cortices48,49. Pharmacological or electrolytic 

inhibition of the prelimbic cortex prevents expression of conditioned fear behaviours, 

whereas inhibition of the infralimbic cortex impairs retrieval of fear extinction50,51.

Experiments using optogenetics have confirmed and refined this dichotomy. These studies 

have shown that, in mice, optogenetic inhibition of prelimbic cortex projection neurons 

inhibits the expression of fear behaviours52, whereas the release of prelimbic cortex 

projection neuron firing through optogenetic inhibition of parvalbumin-expressing 

interneurons drives expression of fear behaviours53. Silencing infralimbic projection neurons 

during extinction training prevents the retention of fear extinction memories, and protein 

synthesis within the infralimbic cortex is necessary for retention of fear extinction54,55. 

Interestingly, silencing infralimbic projection neurons after extinction has occurred has no 

impact on extinction retrieval, suggesting that these neurons are crucial for formation, but 
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not retention, of extinction memories54. A recent study may explain this phenomenon by 

suggesting that it is the activation of basolateral amygdala (BLA) inputs within the 

infralimbic cortex that facilitates fear extinction retention rather than the activation of 

infralimbic neuronal somata56. It is not currently known whether prelimbic and infralimbic 

projection neuron cell types are molecularly distinct or whether there is heterogeneity 

among these neurons. The identification of genetic markers for neurons that project from the 

infralimbic cortex to the BLA could lead to pharmacological targets for increasing the 

encoding of fear extinction memories.

Avoidance

Criterion C of the DSM-5 framework encapsulates persistent, effortful avoidance of 

distressing trauma-related stimuli11, which can include thoughts, feelings and environmental 

cues (including people, places, conversations, activities, objects and situations). Theoretical 

commentary has suggested that an imbalance in approach versus avoidance behavioural 

responses is at the centre of PTSD dysfunction57; however, the neurobiological 

underpinnings of trauma-cue avoidance are surprisingly understudied in human-based PTSD 

research.

A study using a symptom provocation paradigm found that the experience of actively 

avoiding trauma-related thoughts or feelings was associated with decreased activity in 

multiple regions of the anterior cingulate cortex (ACC) and inferior frontal cortex and with 

increased activity in the superior temporal cortex32. Avoidance has also been examined in 

the context of fear conditioning. In a recent fear conditioning study, the severity of 

interview-assessed PTSD avoidance symptoms within the past month was shown to be 

positively associated with hippocampal responses to context cues and conditioned stimuli in 

the acquisition phase of a fear conditioning paradigm and to amygdala, hippocampus and 

insula activity during the extinction phase58. These findings suggest that avoidance 

symptoms and fear circuit activation are closely linked and that avoidance is central to the 

fear extinction deficits reported in PTSD (see above). By definition, a cue or context that is 

avoided cannot be extinguished in a normal fashion; thus, many behavioural therapy 

approaches to the treatment of PTSD focus on decreasing such avoidance behaviours.

A growing literature describes the brain circuits involved in determining whether an animal 

will respond to a threat-associated stimulus with passive avoidance (freezing; see also the 

dissociative subtype of PTSD, Box 2) or more active avoidance strategies (such as running 

towards a safe chamber)59. Both strategies can be maladaptive if used excessively or in a 

fashion in which the individual has no control; however, there is evidence to suggest that 

active avoidance strategies can dampen responses to subsequent stressors60. For example, a 

recent human study with a clever yoked-subject design showed a decreased skin 

conductance response in non-psychiatric control participants who were given access to an 

active avoidance strategy to prevent electrical shock compared with those who were not61. 

This decreased skin conductance was observed both for subsequent presentations of the 

extinguished conditioned stimulus and for presentation of a novel conditioned stimulus. In 

this case, active avoidance was shown to be associated with changes in striatal blood-

oxygen-level-dependent (BoLD) signalling.
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In rodents, avoidance behaviours are often studied using a shuttlebox learning paradigm. In 

this test, rodents first undergo Pavlovian threat conditioning, in which a previously 

innocuous conditioned stimulus becomes paired with an aversive unconditioned stimulus. In 

an inescapable chamber, rodents will respond by freezing when the conditioned stimulus is 

subsequently presented. In a second phase of the task, the rodents learn that if they run into a 

second compartment when presented with the conditioned stimulus within the testing 

chamber, they can avoid receiving the unconditioned stimulus. Rodents will thus learn to run 

from the context in which the conditioned and unconditioned stimuli were paired (active 

avoidance) instead of passively freezing. The propensity to pursue active avoidance 

strategies is heterogeneous in rodent populations and as such is thought to be a possible 

model for resilience62.

Several lesion studies in rodents have shown that passive freezing responses are mediated by 

signals transmitted from neurons within the lateral amygdala to the central amygdala and 

then to neurons within the periaqueductal grey (PAG)63,64 (FIG. 3). Active avoidance 

strategies appear to require signalling from the lateral amygdala to the basal amygdala and 

then to the shell of the nucleus accumbens65. The infralimbic cortex is also critical for active 

avoidance66. Active avoidance and freezing appear to be mutually inhibitory, as lesions of 

the central amygdala increase active avoidance, whereas lesions of the infralimbic cortex, 

which releases central amygdala inhibition, create increases in freezing66. Furthermore, 

recent experiments have shown that, within the central amygdala, there are microcircuits of 

mutually inhibitory corticotropin-releasing hormone (CRH)-expressing and somatostatin-

expressing neuronal subpopulations that mediate active avoidance and freezing, 

respectively67.

Avoidance behaviour may also be conceptualized more generally. When interacting with an 

uncertain environment, an organism must make decisions about whether to approach or 

avoid external stimuli. A recent hypothesis proposed by several groups reconceptualizes 

amygdala function as the gating of decisions about ‘behavioural engagement’; that is, the 

decisions that an organism makes when approaching its environment68,69. This hypothesis 

stems from work that has shown that amygdala lesions can affect risk-taking behaviour in 

rats in a food foraging paradigm70 as well as the identification of populations of neurons 

within the BLA that respond to movement during a risk-taking behavioural task rather than 

to the presence of a threat per se71. This finding brings the rodent literature more in line with 

the widespread changes in activation patterns seen in the human neuroimaging literature. 

Deficits in a ‘behavioural engagement’ circuit may align more closely with the functional 

impairments seen in individuals with PTSD than do the deficits pre dicted by the more 

traditional model that theorizes that the amygdala acts only as a locus for conditioned fear72.

Altered cognition and mood

Criterion D of the DSM-5 PTSD diagnosis describes negative alterations in cognition and 

mood that begin or worsen after a traumatic event11. This criterion includes memory deficits, 

distorted beliefs, persistent negative emotions, diminished interest in previously rewarding 

activities, constricted emotional experience and social detachment symptoms11. Many of 

these symptoms are nonspecific and highly overlapping with the symptoms of depression. 
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For the most part, the neurobiological understanding of these symptoms is still preliminary; 

however, emerging evidence again points towards potential aberrations in regions that are 

part of limbic circuits (particularly the hippocampus and amygdala) and their relationship 

with top-down prefrontal cortical control.

Dissociative amnesia and memory deficits.

In addition to the maladaptive enhancement of emotional memories described above, some 

forms of memory can be impaired in PTSD. A marked inability to recall key features of the 

traumatic event is a common occurrence in PTSD and is frequently referred to as 

dissociative or psychogenic amnesia. This amnesia often occurs in the realm of declarative 

memory — that is, memory that can be explicitly recalled, such as semantic or episodic 

memory73 — whereas nondeclarative and/or implicit memory is preserved. Individuals with 

PTSD also report the experience of memory fragmentation11. These declarative memory 

deficits have been proposed to be the result of impaired encoding or retrieval mechanisms, or 

a combination thereof.

A PTSD-specific neurobiological model focusing on the hippocampus has been proposed to 

account for these memory deficits74. The hippocampus is crucial for memory and learning 

processes and in particular for declarative memory73. The hippocampus is involved in the 

initial storage of this type of memory and in integrating aspects of memory during retrieval. 

A sizeable literature demonstrates that there is reduced hippocampal volume in individuals 

with PTSD75. This observation has been established in studies of different types of trauma 

and different sample populations and was supported by the recent findings of the largest 

brain imaging study of PTSD to date76. However, whether trauma leads to hippocampal 

atrophy in individuals who develop PTSD or whether having small hippocampi predisposes 

an individual to PTSD remains controversial77. In positron emission tomography and 

functional MRI (fMRI) studies, individuals with PTSD have been demonstrated to exhibit 

decreased hippocampal activity while taking part in a declarative memory task, when 

compared with trauma-exposed controls without PTSD78, as well as decreased hippocampal 

activity and a failure to recall extinction learning when taking part in a fear conditioning 

paradigm35. It remains to be determined whether reduced hippocampal activity is caused by 

the reduced size or vice versa and whether reduced activity and/or size affects the capacity to 

encode or store memories.

Extensive research also documents deficits in a number of executive function tasks in 

individuals with PTSD when compared with trauma-exposed controls79. However, there is 

also evidence to suggest that there are subtle deficits in these functions that exist before the 

trauma exposure in PTSD cohorts, suggesting that individuals with executive function 

deficits have a heightened risk of developing PTSD after trauma exposure80. It is thought 

that these deficits would then be further exacerbated after trauma exposure and may 

contribute to lack of recovery80. Evidence of changes to neural circuitry that may explain 

this finding is varied; however, most evidence suggests that there are changes in PFC 

engagement81–83. Individuals with PTSD have increased prefrontal activity during sustained 

attention tasks, and decreased prefrontal involvement when participating in more taxing 

inhibition-related tasks, when compared with those without PTSD81–83. This pattern could 
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be a by-product of attentional hypervigilance associated with PTSD and an inability to 

inhibit this pattern of activation during more demanding tasks. Alternatively, it could reflect 

a compensatory mechanism for maintaining focus during sustained attention tasks that stops 

working with more difficult inhibition tasks80. Another interpretation is that this pattern of 

activity reflects a decreased ability to regulate midline cortical self-referential processing 

activity during attentional tasks84. It is yet to be determined how these changes in PFC 

engagement might also alter the hippocampal-related declarative memory processes 

discussed above.

Studies that have used animal models have given us more information on the cellular-level 

changes in the hippocampus that may drive PTSD memory deficits. In rodent models, both 

acute and chronic corticosterone secretion occur in response to traumatic experiences85 and 

can induce profound molecular changes in the hippocampus. These changes include 

decreased brain-derived neurotrophic factor (BDNF) and cAMP-responsive element-binding 

protein 1 (CREB1) expression in the dentate gyrus, impaired neurogenesis in the dentate 

gyrus, decreased long-term potentiation in the CA1 region and dendritic retraction in CA3 

(REFs86–88). The loss of dendritic complexity observed in rodents after stress suggests a 

mechanism for the hippocampal atrophy observed in patients with PTSD. There are likely to 

be many more molecular pathways that are involved in adaptations to both acute and chronic 

stress. Indeed, a recent study showed that there are hundreds of gene expression changes 

within CA3 neurons after rodents are exposed to either acute forced swim stress or chronic 

restraint stress; however, the gene expression signatures observed in these two conditions 

were almost completely non-overlapping89.

Research with rodents and nonhuman primates also demonstrates that exposure to an acute, 

uncontrollable stress impairs performance in cognitive and memory tasks that depend 

heavily on the PFC90. For example, restraint-stressed rats display impaired performance in a 

delayed spatial alternation task, a rodent behavioural test of spatial working memory91. The 

stressed animals made more perseverative errors on the task, suggesting a lack of attention 

and short-term memory as well as cognitive and/or behavioural inflexibility91. Interestingly, 

correlated neural activity in the PFC and hippocampus is believed to be important for 

successful performance on this task: hippocampal theta oscillations have been shown to be 

phase-locked with both theta and single-unit activity in the PFC during the performance of a 

similar task92. Furthermore, a genetic mouse model of schizophrenia in which this 

hippocampus-PFC synchrony is disrupted also shows impairments in the acquisition of 

spatial working memory, and a recent study in which optogenetic manipulation was 

combined with a spatial working memory paradigm confirmed that gamma activity in the 

pathway from the ventral hippocampus to the PFC is crucial for encoding task-relevant 

cues93. These findings suggest that deficits in memory processes in patients with PTSD are 

caused by atypical coordination of neural synchronization in large-scale networks including 

the PFC.

Persistent negative emotions.

Criterion D of the DSM-5 PTSD diagnosis also includes the experience of enduring negative 

trauma-related emotions such as fear, horror, anger, guilt or shame11. Constructivist views of 
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emotion suggest that our emotional experience is generated through a dynamic interaction of 

more basic processes in memory, perception and attention94,95. Consistent with this idea, a 

broad network of cortical and subcortical regions is associated with our experience of 

emotion96. In particular, recent neuroimaging evidence has associated fluctuating valence 

experience with activity in the orbitofrontal cortex and arousal with amygdala activation 

across different emotions (such as fear, sadness and happiness)97.

A key characteristic of the negative emotional experiences of individuals with PTSD is that 

they seem to persist despite interfering with the day-to-day functioning of the individual. 

The persistence of these negative emotions is often described as a failure of emotion 

regulation — that is, the ability to exert ‘voluntary control’ over one’s emotional 

responses98. For example, individuals with PTSD were shown to have poorer ability to 

down-regulate emotional reactions to negative pictures than trauma-exposed and non-

trauma-exposed controls, and this was associated with decreased PFC activity99. Similarly, 

the experience of negatively valenced (but not traumatic) memories elicited emotions of 

sadness and anxiety in individuals with PTSD and was associated with decreased ACC and 

thalamus activity — patterns of activity analogous to those seen when personally triggering 

trauma cues are presented100. Likewise, viewing of negatively valenced pictures was 

associated with lower vmPFC activity in individuals with PTSD than it was in trauma and 

non-trauma-exposed controls34. The vmPFC and ACC are regions that are often associated 

with emotion regulation101.

There is some evidence to suggest that processing of emotional valence itself is altered in 

PTSD, in particular for individuals who have suffered childhood maltreatment102–103. Given 

our desire to understand the basic neuroscience of negative emotions, there has been 

considerable recent effort made to use modern optogenetic and chemogenetic tools to 

understand the coding of valence in the mouse brain subpopulations of neurons in the 

BLA104, central amygdala105, nucleus accumbens106 and ventral tegmental area (VTA)107, 

and other regions appear to respond to the appetitive or aversive qualities of a stimulus, 

independent of its sensory features10. However, it is not yet known whether these neurons 

can be defined by their molecular properties, projection targets or some combination of these 

characteristics10. It is also not yet known to what extent these valence-encoding neurons are 

fixed in the nature of their response (that is, whether they always respond to either positive 

or negative cues) or exhibit plasticity. There is some evidence to suggest that such plasticity 

depends on brain region: an experiment that attempted to ‘flip’ the responses of appetitive 

and aversive neuronal populations was successful in the dentate gyrus but not in the BLA108. 

There is also evidence to suggest that the ‘tunable range’ of valences to which these neurons 

respond depends on the emotional state of the animal: the valence tuning of neurons in the 

nucleus accumbens changes during stress109. Given that these valence-coding neurons are 

likely to influence affective behaviours, these findings suggest that a stressful context can 

influence the range of such behaviours available to an organism. A similar mechanism may 

help to explain how trauma can alter the range of affective experience available to 

individuals with PTSD.
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Constricted affect and interest.

Individuals with PTSD frequently exhibit markedly diminished interest in activities that 

were important to them before the trauma, demonstrate constricted affect and have a 

persistent inability to experience positive emotions (anhedonia11). Dysfunction in reward 

processing is thought to be one of the mechanisms underlying these experiences110,111. 

Reward processing can be divided into different components: an approach phase, in which 

rewarding stimuli are sought out, and a consumption phase, in which hedonic pleasure is 

experienced once the reward is acquired111. Evidence points towards potential dysfunction 

in both components of this process in PTSD112. The brain’s reward circuitry includes 

regions responsible for evaluating a stimulus as rewarding and regions involved in acting to 

acquire the reward (including the VTA, amygdala, orbitofrontal cortex, anterior insula, ACC, 

dorsomedial prefrontal cortex (dmPFC), striatum and motor cortex)110,113. There is evidence 

of hypoactivity in both the striatum and PFC in response to rewarding stimuli for individuals 

with PTSD in comparison to controls114,115. Furthermore, one study found that less activity 

in the striatum in the reward paradigm was associated with motivational and social deficits 

per self-report114. These studies imply that reduced activity in these regions leads to altered 

reward processing in PTSD.

One human neuroimaging study has focused on the experience of a restricted range of affect 

— also termed ‘emotional numbing’116 — in individuals with PTSD. In this study, 

decreased dmPFC activity was associated with experiences of being emotionally numb in 

both positive and negative scenarios designed to elicit emotional imagery117. Alexithymia 

describes the condition of having difficulty recognizing and naming emotional states and is 

considered to be closely related to (or perhaps a result of) anhedonia and emotional 

numbing. Specifically, in participants with PTSD, alexithymia has been associated with 

decreased vmPFC, anterior insula and inferior frontal gyrus activity during paradigms 

designed to trigger PTSD symptoms116. These are areas associated with a visceral sense of 

emotion, self and emotion regulation.

In rodents, chronic stress protocols are commonly used to induce anhedonia-like states, 

which are then assayed with behavioural paradigms such as the sucrose preference test. In 

this paradigm, the loss of a rodent’s natural preference to seek out a rewarding sweet 

solution is used as a surrogate for anhedonia symptoms. These models are typically 

discussed with respect to depression; however, they may also be applicable to our 

understanding of PTSD given that the inability to experience positive emotions can also 

occur in this disorder. Studies in which optogenetic manipulations have been focused on 

dopaminergic neurons in the VTA have provided valuable insight into dysfunctions in 

subcortical circuits that are related to anhedonia-like symptoms. Specifically, phasic 

activation of VTA dopaminergic neurons can promote sucrose preference following 

subthreshold social defeat stress118. Interestingly, in a parallel study, optogenetic activation 

of nucleus accumbens-projecting VTA dopaminergic neurons following longer chronic mild 

stress also alleviated sucrose preference deficits119. This finding suggests that there are more 

complex long-term neuronal adaptations within the dopaminergic systems after stress 

exposure that may also occur in more chronic forms of PTSD.
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In addition to the subcortical dopaminergic circuits, the PFC and its projections have also 

been targeted using optogenetics. High-frequency stimulation of PFC terminals in the 

nucleus accumbens was found to reduce sucrose preference in mice following chronic social 

defeat stress120. Moreover, a recent study that used a combination of local optogenetic 

stimulation and global brain-wide fMRI in rats highlighted an inhibitory influence of the 

PFC on reward-related behaviour and anhedonia121. This study demonstrated that 

hyperexcitability in the PFC led to a reduction in sucrose preference through top-down 

suppression of striatal responses to dopamine release and by driving dynamic interactions in 

corticolimbic areas. This study is of particular interest for translational work because it 

demonstrates how microcircuit-based manipulations can be related to larger changes in brain 

activity and offers a template for ways in which we may move forward in our understanding 

of how larger changes in brain BOLD activity may relate to the firing patterns of artificially 

activated neuronal populations.

Altered arousal and reactivity

PTSD criterion E in DSM-5 includes alterations in arousal and reactivity that started or were 

exacerbated after the traumatic event11. Arousal and reactivity changes can include any 

combination of hypervigilant, irritable, aggressive, self-destructive or reckless behaviours, 

exaggerated startle responses, problems with concentration or sleep disturbances11. This 

cluster has traditionally been the most well studied of the PTSD symptoms and is in some 

ways the most easily translatable to nonhuman animal subjects. Evidence from these studies 

suggests that both heightened salience detection and dysfunctional emotion or arousal 

regulation underlie symptoms in this cluster6,122. The overarching theory emerging from 

human and animal subject experiments is that symptoms from this cluster are generally 

likely to arise owing to decreased activity in the mPFC and ventral hippocampus and 

hyperactivity in the amygdala and the bed nucleus of the stria terminalis (BNST)122, 

although investigation into the microcircuitry that produces these global regional effects is 

ongoing.

Hypervigilance.

For a long time, neuroimaging stud ies of PTSD focused upon the role of the amygdala in 

mediating symptoms of hypervigilance. Across paradigms and sample populations, 

individuals with PTSD typically display increased amygdala activity123. Even at rest, there 

is evidence that the salience network, which includes the amygdala, ‘dominates’ processing 

in individuals with PTSD rather than the more typical default-mode network activity 

observed in controls124. Interestingly, however, individuals with Urbach-Wiethe disease, a 

rare genetic disorder that presents with focal damage to the BLA, are hypervigilant to fear 

cues, suggesting that the BLA plays a role in inhibiting hypervigilant monitoring125. The 

discrepancies between these findings may relate to differences in the activity of amygdala 

subnuclei, and literature from rodent studies has begun to elucidate many layers of 

complexity within amygdala microcircuitry.

In mice, there have been a number of studies that suggest that different subpopulations of 

neurons in the BLA can either trigger or inhibit anxiogenic responses in mice. Optogenetic 
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activation of all cell bodies within the BLA leads to anxiogenic responses, whereas selective 

activation of BLA terminals in the central amygdala triggers anxiolysis126. The projection-

specific modulation of threat responses by the BLA seems to be mediated by distinct 

molecularly defined sub populations of ‘fear on’ and ‘fear off’ neurons within the 

BLA127,128 and the central amygdala129–130. Given the functional heterogeneity of neurons 

within these regions, it may be difficult to interpret human neuroimaging studies that lack 

the resolution to observe activity at a cellular level.

Both human and animal data implicate the BNST in the production of hypervigilant states, 

although the BNST is difficult to precisely and reliably delineate with current human 

neuroimaging methods, and results should be interpreted cautiously. That said, human 

neuroimaging studies of healthy participants show that the BNST, along with the insula, is 

activated during threat monitoring tasks131,132. To our knowledge, the BNST has not 

emerged as a key area of differential activation in individuals with PTSD. However, research 

in rodent models suggests that it is a key structure for future investigations.

Studies using optogenetics have renewed interest in the role of the BNST in producing 

rodent anxiety-like behaviours133. Recent work suggests that the complicated subnuclear 

structure of the BNST can be roughly divided into two functional subregions: the oval 

BNST, which has been shown to control anxiogenic features of mouse behaviour, and the 

anterodorsal BNST, which mediates anxiolysis134. Another group found that a behavioural 

rodent model of PTSD, in which mice were exposed to a trauma (sustained, inescapable foot 

shock) followed the next day by a trigger (shorter duration foot shocks), demonstrated 

features of hypervigilant behaviour135. They observed decreased risk assessment in a light-

dark paradigm, lower pre-pulse inhibition and higher light-phase locomotion, some of which 

were blocked by the optogenetic inhibition of a subpopulation of BNST neurons that express 

CRH receptor 2 (CRHR2)135,136. These data, although incomplete, implicate alterations in 

both amygdala and BNST circuits in the production of behaviours associated with 

hyperarousal and hypervigilance.

Aggressive behaviour.

Individuals with PTSD will frequently demonstrate reactive aggression to perceived threat. 

Our understanding of the neural circuits mediating aggression is still preliminary. 

Neuroimaging studies implicate the amygdala and PAG in threat detection, and activation in 

some of these regions is altered in individuals with PTSD137. Other studies have found that 

activation of the locus coeruleus, an important structure in the hormone cascade associated 

with the autonomic stress response, is linked specifically to aggression138,139. It is 

hypothesized that locus coeruleus activity helps to orient attention to salient information and 

that changes to activity within this region may alter threat reactivity140.

Perhaps more importantly, aggressive and/or impulsive behaviour is also related to a failure 

of top-down control of these circuits. Some studies have found that medial PFC structures 

regulate threat detection and help us to select an appropriate behavioural response given the 

broader context141,142. For example, the vmPFC is implicated in the regulation of emotion, 

including aggression143,144, and angry rumination is associated with dorsal ACC activity and 

individual differences in aggression145. Orbitofrontal cortex and BLA circuitry are also 
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important in the regulation and maintenance of emotional responses142. Orbitofrontal cortex 

dysfunction in particular has been linked to aggressive and/or impulsive behaviour146–148. 

Specifically, in PTSD there is empirical evidence of differential activity in the orbitofrontal 

cortex, vmPFC and locus coeruleus in anger-related paradigms140,142.

In animal models, we currently have limited understanding at a cellular level of how circuits 

related to fear conditioning may influence subsequent development of aggressive 

behaviours: there have been some studies implicating the medial amygdala and ventromedial 

hypothalamus in rodent aggression149–151. A population of neurons within the central 

amygdala has recently been shown to mediate mouse predatory behaviour152. However, as in 

the other limbic regions discussed above, parallel, opposing pathways that mediate 

antithetical behavioural responses are likely to exist within both of these regions. 

Optogenetic and chemogenetic manipulations have demonstrated the existence of these 

intermingled pathways150,153, but we have limited understanding of the extent of these 

circuits and how they change their firing patterns in response to stress.

Unifying themes and future directions

A few overarching theoretical ideas have emerged from the recent advances in PTSD 

research outlined above. The studies discussed above demonstrate the existence of parallel, 

mutually inhibitory pathways within the larger brain regions that are implicated in PTSD. 

These ‘push-and-pull’ circuits, which have a long history in our understanding of the 

functioning of the striatum154, have now been identified in the rodent BLA127,128, central 

amygdala129 and BNST134 in addition to the midline mPFC51. The existence of these 

anatomically intermixed opposing pathways complicates our interpretation of the human 

PTSD neuroimaging literature, which lacks the spatial resolution to parse these opposing 

pathways and necessitates a deeper understanding of the molecular fingerprints of the 

neuronal cell types that define these pathways to more directly target potential therapeutics.

At the same time that our knowledge of microcircuitry has deepened, our understanding of 

the functional roles of larger brain regions has evolved, both implicating novel brain regions 

in the pathogenesis of PTSD (such as the BNST) and challenging traditional dogma about 

regions long understood to contribute to PTSD pathogenesis (such as the amygdala). The 

reconceptualization of amygdala function, from playing a restricted role in conditioned fear 

learning to a model in which it helps to detect salience and coordinate behavioural 

engagement, helps to explain how a deficit in amygdala circuitry might affect multiple 

domains of PTSD symptoms, including avoidance, re-experiencing and the altered 

perception of valence.

As we illustrate above, preclinical and clinical research has begun to elucidate the 

neurocircuitry of PTSD, and there are areas of convergence between the two approaches. 

The stunning growth in our understanding of the microcircuits governing threat processing, 

avoidance, reward and arousal have been made possible by circuit-altering technological 

breakthroughs. However, there remains a need within animal model research for improved 

technologies to allow monitoring of neuronal activity with cellular resolution throughout the 

entire brain rather than in only certain regions of interest. The production of brain-wide 
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quantitative data sets will offer unbiased insights into how neural dynamics change during 

different cognitive demands and how these demands are affected by stress and by brain 

disorders.

Within human neuroimaging research, the need exists for the development of imaging 

technologies that can offer spatial resolution at the cellular level and temporal resolution at 

the millisecond level. However, until such a technology becomes available, we need to invest 

further in strategies to translate regional changes in BOLD signal activation into putative 

models of microcircuit alteration. The technique of optogenetic fMRI offers one possible 

path forward in this endeavour155,156. By mapping BOLD changes observed from 

optogenetic manipulations, it may enable the development of a library of BOLD signal 

changes created by manipulation of certain neuronal populations and the ability to more 

closely target the circuits creating dysfunction in PTSD and other neuropsychiatric 

disorders.

Given the advances in our understanding of the neurocircuits in PTSD, it is natural to ask 

whether these discoveries offer therapeutic hope. There is currently some effort underway to 

develop transcranial magnetic stimulation (TMS) and deep brain stimulation (DBS) 

interventions for PTSD157–161. Although the invasiveness of DBS is likely to mean that such 

treatments would be reserved for only the most intractable of cases, the use of TMS has been 

steadily increasing as a therapeutic tool in psychiatry. The mechanisms by which TMS 

might exert its effects to mediate symptom improvement in PTSD remain unclear; however, 

the concurrent combination of TMS with electroencephalography (EEG) or fMRI is 

becoming a powerful technology for identifying pathological changes in brain functional 

network connectivity and predicting the efficacy of the treatment161,162. The hope of using 

more targeted methodologies to modulate circuits remains. Nevertheless, these ideas are 

currently largely theoretical and are limited by our understanding of the neural circuitry, 

which lends urgency to the development of technological innovation in this area163.

Understanding whether the differences in neural activity related to PTSD are risk factors for 

developing PTSD or whether they are a product of the trauma exposure and/or the disorder 

itself is key to developing targeted methodologies to modulate circuits. Current evidence 

from PTSD samples and twin studies suggests that increased amygdala and dorsal ACC 

activity in fear learning contexts is a vulnerability that pre disposes an individual to the 

development of PTSD, whereas brain changes related to reduced capacities to extinguish 

fear (such as the reduced functional connectivity between the mPFC and hippocampus) are 

an acquired dysfunction164,165. More research, in particular from neuroimaging genetic twin 

studies and prospective longitudinal work, is needed to better understand the relationship 

between risk-related and acquired differences in PTSD.

Molecular neuroscience has lagged behind in the study of PTSD. There has been some 

dissection of the molecular properties of subtypes of neurons within the amygdala, but our 

understanding of the molecular fingerprints of the neuronal subpopulations in the mPFC, 

BNST, hippocampus and PAG and the transcriptional changes that occur within these cell 

types after stress and fear conditioning remains underdeveloped. These studies may be ‘low-

hanging fruit’ in the identification of novel therapeutic drug targets for PTSD. The 
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availability of genetic, projection-specific and activity-dependent means of cell-type-specific 

translational profiling166 in mouse models and the application of single-cell sequencing 

technologies such as Drop-seq167 to human post-mortem brain samples will allow this work 

to proceed in the near future. These approaches offer the promise of identifying unique 

receptor profiles for cell types of specific valence and function within the complex 

microcircuitry described. Such an approach could lead to targeted multidrug 

pharmacotherapy, based on understanding specific clusters of quantitative symptoms, with 

drugs targeting known symptom-related circuits.

Conclusion

Although our treatments for PTSD have yet to change, our understanding of the genetics, 

neural circuitry and behaviour related to the disorder and its component symptoms and 

intermediate phenotypes has advanced considerably in recent years. Furthermore, 

technological progress in preclinical models has moved rapidly in advancing our 

understanding of the neural circuitry underlying basic behaviours such as fear and threat 

processing, fear extinction, avoidance behaviour and appetitive and anhedonic behaviour as 

well as the effects of stress on memory and cognition. Thus, the translation of these 

behaviours to human trauma and stress-related and anxiety-related disorders, such as PTSD, 

is progressing rapidly and promises to soon lead to novel treatments and interventions based 

upon the underlying neurobiology.
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Genome-wide association studies

(GWAS). Studies in which statistical associations between genetic variants and a disease 

or trait of interest are identified by genotyping individuals with disease and healthy 

controls for a set of single-nucleotide polymorphisms that capture variation across the 

entire genome.

Optogenetics

The use of genetically encoded light-activated proteins (for example, ion channels) to 

control the functional parameters (for example, membrane potential) of targeted neuronal 

populations

Chemogenetics

The use of exogenous macromolecules to manipulate activity of genetically encoded 

receptors with no endogenous ligands (that is, designer receptors exclusively activated by 

designer drugs).

Fibre photometry

Technology that utilizes an optical fibre for monitoring of activity of neuronal ensembles 

through genetically encoded activity indicators.

Valence

The appetitive or aversive nature of a stimulus.

Gene by environmental risk

The interaction between a genotype and environmental variation.

Symptom provocation studies

Studies designed to elicit PTsD symptoms by exposing participants to their own trauma 

narratives.

Fear generalization

Describes a situation in which conditioned fear responses are elicited in response to 

stimuli related to the conditioned stimulus.

Blood-oxygen-level-dependent (BOLD) signaling

An index of brain activation based on detecting changes in blood oxygenation with fMRi.

Memory fragmentation

Trauma memory retrieval that is experienced as only portions of various sensory and 

emotional representations and that lacks an integrative personal narrative.

Executive function

A set of top-down cognitive control processes including inhibition (resisting habits, 

temptations or distractions), working memory (mentally holding and using information) 

and cognitive flexibility (adjusting to change).
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Long-term potentiation

A long-lasting (hours or days) increase in the response of neurons to stimulation of their 

afferents following a brief patterned stimulus (for example, a 100 Hz stimulus).

Salience detection

The detection of information relevant to basic biological drives and psychological needs 

(for example, potential threats).

Default-mode network

A large-scale brain network that is more active when individuals are not directing 

attention to the external environment.
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Genomic influences on post-traumatic stress disorder circuits

Although a large proportion of people (estimates range from 50% to 85%) are exposed to 

major traumatic events during their lifetimes, only a small fraction subsequently develop 

persistent symptoms of post-traumatic stress disorder (PTsD)168. This observation has led 

to investigations of the mechanisms underlying PTsD risk and resilience. Twin studies, 

which allow for an estimate of the heritability of disorders by comparing their prevalence 

in monozygotic and dizygotic twins, suggest heritability in the range of 40–50% for 

PTSD (although this number varies depending on the type of trauma and the sample in 

the survey)169. The remaining risk is thought to arise owing to environmental factors, 

possibly mediated through epigenetic mechanisms (which we here define in the broadest 

sense to include mechanisms of persistent cellular memory and reprogramming)170.

The investigation of the genetic basis for PTSD remains in its early stages, in part owing 

to the highly polygenic nature of the genetic risk, the heterogeneity of trauma exposures 

and the heterogeneity among methodologies employed, which has made meta-analysis 

difficult4, 171. The basic design of genetic studies within PTSD is to apply a case–control 

approach, in which alleles of interest are tested for their association with individuals in 

which PTsD has developed compared with trauma-exposed controls. Initially, such 

studies relied upon a candidate gene approach, in which hypotheses generated from 

existing knowledge of genes involved in stress and threat processing were tested for 

association with PTSD risk. Unfortunately, the genetic hits from gene candidate studies 

largely failed to replicate robustly across cohorts172.

However, there may be some exceptions to this rule. For example, FKBP5, encoding a 

molecular chaperone and regulator of the glucocorticoid receptor, has been shown across 

multiple studies to mediate gene by environmental risk of both depression and PTSD173. 

FKBP5 risk alleles have been associated with increased amygdala activation, altered 

hippocampal function, decreased hippocampal size and decreased cingulum bundle white 

matter integrity174. Similarly, the genes encoding pituitary adenylyl cyclase-activating 

polypeptide (PACAP) and its receptor, PAC1, showed a modest significant association 

with PTSD risk in a recent meta-analysis175 and have also been associated with increased 

amygdala activation in humans and rodent studies43, 176. Ongoing larger scale genetic 

studies are clearly required to know with certainty the genetic underpinnings of PTSD.

Thus, studies investigating the genetics of PTSD risk have largely moved to an unbiased 

genome-wide association study (GWAS) model, which seeks to determine whether 

associations exist between single-nucleotide polymorphisms (SNPs) distributed across 

the entire genome and PTSD risk. There have been a number of small GWAS studies 

published on PTSD risk177–180; however, genes surviving tests for multiple-testing 

correction have not yet replicated across studies. Promising gene candidates that have 

emerged from these studies include those encoding the nuclear receptor ROR-a (RORA), 

neuroligin 1 (NLGN1), tolloid-like protein 1 (TLL1), protein cordon-bleu (COBL), 

ankyrin repeat domain-containing protein 55 (ANKRD55) and cGMP-dependent protein 

kinase 1 (PRKG1)4,177–187. COBL risk alleles were associated with decreased white 

matter integrity in the uncinate cortex, part of the medial prefrontal cortex, suggesting 
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that decreased connectivity between this region and the amygdala contributes to PTSD 

risk185. NLGN1 is strongly expressed in the cortex and hippocampus and plays an 

important role in the proper development and maintenance of excitatory synapses188. 

PRKG1 has been shown to regulate nitric oxide signalling and to be necessary for the 

encoding of auditory cue fear memory in the mouse189. Results from GWAS approaches 

for other psychiatric disorders suggest that, with increasing sample sizes, SNPs that have 

a small effect with genome-wide significance will be found; however, these SNPs may 

reside in either coding or non-coding regions of the genome, and the underlying 

biological function of the association may take some time to elucidate.
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Post-traumatic stress disorder dissociative subtype

Traumatic dissociation encompasses a range of distinct, yet clinically interrelated, 

symptoms, including depersonalization, derealization, amnesia, numbing, intrusive 

flashbacks, passive influence phenomena and identity disturbances190,191. The Diagnostic 
and Statistical Manual of Mental Disorders, fifth edition (DsM-5), recognized a 

dissociative subtype of post-traumatic stress disorder (PTsD), characterizing individuals 

who, in addition to the criteria explicated in this article, experience dissociative feelings 

of detachment from their body, thoughts and surroundings. It is estimated that 13–30% of 

individuals with PTSD meet the criteria for the dissociative subtype18.

Evidence from studies that have used symptom provocation paradigms in individuals 

with PTSD has implicated differential patterns of brain activity and bodily arousal in 

those with high versus low levels of dissociative symptoms192–196. In such paradigms, 

PTSD symptoms are elicited by exposing participants to reminders of their past traumatic 

events197,198. During this exposure, participants with low levels of dissociation reported 

classic re-experiencing symptoms associated with hyperarousal, whereas those with high 

levels of dissociation reported entering into a state characterized predominantly by 

feelings of detachment and numbness. These symptoms were reflected in differential 

patterns of neural activity in regions related to emotion regulation and inhibition of 

limbic regions (ventromedial prefrontal cortex (vmPFC)), emotional expression, conflict 

monitoring, integration of threat information (dorsal anterior mid-cingulate cortex 

(daMCC)195,199,200) and salience detection (amygdala201). Specifically, the low-

dissociation group exhibited the ‘classic’ PTSD neural signatures of decreased vmPFC 

activity, increased amygdala and insula activity and increased heart rate in response to 

trauma cues (see the figure). By contrast, the high-dissociation group exhibited the 

opposite pattern — increased vmPFC and daMCC activity, decreased amygdala and 

insula activity and no change in, or decrease in, heart rate. Resting-state functional 

connectivity analyses also supported this pattern: both the basolateral amygdala (BLA) 

and centromedial amygdala subregions demonstrated increased connectivity with 

prefrontal structures in the dissociative subtype of PTSD compared with classic PTSD202. 

The BLA also exhibited increased connectivity with subregions of the insula203, and the 

ventrolateral periaqueductal grey exhibited increased functional connectivity with brain 

regions linked to passive responses to threat in individuals with the dissociative subtype, 

when compared with those with classic PTSD204.

Subsequent studies in individuals with dissociative identity disorder (DID) have built on 

these PTSD studies. According to predominant theories, DID is a type of developmental 

post-traumatic adaptation typically associated with chronic childhood trauma205. In 

addition to depersonalization and derealization symptoms, individuals with DID 

experience amnesia and identity disturbances in which their own thoughts, emotions, 

bodily sensations and sense of self sometimes feel like they are not their own, despite 

intact reality testing, in which individuals with DID know these experiences must be their 

own190,205. In a symptom provocation paradigm, individuals with DID exhibited either 

classic PTSD neural signatures or dissociative PTSD neural signatures to trauma cues 
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when they were feeling activated and hyperaroused or numb and detached, 

respectively206,207.

These findings are consistent with a ‘top-down’ overmodulation hypothesis of the 

dissociative subtype of PTSD. This theory suggests that, in individuals with high levels of 

dissociation, top-down cortical activation overmodulates limbic activity, inhibiting 

sympathetic bodily arousal and upregulating parasympathetic activity192,199. The daMCC 

in particular may also be highly involved in the appraisal and expression of negative 

emotion in these paradigms and may drive the increased top-down modulation of the 

amygdala by the vmPFC199,208. The existence of the dissociative subtype may have 

implications for treatment. Given evidence that dissociation affects emotional 

learning209, individuals with this type of PTSD may have a differential response to 

current cognitive behavioural therapies; evidence is currently mixed on this front210–219.

Classic PTSD Dissociative identity disorder PTSD dissociative subtype

Responses to tra urn a-
related cues characterized by

Responses to trauma-related cues 
fluctuate between classic and 
dissociative subtype 
neurobiological patterns

Responses to trauma-related cues 
characterized by

• intrusive re-experiencing 
symptoms

• symptoms of detachment and 
numbness

• behavioural activation

• increased physiological 
arousal

• behavioural deactivation

• increased amygdala and 
insula activation

• decreased and/or maintained 
physiological arousal

• decreased vmPFC 
activation

• decreased amygdala and insula 
activation

• increased vmPFC activation
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Animal models of post-traumatic stress disorder

The sprawling set of symptoms, many of which can be defined only in a subjective 

manner, that characterize post-traumatic stress disorder (PTsD) in the Diagnostic and 
Statistical Manual of Mental Disorders, fifth edition (DsM-5), make it challenging to 

develop suitable animal models of the disorder. Moreover, the lack of identified alleles 

with high genetic penetrance for increasing PTsD risk makes it difficult to create PTsD 

animal models with high construct validity — that is, models that translate a known 

biological cause in humans into a disorder in animals220. Lacking known causative 

agents, the PTsD research community has therefore historically relied upon animal 

models with high face validity — that is, models that recapitulate certain behavioural 

features of human PTsD.

Commonly used behavioural paradigms that have been used to assess PTsD-like 

symptoms in animal models include chronic social defeat stress, inescapable foot shock, 

early-life stress and stress-enhanced fear learning221,222. These tests have different 

advantages and disadvantages, which have recently been reviewed221; however, they all 

suffer from a lack of robustness and from low construct validity. One criticism that has 

been levelled against PTsD animal models is that responses to stress are typically 

measured in all animals, rather than in a select group of vulnerable animals, as happens 

with human PTsD. However, it has been slowly recognized that there is still variability in 

many animal models, with some animals being stress-susceptible and others stress-

resilient. For instance, one group demonstrated a predator-based psychosocial stress 

paradigm that can generate groups of rats with either extreme (PTsD-like) or minimal 

(resilient) responses to stress223.

Given the current limitations in our understanding of the genetic basis of PTsD and our 

rapidly growing understanding of the neural circuitry of PTsD, a promising future avenue 

for developing animal models of PTsD could be to use optogenetic manipulations of 

selected neuronal populations to recapitulate the dysfunctional circuit features of the 

disorder. This method would effectively model the specific circuit disruption directly and 

there would be less focus on interpretation of disparate and, at times, evolutionarily non-

conserved behaviours across species and more focus on the conserved neural circuits.
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Fig. 1|. An expanded neurocircuitry of post-traumatic stress disorder.
Recent work suggests that an expanded brain network is implicated in post-traumatic stress 

disorder (PTSD) symptoms. This figure highlights brain regions that have been implicated in 

either human imaging studies of PTSD (mid-sagittal section) or in rodent models of related 

behaviours (horizontal section). Each quadrant illustrates brain regions that have evidence 

linking them to symptoms in the labelled cluster. Rodent behaviours were chosen that map 

aspects of the corresponding symptom cluster: fear extinction (intrusions); active and 

passive avoidance (avoidance); spatial memory, emotional valence and anhedonia (altered 

cognition and mood); and aggression and arousal (altered reactivity and arousal). BLA, 

basolateral amygdala; BNST, bed nucleus of the stria terminals; CeA, central amygdala; 

CPu, caudate and putamen; dACC, dorsal anterior cingulate cortex; DG, dentate gyrus; IL, 

infralimbic cortex; LA, lateral amygdala; LC, locus coeruleus; MeA, medial amygdala; 

mPFC, medial prefrontal cortex; NAcc, nucleus accumbens; OFC, orbitofrontal cortex; PAG, 

periaqueductal grey; PL, prelimbic cortex; rACC, rostral anterior cingulate cortex; vmPFC, 

ventromedial prefrontal cortex; VTA, ventral tegmental area.
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Fig. 2|. A map of post-traumatic stress disorder neurocircuits in humans and rodent models.
The schematic illustrates the brain regions currently implicated in each of the four major 

post-traumatic stress disorder (PTSD) symptom clusters by experiments involving human 

neuroimaging or rodent models. Red shading indicates areas for which there is evidence 

linking that particular brain region to the symptom cluster or related rodent behaviour. ACC, 

anterior cingulate cortex; BLA, basolateral amygdala; BNST, bed nucleus of the stria 

terminals; CeA, central amygdala; dACC, dorsal anterior cingulate cortex; dmPFC, 

dorsomedial prefrontal cortex; IFC, inferior frontal cortex; IL, infralimbic cortex; LA, lateral 
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amygdala; LC, locus coeruleus; LPFC, lateral prefrontal cortex; MeA, medial amygdala; 

mPFC, medial prefrontal cortex; NAcc, nucleus accumbens; OFC, orbitofrontal cortex; PAG, 

periaqueductal grey; PFC, prefrontal cortex; PL, prelimbic cortex; rACC, rostral anterior 

cingulate cortex; STC, superior temporal cortex; vmPFC, ventromedial prefrontal cortex; 

VTA, ventral tegmental area.
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Fig. 3|. Amygdala microcircuits implicated in fear conditioning.
The schematic offers a simplified representation of the mouse amygdala microcircuits that 

are currently implicated in fear conditioning. During fear conditioning, output neurons from 

the central amygdala increase their responsiveness to a conditioned stimulus. This increased 

responsiveness is likely to occur through the mutual interaction of two parallel ‘fear on’ and 

‘fear off’ pathways that project to these neurons from the basolateral amygdala (BLA) and 

lateral amygdala (LA). There is an additional pathway for the establishment of competing 

fear extinction memories that is likely to originate from neurons in the infralimbic cortex 

that activate intercalated cells in the amygdala (‘fear ext.’ neurons). Although our 

understanding of these pathways remains incomplete, several cell types have been 

demonstrated to modify the expression of fear behaviours. Excitatory connections are 

indicated with arrows. Inhibitory connections are indicated with blunt arrows. Solid lines 

designate proven connections, whereas dashed lines illustrate hypothetical connections. CeL, 

lateral division of the central amygdala; CeM, medial division of the central amygdala; 

CRH, corticotropin-releasing hormone; FOXP2, forkhead box protein P2; GRP, gastrin-

releasing peptide; ITCd, ITCv and ITCl, intercalated cell masses dorsal, ventral and lateral, 

respectively; PRKCD, protein kinase C delta type; PV, parvalbumin; SST, somatostatin; 

TAC2, protachykinin 1 (also known as TAC1); THY1, Thy-1 membrane glycoprotein.
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