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Abstract—The purpose of this paper is to analyze the 
electroencephalogram (EEG) signals of imaginary left and 
right hand movements, an application of Brain-Computer 
Interface (BCI). We propose here to use an Adaptive Neuron-
Fuzzy Inference System (ANFIS) as the classification 
algorithm. ANFIS has an advantage over many classification 
algorithms in that it provides a set of parameters and linguistic 
rules that can be useful in interpreting the relationship between 
extracted features. The continuous wavelet transform will be 
used to extract highly representative features from selected 
scales. The performance of ANFIS will be compared with the 
well-known support vector machine classifier. 

I. INTRODUCTION 
EG signals are the most popular way of interpreting the 
brain activities in the realm of non-invasive BCI [1]. 

Among the different types of EEG signals used for BCI 
communication, (P300, visual evoked potentials, slow 
cortical Potential, and Mu rhythms) – the last one, which is 
also known as motor imagery signal, issued from the central 
motor cortex, is the most suited for paralyzed patients and 
asynchronous BCIs [2]. There are a number of challenges 
that face the implementation of BCI systems. Two of the 
most important are the classification accuracy and speed of 
data transfer. This study focuses on the first task through the 
use of an Adaptive Neuron-Fuzzy Inference System 
(ANFIS) classifier. Data set III of the BCI competition 
2003, which was provided by Graz University of 
Technology, Austria, is used here. 

The four basic steps in a traditional classification system 
are: pre-processing, feature extraction, classification and 
post processing [3]. We will concentrate upon the 2nd and 3rd 
steps, as the EEG data has already been filtered between 0.5 
and 30 Hz. Actually, a previous study has shown that the 
most prominent changes for motor imagery data take place 
in the Alpha [8-13 Hz] and Beta [18-25 Hz] frequency 
bands [4]. The feature extraction method that we adopted is 
based on the Continuous Wavelet Transform (CWT), where 
the EEG data is transformed using CWT with correspondent 
scales of alpha and beta ranges. The student’s t-test is 
exploited to extract the features, which are then classified 
using an ANFIS classifier. Finally, the obtained results are 
compared to those obtained using a Support Vector Machine 
(SVM) classifier. 

The paper is organized as follows: the next section 

describes the EEG data representation. Section III describes 
classification of EEG trials using both ANFIS and SVM. 
The results are presented in section IV, and a conclusion is 
given in section V. 
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II. EEG DATA REPRESENTATION 
The EEG dataset was recorded using three channels (C3, 

Cz and C4) with 140 training trials and 140 testing trials. 
The recording length of each trial was set to 9 seconds, with 
the first three seconds for preparation purpose, while the last 
6 seconds represent the data during and after a stimulus is 
shown on a screen placed in front of the subject. We decided 
not to use the first 3 seconds, as they barely contain any 
useful information. Moreover, we used channels C3 and C4 
only, where a previous study has shown that they contain 
most of the useful information for this particular application 
[5]. 

A number of feature extraction methods have been 
proposed in the literature to represent EEG signals, such as 
wavelet transform [6], power spectra [7] and adaptive 
autoregressive (AAR) [8]. We have decided to use wavelet 
transform, as it has been found to provide a good way to 
visualize and decompose EEG signals into measurable 
component events [9]. Both the Discrete Wavelet Transform 
(DWT) and the Continuous Wavelet Transform (CWT) have 
been used in EEG analysis. DWT is more computationally 
efficient than CWT, where CWT seems very redundant. 
However, if processed properly, CWT can clarify subtle 
information that DWT cannot extract [10]. The Morlet 
mother wavelet is used here, as it proved to be useful in 
analyzing EEG signals [9]. 

The relationship between CWT scales and frequency is 
expressed as follows: low scale corresponds to high 
frequency and vice versa. The Wavelet Toolbox of 
MATLAB® uses the following formula to map between a 
scale and a pseudo-frequency: 
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where a is a CWT scale, Δ is the sampling period (1/128 s 
for the used dataset), Fc is the center frequency of the 
wavelet function (0.8125 Hz for Morlet) and Fa is the 
pseudo-frequency corresponding to scale a. Hence, Fa = 
104/a. Accordingly, the corresponding scale ranges for the 
Alpha and Beta bands become [8-13] and [4.16-5.78] 
respectively. 

We have adopted the feature extraction method described 
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in [10], and introduced some changes to suit this particular 
application. The training dataset that consists of 140 trials 
was split according to the output class labels, i.e., left and 
right hand movements, each with 70 trials of the two EEG 
channels. The Morlet mother wavelet was then convolved 
with each trial and produced a 4-dimensional matrix for each 
channel for both the Alpha and Beta bands. The matrix is 
basically the wavelet coefficients that present the level of 
correspondence between the Morlet mother wavelet and the 
EEG signal. 

 Divide the training patterns according to the class label (left and right 
hand movement) 

Divide the patterns of each class label to implement a 10-fold cross 
validation 

Transform into corresponding 
scales of Alpha band 

Transform into corresponding 
scales of Beta band 

Define WT energy coefficients for 
each Alpha band scale through 

two timing windows 

Define WT energy coefficients for 
each Beta band scale through 

two timing windows 

Find the points of maximal 
difference using the mean and 

variance for each class 

Find the points of maximal 
difference using the mean and 

variance for each class 

For each class, use the two 
maximal points as the extracted 
Beta band features per channel 

For each class, use the two 
maximal points as the extracted 
Alpha band features per channel 

Use the extracted eight features to represent each trial

Randomize the patterns and send them to the classifier
 

 

Fig. 1. Flow chart of the feature extraction process 

To increase computation efficiency as well as extracting 
the most discriminant features from EEG signals, we 
calculated the averaged energy of wavelet coefficients 
through a number of timing windows. After extensive 
experiments, we found that two timing windows, each with 
3 s duration, represent the optimal choice for the ANFIS 
classifier. Eight timing windows were found to give better 
results for the SVM classifier, as will be shown in section 
IV. Hence, for each trial of a given channel, there are two 
(or eight for SVM) averaged energy coefficients for a 
particular scale. 

Afterwards, the student’s t-test was used as an optimum 
tool for extracting the maximal points of discrepancy 
between averaged wavelet energy coefficients of the two 
classes, i.e., to find the scales and timing windows that 
achieve the maximum discrimination between the left and 
right hand movements. To accomplish this task, the mean 
and standard deviation of coefficients in each class and the 
pool variance is used [10]. 

Finally, the optimum number of features was set to two 
per frequency band per channel for the ANFIS classifier 
(eight for the SVM classifier). Hence, for a given trial, the 
number of extracted features for the ANFIS and SVM 
classifiers was 8 and 48 respectively. A detailed description 
of the feature extraction process is shown in Fig. 1. 

III. EEG CLASSIFICATION 
There have been a number of attempts to implement BCI 

using various types of classifiers. Nevertheless, to the best 
of our knowledge, there have been no previous attempts to 
implement BCI using an ANFIS classifier. Thus, in this 
study we managed to classify the extracted features using 
ANFIS and compare its results with the well accomplished 
SVM classifier. 

A. The Adaptive Neuro-Fuzzy Inference System Classifier 
This classifier combines the properties of fuzzy logic and 

neural networks to produce a set of parameters and linguistic 
rules, which are expected to be beneficial in interpreting the 
relationship between the extracted features. 

ANFIS is normally a multi-layer feed-forward neural 
network with its weight and bias parameters estimated by 
fuzzy rules and fuzzy membership functions [11]. 

The key Challenge for classifying data with ANFIS is its 

ability to generalize when presented with small number of 
training data (like the 140 trials used here). A typically 
generated fuzzy inference system makes many fuzzy rules 
that in turn, lead to a large number of ANFIS parameters 
that need to be adjusted. These parameters will not be 
properly adjusted if using limited number of training data. 
For example, in our case as we have 8 features for every 
trial, if we define three fuzzy membership functions for each 
input feature, then the total number of possible rules will be 
6561, which can not be trained using our small number of 
training patterns. To overcome this problem we used 
subtractive clustering to generate the Fuzzy Inference 
System (FIS), which can generate limited number of rules. 
The parameters of the obtained FIS would then be trained 
using neural networks. 

The fuzzy subtractive clustering aims to identify useful 
patterns in data by finding the optimal data points to define 
cluster centers. The obtained clusters are used to extract a set 
of fuzzy rules. The generated fuzzy inference system would 
be trained by identifying the membership function 
parameters of the inputs and output. 

B. Support vector Machine (SVM): 
SVM proved to be a powerful classification algorithm, 

which can be useful when dealing with large number of 
features and limited number of training patterns. The main 
objective of SVM is to find hyper planes that maximize the 
separation between classes. Both linear and non-linear 
SVMs have been developed. The non-linear boundary 
decision usually gives better results and is implemented by 



 
 

 

transforming the inputs space to another space, called the 
feature space. The main reason behind this transformation is 
that linear operation in the feature space is equivalent to 
non-linear operation in the input space. [12]. However, 
because of our limited data, a linear SVM is used here, as 
experiments have shown that a non-linear SVM would have 
a poor generalization on unseen data. 

IV. EXPERIMENTAL RESULTS: 

A. Classification using ANFIS 
As explained above, 8 features have been used for the 

ANFIS classifier. The first 4 feature are related to the Alpha 
band and the rest to Beta. These features represent the 
average value of wavelet energy coefficients through two 
timing windows. The clusters that are formed are found to 
be roughly split between the two classes. For instance, Table 
1 shows the centre of each cluster and the corresponding 
class when using five clusters obtained after normalizing the 
input features between 0 and 1. 

The identified clusters will lead to the formation of fuzzy 
rules (five rules for the above example). The Genfis2.m 
function in MATLAB® has been used to generate the rules. 
This function extracts rules by first using the outcome of the 
subtractive clustering to determine the number of rules and 
antecedent membership functions and then uses linear least 
squares estimation to determine each rule's consequent 
equations. Giving the 8 input features, each rule will consist 
of 8 antecedents and one consequent. The radius of each 
cluster specifies the range of influence of the cluster center. 
Specifying a smaller cluster radius will usually yield more, 
smaller clusters in the data, and hence more rules. 

The interpretation of rules can provide useful information 
about the interaction between features. For example, the 
following rule describes the range and relationship between 
the Alpha band features for both channel 1 (F1 and F2) and 
channel 2 (F3 and F4), and the Beta band features (F5-F8) in 
selecting class 1. 

 
In order to choose the best values of cluster radius and 

number of rules, we carried out two experiments. In the first 
experiment, the radius value was varied between [0.18, 1.2]. 
The classification accuracy of a 10-fold cross validation for 
both the training and test sets are shown in Fig. 2. As 
mentioned above, the smaller the radius, the larger the 

number of rules. However, a given radius value does not 
guarantee the same number of rules for all 10 folds of the 
cross-validation. For instance, for a radius of 0.8, the 
generated number of rules varied in the 10 folds between 3 
and 5. The figure indicates that setting the radius to a small 
value gave very high classification accuracy for the training 
set, but a low accuracy for the test set. This is expected, as 
this would lead to the generation of high number of rules 
and hence many parameters to adjust, which can not be done 
appropriately using a small number of training patterns, and 
thus, will lead to poor generalization. On the other hand, 
better generalization can be achieved when using a larger 
radius, with a best classification accuracy of 80.71%. 
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Fig. 2. Radius of clusters versus classification accuracy 

TABLE 1. 
CENTERS OF CLUSTERS WITH RESPECT TO FEATURES AND CLASSES 

 

Cluster 1F  2F  3F  4F  5F  6F  7F  8F  Class
1 0.15 0.11 0.31 0.05 0.70 0.22 0.17 0.15 1 
2 0.57 0.23 0.16 0.11 0.30 0.04 0.69 0.23 2 
3 0.15 0.15 0.58 0.23 0.09 0.08 0.44 0.01 2 
4 0.63 0.17 0.08 0.17 0.45 0.22 0.14 0.10 1 
5 0.31 0.15 0.34 0.15 0.10 0.19 0.40 0.17 2 

 
The second experiment dealt with evaluating the effect of 

number of rules on classification performance. The number 
of rules was varied between [2, 100]. The same number of 
rules was applied to all 10 folds, which sometimes required 
using different cluster radius. The classification results are 
shown in Fig. 3. Similar to the previous experiment, the 
performance of the test set got worse with the increase of 
number of rules. The best result was achieved when using 
three rules with a classification accuracy of 82.14%, which 
is slightly better than fixing the cluster radius. 

B. Classification using SVM 
In order to classify EEG trials with SVM, we first used 

the same features of the ANFIS classifier, i.e., CWT energy 
coefficient calculated using two timing windows. We then 
used eight timing windows for the sake of comparison. The 
classification accuracy of a 10-fold cross-validation is 
shown Table 2. 
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Fig 3. No. of rules versus classification accuracy 

 If (F1 is C1F1) and (F2 is C1F2) and (F3 is 
C1F3) and (F4 is C1F4) and (F5 is C1F5) and (F6 
is C1F6) and (F7 is C1F7) and (F8 is C1F8) then 
(out is class1) 

 



 
 

 

 
The above table indicates that using 8 timing windows, 

which make 48 features per trial, provided better results than 
using 2 timing windows. The obtained classification 
accuracy is close to that of ANFIS, with ANFIS being slight 
better. 

V. CONCLUSION 
In this paper, we presented the incorporation of 

Continuous Wavelet Transform (CWT) based feature 
extraction and Adaptive Neuron Fuzzy Inference System 
(ANFIS) classifier. An ANFIS classifier can provide useful 
information about the interaction between input features and 
their relationship with the class labels. The ANFIS classifier 
that is implemented using fuzzy subtractive clustering and 
trained to adjust the membership parameters of the inputs 
and output has been carefully examined. Various values of 
cluster radius and number of rules have been tested to 
maximize the classification accuracy. The obtained results 
have found to be slightly better than those obtained using a 
linear support vector machine. 
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