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Abstract 

In the last decade of the XX-th century, several academic centers have launched  intensive research programs on 

the brain-computer interface (BCI). The current state of research allows to  use certain properties of 

electromagnetic waves (brain activity) produced by brain neurons, measured using electroencephalographic 

techniques (EEG recording involves reading from electrodes attached to the scalp – the non-invasive method - or 

with electrodes implanted directly into the cerebral cortex - the invasive method). A BCI system reads the user's 

“intentions” by decoding certain features of the EEG signal. Those features are then classified and "translated" 

(on-line) into commands used to control a computer, prosthesis, wheelchair or other device. In this article, the 

authors try to show that the BCI is a typical example of a measurement and control unit. 
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1. Introduction 

 

A natural way for humans to communicate with the outside world is to use some individual 

muscles of the human body. Intentions born in the human brain are transmitted through the 

nervous system to selected parts of the body and stimulate their movement. Speech (throat, 

tongue, lips) is predominantly used for communication among people, as are also fingers in 

case of the sign language. Man-machine communication (MMC) means a type of 

communication where the same principles can be applied. Some simplification of the problem 

is a human-computer interaction (HCI) which traditionally involves a keyboard, touchpad 

and/or a mouse. An alternative way is to use a microphone and a sound board to issue voice 

commands or a camera to provide instructions in form of facial expressions and/or hand 

placement. Finally, we can imagine controlling a computer via electrical signals extracted 

from various parts of the peripheral nervous systems or even from the central nervous system 

- directly from the brain. The last type of communication is called a brain-computer interface 

(BCI). A summary of above-listed interfaces is illustrated in Fig. 1. 

The main task of a brain-computer interface is to allow communication with the outside 

world for patients with severe stages of neurological diseases such as amyotrophic lateral 

sclerosis, cerebral subcortical stroke, Guillain-Barré syndrome, cerebral palsy or multiple 

sclerosis. 

Measuring brain activity is centerpiece to BCI. However, detection of brain activity as 

such is not sufficient. BCI systems cannot read any “human thoughts". They can only classify 

some selected states of brain activity, associated with specific events or stimuli. Generally, the 

main task given to a user of the brain-computer interface is to “generate" appropriate models 

of brain activity by using certain mental strategies. Those strategies define what a BCI user 
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has to imagine or on what event his attention has to focus in order to “generate” appropriate 

EEG waves. Some strategies require long training. 

Therefore, practical realization of a brain-computer interface requires several basic 

conditions to be fulfilled. Firstly, the system has to selectively measure brain activity. Next, 

user feedback has to be implemented. Finally, the system must have a “control block” to 

execute user's intentions. Devices that measure, in a passive manner, certain changes in brain 

activity, without the need to “read” user’s intentions (e.g. medical EEG recorders) are 

considered not to be BCI systems. 
 

 

 
Fig. 1. Classification of man-machine interfaces. 

 

Research in the field of brain-computer interfaces (BCI) has started in the 70s at the 

University of California (UCLA), Los Angeles, under a grant from the National Science 

Foundation. The paper “Toward Direct Brain-Computer Communication”, by Jacque Vidal 

can be considered a pioneer scientific publication, describing the study of BCI [1]. The very 

first international conference on BCI took place in 1999 (New York), where Jonathan R. 

Wolpaw formalized the definition of a BCI system [2]: 

“A brain-computer interface (BCI) is a communication or control system  

in which the user’s messages or commands do not depend on the brain’s normal 

output channels. That is, the message is not carried by nerves and muscles and 

furthermore, neuromuscular activity is not needed to produce the activity that does 

carry the message”. 

There are several other definitions of the same phenomenon in the literature, using slightly 

different terminology: 

− Donoghue et al. [3]: “A major goal of a BMI (brain-machine interface) is to provide a 

command signal from the cortex. This command serves as a new functional output to 

control disabled body parts or physical devices, such as computers or robotic limbs” ; 

− Levine et al. [4]: “A direct brain interface (DBI) accepts voluntary commands directly 

from the human brain without requiring physical movement and can be used to operate 

a computer or other technologies” ; 

− Schwartz et al. [5]: “Microelectrodes embedded chronically in the cerebral cortex hold 

promise for using neural activity to control devices with enough speed and agility to 

replace natural, animate movements in paralyzed individuals. Known as cortical neural 

prostheses (CNPs), devices based on this technology are a subset of neural prosthetics, 

a larger category that includes stimulating, as well as recording, electrodes”.  

Initially, the research was focused mainly on applications in the field of neuroprosthetics 

[6]. Its main purpose was to restore damaged senses such as hearing and vision or mobility of 
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patients. In neuroprosthetics, artificial devices are used to replace certain human 

organs/senses. In those cases, the brain has to "learn" how to read signals sent by the 

prosthesis or generate signals needed to control the prosthesis, throughout the entire nervous 

system. However, those signals are not required to be delivered directly to the brain or come 

directly from the brain (central nervous system), but rather to peripheral nerves. In general, it 

is assumed that in the field of neuroprosthetics a link can be established: nervous system (any 

part of it) ↔ device, while the BCI enables direct coupling: brain ↔ computer. 

An artificial ear is a surgically implanted cochlear implant which can help a deaf person to 

retrieve hearing. The cochlear implant does not strengthen hearing, but works by direct 

stimulation of the auditory nerves leading to the brain. There are ongoing studies to improve 

the implant, whose trial electrodes are connected directly to the brainstem. 

An artificial eye is a retina implant - a microelectronic circuit implanted into the eyeball 

and connected to a camera mounted in glasses. Signals read from the camera are sent from the 

implant to the brain through the nervous system to restore the ability to see for people with 

age-related macular degeneration. 

Artificial limbs are artificial devices replacing body parts of patients after injuries and 

amputations, provided some muscles and nerves still function efficiently. Usually, prostheses 

are controlled by pulses from respective muscles. If we use for that purpose waves coming 

directly from the brain, obtained either in an invasive or noninvasive way, we have got a 

textbook brain-computer interface. 

Mistakenly, the terms neuroprosthetics and brain-computer interface are often used 

interchangeably. This stems from the fact that both neuroprosthetics and the BCI are different 

means to achieve the same goal. Some elements of physical interfaces that could be connected 

to the human nervous system in order to improve senses, are given in Fig. 2 [7]. 
 

 
 

Fig. 2. Elements of physical interfaces that could be connected to the human nervous system. 

 

It should be noted that the brain-computer interfaces differ from other interfaces because of 

using signals generated directly by the brain, rather than signals coming from muscle activity 

(electromyography, EMG). In fact, electrical signals coming from muscles are treated in that 

case as unwanted noise - so-called physiological artifacts. An example of such an artifact is an 

electrical signal generated while moving eyeballs (electrooculography, EOG). The problem is 

that usually the artifact signal amplitudes are grater (measured in mV) than the levels of the 

EEG signal (measured in µV). 
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As already mentioned, the possibility of human-computer communication, realized solely 

by means of signals coming directly from the brain, was suggested almost 40 years ago! A 

brain-computer interface proposed by J. Vidal in 1973 is illustrated in Fig. 3. However, only 

in the last decade of the twentieth century, several research centers worldwide made bold 

attempts to use electroencephalography (EEG) for direct communication between the brain 

and the computer. 

 

Fig. 3. The brain-computer interface proposed by J. Vidal [8]. 

2. Methods of detecting brain activity 

 

Brain activity - related to neuronal activity - boils down to the motion of electric charges 

which produce electric and magnetic fields. Brain-computer interfaces measure that activity 

of the brain which is the consequence of certain stimuli or mental task. Suitable sensors, 

placed or attached close to the selected areas of the brain, allow measurement of both electric 

and magnetic brain activity. 

 

2.1. Invasive and semi-invasive methods 

 

First experiments with BCI had an invasive character and typically for such cases, were 

conducted on animals (mice, rats, cats, monkeys). Invasive methods require surgical 

intervention, such as cutting the skin or opening the skull (intracranial recording). When the 

electrodes are placed on the surface of the cortex (partially invasive method), we are talking 

about electrocorticography (ECoG). ECoG does not damage neurons because the electrodes 

are not entered inside the brain. If the signal is measured with the electrodes placed inside the  

cerebral cortex (invasive method) we are talking about intracortical recording. In general, 

invasive methods have very good signal quality (high level of amplitude, low-noise) and very 

good spatial resolution. Internal electrodes allow registration of the activity of small areas of 

the brain or even individual neurons (brain cells). Artifacts associated with muscle movement 

are not burdensome in that case. However, those methods have a serious disadvantage. They 

require complex surgical intervention into the brain and attract very legitimate ethical 

controversy. Moreover, from a purely physical standpoint, long lasting signal recording with 

electrodes placed inside the brain can be problematic because the electrodes react with bodily 

fluids. It can significantly deteriorate the quality of measured signals. 
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2.2. Noninvasive methods 

 

Of course, a lot more convenient to use is a brain-computer interface that operates in a 

non-invasive way. At least three different BCI designs of that sort have been developed thus 

far. The most commonly used is the one where the electrical signal is measured across the 

surface of the scalp (electroencephalogram) [9, 10]. 

Theoretically it is possible to use other non-invasive sensors placed on the surface of the 

head. These can be magnetoencephalography (MEG) that measures the magnetic activity of 

the brain and functional magnetic resonance imaging (fMRI) that measures the changes in 

oxygenation of active brain areas. Instead of fMRI, near infrared spectroscopy (NIRS) may 

also be used as a technique to measure the activity of the cerebral cortex [11, 12]. All these 

methods can be used in a brain-computer interface, but they have practical disadvantages. 

Equipment for the MEG and fMRI is cumbersome and very expensive. NIRS and fMRI have 

poor temporal resolution [7]. 

 

3. Electroencephalography (EEG) 

 

Electroencephalography (EEG) is a non-invasive method of measuring the bioelectrical 

activity of the brain. Signals are acquired through electrodes placed on the surface of the scalp 

which detect potential changes caused by the activity of neurons of the cerebral cortex. EEG 

is very useful to monitor and diagnose epilepsy, sleep disorders, head trauma, brain tumors, 

disorders of consciousness and other brain conditions. The examination itself is not 

unpleasant for the patient, and lasts 15 to 20 minutes. During the test, the patient sits or lies 

comfortably with electrodes stuck to the scalp. Position the patient assumes depends on what 

is the purpose of the examination. Typically 6 to 64 electrodes are used (there are also known 

solutions using a much greater number of electrodes, e.g. 256). Usually, the electrodes are 

attached using an adhesive paste (gel) and are connected through an amplifier to a recording 

device. 

 

 

Fig. 4. Distinctive rhythms (waves) of the EEG signal. 

The measured EEG signal is largely an individual feature and varies depending on the 

psychophysiological state of a person. Both the signal amplitude and dominant frequencies 

undergo changes. It is assumed that a healthy human brain generates waves at frequencies 

ranging from 0.5 Hz to 100 Hz and amplitudes from several to several hundred µV. There are 
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some distinctive rhythms of the EEG signal, usually slightly different defined by various 

authors (Fig. 4): 

− alpha rhythms with frequencies from 8 Hz to 13 Hz, which are particularly evident during 

the absence of visual stimuli, 

− beta rhythms with frequencies from 12 Hz to 30 Hz, which can be seen in the frontal 

region of the brain and are observed during concentration, 

− gamma rhythms found between 30 Hz – 100 Hz, which can be seen during motor 

activities, 

− delta rhythms with frequencies from 0.5 Hz to 4 Hz, which can be observed at stage 3 and 

4 of sleep, 

− theta rhythms with frequencies from 4 Hz to 8 Hz, which occur during light sleep and are 

observed during hypnosis, 

− mu motor rhythm in the range 8 Hz  12 Hz which is used in Motor Imagery (MI) BCI 

paradigm. 

In-depth studies of measured EEG signals led to the discovery of properties and rules that 

not only allow diagnosing diseases, but also identifying the specific signals evoked by certain 

stimuli. It was also found that the characteristic signals appear not only in the event of a real 

stimulus, but also in when somebody thinks (mental task) about doing a particular movement 

(muscle activity). Measurement of this activity could be the basis for constructing algorithms 

for human-computer communication and apparatus for controlling devices using “human 

thoughts”. 

Normally during an examination, a set of 19 EEG electrodes is used, according to the so-

called 10-20 system, which is recommended by the International Federation of Clinical 

Neurophysiology (IFCN) (Fig. 5). In a brain-computer interface which does not have to 

comply with medical standards, a different number of electrodes can be used, sometimes up to 

512, according to need. The number of electrodes (BCI channels) and their distribution on the 

scalp is one of the major problems of BCI. 

 

 

Fig. 5. Arrangement of electrodes according to the 10-20 standard [13]. 

Sticking a large number of electrodes to the surface of the scalp is a very laborious and 

time-consuming task. Normally, medical examination requires proper preparation of skin 

before sticking on the electrodes. The places where electrodes are located are applied with a 

special paste or gel. Moreover, the electrodes have to be stuck in right places. Many research 
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teams, including the authors, have tried to minimize the number of required electrodes, what 

would simplify preparation prior to an EEG signal measurement. It is very convenient to use a 

special cap with integrated electrodes. The best results are obtained with active electrodes 

(with built-in electronic amplifiers). In each case it is necessary to use gel, which from a 

practical point of view, is a huge inconvenience. 

 

3.1. Evoked potentials 

 

In addition to the traditional analysis of EEG signals, so-called evoked potentials (EP) [14] 

are used to support medical diagnostics. Evoked potentials are electrical signals measured on 

the surface of the head (with a few electrodes) after stimulation administered by an 

appropriate external stimulus. Most stimuli are visual (e.g. a flash of light), auditory or 

sensory, so we distinguish visual, auditory and somatosensory evoked potentials. 

Also the term Event Related Potential (ERP) is commonly used. It denotes both EP as well 

as other brain responses that are the result of cognitive processes accompanying and 

following external stimuli or of preparatory mechanisms preceding motor action [15, 16]. 

Amplitudes of potentials measured on the scalp are very small. In addition, there is the 

spontaneous electrical activity of the brain. Therefore, when evoked potentials are used, a 

given stimulus is repeated and then the results are averaged. An example of averaged visual 

evoked potential is given in Fig. 6. At t = 0 stimulus exposure took place. One can see the so-

called N75, P100 and N135 waves. By analyzing their latency a doctor can diagnose the state 

of the nervous system. These signals can also be implemented in a BCI. 
 

 

Fig. 6. Example of visually evoked potential. 

3.2. SSVEP 

 

In BCI systems, the so called steady state visually evoked potentials (SSVEP) [17-20] can 

also be applied. SSVEP come from the visual cortex and are collected at the back of the skull. 

Let us assume that a user observes a light source (stimulus) pulsing with certain frequency 

(645 Hz). Such stimulus induces waves of the same frequency in the visual cortex of the 

brain. While analyzing the EEG signal, we can observe that this frequency in the signal is by 

far the most dominant. In case where the user is exposed to multiple light sources, pulsating 

with different frequencies, it is possible to determine, by measuring a dominant frequency of 

the EEG potential, which light source is observed by the user at a given moment. In practice, 
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each command sent to control the machine is usually associated with light source pulsating 

with a particular frequency. Interfaces based on SSVEP are relatively popular, because they 

operate outside the user's perception, do not require any training and are effective for most 

people. Unfortunately, there is a certain percentage of people who exposed to a pulsating light 

source can have an epilepsy attack. 
 

3.3. P300 

 

The most widely used and mostly written upon is the P300 evoked potential [21, 13]. This 

potential appears as a response to a visual or auditory stimulus awaited by a user, often highly 

emotionally. The P300 potential occurs after approximately 300 ms after the appearance of 

the stimulus - hence its name. The precise parameters, like amplitude and latency of the 

response to a stimulus, depend on many psychophysical factors and are unpredictable. In 

practice, for visual stimulation, the user observes a set of randomly illuminated signs like 

letters or other characters. At the moment of illumination of the sign expected by the user (on 

which the user focused his attention), an EEG potential of a small amplitude appears in the 

top area of the brain. In order to measure the P300 potential more precisely, the user watches 

the same character highlighted several times and his responses to stimuli are averaged. By 

moving his attention to another sign, the user is able to write a text. Often, to speed up 

selection of appropriate characters, the entire rows and columns are highlighted. A typical 

display panel that appears on the user’s monitor is presented in Fig. 7. Fig. 8 shows P300 and 

non-P300 responses and Fig. 9 - the location of brain activity generating the P300 potential. 
 

 

Fig. 7. Typical panel displayed on the monitor screen of a BCI system based on the P300 potential [21]. 

 

Fig. 8. Localization of brain activity for the P300 potential [22]. 
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As already mentioned, the advantage of interfaces built using evoked potentials is that they 

work outside human perception and therefore do not require much training. Several methods 

of using P300 and SSVEP interfaces have been proposed i.e. for writing text, moving the 

cursor, robot and intelligent building controlling [23, 24]. The principal drawback of those 

interfaces (P300 and SSVEP) is that they require the user to move his eyes. It is often difficult 

or not possible at all for a completely paralyzed person. 

 

 
 

Fig. 9. P300 response and non-P300 response. 
 

3.4. Potentials associated with imagining movement  

 

The most technologically advanced and at the same time the most difficult to implement 

are asynchronous interfaces, which use signals generated as a result of imagining movement. 

It appears that the activity of the brain is very similar during movement and during imagining 

movement (mental task). Hence, the user does not need to make any movement, but only to 

imagine it. In addition, different areas of the brain are active when a person imagines 

movement of different body parts. This enables classification of user intents, and thus makes 

possible to build a system which would execute them and control the machine. For example, 

the thought of moving the right hand will turn a wheelchair to the right side, the left hand to 

the left, and so on. When analyzing the EEG signals invoked by imagining movement we talk 

about so called desynchronization and synchronization of brain potentials, associated with 

these intentions (Event-Related Desynchronization/Synchronization - ERD/ERS) [9, 25-29]. 

As already mentioned, proper measurement and classification of EEG signals is possible as a 

result of functional division of the cortical areas. Some knowledge of anatomy allows one to 

indicate regions of the brain which are associated with imagining movement of certain parts 

of the body. 

For example, imagining left hand movement increases activity of the brain within the area 

of the C3 electrode. Imagining feet movement manifests itself the most by reading of the Cz 

electrode. The distinction between imagining movement of right and left foot with help of 

EEG is not possible. The corresponding brain areas are too close. The same is true for 

imagining movement of each finger. Fortunately, areas connected with hands, feet and tongue 

are characterized by pretty large topographical differences, and therefore they are usually used 

as subjects of mental tasks. 
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What is important, the user can learn through use of feedback (biofeedback as a matter of 

fact) how to generate patterns by imagining movement [30]. Certain features of imagining 

movement are visible in the EEG signal in frequency bands 8 Hz÷12 Hz and 18 Hz÷26 Hz. 

 

4. A review of EEG signal processing algorithms for use in BCI 

 

In order to interpret and classify measured EEG potentials it is necessary to first extract 

and select their features. The feature extraction process delivers a set of values (data) which 

essentially describe signal properties. It can take place directly in the time domain or after 

some transformation, for example to the frequency domain. Feature selection is commonly 

used in processing large data sets, in order to choose the best ones and at the same time, to 

reduce their number. This process, in many scientific papers, is considered centrepiece to 

classification accuracy. 

 

 

Fig. 10. The block diagram of a typical solution of brain-computer interface. 

There are many methods of feature selection known that are optimized for: 

- increasing the effectiveness of classification, 

- reducing computational effort, 

- reducing the amount of stored data, 

- reducing data redundancy. 

A block diagram of a typical solution of a brain-computer interface is shown in Fig. 10. 

 

4.1. Acquisition and preprocessing of EEG signal 

 

Acquisition of an EEG signal is a very difficult task. In this paper, only non-invasive 

methods will be considered, where sensors (electrodes) are arranged across the surface of the 

scalp. Normally, single disk electrodes made of gold or Ag/AgCl are used. For DC 

derivations with EEG frequencies below 0.1 Hz, Ag/AgCl electrodes perform better than pure 

gold electrodes. Passive electrodes consist only of the disk material and are connected to the 

amplifier with the electrode cable. Active electrodes have a special preamplifier with gain of 

about 10. It makes the electrode less sensitive to environmental noise such as power line 

interference. 

It is known that different parts of the brain are responsible for activity of various parts of 

the human body, but their arrangement may be subject to change. Hence the right placement 

of electrodes is not a trivial task. Signals measured from the electrodes have very small 
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amplitudes (from 10 μV to 100 μV) and are very noisy. Some artifacts are also introduced, 

physiological - muscle activity, eye movements, heart rate and other as well as technical - 

such as the power line (50 Hz). The useful frequency band of EEG signal ranges from 0.5 Hz 

to 100 Hz. A typical raw, disturbed EEG signal is given in Fig. 11. The 50 Hz artifact clearly 

dominates. 

 

Fig. 11. A typical raw, disturbed EEG signal. 

For those reasons, conditioning of the EEG signals is very important. At first the signal has 

to be significantly amplified. Then, the voltage generated by the skin-electrode contact should 

be taken into account. Next, the power line frequency disturbance (50 Hz) should be filtered 

out and simultaneously the signal filtered by a low-pass filter. The amplified measurement 

signal, coming from several - sometimes even a few dozen - electrodes, is further converted 

into digital form and transmitted to the computer. There, some further preprocessing, now 

already in digital form (DSP), is carried out. 

An important element of EEG signal preprocessing is spatial filtering: Laplace Filters (LF) 

or Common Spatial Patterns (CSP). The Laplace filter subtracts from the signal recorded from 

an electrode a quarter of the signal amplitude coming from adjacent electrodes. The CSP 

method is more advanced and based on selection of weights assigned to all electrodes, by 

using a special algorithm. The weights selection algorithm maximizes the difference of 

variances of the signal in a certain band (usually 8 Hz to 30 Hz) for different class signal 

parts. In more advanced BCI systems, Blind Signal Separation (BSS) methods are used. For 

example, Independent Component Analysis (ICA) is used for separation of signals and 

removing artifacts. Individual components of a real EEG signal are presented in Fig. 12. 

 

 

Fig. 12. Real EEG signal components. 
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After preprocessing one obtains the filtered EEG signal, without suppressed artifacts, that 

can more clearly expose the expected features. It is worth noting that the operating speed of 

digital signal processing algorithms is very important, because they operate in real time. 

 

4.2. Feature extraction 

 

The next step is feature extraction from the EEG signal. Features which best describe 

expected properties of the signal are sought after. These features can be related to the shape of 

the waveform (time analysis), to individual frequency components (frequency analysis), to the 

power density spectrum, time-frequency analysis (Short-Time Fourier Transform - STFT, 

Wavelet Transform - DWT), autoregressive models (AR) or higher order statistical 

parameters (HOS) - variance, skewness, kurtosis [31]. 

The most commonly measured features are signal amplitudes (for P300 potential) or the 

spectral components (for SSVEP and ERD/ERS). For example, in case of the P300 potential, 

we know when to start the signal analysis. Hence, we can even average the signal, and then 

extract features that are used to train the classifier. In case of asynchronous interfaces 

(ERD/ERS) we do not know when to start and in order to extract features it is necessary to 

analyze the entire recorded signal. To do this, a window of fixed width is chosen. The 

window is shifted in time and for each of its positions the features are extracted from the 

signal [32, 33] (Fig. 13). 

 

 

Fig. 13. Feature generation using a time window. 

4.3. Feature selection 

 

Feature vectors are obtained through extraction. For example, for a 1-second time window 

we typically obtain 40 features (FFT spectral components: 1 Hz ÷ 40 Hz) [34]. In this way, 

1280 features are created in the 32-electrode system [35]. Note that the number of features 

can be very high, moreover some features may be redundant or unreliable (do not bring 

significant information). Hence we need a method to eliminate redundant features before 

classification – a selection. 

Selection of features is a very difficult and important task. Although some characteristic 

features of an EEG signal assigned to specific events are known, they can be different for 

different users. Not only that, they can also vary from day to day and even from session to 

session for the same user. Therefore, feature selection is worth repeating before each use of 

the BCI interface. 
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There are many methods of feature selection – starting from fast ranking methods to end 

up with complex and time consuming methods. The simplest, ranking methods are based on t-

statistics, K-Fisher coefficients or cross-correlation. More advanced methods use complex 

classifiers: Sequence Forward Selection (SFS) and genetic algorithms (GA). The Linear 

Dicriminant Analysis (LDA) is also often used. Implementation of these methods usually 

brings better results but is much more time consuming [36]. 

Another important task, partly connected with the feature selection process, is the best 

electrodes selection - from which the EEG signal should be measured. It can be done through 

counting signal features that are attributed to specific electrodes. Next, for a specific user, a 

limited number of electrodes can be used, which are located in designated areas. This 

considerably increases ergonomics of the BCI system [4, 15, 32, 33, 37, 38]. 

 

4.4. Classification 

 

Certain characteristic features of the EEG signal (obtained in the selection process), are 

next used in the classification process. There are many algorithms that enable classification of 

EEG signal features. Most often used are: Support Vector Machine (SVM), Multilayer 

Perceptron (MLP), Naive Bayes Classifier (NBC), K - Nearest Neighbor Classifier – KNN, 

Linear Discriminant Analysis (LDA) and Hidden Markov Models (HMM). Note that an 

important component of any brain-computer interface is the calibration session, during which 

the measured EEG signals are analyzed and classifiers are trained. A summary of typical 

usage of different algorithms in brain-computer interfaces is presented in Table 1. 

 
Table 1. A summary of algorithms associated with particular stages of brain-computer interface operations. 

 

Signal acquisition Amplification, analog filtering, A/D conversion 

Preprocessing 
Digital filtering, spatial filtering: Laplace filters, common spatial patterns (CSP), blind 

signal separation (BSS), independent component analysis (ICA), Kalman filter. 

Feature extraction 

Discrete Fourier transform (DFT), spectrum density (PSD), discrete wavelet transform 

(DWT) of higher order statistics (HOS), autoregressive models (AR), principal 

component analysis (PCA). 

Feature selection 

Ranking methods: K-Fisher, statistics, non-ranking methods: genetic algorithms (GA), 

sequence forward selection (SFS), principal component analysis (PCA), linear 

discriminant analysis (LDA). 

Classification 

MLP neural networks, support vector machines (SVM), linear discriminant analysis 

(LDA), Bayesian classifier (NBC), nearest neighbour classifier (KNN), K-means, 

hidden Markov models (HMM), decision trees (DT), clustering (C). 

 

At the final stage, the output signal from the classifier is used to drive the actuator, which 

generates a certain event as a result of user intentions. 

 

5. BCI systems quality evaluation  

 

The quality of brain-computer interfaces can be measured in many ways. The simplest 

measure is the classification accuracy (classification rate), defined as the number of events 

correctly classified, divided by the total number of possible trials. Often, instead of the correct 

classification rate the classification error is given. Another way to determine the quality of 
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BCI systems is to give the effective speed of its operation. It is a measure which describes 

how many operations are done in a time unit (for example number of alphanumeric characters 

“written” per minute). 

A more general measure is the Information Transfer Rate (ITR) [39]. ITR depends on the 

number of possible choices (classes), the time required to classify a single choice, and the 

average classification error. ITR (in bits per sample) for a BCI system with N possible choices 

is given by [39]: 
 

 
2 2 2

1
log log (1 )log

1

P
B N P P P

N
, (1) 

 

where P denotes the accuracy of classification. If the time period for this classification is Tk , 

then the ITR can be expressed in bits per minute (B/Tk). 

Fig. 14 presents the dependence of the ITR expressed in bits per sample (B) on the 

accuracy (P) of the classifier. Of course, the chart holds for a classifier accuracy greater than 

1/N, where N is the number of choices. 

 

 

Fig. 14. Dependence of the ITR in bits per sample (B) on the accuracy (P) of the classifier. 

Fig. 15 shows the graphical comparison of interfaces depending on the speed of operation 

(ITR) and the time spent on learning to operate the interface. 

 

 

Fig. 15. Comparison of BCI interfaces (speed versus the time needed to learn to operate the interface). 
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Typically, BCI systems based on evoked potentials (SSVP, P300) have a higher value of 

ITR than systems using movement imagining strategy (ERD/ERS). This is a consequence of 

the fact that systems which require focusing attention, usually have to detect a larger number 

of classes. There are practical interfaces that enable transmission of information at 30 

bits/min, 60 bits/min or 90 bits/min [40]. 

Table 2 gives a brief summary of achievements in the construction of brain-computer 

interfaces [41]. Mental tasks (potentials), applied electrodes and the ITR coefficients have 

been presented. 

The quality of operation of BCI, however, is not the same across the population and is a 

rather individual feature. Note that from an objective point of view, the speed of the interface 

is rather small. Nonetheless it is sufficient for people with disabilities, especially if the BCI 

system is the only way they can communicate with the environment. 

 
Table 2. Summary of selected BCI systems. 

 

Research group 
Mental tasks/ 

used potentials 

Selected electrodes 

applied algorithms 
Application 

ITR (averaged) 

training time 

Rochester 

University USA 
P300 potential 

Fz, Cz, Pz, P3, P4 

averaging, 

threshold classifier 

Synchronous control 

of five elements in a 

virtual building 

12 bit/min 

minutes 

Tübingen 

University 

Germany 

CSP potentials 

Fz, Pz, Cz 

Low Pass Filter 

threshold classifier 

Synchronous 

switching on and off 

a device 

6 bit/min 

months 

Wadsworth 

Center USA 

mu and beta 

rhythms 

64 electrodes 

mu and beta rhythms 

linear classifier 

Moving the cursor 
22.5 bit/ min 

weeks 

Graz University 

of Technology 

Austria 

Imagining of left / 

right hand and feet 

movement  

C3 and C4 

alpha and beta rhythms 

LDA, HMM 

Synchronous 

keyboard interface, 

control of prostheses 

17 bit/min 

days 

 

Tsinghua 

University, 

Beijing China 

SSVEP potentials  

O1 and O2 

comparing the 

frequencies 

Synchronous control 

by panel 

27 bit/min 

minutes 

University of 

Illinois USA 
P300 potential 

Fz, Cz, Pz, O1, O2 

averaging, 

threshold classifier 
66 virtual keyboard 

9 bit/min 

minutes 

ABI EU project 

JRC 

Relax, imagining of  

right hand 

movement, rotate 

the cube, math calc. 

F3, F4, C3, Cz, C4, P3, 

Pz, P4 

Frequencies from 8 to 

30 Hz, neural networks 

Asynchronous 

control over mobile 

robot 

33 bit/min 

(maximum) 

days 

EPFL 

Switzerland 

Imagining of  finger 

movement, 

counting objects 

Fp1, Fp2, F7, F3, F4, 

F8, T3, C3, C4, T4, T5, 

P3, P4, T6, O1, O2 

Asynchronous 

control over a 2D 

object 

25 bit/sec 

days 

 

6. Conclusions 

 

Measuring specific brain waves throughout the EEG is not a trivial task. Such a system 

must implement typical functions known from measurement techniques like: data acquisition, 

data processing and data presentation. Signals acquired from electrodes have very small 

amplitudes and are strongly disturbed by noise and series of physiological and technical 

artifacts. Therefore those signals have to be carefully conditioned and then converted into 
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digital form. Next action is sophisticated signal preprocessing. After that, an EEG signal is 

ready for feature extraction. There are several feature extraction algorithms. Each of them is 

expected to generate features which will, to the greatest possible extent, describe selected 

properties of the signal in the current application. There is often need to eliminate some 

redundant features throughout the selection process. Finally, the classification process is 

implemented to feature vectors. Then some control process can be executed. At the same time 

BCI system quality should be evaluated. 

Design and implementation of brain-computer interfaces is one of greatest challenges 

posed to modern science. This is proved true by numerous publications in scientific journals 

as well as extensive media coverage. The possibility of direct human-computer interaction 

(without manual manipulation of peripheral devices) opens new channels of communication 

in medicine, psychology, media and military. Use of such an interface in medicine is of 

particular importance, both in terms of studying human brain, and for supporting people 

affected by neurological inefficiency. Brain-computer interfaces can help people with severe 

neurological conditions such as amyotrophic lateral sclerosis, brain stroke, Guillain-Barré 

syndrome, amyotrophic lateral sclerosis, cerebral palsy or multiple sclerosis to communicate 

with the outside world. Many people suffer from amyotrophic lateral sclerosis, the 

neurodegenerative disease of the nervous system that destroys part of the central nervous 

system responsible for movement, but does not influence senses, cognitive abilities and 

intellect. People, who suffer from it, gradually lose control over their own body and within 2 

to 3 years reach a state where they have no ability to communicate with the environment. 

Another group of people who could communicate with the environment by BCI are those who 

have strokes, particularly the brain stem strokes. Victims of traffic accidents, which resulted 

in damage to the cervical spinal cord, could also belong to those groups. 

The barriers to dissemination of direct brain-computer communication methods, using the 

EEG signals, are high price and complexity of the apparatus. In fact the amplifiers used for 

BCI are designed for applications in medical diagnostics, containing from 32 to 512 channels. 

In addition, they are usually designed to work with other types of medical equipment, often 

through a specialized interface whose communication protocol is not widely known. This 

raises the need for a dedicated, cheaper amplifier and other signal conditioning modules for 

use in BCI. Although, according to studies, it is possible to reduce the number of electrodes, 

their minimum number and location remain unknown. Besides, deployment of electrodes may 

be different for each user. The knowledge and intuition of a doctor is most helpful here. Also 

important is the fact that the features of the EEG signal can change with changes in mental 

states of the user. Additionally, in ERD/ERS interfaces the features strongly depend on the 

process of "imagining movement." Furthermore, the tools that enable quick and effective 

selection of the best features have not been tested thoroughly. Resolving those issues will help 

to overcome barriers to effective use of brain-computer interfaces in practice. 
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