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Abstract

Despite partial success, communication has remained impossible for persons suffering from

complete motor paralysis but intact cognitive and emotional processing, a state called com-

plete locked-in state (CLIS). Based on a motor learning theoretical context and on the failure

of neuroelectric brain–computer interface (BCI) communication attempts in CLIS, we here

report BCI communication using functional near-infrared spectroscopy (fNIRS) and an

implicit attentional processing procedure. Four patients suffering from advanced amyotro-

phic lateral sclerosis (ALS)—two of them in permanent CLIS and two entering the CLIS with-

out reliable means of communication—learned to answer personal questions with known

answers and open questions all requiring a “yes” or “no” thought using frontocentral oxygen-

ation changes measured with fNIRS. Three patients completed more than 46 sessions

spread over several weeks, and one patient (patient W) completed 20 sessions. Online

fNIRS classification of personal questions with known answers and open questions using

linear support vector machine (SVM) resulted in an above-chance-level correct response

rate over 70%. Electroencephalographic oscillations and electrooculographic signals did not

exceed the chance-level threshold for correct communication despite occasional differences

between the physiological signals representing a “yes” or “no” response. However, electro-

encephalogram (EEG) changes in the theta-frequency band correlated with inferior commu-

nication performance, probably because of decreased vigilance and attention. If replicated

with ALS patients in CLIS, these positive results could indicate the first step towards aboli-

tion of complete locked-in states, at least for ALS.

Author Summary

Despite scientific and technological advances, communication has remained impossible

for persons suffering from complete motor paralysis but intact cognitive and emotional

PLOS Biology | DOI:10.1371/journal.pbio.1002593 January 31, 2017 1 / 25

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Chaudhary U, Xia B, Silvoni S, Cohen LG,

Birbaumer N (2017) Brain–Computer Interface–

Based Communication in the Completely Locked-In

State. PLoS Biol 15(1): e1002593. doi:10.1371/

journal.pbio.1002593

Academic Editor: Nick F. Ramsey, Rudolf Magnus

Institute of Neuroscience, NETHERLANDS

Received:March 16, 2016

Accepted:December 27, 2016

Published: January 31, 2017

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All the data pertaining

to the results presented in the manuscript can be

found on Zenondo. Within the manuscript, the URL

corresponding to the data has been provided within

the paper and its Supporting Information files.

Funding: The work was funded by grants from the

following: Deutsche Forschungsgemeinschaft

(DFG, Bi195, Kosellek, http://www.dfg.de/), which

supported NB, UC, and BX; Stiftung

Volkswagenwerk (VW, https://www.

volkswagenstiftung.de/), which supported NB;

GermanMinistry of Education and Research

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002593&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002593&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002593&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002593&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002593&domain=pdf&date_stamp=2017-01-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.1002593&domain=pdf&date_stamp=2017-01-31
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://www.dfg.de/
https://www.volkswagenstiftung.de/
https://www.volkswagenstiftung.de/


processing, a condition that is called completely locked-in state. Brain–computer inter-

faces based on neuroelectrical technology (like an electroencephalogram) have failed at

providing patients in a completely locked-in state with means to communicate. Therefore,

here we explored if a brain–computer interface based on functional near infrared spec-

troscopy (fNIRS)—which measures brain hemodynamic responses associated with neu-

ronal activity—could overcome this barrier. Four patients suffering from advanced

amyotrophic lateral sclerosis (ALS), two of them in permanent completely locked-in state

and two entering the completely locked-in state without reliable means of communica-

tion, learned to answer personal questions with known answers and open questions

requiring a “yes” or “no” by using frontocentral oxygenation changes measured with

fNIRS. These results are, potentially, the first step towards abolition of completely locked-

in states, at least for patients with ALS.

Introduction

Communication is the process of expressing and sharing feelings, thoughts, and intentions

with one another by verbal and various nonverbal means. Communication skills appear auto-

matic but can pose severe challenges to individuals suffering from motor neuron disorders.

The most devastating of motor neuron diseases is amyotrophic lateral sclerosis (ALS) [1],

which is progressive and renders an individual motionless, severely affecting his or her com-

munication ability [2]. As the disorder progresses, it destroys the respiratory and bulbar func-

tions, forcing the individual to make vital decisions. If they opt for life and accept artificial

respiration, they can no longer communicate verbally, and assistive communication devices

that rely on nonverbal signals such as finger movement and gaze fixation are then used

for communication [3]. In ALS, the disorder progresses in most patients until the patient

loses control of the last muscular response, usually the eye muscles, a condition known as

completely locked-in state (CLIS) [4].

Brain–computer interface (BCI) represents a promising strategy to establish communica-

tion with paralyzed ALS patients [5–7], as it does not need motor control. BCI research

includes invasive (implantable electrodes on or in the neocortex) [8–11] and noninvasive

means, including electroencephalography [12,13], functional magnetic resonance imaging

(fMRI) [14], and functional near-infrared spectroscopy (fNIRS) [15], to record brain activity

for conveying the user’s intent to devices such as simple word-processing programs [12]. The

first BCI for communication in ALS patients with intact eye muscles was demonstrated by Bir-

baumer et al. (1999) [12]. With at least intact eye muscles and the rest of the body paralyzed,

the condition is known as locked-in state (LIS) [4]. Since then, several invasive and noninva-

sive BCIs have been developed for communication in ALS patients. Noninvasive methods,

namely slow cortical potential (SCP)-BCI [12,16,17], sensory motor rhythm SMR-BCI [18–

20], and P300-BCI [21–24], have been utilized more frequently than invasive methods [25–27]

for communication in people with ALS [6,12,27–30]. Irrespective of the types of BCI, during

the BCI session patients selected letters or words after learning self-regulation of the particular

brain signal or by focusing their attention to the desired letter or a letter matrix [21,23], and

the attention-related brain potential selects the desired letter.

In a meta-analysis of the scientific literature of all ALS patients in CLIS [13], it was found

that none of the existing techniques such as the P300 event-related brain potential (ERP),

SCP, frequency analyses of various frequency bands of the electroencephalogram (EEG), and

invasive electrocorticogram (ECoG) recordings [31] allowed reliable and meaningful
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communication with BCI. All BCI procedures mentioned above were based on effortful and

explicit (conscious) voluntary control of a neuroelectric brain response such as learning with

feedback and reward, during which patients learned to increase or decrease amplitudes of the

SCP [12] to produce event-related desynchronization (ERD) of the central alpha-rhythm [32]

to focus attention on a visually or auditorily presented sequence of letters in order to select a

desired letter with the brain response. P300 [21,22,24] is also used in a similar manner to visu-

ally select a desired letter. The required activation of explicit-voluntary (controlled) attention

in these BCI tasks, none of them resulting in stable learning of brain-based communication,

prompted us to propose the theoretical psychophysiological notion of “extinction of goal

directed cognition and thought” [13] in complete paralysis with otherwise intact cognitive pro-

cessing. This theoretical account—certainly highly speculative in light of the complete lack of

data about cognition and inner speech and motivational processing in CLIS—we substantiated

with the failure to replicate initial positive reports about instrumental (volitional) [33,34]

learning of autonomic responses in the curarized (paralysed) rat. The persistent incapability

to replicate these experiments suggests that intact or partially intact motor functions and

somatic-motor system mediation of autonomic functions (i.e., subtle postural or muscle ten-

sion changes to affect the desired physiological changes) is a mandatory requirement for

instrumental learning and control of physiological functions. Theoretical views of this prob-

lem, like the one proposed, are not new but were expressed already in Greek philosophy by

Aristotle [35] and by the philosophers of volition, particularly Arthur Schopenhauer in his

monumental account of “Die Welt als Wille und Vorstellung” [36] (The World as Volition

and Imagery) and during twentieth century learning theory [37,38]. Conscious of the fact that

it is problematic to justify a theory on negative facts (lack of instrumental learning in the cura-

rized rat and missing BCI control of BCIs requiring controlled attention in CLIS), we argue

that [27] classical reflexive conditioning and learning might circumvent volitional effort in

instrumental control. Thus, an experimental procedure involving processing of overlearned

(“automatic”) questions (i.e., “Berlin is the capital of France,” “You are in pain”) asking for

automatic cognitive processing only may fulfill this criterion. Thinking but not voluntary

imagining affirmative “yes” and negative “no” to overlearned questions occurs effortlessly,

such as automatic nodding of the head in a conversation: the extensive literature (mostly Rus-

sian) on semantic classical conditioning [39] and implicit attention and memory [40] provides

ample support of this notion. However, for the case of patients in CLIS, one is faced with the

dilemma that we cannot expect a learning curve characteristic of skill learning (usually expo-

nential) or classical conditioning in a BCI task asking for overlearned “yes” and “no” responses

as used on the present BCI system [29,30]. Patients were confronted in their lifetime with

these questions (“Berlin is the capital of France”) before entering (or on the verge of) CLIS,

and we can assume with certain confidence that no further learning at the time of assessment

with the BCI is necessary and thus no learning curve can be expected. The same holds true for

personal questions (“Your husband’s name is Joachim”). Thus, at an experimental level, it

remains difficult to prove the speculation of intact classical conditioning but lack of instrumen-

tal voluntary learning in CLIS patients involved in a BCI task after entering CLIS. Only one

patient in the literature [31] using an electrocorticographic-based BCI before and after transi-

tioning from LIS to CLIS was published. This patient was unable to communicate with the BCI

after entering CLIS. However, observation of a single case cannot serve as strong evidence com-

parable to the animal experiments [33,34] using curarization for the creation of reversible paral-

ysis. We are also aware of the fact that a single case of a cognitively intact CLIS patient or

curarized organism learning to instrumentally drive a BCI disproves our hypothesis. Experi-

mental descriptions of patients with ALS or subcortical stroke in locked-in state (LIS) or who

are severely paralysed using spiking frequency changes of motor neurons to move a robotic arm

BCI Communication in CLIS
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[10,11,41] cannot disprove our account. Patients in those studies [10,11,41] still had intact

motor control of eye movements and some remaining muscles and thus could use the remain-

ing muscular forces (somatomotor mediation) for instrumental learning and BCI control.

Because none of the BCI techniques outlined above are able to provide viable means of com-

munication [5], the patients in CLIS due to ALS, without any muscular control, are rendered

communicationless. We are then faced with the dilemma of defining communication in CLIS.

Does it only mean to express one’s feelings, thoughts, and intentions in a fluent, automatized

manner? Or, alternatively, does it mean to convey one’s intent or one’s feelings and thoughts to

questions? As mentioned, all the existing BCIs rely on two elements: first, the neuroelectric sig-

nal (EEG or ECoG) control and second at least an intact eye muscle; the neuroelectric signal–

based BCI did not work so far in patients in CLIS, in which eye movement control is lost.

A single case report by Gallegos-Ayala et al. (2014) [42] used fNIRS to measure and classify

cortical oxygenation and deoxygenation following the “yes” or “no” thinking of the CLIS

patient in response to true or false questions, respectively. The report described a CLIS patient

with ALS achieving BCI control and “yes” and “no” communication to simple questions with

known positive answers or negative answers and some open questions over an extensive time

period. Although it was not spontaneous and voluntary, controlled communication, it at least

enabled the individual without any means of communication to transmit “yes” and “no” to

questions framed by family members and/or caregivers. The result opened a venue to provide

at least some means of communication to individuals in CLIS who are otherwise left commu-

nicationless. Hence, an extensive study was performed on four ALS patients in CLIS to train

them to communicate “yes” and “no.” In the present study, which is the first of its kind,

fNIRS-based BCI was used for binary communication in four ALS patients in CLIS. The

fNIRS-based BCI was employed successfully to train patients to regulate their frontocentral

brain regions in response to auditorily presented questions. After training a classifier separat-

ing “yes” from “no” answers for several days, the patients were given feedback of their affirma-

tive or negative response to questions with known answers and open questions over weeks.

Results

The relative change in oxygenated hemoglobin (O2Hb) during the “true/yes” and “false/no”

sentences’ interstimuli interval (ISI)—which corresponds to patients’ response interval over

the frontocentral brain region of patients F, G, B, and W—are shown in Fig 1.

Fig 1 illustrates the change in O2Hb during “true/yes” sentences’ ISI—which is significantly

different from the “false/no” sentences’ ISI—as corroborated by the t-test performed between

the averages of true and false sentences’ ISI using the relative change in O2Hb across the four

patients (p< 0.05), shown in Table 1, row D. The same analysis performed using the EEG sig-

nals in the time domain across all the training sessions showed no significant differences

(p> 0.05) between the true and false sentences’ ISI across each patient, as shown in Table 1,

row E. The eye movements measured with an electrooculogram (EOG) (vertical or horizontal;

patients were free to use any direction) for patients F, G, B, andW while they were performing

the “ja” (German word for yes) or “nein” (German word for no) thinking task showed no sig-

nificant difference in the eye movements between the true and false sentences’ ISI for all

patients, confirmed by the t-test (all p> 0.05), as shown in Table 1, row F, and S1B Fig.

ROCCurve and Classification Accuracy (CA) of O2Hb, EEG, and EOG
Signals

The support vector machine (SVM) classifier’s classification of true sentences as true, false sen-

tences as false, true sentences as false, and false sentences as true was used to calculate the false

BCI Communication in CLIS
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positive rate (FPR) and true positive rate (TPR) for each training and feedback session and

also for all the training sessions and feedback sessions separately for each patient. FPR and

TPR was plotted to obtain the receiver operating characteristic (ROC) curve of the binary

SVM classifier during training and feedback sessions for each patient, as shown in S2 Fig, S3

Fig, S4 Fig and S5 Fig for patients F, G, B, andW, respectively. The change in oxygenated

hemoglobin (O2Hb), EOG, and EEG power spectrum in response to true and false questions,

obtained from the frontocentral region of the brain, across all the sessions from each patient

was used to determine the SVM classification accuracy of "true/yes" and "false/no" answers.

Successively, the daywise CA (i.e., averaging CA of all sessions in a single day) of each patient

was compared to the adjusted chance-level threshold (described in BCI effectiveness metric

section), as shown in Figs 2, 3, 4 and 5 for patients F, G, B, andW, respectively, and Table 2.

The offline CA is reported using O2Hb, EEG, and EOG signals for training sessions, while
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Fig 1. The averaged relative change in O2Hb corresponding to “yes” and “no” sentence interstimuli interval (ISI). (A) Patient F, (B) patient G,
(C) patient B, and (D) patient W. (E) Channel configuration: Eight sources and eight detectors placed on the frontocentral brain region translated into
20 channels, 10 on each side of each hemisphere. For clearly displaying the relative change in O2Hb, 10 channels on each side of hemisphere were
further subdivided in groups of 5 channels—i.e., 20 channels were divided into four groups, each consisting of 5 channels. In each subplot, the x-axis
is time in seconds and the y-axis is relative change in O2Hb, and the five different colored lines correspond to relative change in O2Hb across 5
different channels, as depicted in the channel configuration map. Fig 1 data is located at https://doi.org/10.5281/zenodo.192386; https://doi.org/10.
5281/zenodo.192388; https://doi.org/10.5281/zenodo.192390; https://doi.org/10.5281/zenodo.192391.

doi:10.1371/journal.pbio.1002593.g001
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online CA is reported using only O2Hb for feedback and open question sessions because feed-

back was provided online only using the O2Hb signal. The answering concordance between

semantically paired questions ("Paris is the capital of Germany," "Paris is the capital of

France"), expressed as the percentage of concordant answers over pairs’ repetition, was as fol-

lows: F, 68%; G, 67%; B, 67%; W, 70%. Thus, the semantic concordance rate (SCR) ranges

from 67 to 78% (see S12 Table). Median values of SCR are significantly different from 50% (all

p< 0.0001), in which 50% is the SCR expectation of a random classifier.

The results of ANOVA and post hoc t-test (see Table 1, row G, H, I, and J) further empha-

size a significant difference between the classification accuracy of O2Hb versus EEG and O2Hb

versus EOG, with no significant difference between EEG and EOG. There is one exception in

the case of patient W, as no significant difference was found between the classification accu-

racy of O2Hb versus EOG. Patient W (23 y of age) suffering from juvenile ALS with an

extremely rapid disease progression (2 y from diagnosis to CLIS) was not asked open questions

because of the supposedly difficult emotional state at that early stage of BCI communication

but continues to train the BCI at present.

Table 1. Statistics Results. Total number of (A) training, (B) feedback, and (C) open question sessions performed by each patient. The total number of ses-
sions averaged and degrees of freedom used to perform t-tests between the true and false sentences’ ISI corresponding to (D) O2Hb, (E) EEG, and (F) EOG
signals. (G) ANOVA using support vector machine (SVM) classification accuracy (CA) of O2Hb, EEG, and EOG signals. Post hoc t-test performed between
(H) O2Hb versus EEG, (I) O2Hb versus EOG, and (J) EEG versus EOG classification accuracy. Note that each session contains 20 questions: 10 asking for a
“yes” and 10 semantically equivalent questions asking for a “no” answer.

Patient F Patient G Patient B

A) Training sessions 51 51 40

B) Feedback sessions 7 6 4

C) Open question sessions 2 2 2

D) O2Hb(“yes” question ISI versus “no” question ISI) Number of sessions averaged 51 51 40

Number of channels averaged 20 20 20

t-value 4.01 3.96 3.67

p-value 0.0001 0.0001 0.0004

E) EEG (“yes” question ISI versus “no” question ISI) Number of sessions averaged 51 51 40

Number of channels averaged 6 6 6

t-value 0.97 0.61 0.83

p-value 0.33 0.54 0.40

F) EOG(“yes” question ISI versus “no” question ISI) Number of sessions averaged 51 51 40

t-value Horizontal EOG .61 1.68 1.01

Vertical EOG .59 1.59 1.47

p-value Horizontal EOG 0.54 0.09 0.31

Vertical EOG 0.55 0.11 0.14

G) ANOVA using classification accuracy of O2Hb, EEG, and EOG F-value 20.12 7.69 16.5

p-value 1.4E-08 0.0007 3.9E-08

F-critical 3.05 3.05 3.06

H) O2Hb versus EEG classification accuracy t-value 4.88 3.5 4.9

p-value 1.8E-06 0.0003 2.07E-06

I) O2Hb versus EOG classification accuracy t-value 5.69 4.5 5.05

p-value 4.8E-08 2.5E-05 1.22E-06

J) EEG versus EOG classification accuracy t-value 1.23 1.23 1.16

p-value 0.109 0.109 0.12

Table 1 data is located at: https://doi.org/10.5281/zenodo.192386; https://doi.org/10.5281/zenodo.192388; https://doi.org/10.5281/zenodo.192390; https://

doi.org/10.5281/zenodo.192391.

doi:10.1371/journal.pbio.1002593.t001
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EEGDaywise Frequency Bands Analysis

The patients showed the following stable dominant frequencies: F, 6.75 Hz; G, 6.25 Hz; B, 7 Hz;

andW, 8 Hz. Power spectrum density of electroencephalographic signals corresponding to

"true/yes" and "false/no" sentences’ ISI acquired from channel FC6 is shown in S1 Fig. The mid-

dle-frequency bands’ (high-theta, low-alpha, and high-alpha) mean power comparison between

"true/yes" and "false/no" sentences’ ISI revealed no main effects of conditions and channels in

any patient (all p> 0.05). The middle-frequency bands’ (high-theta, low-alpha, and high-alpha)

spectral features comparison between sentence presentation interval and sentences’ ISI revealed

some main effects of the intervals factor, as reported in S1 Table, section A. In two (G and B)

out of four patients, a smaller low-alpha band “power variability” in the sentences’ ISI compared

to the sentence presentation interval was found (p< 0.05). In patient W, a higher high-theta,

low-alpha, and high-alpha bands’ mean power in the sentences’ ISI compared to the sentence

presentation interval was found (ISI was synchronized compared to sentence presentation).

Patient F did not show any significant difference in the middle-frequency bands’ mean power

and “power variability” (all p> 0.05). See Results section of S1 Text for details.

Fig 2. Classification accuracy of Patient F. Linear SVMCA across “training sessions—offline CA” (histogram in grey), “feedback sessions—online CA”
(green dot), and “open question session—online CA” (plus sign in red), obtained using (A) relative change in O2Hb, (B) EEG, and (C) EOG data. The
classification accuracy reported here is daywise, as all the “training sessions” in a day were used to calculate the average classification accuracy of all the
“training sessions” in a day. In the figure panels A, B, and C, the x-axis is the number of days and the y-axis is the classification accuracy. The solid black and
dotted horizontal lines represent the chance-level threshold calculated using the metric described in the BCI effectiveness metric section for “training
sessions” and “feedback sessions,” respectively. Since the feedback during the feedback and open question sessions was provided using the O2Hb, the
online CA of the feedback and open question sessions is reported only for the fNIRS data. Fig 2 data is located at https://doi.org/10.5281/zenodo.191884.

doi:10.1371/journal.pbio.1002593.g002
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Slow EEGRhythms’ Relationship with fNIRS Classification Accuracy

The correlation analysis between fNIRS classification accuracy and low-frequency bands’

(those more related to vigilance) mean power revealed some interesting results (see S1 Table,

section B). In three (G, B, andW) out of four patients, the median of the negative averaged

correlation between low-theta band mean power and fNIRS classification accuracy was signifi-

cantly different from zero (patient G: r = –0.365; patient B: r = –0.264; patient W: r = –0.386;

all p< 0.05). However, in patient F, who had the longest time period in CLIS, the median of

the positive averaged correlation between delta and high-theta band mean power and fNIRS

classification accuracy was significantly different from zero (delta: r = 0.233; high-theta:

r = 0.213; all p< 0.05). The low-frequency bands’ mean power distribution medians of suc-

cessful and unsuccessful days (i.e., days with classification accuracy above chance-level thresh-

old were considered successful) was further investigated for each patient to ascertain the

difference, if any. In patient G, the low-theta band mean power of successful days was signifi-

cantly smaller than that of unsuccessful days (p< 0.05). In patient B, the high-theta band

mean power of successful days was significantly smaller than that of unsuccessful days

(p< 0.05). This strengthens the above results of lower-frequency bands’ dominance for more

unsuccessful performance. Additional details are provided in the Results section of S1 Text

and in S1 Table.

Fig 3. Classification accuracy of Patient G. The description of this figure is the same as described in Fig 2. Fig 3 data is located at https://doi.org/10.5281/
zenodo.191887.

doi:10.1371/journal.pbio.1002593.g003
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Discussion

Four patients in CLIS communicated with frontocentral cortical oxygenation-based BCI with

an above-chance-level correct response rate over 70% during a period of several weeks. The

performance of the binary SVM classifier across all the patients, except a few training sessions

of patient B, was above chance level. None of the sessions were eliminated in the analysis, and

only very few sessions had to be interrupted because of life-saving measures such as sucking

saliva; thus, no bias for selecting “successful” sessions incriminates the results. Correct

response rate for feedback and open questions sessions, as judged by the criteria mentioned in

the Material and Methods section (Experimental Procedures), exceeded 75% in three out of

four patients (F: 78.6%; G: 78.8%; B: 75.8%). Patients F, G, and B answered open questions

containing quality of life estimation repeatedly with a “yes” response, indicating a positive atti-

tude towards the present situation and towards life in general, as reported in larger samples of

ALS patients [43,44]. Repeated presentation of an open question is necessary to ascertain the

validity of the answer. From the ROC curve of each patient, it can be deduced that if the patient

answers a question seven out of ten times with the same answer, then we can be sufficiently

certain of the answer if the questioning is repeated over a long time period as done here. Cor-

rect classification of “yes” and “no” answers given mentally through fNIRS exceeded classifica-

tion of EEG oscillations from 0–30 Hz and vertical and horizontal EOG classification.

Fig 4. Classification accuracy of Patient B. The description of this figure is the same as described in Fig 2. Fig 4 data is located at https://doi.org/10.5281/
zenodo.191891.

doi:10.1371/journal.pbio.1002593.g004

BCI Communication in CLIS

PLOS Biology | DOI:10.1371/journal.pbio.1002593 January 31, 2017 9 / 25

https://doi.org/10.5281/zenodo.191891
https://doi.org/10.5281/zenodo.191891


However, despite the absence of reliable eye communication in all patients as the inclusion cri-

teria in the study and by the definition of CLIS condition, EOG classification was at some ses-

sions, albeit rarely, above chance, mainly in patient W. Nonetheless, the inability of the social

environment to perceive them and their instability and the eye tracker’s failure to use them for

communication [45] prevents the use of this physiological signal.

The unreliable discrimination between "true/yes" and "false/no" sentences’ ISI by means of

EEG signals (see Results section of S1 Text for details) is consistent with the results of a very

similar auditory paradigm used for discriminating delayed, conditioned brain responses and

tested in fourteen healthy participants [46]. However, with the exception of patient F, the com-

parison of middle-frequency bands’ spectral features (averaged across days) between sentence

presentation interval and sentences’ ISI confirms the fact that two different states of arousal

were present during sentence presentation and sentences’ ISI (see Results section of S1 Text

for details). We cannot infer about the “qualia” of the two specific brain states occurring dur-

ing listening to “yes–no” questions and executing the answers mentally, but at least we can

state that the two mental states were different, meaning that differential cognitive processing

occurred during the BCI task [47,48]. We do not have a physiologically plausible explanation

as to why fNIRS responses to “yes” and “no” are different, as they are in three patients showing

oxygenation increase during the answering interval (ISI) for “yes” responses with negligible

topographical differences and oxygenation decrease during negative answers, again without

Fig 5. Classification accuracy of Patient W. The description of this figure is the same as described in Fig 2. Fig 5 data is located at https://doi.org/10.5281/
zenodo.191899.

doi:10.1371/journal.pbio.1002593.g005
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topographical differences throughout the frontal cortical area. Only the very young patient W,

with an extremely rapid course of the disease and a strong genetic variant, shows a variable

fNIRS pattern with different slow oscillatory oxygenation changes between “yes” and “no”

answering periods. In an animal study with nonhuman primates [49], we identified oxygen-

ation increase as highly correlated with nearby recorded multiunit activity. Assuming a similar

situation in the human brain, a “yes” answer may indicate a more coherent and more active

brain state, probably supporting cellular associative binding [50–52] more readily than nega-

tive answering states. However, such a generalization remains highly speculative.

Table 2. Classification statistics. (A) Number of days with CA above chance level; (B) number of delivered sentences with CA above chance level; (C) max-
imum chance-level upper limit, calculated using the metric described in BCI effectiveness metric section; and (D) mean and standard deviation of CA above
chance level, obtained using the fNIRS, EEG, and EOG signal data for patients F, G, B, andW. For the training sessions, the CA is reported for fNIRS, EEG,
and EOG signals. For feedback and open question sessions, CA is only reported for the fNIRS signal because the feedback was provided using only the
fNIRS signal as a result of superior CA of the fNIRS signal during the training sessions as compared to EEG and EOG signals. Table 2 data is located at
https://doi.org/10.5281/zenodo.191884; https://doi.org/10.5281/zenodo.191887; https://doi.org/10.5281/zenodo.191891; https://doi.org/10.5281/zenodo.
191899.

Patient (sessions’
type)

A) Number of days with CA1

above chance
B) Number of sentences with
CA1 above chance

C) Max chance-level
upper limit

D) Mean CA1 of sessions above
chance-level upper limit

(n.2/tot.3 = %4) (n.5/tot.6 = %7) (%8) (mean%9 ± std%10)

fNIRS classification accuracy

F (training) 11/14 = 78.6 929/1,020 = 91.1 64.8 69.5 ± 4.4
F (FB* & OQ++) 3/4 = 75.0 120/200 = 60.0 70.0 78.6 ± 6.9
G (training) 14/17 = 82.3 703/1,020 = 68.9 64.8 69.4 ± 4.2
G (FB* & OQ++) 4/5 = 80.0 80/160 = 50.0 70.0 78.8 ± 8.5
B (training) 9/12 = 75.0 630/800 = 78.7 64.8 69.6 ± 5.6
B (FB* & OQ++) 2/2 = 100.0 120/120 = 100.0 70.0 75.8 ± 6.6
W (training) 5/6 = 83.3 256/320 = 80.1 64.8 72.3 ± 4.3
W (FB*) 1/3 = 33.3 20/80 = 25.0 70.0 70.0 ± 0.0
EEG classification accuracy

F (training) 7/14 = 50.0 546/1,020 = 53.5 64.8 65.7 ± 2.9
G (training) 6/17 = 35.3 555/1,020 = 54.4 64.8 66.0 ± 3.5
B (training) 2/12 = 16.7 44/800 = 5.5 64.8 67.5 ± 0.0
W (training) 4/6 = 66.7 254/320 = 79.5 64.8 68.9 ± 5.3
EOG classification accuracy

F (training) 5/14 = 35.7 491/1,020 = 48.1 64.8 64.3 ± 2.6
G (training) 12/17 = 70.6 722/1,020 = 70.8 64.8 69.9 ± 5.5
B (training) 3/12 = 25.0 226/800 = 28.3 64.8 65.4 ± 1.9
W (training) 5/6 = 83.3 299/320 = 93.4 64.8 70.1 ± 4.3

1Classification accuracy.
2Number of days with fNIRS classification accuracy above chance-level threshold.
3Total number of days in which training or feedback and open question sessions were performed.
4Percentage of days for which fNIRS classification accuracy was above chance-level threshold.
5Number of delivered sentences with fNIRS classification accuracy above chance-level threshold.
6Total number of sentences delivered during training or feedback and open question sessions.
7Percentage of sentences for which fNIRS classification accuracy was above chance-level threshold.
8Maximum chance level threshold (or chance-level upper limit).
9Mean fNIRS classification accuracy of sessions above chance-level threshold.
10fNIRS classification accuracy standard deviation of sessions above chance-level threshold.

*FB: Feedback session during which participant received feedback for known questions.

++OQ: Open question session during which participant received feedback for open questions.

doi:10.1371/journal.pbio.1002593.t002
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BCI Performance and Attention-Vigilance

Three patients (G, B, andW) showed a negative averaged correlation between low-theta band

mean power and fNIRS classification accuracy [53], meaning the smaller the low-theta band

mean power, the higher the performance, except in patient F, who has been in CLIS for more

than 4 y. The correlations analysis between daywise classified BCI performance and low-fre-

quency bands across all intervals and all electrodes for each patient separately gave consistent

and highly significant results (see Results section of S1 Text for details). The binary communi-

cation performance worsened with lower frequencies in two patients (G and B) as predicted.

The number of days for patient W was limited (i.e., 6 d), thus it is quite unlikely to expect a sig-

nificant difference in low-frequency bands’ mean power for successful and unsuccessful days

(see S1 Table, section B). Decrease in vigilance reflected in slow frequencies impedes BCI per-

formance and communication. Patient F, who had an extremely long history of CLIS without

any communication over the years, showed a positive correlation in the delta and high-theta

band with performance. She was the patient with very slow dominant frequency during rest,

and it may be speculated that in such a deprived brain, superposition of delta and high-theta

frequency represent a sign of increased attention and focus. For instance, low-theta band

mean power can be used in future BCIs to stop a BCI session or to avoid the presentation of

the sentences and/or questions during decreased vigilance.

For a robust validation of the BCI binary communication system in CLIS, two main

unsolved questions remain: (i) the physiological identification of the cognitive processes under-

lying the listening to “yes–no” questions and the answerer’s mental state and (ii) the online

identification of decreased vigilance states that are detrimental (lowering performance) for BCI

binary communication purposes, such as decreased alertness, drowsiness, and sleeping.

Multielectrode EEG recordings used simultaneously with the fNIRS system and quantita-

tive source analysis of the different frequency bands at different sites are necessary to clarify

these questions. For the study reported here, only portable devices and a few EEG channels

could be used in the interest of the bedside, home-based strategy selected. Thus, our interpre-

tation of the EEG frequency bands’ variations remains speculative.

In patients completely motionless over a period of years with restricted vision because of

eye muscle paralysis and compromised vision because of drying and reduced or absent afferent

input from the sensorimotor system, reduced vigilance measured with EEG and an irregular

sleep–wake cycle was documented by Ramos et al. (2011) [31] and Soekadar et al. (2013) [54].

De Massari et al. (2013) [45] have shown that reduction of P300 amplitude across the BCI par-

adigm presentation predicted negative performance, again suggesting excessive loss and exces-

sive variation of wakefulness and attention as a major limiting factor for BCI applications in

such severely compromised patients. Thus, we modified the existing fNIRS–BCI–system in a

hybrid EEG–fNIRS–BCI, with the EEG allowing online corrections of excessive reduction of

vigilance indicated by appearance of delta and low-theta periods. This new hybrid system

should allow further improvement of communication in CLIS.

The results on four CLIS patients reported here allow the following conclusions:

1. Even after extended CLIS in ALS spanning months and years, reliable, meaningful commu-

nication using questions requiring a mental affirmative (“yes”) or negative, rejecting (“no”)

answer is possible with fNIRS–BCI [55,56]. This statement, however, requires a definition

of “reliable and meaningful” communication between people, which is an exceedingly diffi-

cult task. For BCI spelling tasks (i.e., when participants have to select letters or words pre-

sented on a computer screen with brain activity), we [57] calculated a minimum correct

selection probability of 70% for isolated selected letters to result in meaningful words over a

defined time window. Anything below 70% leads to unacceptable error and correction
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rates. Another qualitative strategy to estimate the usefulness of the more than 70% correct

answering patterns achieved here consists of the ratings of family members and caretakers

—which we did not measure quantitatively—regarding quality of life changes with the BCI

described here compared to the desperate lack of communication on patients’ and caretak-

ers’ family side before BCI use. Family members of all four patients’ experienced substantial

relief and continue to use the system. It seems that patients and families internally develop

a seven correct to three false ratio “running average significance tests” over weeks and

months, and if doubts about correctness become obvious (i.e., if the patient changes answer

direction [affirmative-negative] of a repeated identical question within 2 to 3 d from 7:3

ratio to 5:5), questions are reformulated. As one can deduct from the concordance per-

centage of semantically paired “yes” and “no” questions, the answers were concordant in

most of the cases (“Paris is the capital of France”—“yes”; “Paris is the capital of Germa-

ny”—“no.”). As, for example, with children, we and the family members and caretakers

accept a higher error rate in CLIS patients than in healthy adults because of their fragile vig-

ilance and unpredictable circadian rhythms that result in spontaneous sleep and dozing

during the day [54]. Because each question has a semantically identical but contradictory

answering twin question (“Berlin is the capital of Germany,” “Berlin is the capital of

France”), judgement of correct answering patterns is further improved. Our result of a sig-

nificant positive concordance between semantically contradictory sentences, however, sup-

ports the notion that patients processed these sentences correctly. Still, we have to remain

cautious about our judgements to open questions’ answers, particularly if it comes to qual-

ity of life and psychological changes of CLIS patients. In view of the gravity of the subject

matter (i.e., establishing communication with nonverbal, completely paralyzed persons

with preserved cognition), a call for replication of the current results by other investigators

would be welcome. Future BCI-based communication has to focus on quantitative assess-

ment of stability (reliability) of the found positive quality of life ratings and subjective

emotional states. In the above-reported patients, all questions were repeated several times

over weeks of BCI used with remarkable stability of correct answering patterns, but a quan-

titative approach to measure reliability and stability over longer time period is desirable.

Despite our theoretical predictions of the CLIS for goal-directed thinking and intentions

described above in the introduction, we should never abandon our attempts to return to

instrumental learning and voluntary free spelling with the help of BCI systems.

2. fNIRS seems to provide better classification of patients’ answers compared to oscillatory

EEG responses. The above statement of a superiority of fNIRS over EEG–BCI needs a word

of caution. The EEG oscillations were analyzed using average power over the 15 s answering

period, neglecting the temporal dynamics of the EEG across the answering period. Thus,

any difference in the beta and/or gamma frequency range (less so in the low frequencies)

that may occur at different time points of the answering period is ignored with this type of

averaging. Replications of the comparisons reported here between fNIRS–BCI and EEG–

BCI in CLIS should employ a more complex time-frequency analysis of the EEG signals

during the course of the answering period. This kind of EEG temporal dynamics analysis

should investigate, at the single-trial level, relevant frequency changes at different time

delays of the mental and neurophysiological signatures of the answer. With the limited

number of EEG channels and the employed bandpass filter because of the home-based BCI

limitations, the covert nature of the dynamics of the mental answer, and the obvious pathol-

ogy of the EEG in these patients, we had to abstain from further complex analysis. In the

present study, only a preliminary EEG temporal dynamics analysis based on averaged data

of each session for each patient was viable (see Methods section of S1 Text). The results
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from two patients (F andW) partially confirm the hypothesis of superiority of fNIRS over

EEG in the detection of true and false neurophysiological responses to “yes” and “no” sen-

tences (see S1 Text, paragraph EEG time-frequency and fNIRS classification comparison).

However, because the time-frequency analysis was performed at session level (i.e., on aver-

aged data, not on single-trial data), caution is necessary in the interpretation of the results.

Similar difficulties encountered using different techniques are described in a previous study

of patient F and two LIS ALS patients (De Massari et al. 2013), albeit a slightly different

semantic conditioning paradigm employing electrical stimulation was used. Compared to

fNIRS, the EEG time-frequency analysis may identify specific neuroelectric frequencies’

oscillations at different time points with fine resolutions and with potential further insights

in neurophysiological mechanisms underlying the engaged mental processes. Conversely,

fNIRS signals may be more easily detected for binary classification. We have argued previ-

ously [14] the speculation that metabolic (vascular) brain changes permit superior learned

brain self-control in fMRI neurofeedback experiments because of an existing feedback

pathway between the vascular system in the central nervous system. While neuroelectric

changes lack receptors systems of their own activity, the vascular bed provides accurate

information of flow and diameter changes to the neuronal assemblies in its neighborhood.

This allows adjustment to metabolic and cognitive needs and probably superior access to

voluntary control [58], as required in the paradigm reported here: patients had to control

the correct timing of their “yes” or “no” answer, otherwise correct classification of the cor-

related physiological signal (oxygenation) would not be possible. A physiological system

such as the vascularity of the brain measured with fMRI and fNIRS provides feedback to the

brain about its state changes, while the neuronal neuroelectric changes may not be “per-

ceived” by the brain and thus provide no feedback of its present state or state changes; thus,

a physiological system should be superior for instrumental learning. To put it more collo-

quially: physiological feedback of our thoughts (“perceiving thoughts”) is encoded in the

neuronal control structures of the brain through the vascular systems and not through

neuromagnetic changes such as cellular membrane polarization changes and changes in

neuroplastic synapses. While thoughts probably consist of neuroelectric changes and their

underlying cellular polarization across the cell membranes, their physiological conse-

quences or correlates may appear as metabolic. Thus, coregistration of fNIRS and EEG and

other neuroelectric changes and oscillations from multiple sites maybe important in CLIS

in order to monitor and eventually modify nonfavorable vigilance changes reflected in the

EEG, with arousal stimulating activities to improve NIRS classification.

Materials and Methods

The Internal Review Board of the medical faculty of the University of Tubingen approved the

experiment reported in this study, and the patients’ legal representative gave informed consent

for the study with permission to publish the results and show the face of patients in the publi-

cation. The study was in full compliance with the ethical practice of medical faculty of the Uni-

versity of Tubingen. The clinical trial registration number is ClinicalTrials.gov Identifier:

NCT02980380. At the time of this study, prospective clinical trial registration was not manda-

tory for nonpharmacological studies; it was therefore registered retrospectively.

Instrumentation

A continuous wave (CW)-based fNIRS system, NIRSPORT (NIRX), which performs dual-

wavelength (760 nm and 850 nm) CW near-infrared spectroscopic measurement at a sampling
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rate of 6.25 Hz, as shown in in Fig 6A, was used. The NIRS optodes were placed on the fronto-

central regions as shown in Fig 6B. During the BCI sessions, the EEG was also recorded with a

multichannel EEG amplifier (Brain Amp DC, Brain Products, Germany) from ten Ag/AgCl

passive electrodes mounted on the head cap. Six electrodes (FC5, FC1, FC6, CP5, CP1, and

CP6) were used to acquire EEG signals and four electrodes were used to acquire the vertical

and horizontal EOGs. The signals were bandpass filtered using a finite impulse response filter

with a bandpass of 0.5–30 Hz. The EOG was filtered with different bandpass filters (0.5–3.5

Hz, 0.5–10 Hz, and 0.5–30 Hz), but none of these filters led to significant differences of neuro-

physiological patterns related to the ocular activity. Question- or response-related eye move-

ments were not detected in any of the patients over the whole time period of many weeks.

Each EEG channel was referenced to an electrode on the right mastoid and grounded to the

electrode placed at Fz location of the scalp. Electrode impedances were kept below 10 kO and

the EEG signal was sampled at 500 Hz. During all BCI sessions, the spontaneous EEG was

Fig 6. The procedure and flow diagram of the brain–computer interface (BCI) for communication in ALS patients. (A) The continuous wave-based
portable NIRX NIRSport instrument. The device consists of eight near-infrared light sources (highlighted in red), eight detectors (highlighted in green), and the
NIRS data acquisition hardware is highlighted in yellow. (B) Depicts the placement of sources and detectors (optodes) on the frontocentral region of the scalp
(blue). Four sources (highlighted in red) and four detectors (highlighted in green) were placed on each hemisphere to form a channel.

doi:10.1371/journal.pbio.1002593.g006
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visually controlled by one of the authors (NB or BX) to avoid longer periods of slow-wave

sleep during the BCI evaluation. A BCI session was initiated only if the EEG was free of high-

amplitude slow activity below 4 Hz.

Patients

Patient F (female, 68 y old, completely locked-in state) was diagnosed with bulbar sporadic

ALS in May 2007, was diagnosed as locked-in in 2009, and was diagnosed as completely

locked-in May 2010, based on the diagnoses of experienced neurologists. She has been artifi-

cially ventilated since September 2007, fed through a percutaneous endoscopic gastrostomy

tube since October 2007, and is in home care. No communication with eye movements, other

muscles, or assistive communication devices was possible since 2010. Further details of this

patient are described in Gallegos-Ayala et al. (2014) [30].

Patient G (female, 76 y old, CLIS) was diagnosed with bulbar ALS in 2010. She lost speech

and capability to walk by 2011. She has been fed through a percutaneous endoscopic gastro-

stomy tube since September 2011, artificially ventilated since March 2012, and is in home care.

She started using assistive communication devices employing one finger for communication

in February 2013. Later, she was diagnosed with degeneration of vision because of cornea

defects in September 2013. After the failure of the finger-communication device, an attempt

was made to communicate using eye tracking in early 2014. She stopped communicating with

the eye in August 2014, before the BCI was introduced, and an attempt was made to communi-

cate with the subtle twitch of an eye lid, which was not reliable. The husband and caretakers

declared no communication with her since August 2014.

Patient B (male, 61 y old, CLIS) was diagnosed with nonbulbar ALS in May 2011. He has

been artificially ventilated since August 2011, fed through a percutaneous endoscopic gastro-

stomy tube since October 2011, and is in home care. He started communicating with a speech

device in his throat from December 2011, which ultimately failed, and he started using the

MyTobii eye-tracking device in April 2012. He was able to communicate with MyTobii until

December 2013, after which the family members attempted to communicate by training him

to move his eyes to the right to answer “yes” and to the left to answer “no,” but the response

was variable. No communication was possible since August 2014.

Patient W (female, 24 y old, locked-in state on the verge of CLIS) was diagnosed with juve-

nile ALS in December 2012. She was completely paralyzed within half a year after diagnosis

and has been artificially ventilated since March 2013, fed through a percutaneous endoscopic

gastrostomy tube since April 2013, and is in home care. She was able to communicate with eye

tracking from early 2013 to August 2014 but was unable to use the eye-tracking device after

the loss of eye control in August 2014. After August 2014, family members were able to com-

municate with her by training her to move her eyes to the right to answer “yes” and to the left

to answer “no” questions until December 2014. In January 2015, eye control was completely

lost, she tried to answer yes by twitching the right corner of her mouth, that too varied consid-

erably, and parents lost reliable communication contact.

All four patients reported in this manuscript were enrolled consecutively. Patients’ family

approached us to get enrolled in the study because of the past work and public appearance of

the corresponding author. Patients were never screened and excluded for this study. The only

criterion for the inclusion in this study was that the patient should be in completely locked-in

state (CLIS) or on the verge of CLIS, and family members could not communicate with eye

movements or any other response with the patient. The CLIS state was then verified with con-

firmation of the attending neurologist, EOG recordings, and video recordings of the families’

failures to achieve contact with the patient.
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Experimental Procedures

The schematic depicting the experimental procedure, acquisition, and analysis of fNIRS and

EEG data during BCI sessions is shown in Fig 6.

An auditory paradigm was employed to (a) train patients on questions with known answers,

termed as training sessions; (b) give feedback on questions with known answers, termed as feed-

back sessions (i.e., “Your husband’s name is Joachim,” and after classification during ISI: “your

answer was recognized as ‘yes’/‘no’); and (c) answer open questions, termed as open question ses-

sions (“You have back pain”). Known questions are personal questions based on patient’s biogra-

phy. For every known question with a clear “yes” answer, a semantically related question with a

clear “no” answer was constructed and vice versa; for example, “You were born in Berlin” and

“You were born in Paris.” Patients were asked to think “yes” or “no” answers and, if possible, also

to use their previously successful eye movements. They were explicitly instructed not to imagine

the answer or visually or auditorily imagine the word (i.e., as a visual or sound form) “yes” or “no”.

Open questions are general questions related to quality of life and questions of caretakers whose

answers can only be known by the patient. A total of at least 200 known questions and 40 open

questions were constructed for each patient with family members before the initiation of the BCI

study. Each patient was visited for 4 to 5 d in a month, except patientW. Three to four sessions

were performed each day depending upon the health condition reported by the caretakers of the

patient. Every session lasted for 9 min, and a session in progress was terminated extremely rarely

(i.e., if removal of saliva became urgent). In such a rare event, the session was started again. Since

each session lasted for 9 min, the caretaker or the family member was always instructed to take

care of the needs of the patient before the start of the session, and the session was always started

with the permission of the caretaker or the family member. A session, once in progress, was never

terminated for patients F, G, andW. For patient B, a session was terminated while in progress

three times because of removal of saliva, and the data were not included in any kind of analysis.

Acoustically presented instructions about the procedure were given repetitively before each

training, feedback, and open questions sessions, allowing patients to recall and consolidate the

required task to listen and answer mentally. Each BCI session started with training sessions,

during which the patients were instructed to listen to 20 personal questions (with known

answers) consisting of 10 true and 10 semantically equivalent false sentences. The sentences

were presented randomly in such a way that two semantically related questions never played

one after another. Family members were always present throughout the BCI session, and they

never prompted the patient to answer the question. Complete pin-drop silence was maintained

during the session, and only the recorded sentences were presented via audio presentation

software connected to sound box with the voice of a family member or caregiver. Patients were

asked to think “ja, ja. . .” (German for “yes”) and “nein, nein. . .” (German for “no”) for 15 s

during the ISI until they heard the next sentence after an interval of 5 s of rest, as shown in Fig

6. After the end of each session, the fNIRS feature necessary to differentiate between “yes” and

“no” answers during ISI was extracted and classified. Only training sessions were performed

during the first few days, and upon several successful training sessions (as described below in

BCI effectiveness metric section), the online feedback session was performed. During training

sessions, both the patient and the algorithm were trained. Patients learned to mentally answer

the question, and the algorithm learned to classify the “yes” and “no” fNIRS pattern of a partic-

ular patient. This kind of “mutual learning” seems important to optimize the “yes” versus

“no” classification outcome and to customize and/or adapt the BCI system to each individual

patient. At the end of each training session with 20 sentences (questions), patients were told

the average classification accuracy of the session (calculated using the SVM classifier) to moti-

vate and help patients in learning. In the course of an online feedback session, patients were
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presented the known questions as described above, but now at the end of the 15 s ISI they were

given auditory feedback of accuracy, during which the computer said, “Your answer was rec-

ognized as yes” or “Your answer was recognized as no” depending upon the question (all ses-

sions were videotaped and are available on request). Feedback to strengthen the conditioned

response was provided only if the classification accuracy was greater than the chance-level

upper limit to guide the conditioned learning toward meaningful answers and to avoid frustra-

tion by negative feedback already at the beginning of a daily session. Feedback was driven by

the fNIRS classifier, calculated using the data acquired during the training sessions. After suc-

cessful training and feedback sessions, the patients were presented with open questions, during

which they were always given the auditory feedback of their answer.

The validity of answers to open questions can only be estimated by (a) face validity (i.e.,

questions of pain in the presence of an open wound); (b) stability over time; (c) external valid-

ity, estimated by family members and caretakers; and (d) internal validity between questions

(i.e., the concordance between the answer to “I love to live” with the answer to “I rarely feel

sad” [presented to all patients—except W—regularly]). Table 1, rows A, B, and C enumerate

the total number of training, feedback, and open questions sessions performed by each patient,

respectively. Patient W received no open questions because of low classification accuracy,

which we and the parents attributed to her emotional state distracting her from concentrating

on the responses because of the short time period of adaptation to the CLIS.

BCI Effectiveness Metric

The binary BCI system effectiveness and robustness depends on its capability of correctly clas-

sifying the neurophysiological correlates of “yes” and “no” answers to true and false questions.

The proposed true and false questions have two possible outcomes only, which are equally dis-

tributed with a probability of 0.5. To ensure that the classification of “yes” and “no” answers is

not at chance-level, a reliable metric has to be used. Based on binomial distribution theoretical

background, Müller-Putz et al. [59] defined a metric for experimental procedures with a binary

outcome and multiple repetitions to determine the chance-level threshold above which the

classification accuracy results can be considered as not resulting from chance. Because type

and number of questions (personal questions with known answers and open questions) are

partly different over days (i.e., the experimental conditions were different) the chance-level

threshold was calculated on a daily basis. The daily-based chance level was computed using the

formulas described in Müller-Putz et al. [59] and by taking into account the number of true

and false sentences presented in a single day to each patient.

Online Data Analysis

The fNIRS data was acquired online throughout all the sessions, namely training, online feed-

back, and open question sessions. The fNIRS data acquired online was normalized, filtered

using different bandpass filters (0.0016–0.3), (0.01–0.3) and (0.02–0.3) and processed using

modified Beer–Lambert law [60,61] to calculate the relative change in concentration of oxyhe-

moglobin (O2Hb) and deoxyhemoglobin (RHb). The choice of bandpass filter had no effect on

the waveforms of signal. The relative change in O2Hb computed online during each session

was used to train a SVM classifier model. The mean of relative change in O2Hb across each

channel was used as a feature to train the SVMmodel through a 5-fold cross-validation proce-

dure. In this study, only the relative change in O2Hb was used, as after the end of sessions with

known answers it was observed that O2Hb provided stable and higher cross-validation classifi-

cation accuracy than RHb. In an invasive animal study with nonhuman primates, we have also

measured a superior covariation of oxygenation changes compared to deoxygenation, with
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intracortically recorded neural activity [49] supporting this clinical observation. Since the clas-

sification accuracy achieved was higher for O2Hb, the SVMmodel generated using O2Hb was

used to provide online feedback for known as well as open questions sessions. If the classifica-

tion accuracies for at least three consecutive “training” sessions with questions with known

answers were greater than the chance-level threshold, a new model was generated using the

relative change in O2Hb across three training sessions to give online feedback. During an

online feedback session, fNIRS data acquired online corresponding to each ISI was processed

to obtain the relative change in O2Hb, as described above, across all the channels. The mean of

the relative change in O2Hb across all the channels was used as test feature to map onto model

space. Upon mapping of this test feature onto the model space, the SVM predicted (called pre-

dict label) the side of the hyperplane the test feature fell on. Depending on the value of the pre-

dict label, appropriate feedback was provided to the patient: if the predict label was 0, the

patient was given feedback that his or her answer was recognized as “no,” and if the predict

label was 1, the patient was given feedback that his or her answer was recognized as “yes.”

Offline Data Analysis

fNIRS provides three different signals: oxyhemoglobin (O2Hb), deoxyhemoglobin (RHb) and

total hemoglobin (THb) [60,61]. As mentioned in the section Online data analysis, since the

classification accuracy achieved was higher for O2Hb, only the results from the offline process-

ing of O2Hb data will be shown along with the EEG and EOG data. The relative change in

O2Hb, EEG, and EOG data were processed offline to determine:

a) The statistical difference in the particular physiological signal (O2Hb, EEG, and EOG)

during the ISI of true (yes) and false (no) sentences (in the time domain).

To ascertain the difference between the averaged ISI of true and false sentences, t-tests were

performed. t-test was performed separately for O2Hb, EEG, and EOG signals acquired from all

the sessions and across all the channels in a session, averaged over many sessions varying

slightly between patients. Furthermore, t-tests were also performed for each session between

the ISI of all the ten true sentences and all the ten false sentences (“Berlin is the capital of

France,” “Berlin is the capital of Germany”) across different channels in a session.

b) The statistical difference in the offline classification accuracy of the relative change in

O2Hb, the EOG signal, and the EEG signal power spectrum during ISI corresponding to

true and false sentences.

For the EEG, frequencies between 0 and 30 Hz, estimated by Welch’s method [62], were

used for classification and statistical testing. ANOVA and post hoc t-test were used.

c) The statistical difference of frequency bands’ (i.e., delta 0.25–3.5Hz, low-theta 3.5–5Hz,

high-theta 5–8Hz, low-alpha 8–10Hz, and high-alpha 10–13Hz) features averaged daily-

wise from EEG signals and their relationships with fNIRS SVM classification accuracy.

Frequency bands’ mean power and their “variability” were estimated using Welch’s method

[44,58]. For each patient, middle-frequency bands’ (i.e., high-theta, low-alpha, and high-alpha)

features of “true/yes” and “false/no” sentences’ ISI were compared, as well as middle-frequency

bands’ features of sentence presentation and interstimulus intervals. Successively, the averaged

correlation between each low-frequency band (i.e., delta, low-theta, and high-theta) mean

power and fNIRS classification accuracy was computed to find relevant relationships of low

EEG rhythms with the BCI experimental procedure outcome. Details are provided in the

Methods section of S1 Text.
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Performance of SVM Classifier

The performance of the binary SVM classifier was ascertained by plotting the ROC curve. The

ROC curve was created by plotting the TPR against the FPR (obtained from the contingency

table created for each session) and the average of all the sessions, separately for each patient,

using the four possible outcomes of a binary SVM classifier. The formation of contingency

table for training and feedback sessions for each participant is described in the Receiver oper-

ating characteristic curve section of S2 Text. Further chi-square test was performed to deter-

mine the statistical significance of the observed outcomes in the contingency table, also

described in the Receiver operating characteristic curve section of S2 Text.

Semantic Concordance Rate (SCR)

Semantic concordance rate (SCR) was calculated to ascertain the consistency and/or concor-

dance of the answers between semantically equivalent but contrasting true and false sentences

requiring “yes” and “no” answers, respectively. SCR (i.e., the percentage of concordant answers

over pairs’ repetition) was calculated for all semantically related sentences presented to each

patient. The method employed to calculate the semantic concordance rate is described in the

Semantic concordance rate (SCR) section of S2 Text. This measure also provides indirect

information about the intact cognitive processing of the presented sentences in a CLIS patient.

Supporting Information

S1 TREND Checklist.

(PDF)

S1 Text. EEG frequency domain analysis.

(DOCX)

S2 Text. Receiver operating characteristic curve and semantic concordance rate.

(DOCX)

S1 Table. Section A. Lists the daily-wise EEG frequency domain results of each patient. The

number of days for each patient were: F, 14; G, 17; B, 12; andW, 6. Middle-frequency bands’

mean power and their “variability” were compared between sentence presentation interval and

sentence’s ISI. See S1 Text, section Methods, paragraph EEG middle-frequency bands compar-

ison for details. “ISI” stands for interstimuli interval. “SP” stands for sentence presentation

interval. The symbol�means that the null hypothesis cannot be rejected (there were no main

effects of intervals or channels). The symbols< and>mean that the null hypothesis can be

rejected (there was always a main effect of intervals only). The symbol � denotes a significant

p-value. Section B. Enlist the averaged correlation between daily-wise EEG frequency bands’

mean power and fNIRS CA for each patient. The averaged correlation was computed across

selected intervals (resting before session, sentence presentation, and sentence’s ISI, specified in

column 3) and across all electrodes. Column 4 lists the mean and standard deviation of each

averaged correlation across intervals and electrodes with CA. Column 5 lists the p-values of

the tested null hypothesis of whether the median of averaged correlation was zero. Further, the

number of days of each patient was split in successful and unsuccessful days using the chance-

level threshold. Then, the hypothesis of whether the particular band mean power distribution

medians of successful and unsuccessful days differed was tested (corresponding p-values are

listed in column 6). The effect of this comparison (i.e., whether or not the second hypothesis

was rejected) is reported in column 7. “Rest” stands for resting interval before sessions. “ISI”

stands for interstimuli interval. “SP” stands for sentence presentation interval. “Succ.” and
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“Unsucc.” stand for successful and unsuccessful days, respectively. The symbol�means that

the band mean power medians of successful and unsuccessful days were similar. The

symbol<means that the band mean power medians of successful and unsuccessful days dif-

fered significantly. The symbol � denotes a significant p-value. See S1 Text, section Methods,

paragraph EEG low-frequency bands correlation with fNIRS classification accuracy for details.

S1 Table data is located at https://doi.org/10.5281/zenodo.191929.

(XLSX)

S2 Table. CWT and STFT true versus false recognition accuracies: the t-test was used to

compare CWT and STFT recognition accuracies with mean fNIRS classification accuracy.

S2 Table data is located at https://doi.org/10.5281/zenodo.192128.

(XLSX)

S3 Table. Contingency table.

(XLSX)

S4 Table. Patient F. Contingency table formed using the average of all the training sessions.

S4 Table data is located at https://doi.org/10.5281/zenodo.192398.

(XLSX)

S5 Table. Patient F. Contingency table formed using the average of all the feedback sessions.

S5 Table data is located at https://doi.org/10.5281/zenodo.192400.

(XLSX)

S6 Table. Patient G. Contingency table formed using the average of all the training sessions.

S6 Table data is located at https://doi.org/10.5281/zenodo.192401.

(XLSX)

S7 Table. Patient G. Contingency table formed using the average of all the feedback sessions.

S7 Table data is located at https://doi.org/10.5281/zenodo.192402.

(XLSX)

S8 Table. Patient B. Contingency table formed using the average of all the training sessions.

S8 Table data is located at https://doi.org/10.5281/zenodo.192406.

(XLSX)

S9 Table. Patient B. Contingency table formed using the average of all the feedback sessions.

S9 Table data is located at https://doi.org/10.5281/zenodo.192407.

(XLSX)

S10 Table. Patient W. Contingency table formed using the average of all the training sessions.

S10 Table data is located at https://doi.org/10.5281/zenodo.192408.

(XLSX)

S11 Table. Patient W. Contingency table formed using the average of all the feedback ses-

sions. S11 Table data is located at https://doi.org/10.5281/zenodo.192409.

(XLSX)

S12 Table. Semantic concordance rate (the p-values refer to the Wilcoxon signed rank

test). S12 Table data is located at https://doi.org/10.5281/zenodo.191982.

(XLSX)

S1 Fig. A. Power spectrum density. Power spectrum density (PSD) of electroencephalo-

graphic (EEG) signal corresponding to YES (red solid trace) andNO (blue dashed trace) sen-

tences’ ISI acquired from channel FC6 in patients F, G, B, andW. In each subplot, the x-axis is
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frequency in hertz and the y-axis is channel FC6 EEG in dB (μV2/Hz). S1A Fig data is located

at https://doi.org/10.5281/zenodo.192386; https://doi.org/10.5281/zenodo.192388; https://doi.

org/10.5281/zenodo.192390; https://doi.org/10.5281/zenodo.192391. B. Electrooculogram

signal. The electrooculogram (EOG) signal corresponding to YES (red solid trace) andNO

(blue dashed trace) sentences’ ISI in patients F, G, B, andW. In each subplot, the x-axis is time

in seconds and the y-axis is EOG in micro volt (μV). S1B Fig data is located at https://doi.org/

10.5281/zenodo.192386; https://doi.org/10.5281/zenodo.192388; https://doi.org/10.5281/

zenodo.192390; https://doi.org/10.5281/zenodo.192391.

(EPS)

S2 Fig. Patient F. Receiver operating characteristic (ROC) curve of the binary support vec-

tor machine (SVM) classifier. (A) Training and (B) feedback sessions. Each circle in the ROC

curve space represents false positive rate (FPR) versus true positive rate (TPR) for each session.

Sessions with the same coordinate points in the ROC space are represented by concentric cir-

cles. The red star along with the coordinate points in the ROC space represent FPR versus TPR

of all the sessions combined. In the figure panels A and B, the x-axis is the FPR and the y-axis

is TPR. The thick diagonal line dividing the ROC space represents chance level. Points above

the diagonal represent good classification results (better than random); points below the line

represent poor classification results (worse than random). S2 Fig data is located at https://doi.

org/10.5281/zenodo.192398; https://doi.org/10.5281/zenodo.192400.

(EPS)

S3 Fig. Patient G. Receiver operating characteristic (ROC) curve of the binary support vec-

tor machine (SVM) classifier. The description of this figure is the same as described in S2 Fig.

S3 Fig data is located at https://doi.org/10.5281/zenodo.192401; https://doi.org/10.5281/

zenodo.192402.

(EPS)

S4 Fig. Patient B. Receiver operating characteristic (ROC) curve of the binary support vec-

tor machine (SVM) classifier. The description of this figure is the same as described in S2 Fig.

S4 Fig data is located at, https://doi.org/10.5281/zenodo.192406; https://doi.org/10.5281/

zenodo.192407.

(EPS)

S5 Fig. Patient W. Receiver operating characteristic (ROC) curve of the binary support

vector machine (SVM) classifier. The description of this figure is the same as described in S2

Fig. S5 Fig data is located at https://doi.org/10.5281/zenodo.192408; https://doi.org/10.5281/

zenodo.192409.

(EPS)
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