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RESEARCH Open Access

Brain-Computer Interface Controlled Functional
Electrical Stimulation System for Ankle Movement
An H Do1,2*, Po T Wang3, Christine E King3, Ahmad Abiri4 and Zoran Nenadic3,4*

Abstract

Background: Many neurological conditions, such as stroke, spinal cord injury, and traumatic brain injury, can cause

chronic gait function impairment due to foot-drop. Current physiotherapy techniques provide only a limited

degree of motor function recovery in these individuals, and therefore novel therapies are needed. Brain-computer

interface (BCI) is a relatively novel technology with a potential to restore, substitute, or augment lost motor

behaviors in patients with neurological injuries. Here, we describe the first successful integration of a noninvasive

electroencephalogram (EEG)-based BCI with a noninvasive functional electrical stimulation (FES) system that

enables the direct brain control of foot dorsiflexion in able-bodied individuals.

Methods: A noninvasive EEG-based BCI system was integrated with a noninvasive FES system for foot dorsiflexion.

Subjects underwent computer-cued epochs of repetitive foot dorsiflexion and idling while their EEG signals were

recorded and stored for offline analysis. The analysis generated a prediction model that allowed EEG data to be

analyzed and classified in real time during online BCI operation. The real-time online performance of the integrated

BCI-FES system was tested in a group of five able-bodied subjects who used repetitive foot dorsiflexion to elicit

BCI-FES mediated dorsiflexion of the contralateral foot.

Results: Five able-bodied subjects performed 10 alternations of idling and repetitive foot dorsifiexion to trigger

BCI-FES mediated dorsifiexion of the contralateral foot. The epochs of BCI-FES mediated foot dorsifiexion were

highly correlated with the epochs of voluntary foot dorsifiexion (correlation coefficient ranged between 0.59 and

0.77) with latencies ranging from 1.4 sec to 3.1 sec. In addition, all subjects achieved a 100% BCI-FES response (no

omissions), and one subject had a single false alarm.

Conclusions: This study suggests that the integration of a noninvasive BCI with a lower-extremity FES system is

feasible. With additional modifications, the proposed BCI-FES system may offer a novel and effective therapy in the

neuro-rehabilitation of individuals with lower extremity paralysis due to neurological injuries.

Background

Many neurological conditions, such as stroke, spinal

cord injury (SCI), and traumatic brain injury (TBI), can

leave the affected individual with severe or complete

paralysis. There are currently no biomedical treatments

available that can reverse the loss of motor function

after these neurological injuries [1], and physiotherapy

typically provides only a limited degree of motor func-

tion recovery [2-4]. Brain-computer interface (BCI) is a

relatively novel technology with the potential to restore,

substitute, or augment lost motor behaviors in patients

with devastating neurological conditions such as high-

cervical SCI or amyotrophic lateral sclerosis [5-8]. For

example, BCIs systems have enabled direct brain control

of applications such as computer cursors [8], virtual

keyboards [9,10], and movement within virtual reality

environments [11-13]. Most notably, BCIs have enabled

the direct brain control of limb prosthetic devices [7,14],

and such BCI-controlled prostheses represent a promis-

ing neuro-rehabilitative technology for motor function

restoration in the neurologically injured. In the future,

they may provide a permanent solution for restoration

of lost motor functions, especially if no equivalent bio-

medical treatment exists.
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Generally, BCI control of a limb prosthesis is accom-

plished by acquiring neurophysiological signals asso-

ciated with a motor process, analyzing these signals in

real time, and subsequently translating them into com-

mands for a limb prosthesis. To date, this concept has

been successfully applied to the control of robotic arms

[15] and functional electrical stimulation (FES) devices

of the upper extremities [7,14]. More specifically, Hoch-

berg et al. [15] demonstrated how a subject with tetra-

plegia due to SCI could use an invasive BCI to operate a

robotic arm to perform a simple task of moving an

object from one point to another and to open and close

a robotic hand. Also, Pfurtscheller’s group [7,14]

demonstrated how an individual affected by tetraplegia

due to SCI was able to utilize a noninvasive electroence-

phalogram (EEG)-based BCI to control hand grasping

via FES to complete a goal-oriented task of grasping an

object and moving it another location.

In spite of encouraging results achieved with upper

extremity BCI-FES systems, the integration of BCI with

lower extremity FES systems has received less attention.

At the time of this publication, review of the literature

revealed that no actual BCI-FES systems for the lower

extremities have been reported on. This may be partly

explained through historical reasons, as BCI system

development has been primarily focused on individuals

with severe paralysis, such as those with locked-in syn-

drome or high cervical SCI [16]. These individuals

would most likely benefit from using BCI technology

that restores communication and upper extremity func-

tion for interaction with the environment. Meanwhile,

wheeled mobility has generally been considered an effec-

tive and robust method of substitution for ambulation in

lower extremity paralysis. Finally, in the context of EEG-

based BCIs, lower extremity movements, such as ambu-

lation, may cause significant artifacts which in turn may

require the use of specialized EEG systems (e.g. active

or actively shielded electrodes), thus creating a research

barrier for laboratories without this technology.

Focusing the development of BCI technology on indi-

viduals with complete paralysis due to neurological

injury significantly limits its application domain.

Recently, BCI-FES systems are increasingly being

explored as potential neuro-rehabilitation tools for

improving partially impaired upper extremity function

in individuals with stroke [17], thereby vastly broadening

the potential target population. Given that an estimated

36% of stroke patients [4], 68% of SCI patients [18,19],

and 61% of TBI patients [20] are affected by significant

chronic gait impairment, there is a compelling need for

the development of BCI-FES system for the lower extre-

mities. Furthermore, the development of such a system

may facilitate neural plasticity and repair mechanisms to

improve impaired lower extremity and gait functions in

these patient populations. This will not only further

broaden the application domain of BCI technology, but

will also yield a novel neuro-rehabilitation approach to

some of the most prevalent neurological injuries. As the

initial step towards achieving this goal, we describe the

first integration of a noninvasive EEG-based BCI with a

noninvasive FES system that enables the direct brain

control of foot dorsifiexion. The performance of the sys-

tem was tested in a small group of able-bodied subjects

who were able to use repetitive foot dorsifiexion to elicit

BCI-FES mediated dorsifiexion of the contralateral foot.

Methods

Overview

The goal of this study is to integrate a noninvasive EEG-

based BCI system with a noninvasive FES system for the

lower extremities. The schematic diagram of the overall

system is shown in Figure 1A. The proposed system uti-

lizes a contralaterally-controlled FES paradigm [21],

wherein healthy subjects perform repetitive foot dorsi-

fiexion, EEG patterns underlying this action are detected

in real time, and this information is subsequently used

to trigger FES of the tibialis anterior (TA) muscle of the

contralateral foot so as to achieve its dorsifiexion. The

study entails a training procedure, where preliminary

EEG data is collected and a subject-specific prediction

model is designed, followed by an online session, where

the real-time performance of the integrated BCI-FES

system is tested.

Recruitment

The study was approved by the Institutional Review

Board of the University of California, Irvine. Since the

present work represents a proof-of-principle study, it

was aimed at able-bodied subjects who are generally

healthy with no history of neurological conditions. Five

subjects were recruited and provided their informed

consent to participate in the study. Their demographic

data are shown in Table 1.

Signal Acquisition

An actively-shielded EEG cap (MediFactory BV, Heerlen,

the Netherlands) with 64 sintered Ag-AgCl electrodes,

arranged according to the 10-20 International Standard,

was used for EEG recording (see Figure 1B). Conductive

gel (Compumedics USA, Charlotte, NC) was applied to

all electrodes and the 30-Hz impedances between each

electrode and the reference electrode were maintained at

<10 Ω by abrading the scalp with a blunt needle. The

EEG signals were amplified, band-pass filtered (0.01-50

Hz), digitized (sampling rate: 256 Hz, resolution: 22 bits),

and acquired in a common average reference mode using

two linked 32-channel bioamplifiers (NeXus-32, Mind

Media, Roermond-Herten, the Netherlands). A pair of
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custom-made electrogoniometers [22] were mounted

onto the anterior surface of each ankle and were used to

measure foot dorsifiexion (see Figure 1B). The goni-

ometer traces were acquired by a data acquisition system

(MP150, Biopac Systems, Goleta, CA) with a sampling

rate of 4 kHz and a resolution of 16 bits. Both the data

acquisition and experimental protocols were controlled

by custom-made Matlab (Mathworks, Natick, MA)

scripts. EEG data recorded during training procedures

were saved for offline analysis, while those recorded

Figure 1 Integrated BCI-FES system. (A) Block diagram of the integrated BCI-FES system. In response to visual cues, the subject performs

actions (idling or dorsifiexion), the underlying EEG data are analyzed by a BCI computer, and instructions are sent to a microcontroller unit

(MCU). The MCU controls an FES system that sends feedback to the subject by means of stimulation. (B) Experimental setup showing the subject

performing right foot dorsifiexion in response to visual cues displayed on the computer screen. EEG signals underlying this activity are recorded

by the EEG cap and sent to the bioamplifier, and then to the BCI computer for analysis. The computer sends commands to a commercial Food

& Drug Administration (FDA) approved FES device by means of the MCU. The FES device then stimulates the TA muscle of the foot, thereby

causing contralateral dorsifiexion. The inset shows the MCU connected to the neuromuscular stimulator and the placement of surface FES

electrodes. Also visible is a pair of custom-made electrogoniometers [22], used for measurement of both executed and BCI-FES mediated foot

dorsifiexion.

Do et al. Journal of NeuroEngineering and Rehabilitation 2011, 8:49

http://www.jneuroengrehab.com/content/8/1/49

Page 3 of 14



during online sessions were analyzed in real time (see

below).

Training Procedure

To achieve BCI control of the FES device and in turn

control foot dorsifiexion, the BCI system must be able

to reliably decode EEG signals associated with either

foot dorsifiexion or idling. To this end, a prediction

model was synthesized by first recording EEG signals

during alternating epochs of foot dorsifiexion and idling.

More specifically, each subject was seated in a chair,

approximately 0.8 to 1 m from a computer monitor,

which displayed instructional cues during all experimen-

tal procedures (see Figure 1B). Subjects were then

instructed to alternate between 6-sec epochs of idling

and repeated foot dorsifiexion. The frequency of dorsi-

fiexion was determined by the subject and ranged

between 6 and 9 dorsifiexion cycles per 6-sec epoch

(1.0-1.5 Hz). A total of 200 epochs (100 epochs per

class) were performed, with the procedure lasting

approximately 20 min. Finally, the above training proce-

dure was repeated using the opposite foot and the foot

that yielded the prediction model with the highest clas-

sification accuracy (see Offline Signal Analysis and Pre-

diction Model Generation section below) was chosen to

continue with the remainder of the study.

Offline Signal Analysis and Prediction Model Generation

Channels whose EEG signals were excessively contami-

nated by electromyogram (EMG) artifacts were excluded

from analysis. To this end, an iterative artifact rejection

algorithm was used, where channels whose EEG ampli-

tude exceeded an outlier voltage threshold in more than

25% of the total trials were removed. The outlier thresh-

old was nominally set to 6 standard deviations (SD)

from the mean, and was adaptively changed to keep the

number of outlier trials below a pre-specified number

(5% of all trials in the present study). The above proce-

dure was repeated until no more channels could be

removed. To minimize the effect of outliers on statistical

estimates, robust (i.e. median-based) mean and standard

deviation were used [23]. The above procedure typically

resulted in the exclusion of signals from circumferential

“hat band” electrodes which usually overlay the mastoid

process, the forehead, the occiput, and the temporalis

muscles. Upon artifact removal, a continuous 20-min

EEG record was split into 100 idle and 100 dorsifiexion

trials based on the corresponding electrogoniometer sig-

nals recorded simultaneously with EEG during the train-

ing procedure. Each EEG trial (~6 sec) was then

transformed into the frequency domain using the Fast

Fourier Transform (FFT), and its power spectral density

was integrated in 2 Hz bins centered at 1, 3, 5, · · ·, 49

Hz. This resulted in 25 binned power spectral values

per channel. A frequency search was then performed to

find the best contiguous frequency range for classifica-

tion. Initially, the full range of frequencies (0.01-50 Hz)

was used, resulting in a 25 × C dimensional data matrix,

where C is the number of retained EEG channels (C

ranged between 44 and 46 across all subjects). To facili-

tate subsequent classification, the dimension of input

data was reduced using a combination of classwise prin-

cipal component analysis (CPCA) [24,25] and approxi-

mate information discriminant analysis (AIDA) [26].

This resulted in the extraction of one-dimensional (1D)

spatio-spectral features:

f = TA�C(d) (1)

where d Î ℝ
25×C is single-trial EEG data, FC : ℝ25×C

®

ℝ
m is a piecewise linear mapping from the data space

into an m-dimensional CPCA-subspace, and TA : ℝm
®

ℝ is an AIDA transformation matrix. A detailed descrip-

tion of CPCA, AIDA, and a related information-theoretic

feature extraction technique can be found in [25-27],

respectively. A linear Bayesian classifier:

P(I|f⋆)

P(D|f⋆)

I

>

<

D

1 (2)

was then designed in the feature domain, where P(I|f ⋆)
and P(D|f ⋆) are the posterior probabilities1 of idling and

dorsifiexion classes, respectively. Equation (2) is read as:

“classify f⋆ as idling class if P(I|f ⋆) > P(D|f ⋆), and vice

versa.” The performance of the Bayesian classifier (2),

expressed as classification accuracy, was then assessed by

performing 5 runs of a stratified 10-fold cross-validation

[28].

The lower bound of the frequency range was then

increased in 2-Hz steps, and the above procedure was

repeated until the classifier performance stopped

improving. This defined the optimal lower frequency

bound, FL. Once FL was found, the optimal higher fre-

quency bound, FH, was found in a similar manner. The

parameters of the prediction model, including the

Table 1 Population Demographics

Subject Sex Age (yr) Dominant Side BCI Experience (hr)

1 F 24 L 20

2 M 40 R 10

3 M 29 R 5

4 M 28 R 0

5 F 56 R 5

The demographics of five able-bodied subjects. The columns list: subject

number, sex, age, dominant side (L-left, R-right), and number of hours of

relevant BCI experience.
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optimal frequency range, the feature extraction mapping,

and the classifier parameters, were then saved for real-

time EEG analysis necessary for online BCI-FES opera-

tion. Finally, the signal processing, feature extraction,

and classification algorithms were implemented into the

BCI software for real-time operation.

Online Signal Analysis

During online operation, 0.5 sec segments of EEG data

were acquired in real time at a frequency of two non-

overlapping segments per second. The EEG data seg-

ments were then processed as described in the previous

section. Briefly, the EEG signals were band-pass filtered

and the data from the artifact prone channels were

removed. The remaining data were transformed into the

frequency domain by FFT, and the power spectral densi-

ties (over the optimal frequency range) were calculated.

The spectral data were then used as an input for the

feature extraction algorithm, which resulted in the

extraction of 1D spatio-spectral features. The posterior

probabilities of idling and dorsifiexion classes given the

observed EEG features, were then calculated as

described in the previous section.

BCI-FES Integration

A low-cost, FDA-approved, constant-current neuromus-

cular stimulator (LG-7000, LG Medical Supplies, Austin,

TX) was used for functional electrical stimulation of the

neuromuscular system consisting of the deep peroneal

nerve and the TA muscle (see Figure 1B). To facilitate

BCI-FES integration, the stimulator’s manually con-

trolled “on/off” switch and analog potentiometer that

adjusted the amplitude of the stimulating current had to

be modified to allow computer control of the stimulator

(see Figure 2). To this end, the FES device’s analog

potentiometer was replaced with a digital potentiometer

by utilizing a General Pin Input Output (GPIO) inter-

face. Likewise, the switch function was emulated by

using a digital relay that kept the stimulating circuit

closed/open when electrical stimulation was/was not

intended. Both the digital potentiometer and the relay

were controlled by a microcontroller unit (Freescale

M52259, Freescale Semiconductors, Austin, TX) in a

master-slave configuration. More specifically, a custom-

made C-language program was used to instruct the

microcontroller unit (MCU) to listen for command

requests from the BCI computer via a DB9 serial port,

utilizing a universal asynchronous receiver/transmitter

protocol. These requests carried the information on

whether to turn the stimulator “on” or “off” (as deter-

mined by the prediction model), and the intensity of

electrical stimulation (as determined by the experimen-

ter). Based on the current relay and potentiometer

states, the MCU generated the appropriate signals

needed to achieve the desired result. For example, when

real-time EEG data were classified as “dorsifiexion,” the

BCI software sent a series of instructions to the MCU

that commanded the relay to close the stimulation cir-

cuit and the digital potentiometer to decrease its resis-

tance, thereby initiating electrical stimulation. This

continued until the real-time EEG data were decoded as

“idle,” upon which the BCI software sent a series of

instructions to the MCU to open the relay, thereby

opening the stimulation circuit and stopping the electri-

cal stimulation. During operation, the BCI-FES system

toggled between these two states.

Calibration

Prior to online BCI operation, a brief calibration proce-

dure was performed to determine the posterior prob-

ability thresholds for optimal online BCI-FES operation

so that the number of false state transitions is mini-

mized. Using the prediction model based on the training

data, the BCI-FES system was set to run in the online

mode without FES stimulation. Subjects were prompted

to alternate between 20-sec epochs of idling and repeti-

tive foot dorsifiexion for a total of 3 min. Meanwhile,

real-time EEG signal analysis was performed, and the

posterior probabilities of dorsifiexion and idling given

data, P(D|f ⋆) and P(I|f ⋆), were calculated every 0.5 sec,

as described in Online Signal Analysis section. The dis-

tributions of the posterior probabilities, P(D|f ⋆ ∈ I) and

P(D|f ⋆ ∈ D), were then empirically estimated as in

Figure 3. Since the BCI-FES system is a binary state

machine, two thresholds were chosen from the histo-

grams–one to trigger the transitions from “idle” to “dor-

sifiexion” state (T1 = median P(D|f ⋆ ∈ D)), and another

for the transitions from “dorsifiexion” to “idle” state

(T2 = median P(D|f ⋆ ∈ I)). During online BCI opera-

tion, the posterior probabilities P(D|f ⋆) were averaged

over a 1.5 sec period, and the average probabilities

P̄(D| f ⋆) were compared to the thresholds T1 and T2.

Depending on the present state, the transitions of the

BCI-FES system were governed by the rules as illu-

strated by the state-machine diagram in Figure 4.

Online BCI-FES Evaluation

Experimental Procedure

To evaluate the performance of the BCI-FES dorsifiex-

ion system, subjects engaged in a contralaterally-

controlled FES paradigm, similar to that described in

[21]. FES preparation included the application of self-

adhesive surface electrodes to the skin over the anterior

lateral lower leg, covering the approximate course of the

deep peroneal nerve, as illustrated in Figure 1B. Test

stimulation was used to confirm that the electrode

placement and chosen stimulation parameters were

adequate for effective foot dorsifiexion (~15° to 20°). The
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Figure 2 BCI-FES control module. (A) The block diagram shows a microcontroller unit (MCU) interfaced with a digital potentiometer (digipot)

and a relay. The digipot modulates the amplitude of the stimulating current, while the relay keeps the circuit between the surface FES

electrodes and the stimulator normally open. The relay circuit closes when it receives a logical high from the MCU (coinciding with the

detection of dorsifiexion state by the BCI computer). For safety reasons, a manually operated emergency power-off (EPO) switch is added to the

stimulator power supply circuit. (B) The circuit diagram of the BCI-FES control module showing detailed wiring scheme. The digipot’s resistance

changes from 0 kΩ to 50 kΩ, thereby changing the amplitude of the stimulating current from 0 mA to 100 mA. Not shown in (A) is a field-effect

transistor (BS170), used to ensure proper power-on sequence for the digipot.
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stimulation parameters, including current amplitude,

pulse width, and frequency, were empirically determined

to achieve the required foot dorsifiexion without causing

discomfort to the subject.

To ascertain purposeful control of the BCI-FES sys-

tem, subjects performed ten alternating 10-sec epochs of

idling and repetitive dorsifiexion of the optimally chosen

foot (see Training Procedure section) to induce BCI-FES

mediated dorsifiexion of the contralateral foot. Since the

present study focused on able-bodied subjects, an ipsi-

laterally controlled FES paradigm was not used due to

the inability to resolve voluntary and BCI-FES mediated

dorsifiexion. Instructions to perform this task were

shown as textual cues on the computer screen. Both

voluntary and BCI-FES mediated foot dorsifiexion were

measured by electrogoniometers.

Performance Analysis

The analysis of online BCI-FES operation was performed

by comparing the epochs of voluntary and BCI-FES

mediated foot dorsifiexion. For this purpose, the read-

ings from the two electrogoniometers (see Figure 1)

were first smoothed by a 100-msec Gaussian window,

and epochs of foot dorsifiexion and idling were deter-

mined by a threshold crossing. A time series, x, describ-

ing voluntary foot dorsifiexion was then defined as:

x[i] =

{

0, if i ∈ I

1, if i ∈ D
(3)

where i = 1, 2, · · ·, N, and N is the number of samples

in the goniometer trace. A time series, y, describing

BCI-FES mediated foot dorsifiexion, was defined in a

similar manner. The normalized cross-covariance func-

tion between the time series x and y was then calculated

as:

ρ(m) =

∑N
i=1 (x[i + m] − x̄)(y[i] − ȳ)

√

∑N
i=1 (x[i] − x̄)2

√

∑N
i=1 (y[i] − ȳ)2

(4)

where m Î [-N + 1, N - 1] is the lag between the

sequences x and y, and x̄ and ȳ are the sample means of

the two sequences, respectively. The latency between

voluntary and BCI-FES mediated foot dorsifiexion was

then found as the lag with maximal cross-covariance, i.e.

m⋆ = arg maxm r(m). Subsequently, the temporal corre-

lation between x and y was found to be: r⋆ = r(m⋆). In

addition, the absence of a BCI-FES mediated foot dorsi-

fiexion epoch initiated within the duration of any volun-

tary foot dorsifiexion epoch was considered an omission.

Finally, the initiation of a BCI-FES mediated foot dorsi-

fiexion epoch within any idling epoch was considered a

false alarm.

Results and Discussion

Results

Offline Performance

Each subject underwent training data collection as

described in the Methods section. The EEG data asso-

ciated with epochs of idling and repetitive foot dorsifiex-

ion were analyzed and classified using the prediction

model generated from this analysis. The input data for

the prediction model were the powers of multi-channel

EEG signals calculated in 2-Hz bins. The optimal sub-

ject-specific EEG frequency bands (see Table 2) were

found using the procedure described in the Methods

section, and included the μ (8-13 Hz), b (13-30 Hz) and

low-g (30-38 Hz) bands for Subject 1, high-b (22-30 Hz)

and low-g (30-50 Hz) bands for Subject 2, μ, b and low-

g (30-50 Hz) bands for Subject 3, μ and b bands for

Subject 4, and μ, b and low-g (30-50 Hz) bands for

Subject 5.

The offline performance was evaluated by performing

10-fold cross-validation, and a classification accuracy

Figure 3 Histograms of the posterior class probabilities for

subject B. Based on the known underlying action (idling or

dorsifiexion), the distributions of the posterior probabilities,

P(D|f ⋆ ∈ I) and P(D|f ⋆ ∈ D), are empirically estimated as

histograms. Dashed lines indicate the 25%, 50%, and 75% quartiles,

where the 25% and 50% quartiles for P(D|f ⋆ ∈ I) overlap. Note

that P(D|f ⋆ ∈ I) = 1 − P(I|f ⋆ ∈ I).

Figure 4 Finite state machine diagram of the online BCI-FES

system operation. The BCI-FES system is a binary state machine

with idling and dorsifiexion states represented by circles. The state

transitions are represented by the arrows, with transitions triggered

by the conditions shown next to the arrows. The transitions are

executed every 0.5 sec. Self-pointing arrows denote that the system

remains in the present state.
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ranging from 85.1% to 97.6% was achieved (see Table 2).

These results are statistically significant, as the probabil-

ity of achieving the performance ≥ 85%, i.e. correctly

classifying 170 or more trials (out of 200) by random

chance, is only 3.0866 × 10-25. Note that cross-validation

provides a safeguard against prediction model overfitting

by ensuring that classification accuracy observed offline

generalizes to future online sessions.

Analysis of subject-specific prediction models demon-

strated that the EEG power changes in the b-band

observed over mid-central areas (i.e. electrode Cz) were

the most informative features for classification (see Figure

5). These findings were confirmed by examining the

power spectrum of EEG signals at Cz under both idling

and dorsifiexion conditions (see Figure 6), where a pro-

minent event-related desynchronization (loss of power)

was observed over a broad frequency band. These

observations are consistent with prior studies, where

similar event-related desynchronization was observed

upon initiation or imagination of movement [29-31].

Online BCI-FES Performance

Surface electrode placement for effective FES-induced

dorsifiexion was confirmed prior to online BCI evalua-

tion for all subjects. In general, stimulation parameters

depend on skin impedance, muscle mass, and the sub-

jects’ electrical stimulation tolerance, and were therefore

chosen empirically for each subject while ensuring that

~15°-20° of foot dorsifiexion was achieved. The subject-

specific stimulation parameters are summarized in Table

2. In addition, prior to online BCI-FES evaluation, a test

FES procedure was performed and no FES interference

was visible on the EEG signals.

During online BCI-FES operation, each subject

performed repetitive dorsifiexion of their optimally

Table 2 Overall Performances

Subject Foot EEG-band (Hz) Classification Accuracy Current (mA) Pulse Width (μsec) Frequency (Hz) Lag (sec) r
⋆ OM FA

1 R [8-38] 94.4% 100 140 20 3.1 0.67 0 0

2 L [22-50] 97.6% 100 200 30 1.4 0.72 0 0

3 L [8-50] 85.1% 90 200 30 2.7 0.59 0 1

4 R [8-30] 91.9% 88 200 20 3.0 0.62 0 0

5 R [10-50] 93.6% 100 120 20 2.9 0.77 0 0

The performances of five subjects. The columns list: the foot that was voluntarily dorsiflexed, the EEG frequency band that was used for classification, (offline)

classification accuracy as established by 10-fold cross-validation, the stimulating current amplitude, its pulse width and frequency, (online) lag between voluntary

and BCI-FES-mediated dorsifiexion epochs, temporal correlation between these epochs (r⋆) calculated at the corresponding lags, omissions (OM), and false alarms

(FA).

Figure 5 Topographic distribution of spectral features. Feature extraction mapping at high-b band (two-Hz bin centered at 29 Hz) for

subject B. Values close to +1 and -1 indicate brain areas of importance for classifying EEG data into idling and dorsifiexion classes. Since our

feature extraction mapping is piecewise linear, there are two maps; one adapted to idling class (left) and one adapted to dorsifiexion class

(right). Note that both maps feature the area around the Cz-electrode as prominent, indicating the importance of this brain area at this particular

frequency for distinguishing between idling and foot dorsifiexion.
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chosen foot to induce BCI-FES-mediated dorsifiexion of

the contralateral foot. More specifically, each 0.5 sec

segment of EEG data was acquired and analyzed as

explained in the Methods section, and based on this

analysis, the computer instructed the FES system to

respond. The basic steps of this procedure applied to

the training data are illustrated in Figure 7.

The online performances are quantified by four cri-

teria: (i) lag between actual and BCI-FES-mediated dor-

sifiexion epochs, (ii) temporal correlation (at the

corresponding lag value) between these epochs, (iii)

number of omissions, and (iv) number of false alarms.

Figure 8 shows the best online session for Subject 2.

All subjects performed the task with no omissions

(100% BCI-FES response). However, BCI-FES-mediated

dorsifiexion epochs typically lag behind the actual dorsi-

fiexion epochs, and the average values of this latency

ranged from 1.4 sec to 3.1 sec across all subjects (see

Table 2). Temporal correlations between the voluntary

and BCI-FES-mediated dorsifiexion epochs ranged

between 0.59 and 0.77, and are also shown in Table 2.

The statistical significance of these results was con-

firmed by running 10,000 Monte Carlo simulation trials

with a chance level classification accuracy (50%). The

maximum correlation coefficient obtained from the

simulation was 0.41, and therefore even the lowest

correlation coefficient of 0.59 is significant with a

p-value <10-4.

The correlation coefficient measures the temporal

consistency between voluntary foot dorsifiexion and the

corresponding BCI-FES-mediated dorsifiexion response.

Note that its value is normalized between -1 and 1, and

appears to correlate with offline accuracy. For example,

Subjects 2 and 5, who achieved the highest offline classi-

fication accuracy, also had the highest correlation coeffi-

cients. Conversely, Subject 3 achieved the lowest

classiffication accuracy and correlation coefficient. This

drop in online performance may be attributed to a sin-

gle false alarm (see Table 2). Subjects 1, 2, 4 and 5, on

the other hand, had no false alarms.

Discussion

This study reports on the first successful integration of a

noninvasive EEG-based BCI with a noninvasive FES sys-

tem for the lower extremities. The performance of the

integrated BCI-FES system was tested in a population of

five able-bodied subjects, utilizing a contralaterally-con-

trolled FES paradigm [21] where subjects performed

repetitive dorsifiexion of their optimally chosen foot to

trigger BCI-FES-mediated dorsifiexion of the contralateral

foot. This paradigm was chosen since ipsilateral dorsifiex-

ion and stimulation in able-bodied subjects would pro-

duce confounding results, as it would be difficult to

resolve voluntary and BCI-FES-induced movements.

During the training procedures, the subjects were

instructed to refrain from excessive face, mouth and eye

movements. However, natural movements associated

with normal seated behavior (eye blinks, swallowing,

small eye and facial movements) were permitted. Note

that these movements are not expected to cause any

systematic error as long as they are not synchronized

with either dorsifiexion or idling. To support this claim,

Subject 4 was also fitted with electrooculogram (EOG)

and EMG electrodes for simultaneous recording of eye

and facial muscle movements during the training proce-

dure. Analogous to EEG data, EMG/EOG data were

used to design a prediction model. The performance of

this classifier was 53%, which was not statistically differ-

ent (p-value: 0.22) from the chance level performance

(50%). In summary, since idling and dorsifiexion could

not be predicted from EMG/EOG signals, it is thus

extremely unlikely that EEG was contaminated by EOG/

EMG artifacts in a systematic manner. Finally, the active

shielding feature of our EEG system minimized the elec-

tromagnetic interference due to cable movements and

mechanical vibrations.

Offline analysis of EEG signals corresponding to

epochs of repetitive foot dorsifiexion and idling collected

Figure 6 Power spectral density at electrode Cz. A broadband

(8-50 Hz) desynchronization of EEG signals at electrode Cz for

subject B. Red and blue traces denote the average (n = 100) power

spectra of EEG signals under idling and foot dorsifiexion conditions,

respectively. The shades represent ±1 SEM (standard error of mean)

bounds. Black trace represents the signal-to-noise ratio (SNR),

defined as in [36]: SNR(f ) =
(μi(f )−μd(f ))2

σ
2
i (f )+σ

2
d (f )

, where f is the

frequency, μi(f) and μd(f) are the average powers at the frequency f

under idling and dorsifiexion conditions, respectively, and σ
2
i (f )

and σ
2
d (f ) are the corresponding variances. The values of SNR

above the magenta line define the frequencies with statistically

significant difference between μi(f) and μd(f) (p <0.01, paired t-test).
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during the training procedures revealed that the EEG

power in the μ, b and low-g bands were responsible for

encoding the differences between idling and dorsifiexion

states. The change in the signal power was mostly

observed over the mid-central area, which likely corre-

sponds to activity within the primary motor cortex’s

foot representation area (located in the interhemispheric

fissure of the brain) and/or supplementary motor area.

This was further confirmed by examining the feature

extraction maps of the prediction models (see Figure 5),

which indicated that mid-central brain areas played a

prominent role in classifying idling and dorsifiexion

states. While these results are not surprising from a

brain anatomy standpoint, it should be noted that our

prediction model is entirely data driven, and so these

observations underscore the physiological and

anatomical plausibility of our feature extraction map. It

should also be noted that these spatio-spectral EEG sig-

nal features are consistent with prior studies [29,30].

Consequently, idling and dorsifiexion epochs could be

predicted from the underlying multi-channel EEG data

with an accuracy as high as 97.6%, and all subjects

achieved performances that were significantly above ran-

dom chance.

The results achieved online demonstrate that BCI-

FES-mediated foot dorsifiexion can be reliably controlled

using a contralateral control paradigm in a small popu-

lation of able-bodied individuals. In general, this study

suggests that the integration of a noninvasive BCI with a

lower-extremity FES system is feasible. In addition to

achieving excellent performances, all subjects were able

to assume immediate control of the interface, requiring

Figure 7 Online EEG classification illustrated on training data. (A) A goniometer trace delineating idling and dorsifiexion states. (B) The

corresponding EEG signal trace recorded at the Cz electrode. (C),(D) One-dimensional spatio-spectral EEG features extracted using Eq. (1) shown

in the subspaces corresponding idling (I) and dorsifiexion (D) states, respectively. The pink and green bands represent the mean ± 2 standard

deviations (SD) of features corresponding to idling and dorsifiexion training data, respectively. (E) The average posterior probability of dorsifiexion

given feature, f⋆. Dashed lines correspond to the thresholds, T1 (green) and T2 (red) as determined in the Calibration section. As outlined in Fig.

4, when the average posterior probability P̄(D| f ⋆) > T1, the BCI-FES system transitions to dorsifiexion state (shown as green block).

Conversely, when P̄(D| f ⋆) > T2, the BCI-FES system transitions to idling state (pink block).
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only a single, short 20 min training session to develop a

prediction model, and a single 3 min calibration session

(see Methods section). It should be noted that the high

performances achieved offline generally transferred into

robust online BCI-FES operation, indicating that our

cross-validation procedure selected the correct predic-

tion model without overfitting. It should also be noted

that since the prediction model was designed based on

data largely free of any systematic artifacts, activities

such as teeth clenching, grimacing, and other forms of

“cheating” are likely to be ineffective in the online ses-

sion, since the model was not designed to recognize

them. Similarly, other electrophysiological artifacts of

cortical origin (e.g. epileptic discharges) are unlikely to

affect the system’s online performance. Finally, the FES-

elicited movements during online operation did not

interfere with the control of the BCI system. For exam-

ple, upon cessation of voluntary foot dorsifiexion, it is

conceivable that EEG signals due to FES-elicited move-

ments may be confused with those of voluntary move-

ments, which may in turn confuse the classifier and

cause the system to remain in the dorsifiexion state.

This type of positive feedback, however, was not

observed, perhaps because the EEG signals underlying

these types of movements were sufficiently different and

did not get misclassified. These differences may reflect

spatial separation of cortical representations of FES-

induced passive movements (likely localized to sensory

cortex areas) and of voluntary movements (originating

from more anterior brain motor areas).

Future Directions

This BCI-FES dorsifiexion system may be used in a

future seated therapeutic exercise that can facilitate

neural repair in stroke, SCI, or TBI patients who are

affected by foot-drop. By pairing activation of motor

Figure 8 Online performances of a representative subject. (A) Blue trace marks the 10 epochs of 10-sec-long repetitive foot dorsifiexion for

Subject 2, and red trace marks the epochs of BCI-FES mediated dorsifiexion of the contralateral foot. (B) The inset of a single dorsifiexion epoch

[dashed box in (A)] showing the goniometer trace corresponding to 15 dorsifiexion cycles (blue) and BCI-FES-mediated dorsifiexion (red).
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cortex associated with attempted, but impaired dorsi-

fiexion, with electrical stimulation of foot dorsifiexion

motor pools (via antidromic electrical stimulation of the

deep peroneal nerve), it can be hypothesized that spared

connections between the post injury motor cortex and

the motor pools of foot dorsifiexion will be reinforced

in a Hebbian manner. This hypothesized plasticity pro-

cess associated with BCI-FES use may thereby translate

into the improvement of unassisted dorsifiexion strength

and gait function in this patient population. Since many

patients with stroke, TBI, or SCI may have non-classical

foot motor representation due to post-injury reorganiza-

tion, the use of the data-driven method described in the

current work to generate a “personalized” EEG predic-

tion model for each subject will be of particular

importance.

While the performance of the current system was

tested in a contralaterally-controlled FES paradigm, its

practical application in individuals with paralysis due to

neurological injury will require utilization of an ipsilater-

ally-controlled FES paradigm, whereby attempted move-

ment of the paralyzed limb acts as the control strategy

for its own BCI-FES mediated movement. Additional

studies will need to be undertaken in individuals with

foot-drop due to central neurological injury in order to

assess the utility of this paradigm.

The hypothesized applicability towards neuro-rehabili-

tation by utilizing an ipsilaterally-controlled FES para-

digm to induce Hebbian neural recovery raises

significant concerns about eliminating the latency

between the onset of voluntary movement and BCI-FES

mediated movement. The observed latency is partly

caused by the averaging of posterior probability over 1.5

sec period (see Calibration section) during online opera-

tion. Reducing the averaging window may help decrease

this latency, although perhaps at the expense of lowering

the online performance (higher false positive and omis-

sion rates). Note that the observed latency is also consis-

tent with a natural delay of maximal event-related

desynchronization and synchronization of EEG sensori-

motor rhythms [30,32], and it may be partially responsi-

ble for the delay in the BCI-FES system response. A

potential solution to this problem may be to use our

data-driven algorithm to search for relevant time

domain EEG features, such as readiness potentials [33].

These slow negative potential shifts may be observed as

early as 1 sec before the initiation of a self-paced motor

behavior [33], and they can potentially be used for early

classification of dorsifiexion and idling. Also, a combina-

tion of temporal and spectral features may be used in

the future to eliminate the latency while ensuring high

performance. However, further research is required, as

changes in both the training paradigm and signal pro-

cessing methodology will need to be implemented such

that novel EEG features associated with movement

intentions can be reliably detected.

Finally, the ideal BCI-FES system should mimic foot

dorsifiexion in a 1:1 temporal fashion, in which a single

foot dorsifiexion cycle (as opposed to current repetitive

dorsifiexion) translates into a single BCI-FES mediated

dorsifiexion cycle. To achieve this, changes in both the

training paradigm and signal processing methodology

will need to be implemented such that transient EEG

changes associated with foot dorsifiexion and relaxation

can be reliably detected and utilized to govern the BCI-

FES system’s state transitions. In summary, all of the

above improvements and revisions would conceivably

result in a more intuitive BCI neuroprosthesis and could

lead to a seated therapeutic foot dorsifiexion exercise

for individuals who suffer from foot-drop due to a cen-

tral nervous system injury.

Conclusions

The present study demonstrates that the integration of a

noninvasive EEG-based BCI system with a noninvasive

FES system for the lower extremities is feasible. The

integrated BCI-FES system shows that EEG signals can

be used to enable direct brain control of foot dorsifiex-

ion via FES. This further suggests that it may be feasible

to utilize BCI-FES systems to restore lost motor func-

tion of the lower extremities in patients with neurologi-

cal injury. While the performance of the current system

was tested in a contralaterally-controlled FES paradigm,

its practical application in individuals with paralysis

due to neurological injury will require the utilization

of an ipsilaterally-controlled FES paradigm, whereby

attempted movement of the paralyzed limb acts as the

control strategy for its own BCI-FES mediated move-

ment. Despite the presence of neurological injury (e.g.

stroke, SCI, or TBI), and regardless of its extent and

location, EEG spatio-spectral signal features discriminat-

ing attempted foot dorsifiexion and resting states are

still expected to be present [34,35] and exploitable for

BCI control by using a data-driven method for generat-

ing “personalized” prediction models. If the elimination

of delay and the implementation of a 1:1 attempted ipsi-

lateral-BCI-FES dorsifiexion paradigm are successful,

BCI-FES systems will likely prove useful in the neuro-

rehabilitation of individuals with lower extremity paraly-

sis due to neurological injury.

Endnotes
1The conditional probability of event A given event B,

denoted by P(A|B), is the probability of the event A

given that the event B has happened. The posterior

probability of idling class, denoted by P(I|f ⋆), is the

conditional probability of idling class given that the

value f⋆ of the feature f was observed. The posterior
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probability of dorsifiexion class, P(D|f ⋆), is defined

similarly.
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