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Abstract 

Background: Hand rehabilitation is core to helping stroke survivors regain activities of daily living. Recent studies 
have suggested that the use of electroencephalography-based brain-computer interfaces (BCI) can promote this 
process. Here, we report the first systematic examination of the literature on the use of BCI-robot systems for the reha-
bilitation of fine motor skills associated with hand movement and profile these systems from a technical and clinical 
perspective.

Methods: A search for January 2010–October 2019 articles using Ovid MEDLINE, Embase, PEDro, PsycINFO, IEEE 
Xplore and Cochrane Library databases was performed. The selection criteria included BCI-hand robotic systems for 
rehabilitation at different stages of development involving tests on healthy participants or people who have had a 
stroke. Data fields include those related to study design, participant characteristics, technical specifications of the 
system, and clinical outcome measures.

Results: 30 studies were identified as eligible for qualitative review and among these, 11 studies involved testing a 
BCI-hand robot on chronic and subacute stroke patients. Statistically significant improvements in motor assessment 
scores relative to controls were observed for three BCI-hand robot interventions. The degree of robot control for the 
majority of studies was limited to triggering the device to perform grasping or pinching movements using motor 
imagery. Most employed a combination of kinaesthetic and visual response via the robotic device and display screen, 
respectively, to match feedback to motor imagery.

Conclusion: 19 out of 30 studies on BCI-robotic systems for hand rehabilitation report systems at prototype or pre-
clinical stages of development. We identified large heterogeneity in reporting and emphasise the need to develop a 
standard protocol for assessing technical and clinical outcomes so that the necessary evidence base on efficiency and 
efficacy can be developed.
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Background
�ere is growing interest in the use of robotics within 

the field of rehabilitation. �is interest is driven by 

the increasing number of people requiring rehabilita-

tion following problems such as stroke (with an ageing 

population), and the global phenomenon of insufficient 

numbers of therapists able to deliver rehabilitation 

exercises to patients [1, 2]. Robotic systems allow a 

therapist to prescribe exercises that can then be guided 

by the robot rather than the therapist. An important 

principle within the use of such systems is that the 

robots assist the patient to actively undertake a pre-

scribed movement rather than the patient’s limb being 

moved passively. �is means that it is necessary for the 

system to sense when the patient is trying to gener-

ate the required movement (given that, by definition, 
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the patient normally struggles with the action). One 

potential solution to this issue is to use force sensors 

that can detect when the patient is starting to generate 

the movement (at which point the robot’s motors can 

provide assistive forces). It is also possible to use meas-

ures of muscle activation (EMGs) to detect the intent 

to move [3]. In the last two decades there has been a 

concerted effort by groups of clinicians, neuroscien-

tists and engineers to integrate robotic systems with 

brain signals correlated with a patient trying to actively 

generate a movement, or imagine a motor action, to 

enhance the efficacy and effectiveness of stroke rehabil-

itation- these systems fall under the definition of Brain 

Computer Interfaces, or BCIs [4].

BCIs allow brain state-dependent control of robotic 

devices to aid stroke patients during upper limb therapy. 

While BCIs in their general form have been in develop-

ment for almost 50 years [5] and were theoretically made 

possible since the discovery of the scalp-recorded human 

electroencephalogram (EEG) in the 1920s [6], their appli-

cation to rehabilitation is more recent [7–9]. Graimann 

et al. [10] defined a BCI as an artificial system that pro-

vides direct communication between the brain and a 

device based on the user’s intent; bypassing the normal 

efferent pathways of the body’s peripheral nervous sys-

tem. A BCI recognises user intent by measuring brain 

activity and translating it into executable commands usu-

ally performed by a computer, hence the term “brain–

computer interface”.

Most robotic devices used in upper limb rehabilita-

tion exist in the form of exoskeletons or end-effectors. 

Robotic exoskeletons (i.e., powered orthoses, braces) are 

wearable devices where the actuators are biomechanically 

aligned with the wearer’s joints and linkages; allowing the 

additional torque to provide assistance, augmentation 

and even resistance during training [11]. In comparison, 

end-effector systems generate movement through apply-

ing forces to the most distal segment of the extremity 

via handles and attachments [11]. Rehabilitation robots 

are classified as Class II-B medical devices (i.e., a thera-

peutic device that administers the exchange of energy, 

mechanically, to a patient) and safety considerations are 

important during development [12, 13]. Most commer-

cial robots are focused on arms and legs, each offering a 

unique therapy methodology. �ere is also a category of 

device that target the hand and finger. While often less 

studied than the proximal areas of the upper limb, hand 

and finger rehabilitation are core component in regaining 

activities of daily living (ADL) [14]. Many ADLs require 

dexterous and fine motor movements (e.g. grasping and 

pinching) and there is evidence that even patients with 

minimal proximal shoulder and elbow control can regain 

some hand capacity long-term following stroke [15].

�e strategy of BCI-robot systems (i.e. systems that 

integrate BCI and robots into one unified system) in 

rehabilitation is to recognise the patient’s intention to 

move or perform a task via a neural or physiological sig-

nal, and then use a robotic device to provide assistive 

forces in a manner that mimics the actions of a therapist 

during standard therapy sessions [16]. �e resulting feed-

back is patient-driven and is designed to aid in closing 

the neural loop from intention to execution. �is process 

is said to promote use-dependent neuroplasticity within 

intact brain regions and relies on the repeated experi-

ence of initiating and achieving a specified target [17, 18]; 

making the active participation of the patient in perform-

ing the therapy exercises an integral part of the motor re-

learning process [19, 20].

�e aforementioned scalp-recorded EEG signal is a 

commonly used instrument for data acquisition in BCI 

systems because it is non-invasive, easy to use and can 

detect relevant brain activity with high temporal reso-

lution [21, 22]. In principle, the recognition of motor 

imagery (MI), the imagination of movement without 

execution, via EEG can allow the control of a device inde-

pendent of muscle activity [10]. It has been shown that 

MI-based BCI can discriminate motor intent by detect-

ing event-related spectral perturbations (ERSP) [23, 24] 

and/or event-related desynchronisation/synchronisation 

(ERD/ERS) patterns in the µ (9–11 Hz) and β (14–30 Hz) 

sensorimotor rhythm of EEG signals [24]. However, EEG 

also brings with it some challenges. �ese neural mark-

ers are often concealed by various artifacts and may be 

difficult to recognise through the raw EEG signal alone. 

�us, signal processing (including feature extraction and 

classification) is a vital part of obtaining a good MI sig-

nal for robotic control. A general pipeline for EEG data 

processing involves several steps. First, the data undergo 

a series of pre-processing routines (e.g., filtering and 

artifact removal) before feature extraction and classi-

fication for use as a control signal for the robotic hand. 

�ere are variety of methods to remove artifact from 

EEG and these choices depend on the overall scope of the 

work [25]. For instance, Independent Component Anal-

ysis (ICA) and Canonical Correlation Analysis (CCA) 

can support real-time applications but are dependent 

on manual input. In contrast, regression and wavelet 

methods are automated but support offline applications. 

�ere also exist automated and real-time applications 

such as adaptive filtering or using blind source separa-

tion (BSS) based methods. Recently, the research com-

munity has been pushing real-time artifact rejection by 

reducing computational complexity e.g. Enhanced Auto-

matic Wavelet-ICA (EAWICA) [26], hybrid ICA—Wave-

let transform technique (ICA-W) [27] or by developing 

new approaches such as adaptive de-noising frameworks 
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[28] and Artifact Subspace Reconstruction (ASR) [29]. 

Feature extraction involves recognising useful informa-

tion (e.g., spectral power, time epochs, spatial filter-

ing) for better discriminability among mental states. For 

example, the common spatial patterns (CSP) algorithm 

is a type of spatial filter that maximises the variance of 

band pass-filtered EEG from one class to discriminate it 

from another [30]. Finally, classification (which can range 

from linear and simple algorithms such as Linear Discri-

minant Analysis (LDA), Linear Support Vector Machine 

(L-SVM) up to more complex techniques in deep learn-

ing such as Convolutional Neural Networks (CNN) and 

Recurrent Neural Networks (RNN) [31, 32] involves the 

translation of these signals of intent to an action that pro-

vides the user feedback and closes the loop of the motor 

intent-to-action circuit.

�e potential of MI-based BCIs has gained consid-

erable attraction because the neural activity involved 

in the control of the robotic device may be a key com-

ponent in the rehabilitation itself. For example, MI of 

movement is thought to activate some of the neural net-

works involved in movement execution (ME) [33–36]. 

�e resulting rationale is that encouraging the use of MI 

could increase the capacity of the motor cortex to con-

trol major muscle movements and decrease the necessity 

to use neural circuits damaged post-stroke. �e scientific 

justification for this approach was first provided by Jean-

nerod [36] who suggested that the neural substrates of 

MI are part of a shared network that is also activated dur-

ing the simulation of action by the observation of action 

(AO) [36]. �ese ‘mirror neuron’ systems are thought to 

be an important component of motor control and learn-

ing [36]—hence the belief that activating these systems 

could aid rehabilitation. �e use of a MI-BCI to control 

a robot in comparison to traditional MI and physical 

practice provides a number of benefits to its user and the 

practitioner. �ese advantages include the fact that the 

former can provide a more streamlined approach such 

as sensing physiological states, automating visual and/or 

kinaesthetic feedback and enriching the task and increas-

ing user motivation through gamification. �ere are also 

general concerns around the utility of motor imagery 

without physical movement (and the corresponding mus-

cle development that comes from these) and it is possi-

ble that these issues could be overcome through a control 

strategy that progressively reduces the amount of support 

provided by the MI-BCI system and encourages active 

motor control [37, 38].

A recent meta-analysis of the neural correlates of action 

(MI, AO and ME) quantified ‘conjunct’ and ‘contrast’ net-

works in the cortical and subcortical regions [33]. �is 

analysis, which took advantage of open-source historical 

data from fMRI studies, reported consistent activation in 

the premotor, parietal and somatosensory areas for MI, 

AO and ME. Predicated on such data, researchers have 

reasoned that performing MI should cause activation of 

the neural substrates that are also involved in control-

ling movement and there have been a number of research 

projects that have used AO in combination with MI in 

neurorehabilitation [39–41] and motor learning studies 

[42, 43] over the last decade.

One implication of using MI and AO to justify the 

use of BCI approaches is that great care must be taken 

with regard to the quality of the environment in which 

the rehabilitation takes place. While people can learn 

to modulate their brain rhythms without using motor 

imagery and there is variability across individuals in their 

ability to imagine motor actions, MI-driven BCI sys-

tems require (by design at least) for patient to imagine a 

movement. Likewise, AO requires the patients to clearly 

see the action. �is suggests that the richness and vivid-

ness of the visual cues provided is an essential part of an 

effective BCI system. It is also reasonable to assume that 

feedback is important within these processes and thus 

the quality of feedback should be considered as essen-

tial. Afterall, MI and AO are just tools to modulate brain 

states [40] and the effectiveness of these tools vary from 

one stroke patient to another [44]. Finally, motivation 

is known to play an important role in promoting active 

participation during therapy [20, 45]. �us, a good BCI 

system should incorporate an approach (such as gaming 

and positive reward) that increases motivation. Recent 

advances in technology make it far easier to create a 

rehabilitation environment that provides rich vivid cues, 

gives salient feedback and is motivating. For example, the 

rise of immersive technologies, including virtual real-

ity (VR) and augmented reality (AR) platforms [45–47], 

allows for the creation of engaging visual experiences 

that have the potential to improve a patient’s self-efficacy 

[48] and thereby encourage the patient to maintain the 

rehabilitation regime. One specific example of this is vis-

ually amplifying the movement made by a patient when 

the movement is of limited extent so that the patient can 

see their efforts are producing results [49].

In this review we set out to examine the literature to 

achieve a better understanding of the current value and 

potential of BCI-based robotic therapy with three spe-

cific objectives:

(1) Identify how BCI technologies are being utilised in 

controlling robotic devices for hand rehabilitation. 

Our focus was on the study design and the tasks 

that are employed in setting up a BCI-hand robot 

therapy protocol.

(2) Document the readiness of BCI systems. Because 

BCI for rehabilitation is still an emerging field of 
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research, we expected that most studies would be 

in their proof-of-concept or clinical testing stages 

of development. Our purpose was to determine the 

limits of this technology in terms of: (a) resolution 

of hand MI detection and (b) the degree of robotic 

control.

(3) Evaluate the clinical significance of BCI-hand robot 

systems by looking at the outcome measures in 

motor recovery and determine if a standard proto-

col exists for these interventions.

It is important to note that there have been several 

recent reviews exploring BCI for stroke rehabilitation. 

For example, Monge-Pereira et al. [50] compiled EEG-

based BCI studies for upper limb stroke rehabilitation. 

�eir systematic review (involving 13 clinical studies on 

stroke and hemiplegic patients) reported on research 

methodological quality and improvements in the motor 

abilities of stroke patients. Cervera et  al. [51] per-

formed a meta-analysis on the clinical effectiveness of 

BCI-based stroke therapy among 9 randomised clinical 

trials (RCT). McConnell et al. [52] undertook a narra-

tive review of 110 robotic devices with brain–machine 

interfaces for hand rehabilitation post-stroke. �ese 

reviews, in general, have reported that such systems 

provide improvements in both functional and clini-

cal outcomes in pilot studies or trials involving small 

sample sizes. �us, the literature indicates that EEG-

based BCI are a promising general approach for reha-

bilitation post-stroke. �e current work complements 

these previous reports by providing the first systematic 

examination on the use of BCI-robot systems for the 

rehabilitation of fine motor skills associated with hand 

movement and profiling these systems from a technical 

and clinical perspective.

Methods
Protocol registration

Details of the protocol for this systematic review were 

registered on the International Prospective Regis-

ter of Systematic Reviews (PROSPERO) and can be 

accessed at http://www.crd.york.ac.uk/PROSP ERO (ID: 

CRD42018112107).

Search strategy and eligibility

An in-depth search of articles from January 2010 to 

October 2019 was performed on Ovid MEDLINE, 

Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane 

Library. Only full-text articles published in English were 

selected for this review. Table 1 shows the combination of 

keywords used in the literature searching.

�e inclusion criteria for the articles were: (1) publi-

cations that reported the development of an EEG-based 

BCI; (2) studies targeted towards the rehabilitation of the 

hand after stroke; (3) studies that involved the use of BCI 

and a robotic device (e.g., exoskeleton, end-effector type, 

platform-types, etc.); (4) studies that performed a pilot 

test on healthy participants or a clinical trial with people 

who have had a stroke. �e articles were also screened 

for the following exclusion criteria: (1) studies that tar-

geted neurological diseases other than stroke; (2) studies 

that used other intention sensing mechanisms (electro-

myography/EMG, electrooculography/EOG, non-paretic 

hand, other body parts, etc.).

Two authors performed independent screenings of 

titles and abstracts based on the inclusion and exclusion 

criteria. �e use of a third reviewer was planned a priori 

in cases where a lack of consensus existed around eligi-

bility. However, consensus was achieved from the first 

two authors during this stage. Full-text articles were then 

obtained, and a second screening was performed until 

a final list of studies was agreed to be included for data 

extraction.

Data extraction

�e general characteristics of the study and their corre-

sponding results were extracted from the full-text articles 

by the reviewers following the Preferred Reporting Items 

for Systematic Reviews and Meta-Analysis (PRISMA) 

checklist. Data fields were extracted and categorised as 

follows:

• Participant characteristics: sample population, 

healthy or stroke patients, handedness, age, sex, acute 

or chronic stroke classification, and mean duration 

since stroke

• Study design: general description of study design, 

experimental and control groups

Table 1 Keyword combinations

Set 1 (OR) Set 2 (OR) Set 3 (OR)

Brain–computer interface/BCI
Electroencephalography/EEG
Brain–machine interface/BMI
Neural control interface
Mind–machine interface

AND Stroke (rehabilitation/ therapy/treatment/recovery)
Motor (rehabilitation, therapy/treatment/recovery)
Neurorehabilitation
Neurotherapy
Hand (rehabilitation/therapy/ recovery/exercises/movement)

AND Robotic (exoskeleton/ orthosis)
Powered (exoskeleton/ orthosis)
Robot
Device

http://www.crd.york.ac.uk/PROSPERO
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• Task design: description of the task instructed, and 

stimuli presentation (cue and feedback modalities, 

i.e.: visual, kinaesthetic, auditory, etc.)

• Technical specifications of the system: EEG system 

used (including number of channels), robot device 

used (e.g. hand exoskeleton, end-effector, etc.), actua-

tion mode, and control strategy

• Main outcomes of the study: clinical outcomes (for 

studies involving stroke patients), classification accu-

racies (participant, group and study-levels), other sig-

nificant findings

�is data extraction strategy allowed us to further eval-

uate the technology and clinical use of the BCI-robot sys-

tems used in this study.

Technology evaluation

EEG acquisition

�e signal acquisition element of an EEG-based BCI is 

critical to its success in recognising task-related intent. 

To better understand current practice, we gathered the 

type of electrode used (i.e., standard saline-soaked, gel 

or dry electrodes), the number of channels and its cor-

responding placement in the EEG cap. To illustrate where 

signals are recorded from, we plotted the frequency with 

which electrodes were used across studies on a topo-

graphical map using the 10–20 international electrode 

placement system.

Signal processing

We evaluated the signal processing strategies used by 

each study looking specifically at the feature extraction 

and classification techniques within the data pipeline. For 

the studies that reported classification accuracies (i.e., 

comparing the predicted class against the ground truth), 

we were able to compare their results among the current 

state-of-the-art classification accuracies published in 

literature.

Robot-assisted rehabilitation

As the receiving end of the BCI pipeline and the provider 

of kinaesthetic feedback to the user, the robot-assisted 

device for hand rehabilitation plays a key role in provid-

ing the intervention in this therapy regimen. �e robot 

components were evaluated based on their actuation 

type, targeted body-part (i.e., single-finger, multi-finger, 

whole hand), and control strategy. We also reported on 

commercially available systems, which having passed a 

series of regulatory processes making them fit for com-

mercial use, were classified as gold standard devices.

Technological readiness

We assessed the development stages of the system as a 

whole by performing a Technological Readiness Assess-

ment (TRA). Using this strategy, we were able to deter-

mine the maturity of the systems through a Technology 

Readiness Level (TRL) scale of 1–9 and quantify its 

implementation in a research or clinical setting [56]. 

Since a BCI-robot for rehabilitation can be categorised 

as a Class II-B medical device we have adapted a cus-

tomised TRL scale to account for these requirements 

[56]. �e customised TRL accounts for prototype 

development and pilot testing in human participants 

(TRL 3), safety testing (TRL 4–5), and small scale (TRL 

6) to large scale (TRL 7–8) clinical trials. Perform-

ing a TRA on each device should allow us to map out 

where the technology is in terms of adoption and per-

ceived usefulness. For example, if most of the studies 

have used devices that have TRL below the clinical tri-

als stage (TRL 6–8), then we can have some confidence 

that said BCI-robot system is not yet widely accepted 

in the clinical community. In this way we can focus on 

questions that improve our understanding on the fac-

tors that impede its use as a viable therapy option for 

stroke survivors.

Clinical use

Clinical outcomes measures

For studies involving stroke patients, clinical outcomes 

were obtained based on muscle improvement measures 

such as Fugl-Meyer Motor Assessment Upper Extrem-

ity (FMA-UE) scores [53], Action Research Arm Test 

(ARAT) scores [54], United Kingdom Medical Research 

Council (UK-MRC) muscle grade [55], Grip Strength 

(GS) Test and Pinch Strength (PS) Test scores (i.e., kilo-

gram force collected using an electronic hand dynamom-

eter) among others.

Physiotherapy evidence database (PEDro) scale 

for methodological quality

A methodological quality assessment was also performed 

for clinical studies based on the PEDro Scale [57]. �is 

scale evaluates studies with a checklist of 11 items based 

on experts’ consensus criteria in physiotherapy practice. 

�e complete details of the criteria can be found online 

[58]. A higher score in the PEDro scale (6 and above) 

implied better methodological quality but are not used 

as a measure of validity in terms of clinical outcomes. 

Pre-defined scores from this scale were already pre-

sent in studies appearing in the PEDro search. However, 

studies without PEDro scores or are not present in the 

PEDro database at all had to be manually evaluated by 
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the authors against the 11-item checklist (five of seven 

studies).

Results
Search results

Figure 1 shows the study selection process and the num-

ber of articles obtained at each stage.

A total of 590 studies were initially identified. After 

deduplication, 330 studies underwent title and abstract 

screening. Forty six studies passed this stage and among 

these, 16 were removed after full-text screening due to 

the following reasons: insufficient EEG and robotic data 

[59–65], the study was out of scope [66–68], the study 

design was not for hand/finger movement [69–72], no 

robot or mechatronic device was involved in the study 

[73, 74]. A final sample of 30 studies were included in 

the qualitative review. Among the 30 studies, 11 [75–85] 

were involved in testing the BCI-hand robot system on 

chronic and subacute stroke patients ([75, 80] are RCTs) 

while the rest involved testing on healthy participants 

[86–104]. Table 2 shows a summary of the relevant data 

fields extracted from these studies.

UE Upper Extremity, MI Motor Imagery, BCI Brain–

Computer Interface, RCT  Randomised Clinical Trial, 

SAT Standard Arm �erapy, EMG Electromyography, 

EOG Electrooculography, ERD/ERS Event-Related 

Desynchronisation/Synchronisation, FMMA Fugl-Meyer 

Motor Assessment, ARAT  Action Research Arm Test, GS 

Grip Strength, DOF Degrees-of-Freedom.

Studies with Healthy Participants (Prototype Group)

�e studies which involved pilot testing on healthy 

human participants had a combined total of 207 individu-

als (sample size ranging from 1 to 32) who had no history 

of stroke or other neurological diseases. Right-handed 

individuals made up 44.24% of the combined popula-

tion while the other 55.76% were unreported. �ese 

studies aimed to report the successful implementation 

of a BCI-robot system for hand rehabilitation and were 

more heterogeneous in terms of study and task designs 

than those studies that involved clinical testing. �e most 

common approach was to design and implement a hand 

orthosis controlled by MI which accounted for 9 out of 

the 19 studies and were measured based on classifica-

tion accuracy during the calibration/training period and 

online testing. Li et al. [88] and Stan et al. [94] also aimed 

to trigger a hand orthosis but instead of MI, the triggers 

used by Li et al. is based on an attention threshold while 

Stan et  al. used a vision-based P300 speller BCI. Bauer 

et  al. [97] compared MI against ME using a BCI-device 

Fig. 1 Study selection flowchart
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while Ono et al. [100] studied the implementation of an 

action observation strategy with a combined visual and 

kinaesthetic feedback or auditory feedback. Five more 

studies [91, 95, 96, 98, 99] focused on varying the feed-

back while two more [89, 101] assessed the performance 

and safety of a hybrid BCI with EMG, EOG or both.

Studies with Stroke Patients (Clinical Group)

A total of 208 stroke patients (with sample size vary-

ing 3–74) were involved in the 11 clinical studies. One 

study [75] reported a 3-armed RCT with control groups 

as device-only and SAT while another study [80] was a 

multi-centre RCT with sham as the control group. Five 

studies were uncontrolled—where the aims were either 

to study classification accuracies during sessions [76], 

to monitor clinical outcomes improvement from Day 0 

until the end of the programme [77, 85] or both [79, 82]. 

Two studies [83, 84] compared effects of the intervention 

against SHAM feedback. Another study [78] compared 

the classification accuracies of healthy and hemiple-

gic stroke patients against two BCI classifiers while the 

remaining study [81] compared classification accuracies 

from stroke patients who receive congruent or incongru-

ent visual and kinaesthetic feedback.

Technology evaluation

EEG acquisition

�e EEG acquisition systems involved in the studies 

ranged from low-cost devices having few electrode chan-

nels (2–15 gel or saline-soaked silver/silver chloride 

[Ag/AgCl] electrodes) to standard EEG caps that had 

higher spatial resolution (16–256 gel or saline-soaked 

Ag/AgCl electrodes). �e placement of EEG channels 

was accounted for by studies involving MI (N = 21). �is 

allowed us to determine the usage frequency among elec-

trodes and is presented in Fig. 2 as a heat map generated 

in R Studio (using the packages: “akima”, “ggplot2” and 

“reshape2”) against the 10–20 international electrode 

placement system.

It can be seen that the EEG channels used for MI stud-

ies are concentrated towards electrodes along the cen-

tral sulcus (C) region and the frontal lobe (F) region of 

the placement system where the motor cortex strip lies. 

Among these, C3 (N = 17) and F3 (N = 14) were mostly 

used, presumably because a majority of the participants 

were right-handed. �e next most frequent were C4 

(N = 13) and the electrodes F4, Cz and CP3 (N = 10).

Signal processing: feature extraction and classi�cation

In the EEG-based BCI studies examined, it was found 

that the feature extraction and classification tech-

niques were variable between systems. Table 3 provides 

a summary of pre-processing, feature extraction and 

classification techniques across the studies. �ere was 

a wide variation in the implemented signal processing 

strategies, but a unifying theme across studies was the 

attempt to: (i) discriminate mental states recorded in 

EEG across different manual tasks; (ii) classify the differ-

ent states to produce a viable signal.

Robot-assisted rehabilitation

Robotic hand rehabilitation systems provide kinaes-

thetic feedback to the user during BCI trials. Most of 

these devices are powered by either DC motors, servo-

motors or pneumatic actuators that transmit energy via 

rigid links or Bowden cables in a tendon-like fashion. 

�e studies in this review included single-finger [84–86], 

multi-finger [82] (including EMOHEX [78, 79, 87]), full 

hand gloves [88, 89] (including mano: Hand Exoskeleton 

[90] and Gloreha [91]) and full arm exoskeletons with 

isolated finger actuation (BRAVO-Hand [76]). Nine of 

the studies [77, 87, 88, 90, 92–96] presented their novel 

design of a hand rehabilitation device within the arti-

cle while some reported on devices reported elsewhere 

(i.e., in a previous study of the group or a research col-

laborator). Two commercially-available devices were also 

used: AMADEO (Tyromotion, Austria) is an end-effector 

device used in 3 studies [97–99], and Gloreha (Idrogenet, 

Italy) is a full robotic hand glove used by Tacchino et al. 

[91]. AMADEO and Gloreha are both rehabilitation 

devices that have passed regulatory standards in their 

respective regions. AMADEO remains the gold standard 

for hand rehabilitation devices as it has passed safety and 

risk assessments and provided favourable rehabilitation 

outcomes. �e International Classification of Function-

ing, Disability and Health (ICF) provides three specific 

domains that can be used to assess an intervention of this 

kind: improving impairments, supporting performance 

of activities and promoting participation [109, 110]. In 

this case, a gold standard device not only prioritises user 

safety (established early in the development process) but 

also delivers favourable outcomes in scales against these 

domains. Figure 3 shows the main types of robotic hand 

rehabilitation devices.

Technology readiness assessment

A Technology Readiness Assessment (TRA) [56] was 

performed for each study and the Technology Readiness 

Levels (TRL) are presented in Table 4. While some of the 

system components (especially among robotic devices) 

were commercially available (having TRL 9 +), we per-

formed a TRA on the whole system (the interaction 

between BCI and robotics) to provide an evaluation of its 

maturity and state-of-the-art development with regard to 

rehabilitation medicine. We further assessed the TRL of 
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each system at the time of the publication and its subse-

quent development.

Clinical use

Clinical outcomes measures

Most of the studies adopted FMA-UE, ARAT and GS 

measurements to assess clinical outcomes. Six studies 

[75, 77, 79, 80, 83, 85] reported patient improvement 

in these measures when subjected to BCI-hand robot 

interventions; in contrast with their respective con-

trols or as recorded through time in the programme. 

For Ang et  al. [75], FMA-UE Distal scores were 

reported in weeks 3, 6, 12 and 24 and the BCI-device 

group (N = 6) yielded the highest improvement in 

scores across all time points as compared to the device 

only (N = 8) and SAT (N = 7) groups. Bundy et al. [77] 

reported an average of 6.20 ± 3.81 improvement in the 

ARAT scores of its participants (N = 10) in the span of 

12 weeks while Chowdhury et al. [79] reported a group 

mean difference of + 6.38  kg (p = 0.06) and + 5.66 

(p < 0.05) in GS and ARAT scores, respectively (N = 4). 

Frolov et al.’s [80] multi-centre RCT reported a higher 

improvement in the FMA-UE Distal, ARAT Grasp and 

ARAT Pinch scores of the BCI-device group (N = 55) 

when compared to the control/SHAM group (N = 19), 

but not in the ARAT Grip scores where the values 

are both equal to 1.0 with p < 0.01 for the BCI-device 

group and p = 0.045 for the control.

Physiotherapy evidence database (PEDro) scale 

for methodological quality

For the studies that had a clinical testing component, a 

methodological quality assessment by the PEDro Scale 

was performed. Two studies which appeared on the 

PEDro search [75, 80] had predetermined scores in the 

scale and were extracted for this part while the rest were 

manually evaluated by the authors. Table  5 shows the 

results of the methodological quality assessment against 

the scale. Note that in the PEDro Scale, the presence of 

an eligibility criteria is not included in the final score.

Discussion
To the best of our knowledge, this is the first systematic 

examination of BCI-driven robotic systems specific for 

hand rehabilitation. �rough undertaking this review we 

found several limitations present from the studies identi-

fied and we examine these in more detail here and pro-

vide recommendations for future work in this area.

To provide clarity on the state of the current devel-

opment of BCI-hand robot systems, we looked into the 

maturity of technology used in each study as determined 

by its readiness level (TRL). All but one in the prototype 

group was rated as having TRL 3 while the clinical group 

was more varied in their TRL (ranging from 5 to 7). �e 

system used by Witkowski et al. [101], a prototype study, 

was rated TRL 4 due to the study being performed on the 

basis of improving and assessing its safety features. It is 

also worth noting that while a formal safety assessment 

was not performed for the TRL 3 prototypes of Stan et al. 

[94], Randazzo et al. [90] and Tacchino et al. [91], safety 

considerations and/or implementations were made; a 

criterion to be satisfied before proceeding to TRL 4. �e 

system used by Chowdhury et  al. is a good example of 

improving a TRL from 5 to 6 with a pilot clinical study 

published within the same year [78, 79]. �e two systems 

used in the RCT studies by Ang et  al. [75] and Frolov 

et al. [80] achieved the highest score (TRL 7) among all 

of the studies which also meant that no BCI-hand robot 

system for stroke rehabilitation has ever been registered 

and commercially-released to date. �is suggests that 

such systems lack the strong evidence that would propel 

commercialisation and technology adoption.

Heterogeneity in the study designs was apparent in 

both the clinical and prototype groups. �e lack of con-

trol groups and random allocation in clinical studies 

(e.g., only 2 out of 7 studies are in the huge sample size 

RCT stage) made us unable to perform a meta-analysis 

of effects and continue the study by Cervera et  al. [51] 

with a focus on BCI-hand robot interventions. Results 

from the methodological quality assessment showed that 

only two studies [83, 84] had a score of 7 in the PEDro 

scale. Although non-conclusive, these results support the 

notion that most of the studies are not aligned with the 

criteria of high-quality evidence-based interventions.

Almost all the clinical studies (except for Carino-

Escobar et  al. [85] and Frolov et  al. [80]) limited their 

recruitment to chronic stroke patients. �e reason may 

be due to the highly variable rates of recovery in patients 

at different stages in their disease [112]. Baseline treat-

ments were also not reported among the clinical studies. 

Instead, the BCI-robot interventions were compared to 

control groups using standard arm therapy; an example 

of this was done by Ang et al. [75]. �e heterogeneity of 

experimental designs reported in this review raises the 

need to develop clearly defined protocols when conduct-

ing BCI-hand robot studies on stroke patients. Until new 

systems have been assessed on this standard, it will be 

difficult to generate strong evidence supporting the effec-

tiveness of BCI-robotic devices for hand rehabilitation.

In the development of any BCI-robotic device there are 

several design and feature considerations that need to be 

made to ensure that the systems are both fit for purpose 

and acceptable to the end-user. �ese design consid-

erations must go beyond the scope of understanding the 

anatomy of the hand and the physiology of motor recov-

ery in response to therapy. Feedback from stroke patients 
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should also be an essential part of this design process. 

Among the extracted studies, we surveyed the extent of 

end-user involvement in the initial stages of develop-

ment (i.e., through consultations, interviews and therapy 

observations) and we found that there were no explicit 

statements about these in the reports. We recommend, as 

good practice, for future work in this area to report the 

type and degree of patient and/or physician involvement 

in device development to allow reviewers and readers to 

more readily gauge the potential usability of the system.

We were able to profile the BCI-hand robot systems 

regarding their technical specifications and design fea-

tures. In hardware terms, a BCI-hand robot system 

involves three major components: (1) An EEG data 

acquisition system with several electrodes connected to 

a signal amplifier; (2) A computer where raw EEG data 

is received then processed by filters and classifiers and 

where most of the cues and feedback during training is 

presented via a visual display; (3) a robotic hand rehabili-

tation system for providing the physical therapy back to 

the user.

Fig. 2 EEG Channel Usage across Motor Imagery Studies (N = 21)

Table 3 BCI feature extraction and classi�cation

SVM Support Vector Machines, FIR Finite Impulse Response, IIR In�nite Impulse Response

Study Pre-processing Feature extraction Classi�cation Hand task

Ang et al. [75] Band-pass (0.05–40 Hz) Filter Bank Common Spatial 
Pattern (FBCSP) algorithm 
[105]

Calibration model (unspeci-
fied)

MI vs rest

Barsotti et al. [76] Band-pass (8–24 Hz) ERD (β and µ-decrease), CSP SVM with linear kernel MI vs rest

Bauer et al. [97] Band-pass (6–16 Hz using 
zero-phase lag FIR

ERD (β-decrease) Linear autoregressive model 
based on Burg Algorithm

MI vs rest

Bundy et al. [77] Unspecified ERD (β and µ-decrease) Linear autoregressive model MI (affected, unaffected) 
vs rest

Chowdhury et al. [78] Band-pass (0.1 Hz-100 Hz), 
Notch (50 Hz)

CSP Covariance-based, ERD/
ERS (β and µ-change)

SVM with linear kernel, 
Covariate Shift Detection 
(CSD)-based Adaptive 
Classifier

left vs right MI

Coffey et al. [92] Band-pass (0.5 Hz-30 Hz), 
Notch (50 Hz)

CSP Covariance-based Linear Discriminant Analysis 
(LDA) classifier

MI vs rest

Diab et al. [103] Unspecified Time epochs (unspecified) Artificial Neural Network 
(ANN)-based Feed Forward 
Back Propagation

Non-MI open vs closed

Frolov al. [80] Band-pass (5–30 Hz), FIR 
(order 101), IIR notch Che-
byshev type I filter (50 Hz)

Time epochs
(10 s)

Bayesian-based EEG covari-
ance classifier [106]

MI (affected, unaffected) 
vs rest

Ono et al. [81] Band-pass (0.5–30 Hz), notch 
(50 or 60 Hz)

Time epochs (700 ms), ERD 
(µ-decrease)

Linear Discriminant Analysis 
(LDA) classifier

MI vs rest

Ramos-Murguialday et al. 
[95]

Unspecified Time epochs (5 s), Spatial 
filter, ERD/ERS (β and 
µ-change)

Linear autoregressive model MI vs rest

Vukelic and Gharabaghi [99] High-pass (unspecified) ERD (β-decrease) Linear autoregressive model 
based on Burg Algorithm

MI vs rest

Witkowski et al. [101] Band-pass (0.4–70 Hz), Lapla-
cian filter

ERD/ERS (β and µ-change) Linear autoregressive model 
based on Yule-Walker 
algorithm

MI vs rest
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�e majority of the studies (N = 19) used a BCI solely 

based on EEG while the rest were combined with other 

sensors: EEG with EMG [75, 78, 87, 91, 95–98], EEG with 

force sensors [79] and an EEG-EMG-EOG hybrid sys-

tem [89, 101]. �e purpose of this integration is mainly 

to improve signal quality by accounting for artifact or 

to provide added modalities. Action potentials such as 

those caused by ocular, muscular and facial movements 

interfere with nearby electrodes and the presence of an 

added electrophysiological sensor accounting for these 

would enable the technician to perform noise cancella-

tion techniques as a first step in signal processing.

Fig. 3 Robotic hand rehabilitation devices: a An end-effector device (Haptic Knob) used in one of the extracted studies [75, 111], b a wearable 
hand exoskeleton/orthosis

Table 4 Technology readiness assessment of the BCI-hand robot systems

QSR Quality System Requirements, PMA Premarket Approval, CDRH Center for Devices and Radiological Health

Levels Description Studies

TRL 1 Lowest level of technological readiness
Literature reviews and initial market surveys
Scientific application to defined problems

TRL 2 Generation of hypotheses
Development of research plans and/or protocols

TRL 3 Testing of hypotheses – basic research, data collection and analysis
Testing of design/prototype – verification and critical component speci-

fications
Initial proof-of-concept in limited amount of laboratory/animal models

Most studies from the prototype group (N = 18) [86–100, 102–104]

TRL 4 Proof-of-concept of device/system in defined laboratory/animal models
Safety testing – problems, adverse events and potential side effects

Witkowski et al., 2014 [101]

TRL 5 Comparison of device/system to other existing modalities or equivalent 
devices/systems

Further development – testing through simulation (tissue or organ mod-
els), animal testing

Drafting of Product Development Plan

Barsotti et al., 2015 [76], Ono et al., 2016 [81], Chowdhury et al., 
2018-b [78], Tsuchimoto et al., 2019 [84]

TRL 6 Small scale clinical trials (Phase 1) – under carefully controlled and 
intensely monitored clinical conditions

Carino-Escobar et al., 2019 [85], Chowdhury et al., 2018-c [79], Nor-
man et al., 2018 [82], Wang et al., 2018 [83]

TRL 7 Clinical trials (Phase 2) – safety and effectiveness integration in opera-
tional environment

Ang et al., 2014 [75], Frolov et al., 2017 [80]

TRL 8 Clinical trials (Phase 3) – evaluation of overall risk–benefit of device/sys-
tem use

Confirmation of QSR compliance
Awarding of PMA for device/system by CDRH or equivalent agency

TRL 9 The device/system may be distributed/marketed
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�e choice of EEG system as well as the type of elec-

trodes provides a technical trade-off and affects the 

session both in terms of subjective experiences (i.e., ease-

of-use, preparation time, cleaning, comfortability) and 

data performance. Due to the presence of a conducting 

gel/solution, standard “wet” electrodes provide a degree 

of confidence in preventing signal disruption within 

a short duration usually enough for a standard stroke 

therapy session. However, this also makes the setup, use 

and cleaning in the experiment more challenging, non-

ambulatory and reliant on a specialised laboratory setup 

[10]. Conversely, dry electrodes offer an accessible, user-

friendly and portable alternative by using dry metal pins 

or coatings that comb through hair and come in contact 

directly with the scalp. �e signal fidelity of dry elec-

trodes is still a matter of debate in the BCI community. A 

systematic comparison between dry passively-amplified 

and wet actively-amplified electrodes reported similar 

performance in the detection of event-related potentials 

(ERP) [113]. However, for a study involving dry active 

electrodes [114], high inter-electrode impedance resulted 

in increased single-trial and average noise levels as com-

pared to both active and passive wet electrodes. In clas-

sifying MI, movement-related artifacts adversely affect 

active dry electrodes, but these can be addressed through 

a hybrid system of other physiological sensors to separate 

sources [115].

Almost all of the studies included used a standard EEG 

system with “wet” electrodes (e.g., g.USBamp by g.tec 

and BrainAmp by Brain Products) while three used Emo-

tiv EPOC + , a semi-dry EEG system that uses sponge 

conductors infused with saline solution. While the use of 

dry electrodes has been observed in pilot and prototype 

studies of BCI-hand robot systems [64, 67, 93, 102] and 

other motor imagery experiments [116–119], no dry EEG 

system was used in the final 30 studies that tested healthy 

or stroke participants. It is expected that as dry EEG sys-

tems continue to improve, their use in clinical studies of 

BCI will also become increasingly prominent.

�e degree of BCI-robotic control for the majority of 

the studies (N = 26) was limited to triggering the device 

to perform grasping (opening and closing of hand) and 

pinching (a thumb-index finger pinch or a 3-point 

thumb-index-middle finger pinch) movements using MI 

and other techniques. A triggered assistance strategy 

provides the minimum amount of active participation 

from the patient in a BCI-robot setup [37]. �e main 

advantages of this is that it is easy to implement; requir-

ing less computational complexity in signal processing. 

However, a higher spatial or temporal volitional control 

over the therapeutic device increases its functionality 

and can be used to develop more engaging tasks for the 

stroke therapy. Among the studies, no robotic control 

setup was able to perform digit-specific MI which corre-

sponds to the spatial aspects of volitional control. �is is 

a limitation caused by the non-invasive setup of EEG and 

is due to the low spatial resolution brought by the dis-

tances between electrodes [120]. �e homunculus model, 

a representation of the human body in the motor strip, 

maps the areas of the brain where activations have been 

reported to occur for motor processes. �e challenge of 

decoding each finger digit MI in one hand is that they 

only tend to occupy a small area in this strip. Hence even 

the highest resolution electrode placement system (i.e., 

the five percent or 10–5 system – up to 345 electrodes) 

would have difficulties accounting for digit-specific MI 

for BCI. In contrast to EEG, electrocorticography (ECoG) 

have been used to detect digit-specific MI. �e electrodes 

of ECoG come in contact directly with the motor cortex 

and is an invasive procedure; making it non-ideal for use 

in BCI therapy [121].

It is worth noting however that some studies were 

successful in implementing continuous control based 

on ERD/ERS patterns. A continuous control strategy 

increases the temporal volitional control over the robot 

as opposed to triggered assistance where a threshold 

is applied, and the robot finishes the movement for the 

participant. Bundy et al. [77] and Norman et al. [82] were 

both able to apply continuous control of a 3-DOF pinch-

grip exoskeleton based on spectral power while Bauer 

et  al. [97] provided ERD-dependent control of finger 

extension for an end-effector robot. �ese continuous 

control strategies have been shown to be very useful in 

BCI-hand robots for assistive applications (i.e., partial or 

full device dependence for performing ADL tasks [122]). 

Whether this type of control can significantly improve 

stroke recovery is still in question as the strategy of 

robots for stroke rehabilitation can be more classified as a 

therapeutic “exercise” device.

Signal processing and machine learning play a vital 

role in the development of any EEG-based BCI. �e pre-

processing techniques (e.g., filtering, artifact removal), 

types of features computed from EEG, and the classifier 

used in machine learning can significantly affect the per-

formance of the robotic system in classifying the user’s 

intent via MI [123]. False classification, especially during 

feedback, could be detrimental to the therapy regime as 

it relates to the reward and punishment mechanisms that 

are important in motor relearning [124]. For example, 

false negatives hinder the reward strategy that is essential 

to motivate the patient while false positives would also 

reward the action with the wrong intent. In this review, 

a critical appraisal of the signal processing techniques 

was done on each system to recognise the best practices 

involved. �e current list of studies has revealed that 

approaches to develop MI-based EEG signal processing 
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are highly diverse in nature, which makes it difficult to 

compare across the systems and hinders the development 

of new BCI systems informed by the strengths and weak-

nesses of existing state-of-the-art systems. �e diversity 

in the design process can be beneficial to develop com-

plex MI EEG-based BCI systems to achieve high effi-

ciency and efficacy. However, such newly developed 

systems should be open sourced and easily reproducible 

by the research community to provide valid performance 

comparisons and drive forward the domain of robotic-

assisted rehabilitation.

In addition to MI, other strategies for robotic control 

were reported. Diab et al. [103] and King et al. [104] both 

facilitated the movements of their respective orthoses by 

physical practice while Stan et  al. [94] utilised a P-300 

evoked potential speller BCI, where the user visually 

focused on a single alphanumerical character situated 

in a grid. �e chosen character then corresponded to a 

command for the hand orthosis thereby producing the 

desired stimulus for the patient. While the latter study 

reported 100% accuracy rate in terms of intention and 

execution, the EEG channels were situated in the visual 

cortex rather than the motor strip which deviates from 

Fig. 4 Visual cue and feedback during MI trials in different conditions. (a) Graz MI visualisations, (b) video recordings of hand movement and (c) 
virtual hand representation through VR/AR

Table 6 Exemplary features and speci�cations of future BCI-hand robot systems

Component Features and speci�cations

Data acquisition system and software Dry EEG system with 8–16 channels, comfortable and easy to use
Inclusion of other bio-signal sensors such as EMG, EOG, force, accelerometers to remove artifacts and improve 

classification
Robust and reliable signal processing software: machine learning-based algorithms that discriminate brain 

states such as MI or evoked potentials with high classification accuracies (≥ 95%) and lower calibration times

Hand Robot Safe, comfortable and aligned with the hand’s range of motion
Effective in providing kinaesthetic feedback
Use of back-drivable or soft actuators that effectively assist movement without additional injury
Multiple levels of safety and emergency features (mechanical, electronic, software), clear and obvious operation

Visual cue and feedback Provide rich visual cue and feedback to intended tasks, geometric representation of the hand (video or 
simulated environment), can be in multiple platforms such as display monitors or VR/AR on a head-mounted 
device

Gamification of therapy exercises to provide an engaging regime to stroke patients
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the goal of activating the desired brain region for plastic-

ity. �is highlights a broader issue on the intent behind a 

BCI-robotic system. Given that any potential signal that 

can be reliably modulated by a patient can be used to 

trigger a robot, and that such an approach would be anti-

thetical to the goal of many MI-based systems, engineers 

may consider how they can tailor their systems to ensure 

that the appropriate control strategy (and correspond-

ing neural networks) are implemented by a user (e.g. by 

taking a hybrid approach that includes EMG and force 

sensors).

In order to facilitate hand MI and account for sig-

nificant time-points in the EEG data, all the studies 

employed a cue-feedback strategy during their trials. 19 

of the studies presented a form of visual cue while the 

rest, except for two unspecified [84, 102], involved cues 

in auditory (“bleep”) [91, 95–98], textual [93, 94, 104] 

or verbal [103] forms. As for the provision of a match-

ing sensory feedback, 16 studies presented a combina-

tion of kinaesthetic and visual feedback with some also 

providing auditory feedback during successful movement 

attempts. All the studies provided kinaesthetic feedback 

through their robotic devices. Some systems with visual 

feedback, such as Wang et al. [83], Li et al. [88], Chowd-

hury et  al. in both of their clinical studies [78, 79] and 

Ono et  al. in their clinical [81] and pilot testing experi-

ments [100], used a video of an actual hand performing 

the desired action. Ang et al. [75] and Stan et al. [94], in 

a different strategy, provided visual feedback through 

photo manipulation and textual display, respectively. 

While these two studies reported promising results, it 

should also be considered that such cue and feedback 

types (including Graz visualisations and auditory forms) 

are non-representative of hand movement and may not 

provide the same stimuli as an anthropomorphic repre-

sentation of a hand moving its desired course. �is may 

be essential when we base principles of stroke recovery in 

alignment with how MI correlates with AO – an under-

lying theme of the motor simulation theory proposed 

by Jeannerod [36]. Figure 4 shows how different kinds of 

visual cue and feedback can be presented to participants 

to help facilitate MI.

Future directions

�ere is clearly great potential for the use of BCI-hand 

robots in the rehabilitation of an affected hand following 

stroke. Nevertheless, it is important to emphasise that 

there is currently insufficient evidence to support the use 

of such systems within clinical settings. Moreover, the 

purported benefits of these systems rest on conjectures 

that require empirical evidence. In other words, there 

are grounds for supposing that MI could be useful within 

these rehabilitation settings but no supporting evidence. 

�is systematic review has also revealed that there are a 

number of technological limitations to existing BCI-hand 

robotic systems. We stress an urgent need to address 

these limitations to ensure that the systems meet the 

minimum required levels of product specification (in 

measuring brain activity, processing signals, delivering 

forces to the hand and providing rich feedback and moti-

vating settings). We question the ethics or usefulness of 

conducting clinical trials with such systems until they can 

demonstrate minimum levels of technological capability. 

We consider below what standards these systems should 

obtain before subjecting them to a clinical trial and dis-

cuss might constitute an acceptable standard for a clini-

cal trial.

Ideal setup for a BCI-hand robot

We summarise the information revealed via the system-

atic review about what constitutes an acceptable setup 

for a BCI-hand robot for stroke rehabilitation. We focus 

on improving individual components in data acquisi-

tion, data processing, the hand rehabilitation robot, and 

the visual cue and feedback environment. Table  6 pre-

sents the features and specifications of a fully integrated 

acceptable system.

�e implementation of these features in an ideal 

BCI-robot setup needs to be weighed against socio-

economic factors in healthcare delivery for it to be 

considered market ready. An ideal BCI system should 

primarily provide above chance-level classification after 

the first session on the first day of therapy. Ideally, the 

classification algorithm should also translate and adapt 

to following sessions or days; reducing the number of 

training sessions and focusing on the main therapy 

tasks. An alternative approach is to focus on making 

the setup an engaging experience. In other words, the 

delivery of intervention can be started immediately 

when the patient wears the EEG cap and runs the BCI 

system. For the hand robot system, more straightfor-

ward criteria can be followed with the existence of the 

numerous design protocols, regulation standards and 

assessment matrices mentioned in this review. Never-

theless, end-user involvement in the design with the 

prioritisation of safety while allowing the most natural 

hand movement and ROM as possible is the recom-

mended goal.

Ideal setup for clinical trials

We also propose a set of specialised criteria for BCI-hand 

robot systems in addition to the standard motor improve-

ment scores (e.g. ARAT, FMA-UE) evaluated during 

clinical trials. Firstly, classification accuracies between 

intended and interpreted actions from the data acquisi-

tion and software component should always be accounted 
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to track the effectiveness of BCI in executing the clinical 

task. In addition to this, system calibration and training 

procedures, especially its duration, should be detailed in 

the protocol to document the reliability of the classifica-

tion algorithm. �ere is not much to consider in the use 

of robotic devices as they are most likely to be mature 

(if not yet commercially available) before being used as 

the hardware component in the study. However, the 

devices’ functionality (i.e., task to be performed, degree 

of control and motion, actuation and power transmis-

sion etc.) should always be stated as they contribute to 

the evaluation of interactions between other components 

in the system. Lastly, controls for the clinical study must 

always be included, even with small-scale patient stud-

ies. As discussed in this article, these controls may be in 

the form of sham, standard arm therapy (SAT), stand-

ard robotic therapy, congruency feedback and quality of 

stimuli among others. Having regarded and implemented 

these criteria would help homogenise the clinical data for 

future meta-analyses, strengthen evidence-based results 

and provide a reliable way of documentation for individ-

ual and/or interacting components.

Proposed roadmap

We suggest that the immediate focus for BCI-controlled 

robotic device research should be around the engineering 

challenges. It is only when these challenges have been met 

that it is useful and ethical to subject the systems to clini-

cal trials. We recommend that the challenges be broken 

down into the following elements: (1) data acquisition; 

(2) signal processing and classification; (3) robotic device; 

(4) priming and feedback environment; (5) integration 

of these four elements. �e nature of these challenges 

means that a multidisciplinary approach is required (e.g. 

the inclusion of psychologists, cognitive neuroscientists 

and physiologists to drive the adoption of reliable neu-

ral data acquisition). It seems probable that progress will 

be made by different laboratories tackling some or all of 

these elements and coordinating information sharing 

and technology improvements. Once the challenges have 

been met (i.e. there is a system that is able to take neural 

signals and use these to help drive a robotic system capa-

ble of providing appropriate forces to the hand within a 

motivating environment) then robust clinical trials can 

be conducted to ensure that the promise of this approach 

does translate into solid empirical evidence supporting 

the use of these systems within clinical settings.
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