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Abstract: A brain-computer interface (BCI) is a hardware and software communications 

system that permits cerebral activity alone to control computers or external devices. The 

immediate goal of BCI research is to provide communications capabilities to severely 

disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular 

disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. 

Here, we review the state-of-the-art of BCIs, looking at the different steps that form a 

standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, 

classification and the control interface. We discuss their advantages, drawbacks, and latest 

advances, and we survey the numerous technologies reported in the scientific literature to 

design each step of a BCI. First, the review examines the neuroimaging modalities used in 

the signal acquisition step, each of which monitors a different functional brain activity such 

as electrical, magnetic or metabolic activity. Second, the review discusses different 

electrophysiological control signals that determine user intentions, which can be detected 

in brain activity. Third, the review includes some techniques used in the signal enhancement 

step to deal with the artifacts in the control signals and improve the performance. Fourth, 

the review studies some mathematic algorithms used in the feature extraction and 

classification steps which translate the information in the control signals into commands 

that operate a computer or other device. Finally, the review provides an overview of 

various BCI applications that control a range of devices. 

Keywords: brain-computer interface (BCI); electroencephalography (EEG); rehabilitation; 

artifact; neuroimaging; brain-machine interface; collaborative sensor system 
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1. Introduction 

A brain computer interface (BCI), also referred to as a brain machine interface (BMI), is a hardware 

and software communications system that enables humans to interact with their surroundings,  

without the involvement of peripheral nerves and muscles, by using control signals generated from 

electroencephalographic activity. BCI creates a new non-muscular channel for relaying a person’s 

intentions to external devices such as computers, speech synthesizers, assistive appliances, and neural 

prostheses. That is particularly attractive for individuals with severe motor disabilities. Such an interface 

would improve their quality of life and would, at the same time, reduce the cost of intensive care.  

A BCI is an artificial intelligence system that can recognize a certain set of patterns in brain signals 

following five consecutive stages: signal acquisition, preprocessing or signal enhancement, feature 

extraction, classification, and the control interface [1]. The signal acquisition stage captures the brain 

signals and may also perform noise reduction and artifact processing. The preprocessing stage  

prepares the signals in a suitable form for further processing. The feature extraction stage identifies 

discriminative information in the brain signals that have been recorded. Once measured, the signal is 

mapped onto a vector containing effective and discriminant features from the observed signals. The 

extraction of this interesting information is a very challenging task. Brain signals are mixed with other 

signals coming from a finite set of brain activities that overlap in both time and space. Moreover, the 

signal is not usually stationary and may also be distorted by artifacts such as electromyography (EMG) 

or electrooculography (EOG). The feature vector must also be of a low dimension, in order to reduce 

feature extraction stage complexity, but without relevant information loss. The classification stage 

classifies the signals taking the feature vectors into account. The choice of good discriminative features 

is therefore essential to achieve effective pattern recognition, in order to decipher the user’s intentions. 

Finally the control interface stage translates the classified signals into meaningful commands for any 

connected device, such as a wheelchair or a computer.  

BCI technology has traditionally been unattractive for serious scientific investigation. The idea of 

successfully deciphering thoughts or intentions by means of brain activity has often been rejected in 

the past as very strange and remote. Hence investigation in the field of brain activity has usually been 

limited to the analysis of neurological disorders in the clinic or to the exploration of brain functions in 

the laboratory. The BCI design was considered too complex, because of the limited resolution and 

reliability of information that was detectable in the brain and its high variability. Furthermore, BCI 

systems require real-time signal processing, and up until recently the requisite technology either did 

not exist or was extremely expensive [2].  

However, this context has undergone radical change over the last two decades. BCI research, which 

was confined to only three groups 20 years ago and only six to eight groups 10 years ago, is now a 

flourishing field with more than 100 active research groups all over the World studying the topic [3]. 

The number of articles published regarding neural interface technology has increased exponentially 

over the past decade [4]. Successful studies on brain signal phenomena have lent further weight to 

these advances. The development of more and more inexpensive computer hardware and software has 

allowed more sophisticated online analysis. Likewise, the chances of using BCIs as auxiliary 

technology that might serve severely disabled people has increased social acceptance in this field and 

the need to accelerate its progress. Interest in this technology is now found outside of the laboratory or 
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the clinic. Small specialized companies such as Emotiv [5] or Neurosky [6] have already developed 

some initial applications oriented towards the general public. Nevertheless, despite these advances, 

most BCI-based applications are still limited to the laboratory. Broader applicability of BCIs requires 

greater ease of use, which in turn means reducing time spent on preparation, training and calibration [7].  

BCI research is a relatively young multidisciplinary field integrating researchers from neuroscience, 

physiology, psychology, engineering, computer science, rehabilitation, and other technical and  

health-care disciplines. As a result, in spite of some notable advances, a common language has yet to 

emerge, and existing BCI technologies vary, which makes their comparison difficult and, in 

consequence, slows down the research. The community of BCI researchers has therefore stressed the 

need to establish a general framework for BCI design [8]. Mason et al. [9], for example, proposed a 

new functional model for BCI systems and taxonomy design. 

This review of the state-of-the-art of BCI systems is arranged as follows: Section 2 discusses 

existing neuroimaging approaches to BCIs and Section 3 describes the most commonly found control 

signals in BCI systems. Section 4 briefly explains certain types of BCIs. Sections 5, 6 and 7, 

respectively, cover the different signal processing methods used for feature extraction, artifact 

reduction and feature classification. Section 8 provides an overview of BCI applications and, finally, 

the conclusions are drawn in Section 9. 

2. Neuroimaging Approaches in BCIs  

BCIs use brain signals to gather information on user intentions. To that effect, BCIs rely on a recording 

stage that measures brain activity and translates the information into tractable electrical signals. Two 

types of brain activities may be monitored: (i) electrophysiological and (ii) hemodynamic.  

Electrophysiological activity is generated by electro-chemical transmitters exchanging information 

between the neurons. The neurons generate ionic currents which flow within and across neuronal 

assemblies. The large variety of current pathways can be simplified as a dipole conducting current 

from a source to a sink through the dendritic trunk. These intracellular currents are known as primary 

currents. Conservation of electric charges means that the primary currents are enclosed by extracellular 

current flows, which are known as secondary currents [10]. Electrophysiological activity is measured 

by electroencephalography, electrocorticography, magnetoencephalography, and electrical signal 

acquisition in single neurons.  

The hemodynamic response is a process in which the blood releases glucose to active neurons at a 

greater rate than in the area of inactive neurons. The glucose and oxygen delivered through the blood 

stream results in a surplus of oxyhemoglobin in the veins of the active area, and in a distinguishable 

change of the local ratio of oxyhemoglobin to deoxyhemoglobin [11]. These changes can be quantified 

by neuroimaging methods such as functional magnetic resonance and near infrared spectroscopy. 

These kinds of methods are categorized as indirect, because they measure the hemodynamic response, 

which, in contrast to electrophysiological activity, is not directly related to neuronal activity. 

Most current BCIs obtain the relevant information from the brain activity through 

electroencephalography. Electroencephalography is by far the most widely used neuroimaging 

modality, owing to its high temporal resolution, relative low cost, high portability, and few risks to the users. 

BCIs based on electroencephalography consist of a set of sensors that acquire electroencephalography signals 
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from different brain areas. However, the quality of electroencephalography signals is affected by scalp, 

skull, and many other layers as well as background noise. Noise is key to electroencephalography and 

to other neuroimaging methods, insofar as it reduces the SNR and therefore the ability to extract 

meaningful information from the recorded signals. 

Non-invasive approaches have successfully been used by severely and partially paralyzed patients 

to reacquire basic forms of communication and to control neuroprostheses and wheelchairs [12–14]. 

Despite the outstanding utility of non-invasive approaches in BCI applications, motor recovery has 

been limited, because of the need for brain signals with a higher resolution. Invasive recording 

methods such as electrocorticography or intracortical neuron recording were introduced, in an effort to 

improve the quality of brain signals monitored by BCIs. Most researchers agree that movement 

restoration through prostheses with multiples degrees of freedom can only be achieved through 

invasive approaches [15]. It is unlikely that the power of non-invasive modalities will be enhanced in 

the near future. Accordingly, it would appear that invasive modalities are indispensable for accurate 

neuroprostheses control. Nevertheless, this issue is not yet entirely clear and some opinions disagree 

with this conjecture. Contrary to established opinion, Wolpaw [3] suggested that performance in 

multidimensional control may be independent of the recording method. Further refinements of 

recording and analysis techniques will probably increase the performance of both invasive and  

non-invasive modalities. However, the latest studies in neuroprostheses control appear to indicate that 

invasive modalities have inherent advantages in neuroprosthesis control applications [4]. 

Invasive modalities need to implant microelectrode arrays inside the skull that involves significant 

health risks, which restricts their use to experimental settings. Two invasive modalities can be found in 

BCI research: electrocorticography, which places electrodes on the surface of the cortex, either outside 

the dura mater (epidural electrocorticography) or under the dura mater (subdural electrocorticography), 

and intracortical neuron recording which implants electrodes inside the cortex. Several issues had to be 

addressed, before they become suitable for long-term applications. First, tissue acceptance of the 

microelectrode has to be addressed, for which reason proposals exist for electrodes with neurotropic 

mediums that promote neuronal growth to improve biocompatibility [16]. Perhaps, the future of 

nanotechnologies that might develop nano-detectors to be implanted inertly in the brain, may provide a 

definite solution to the problems of long-term invasive applications. Second, a link between the 

microelectrode and external hardware that uses wireless technology is needed to reduce the risks of 

infection. Wireless transmission of neuronal signals has already been tested in animals [17]. And third, 

continuous stress caused by plugging and unplugging the recording system may lead to tissue damage 

or system failure. 

Each neuroimaging modality is explained below. Firstly, electrophysiological methods such as 

electroencephalography, electrocorticography, magnetoencephalography, and electrical signal acquisition 

in single neurons will be discussed. Secondly, metabolic methods such as functional magnetic 

resonance and near infrared spectroscopy will be described. Finally, functional imaging modalities are 

listed in Table 1, along with information related to activity measured, temporal and spatial resolutions, 

safety, and portability. 
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Table 1. Summary of neuroimaging methods. 

Neuroimaging 

method 

Activity 

measured

Direct/ 

Indirect 

Measurement

Temporal

resolution

Spatial 

resolution 
Risk Portability 

EEG Electrical Direct ~0.05 s  ~10 mm Non-invasive Portable 

MEG Magnetic Direct ~0.05 s  ~5 mm Non-invasive Non-portable

ECoG Electrical Direct ~0.003 s  ~1 mm Invasive Portable 

Intracortical  

neuron  

recording  

Electrical Direct ~0.003 s 

~0.5 mm (LFP)  

~0.1 mm (MUA) 

~0.05 mm (SUA)

Invasive Portable 

fMRI Metabolic Indirect ~1 s  ~1 mm Non-invasive Non-portable

NIRS Metabolic Indirect ~1 s  ~5 mm Non-invasive Portable 

2.1. Electroencephalography (EEG) 

EEG measures electric brain activity caused by the flow of electric currents during synaptic 

excitations of the dendrites in the neurons and is extremely sensitive to the effects of secondary 

currents [10]. EEG signals are easily recorded in a non-invasive manner through electrodes placed on 

the scalp, for which that reason it is by far the most widespread recording modality. However, it 

provides very poor quality signals as the signals have to cross the scalp, skull, and many other layers. 

This means that EEG signals in the electrodes are weak, hard to acquire and of poor quality. This 

technique is moreover severely affected by background noise generated either inside the brain or 

externally over the scalp. 

The EEG recording system consists of electrodes, amplifiers, A/D converter, and a recording 

device. The electrodes acquire the signal from the scalp, the amplifiers process the analog signal to 

enlarge the amplitude of the EEG signals so that the A/D converter can digitalize the signal in a more 

accurate way. Finally, the recording device, which may be a personal computer or similar, stores, and 

displays the data. 

The EEG signal is measured as the potential difference over time between signal or active electrode 

and reference electrode. An extra third electrode, known as the ground electrode, is used to measure 

the differential voltage between the active and the reference points. The minimal configuration for 

EEG measurement therefore consists of one active, one reference, and one ground electrode.  

Multi-channel configurations can comprise up to 128 or 256 active electrodes [18]. These electrodes 

are usually made of silver chloride (AgCl) [19]. Electrode-scalp contact impedance should be between 

1 kΩ and 10 kΩ to record an accurate signal [20]. The electrode-tissue interface is not only resistive 

but also capacitive and it therefore behaves as a low pass filter. The impedance depends on several 

factors such as the interface layer, electrode surface area, and temperature [20]. EEG gel creates a 

conductive path between the skin and each electrode that reduces the impedance. Use of the gel is 

cumbersome, however, as continued maintenance is required to assure a relatively good quality signal. 

Electrodes that do not need to use of gels, called ‘dry’ electrodes, have been made with other materials 

such as titanium and stainless-steel [21]. These kinds of electrodes may be ‘dry’ active electrodes, 

which have preamplification circuits for dealing with very high electrode/skin interfacial  
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impedances [21,22], or ‘dry’ passive electrodes, which have no active circuits, but are linked to EEG 

recording systems with ultra-high input impedance [23]. 

The amplitude of electrical bio-signals is in the order of microvolts. Consequently, the signal is very 

sensitive to electronic noise. External sources such power-lines may generate background noise and 

thermal, shot, flicker, and burst noises are generated by internal sources [24]. Design considerations 

should be addressed to reduce the effects of the noise, such as electromagnetic interference shielding 

or reduction for common mode signal, amongst others [20]. 

EEG comprises a set of signals which may be classified according to their frequency. Well-known 

frequency ranges have been defined according to distribution over the scalp or biological significance. 

These frequency bands are referred to as delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ) from 

low to high, respectively. Relevant characteristics of these bands are detailed below. 

The delta band lies below 4 Hz, and the amplitude of delta signals detected in babies decreases as 

they age. Delta rhythms are usually only observed in adults in deep sleep state and are unusual in 

adults in an awake state. A large amount of delta activity in awake adults is abnormal and is related to 

neurological diseases [25]. Due to low frequency, it is easy to confuse delta waves with artifact signals, 

which are caused by the large muscles of the neck or jaw.  

Theta waves lie within the 4 to 7 Hz range. In a normal awake adult, only a small amount of theta 

frequencies can be recorded. A larger amount of theta frequencies can be seen in young children, older 

children, and adults in drowsy, meditative or sleep states [25]. Like delta waves, a large amount of 

theta activity in awake adults is related to neurological disease [25]. Theta band has been associated 

with meditative concentration [26,27] and a wide range of cognitive processes such as mental 

calculation [28], maze task demands [29], or conscious awareness [30]. 

Alpha rhythms are found over the occipital region in the brain [31]. These waves lie within the 8  

to 12 Hz range. Their amplitude increases when the eyes close and the body relaxes and they attenuate 

when the eyes open and mental effort is made [32]. These rhythms primarily reflect visual processing 

in the occipital brain region and may also be related to the memory brain function [33]. There is also 

evidence that alpha activity may be associated with mental effort. Increasing mental effort causes a 

suppression of alpha activity, particularly from the frontal areas [34]. Consequently, these rhythms 

might be useful signals to measure mental effort. Mu rhythms may be found in the same range as alpha 

rhythms, although there are important physiological differences between both. In contrast to alpha 

rhythms, mu rhythms are strongly connected to motor activities and, in some cases, appear to correlate 

with beta rhythms [31,35]. 

Beta rhythms, within the 12 to 30 Hz range, are recorded in the frontal and central regions of the 

brain and are associated with motor activities. Beta rhythms are desynchronized during real movement 

or motor imagery [36]. Beta waves are characterized by their symmetrical distribution when there is no 

motor activity. However, in case of active movement, the beta waves attenuate, and their symmetrical 

distribution changes [36]. 

Gamma rhythms belong to the frequency range from 30 to 100 Hz. The presence of gamma waves 

in the brain activity of a healthy adult is related to certain motor functions or perceptions, among 

others [37]. Some experiments have revealed a relationship in normal humans between motor activities 

and gamma waves during maximal muscle contraction [38]. This gamma band coherence is replaced 

by a beta band coherence during weak contractions, suggesting a correlation between gamma or beta 
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cortical oscillatory activity and force [39]. Also, several studies have provided evidence for the role of 

gamma activity in the perception of both visual and auditory stimuli [37,40–42]. Gamma rhythms are 

less commonly used in EEG-based BCI systems, because artifacts such as electromyography (EMG) or 

electrooculography (EOG) are likely to affect them [43]. Nevertheless, this range is attracting growing 

attention in BCI research because, compared to traditional beta and alpha signals, gamma activity may 

increase the information transfer rate and offer higher spatial specifity [44,45]. 

As explained above, EEG is recorded by electrodes. The electrodes placed over the scalp are 

commonly based on the International 10–20 system [46], which has been standardized by the 

American Electroencephalographic Society. The 10–20 system uses two reference points in the head to 

define the electrode location. One of these reference points is the nasion, located at the top of the nose 

at the same level as the eyes. The other reference point is the inion, which is found in the bony lump at 

the base of the skull. The transverse and median planes divide the skull from these two points. The 

electrode locations are determined by marking these planes at intervals of 10% and 20% (Figure 1). 

The letters in each location corresponds to specific brain regions in such a way that A represents the 

ear lobe, C the central region, Pg the nasopharyngeal, P the parietal, F the frontal, Fp the frontal polar, 

and O the occipital area. 

Figure 1. Electrode placement over scalp. 

 

2.2. Magnetoencephalography (MEG) 

MEG is a non-invasive imaging technique that registers the brain’s magnetic activity by means of 

magnetic induction. MEG measures the intracellular currents flowing through dendrites which produce 

magnetic fields that are measurable outside of the head [47]. The neurophysiological processes that 

produce MEG signals are identical to those that produce EEG signals. Nevertheless, while EEG is 

extremely sensitive to secondary current sources, MEG is more sensitive to those of primary  
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currents [10]. The advantage of MEG is that magnetic fields are less distorted by the skull and scalp 

than electric fields [48].  

Magnetic fields are detected by superconducting quantum interferences devices, which are 

extremely sensitive to magnetic disturbances produced by neural activity [49]. The electronic 

equipment that measures magnetic brain activity is cooled to almost −273 degrees Celsius to facilitate 

sensor superconductivity. MEG requires effective shielding from electromagnetic interferences. The 

electronic equipment is installed inside a magnetically shielded room, which attenuates the effects of 

magnetic fields from external sources. 

MEG provides signals with higher spatiotemporal resolution than EEG, which reduces the training 

time needed to control a BCI and speeds up reliable communications [50]. MEG has also been 

successfully used to localize active regions inside the brain [51]. In spite of these advantageous 

features, MEG is not often used in BCI design because MEG technology is too bulky and expensive to 

become an acquisition modality suitable for everyday use. In 2005, Lal et al. [52] presented the first 

online MEG-based BCI. Although further studies have followed [53–57], MEG-based BCIs, as 

compared to EEG-based BCIs, are still at an early stage.  

2.3. Electrocorticography (ECoG) 

ECoG is a technique that measures electrical activity in the cerebral cortex by means of electrodes 

placed directly on the surface of the brain. Compared to EEG, ECoG provides higher temporal and 

spatial resolution as well as higher amplitudes and a lower vulnerability to artifacts such as blinks and 

eye movement [58]. However, ECoG is an invasive recording modality which requires a craniotomy to 

implant an electrode grid, entailing significant health hazards. For that reason, the first studies on 

ECoG were with animals. Early studies involving animals evaluated the long-term stability of the 

signals from the brain that ECoG could acquire [59–62]. The results showed that subdural electrodes 

could provide stable signals over several months. Nevertheless, the long-term stability of the signals 

acquired by ECoG is currently unclear. More recent experiments with monkeys have shown that ECoG 

can perform at a high level for months without any drift in accuracy or recalibration [63]. The hand 

positions and arm joint angles could be successfully decoded during asynchronous movements. These 

studies have also developed minimally invasive protocols to implant the ECoG probes [64]. 

In humans, ECoG has been used for the analysis of alpha and beta waves [65] or gamma waves [66,67] 

produced during voluntary motor action. With regard to the use of ECoG in BCIs systems,  

Levine et al. [68] designed a BCI which classified motor actions on the basis of the identification of 

the event-related potentials (ERP) using ECoG. Leuthardt et al. [69] showed for the first time that an 

ECoG-based BCI could provide information to control a one-dimensional cursor, as this information is 

more precise and more quickly acquired than by EEG-based BCIs. Some years later, Schalk et al. [70] 

presented a more advanced ECoG-based BCI which allowed the user to control a two-dimensional 

cursor. The results of all these studies might make it more feasible for people with severe motor 

disabilities to use ECoG-based BCIs for their communication and control needs. 
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2.4. Intracortical Neuron Recording 

Intracortical neuron recording is a neuroimaging technique that measures electrical activity inside 

the gray matter of the brain. It is an invasive recording modality that needs to implant microelectrode 

arrays inside the cortex to capture spike signals and local field potentials from neurons.  

Three signals can be obtained by intracortical neuron recording: single-unit activity (SUA),  

multi-unit activity (MUA), and local field potentials (LFPs) [47]. SUA is obtained by high-pass 

filtering (>300 Hz) of the signal of a single neuron. MUA is obtained in the same way, but the signals 

may come from multiple neurons. LFPs are extracted by low-pass filtering (<300 Hz) of the neuron 

activity in the vicinity of an electrode tip. LFPs are analog signals whereas SUA and MUA measure 

the spiking activity of single neurons and can be reduced to discrete events in time [47]. 

Intracortical neuron recording provides much higher spatial and temporal resolution than EEG 

recording. Hence the intracortical signals may be easier to use than EEG signals. However, signal quality 

may be affected by the reaction of cerebral tissue to the implanted recording microelectrode [71] and 

by changes in the sensitivity of the microelectrode, which may be progressively damaged over the 

course of days and years [72]. The user can naturally adapt to these slow changes in the relative 

sensitivity of the microelectrode, without the need for specific retraining. Nevertheless, periodic 

recalibrations of electrode sensitivity may be necessary [73]. 

The first attempts in the intracortical neuron recording field were made in animals. Multielectrode 

arrays have been used to record neural activity from the motor cortex in monkeys or rats during 

learned movements [74–76]. These initial studies have shown that intracortical neuron recordings can 

indicate the nature of a movement and its direction. These studies do not reveal whether the same 

patterns will be present when the real movements are not made. In that regard, Taylor and Schwartz [77] 

experimented with rhesus macaques, which made real and virtual arm movements in a computer. The 

results suggested that the same patterns persisted. The most recent studies with monkeys investigated 

the control of prosthetic devices for direct real-time interaction with the physical environment [78–81]. 

With regard to the application of intracortical neuron recording in BCI systems, microelectrode 

arrays such as the Utah Intracortical Electrode Array (UIEA) have been reported as a suitable means of 

providing simultaneous and proportional control of a large number of external devices [72]. Also, 

Kennedy et al. [82] employed cortical control signals to design a BCI that allowed users to control 

cursor movement and flexion of a cyber-digit finger on a virtual hand.  

2.5. Functional Magnetic Resonance Imaging (fMRI) 

fMRI is a non-invasive neuroimaging technique which detects changes in local cerebral blood 

volume, cerebral blood flow and oxygenation levels during neural activation by means of 

electromagnetic fields. fMRI is generally performed using MRI scanners which apply electromagnetic 

fields of strength in the order of 3T or 7T. The main advantage of the use of fMRI is high space 

resolution. For that reason, fMRI have been applied for localizing active regions inside the brain [83]. 

However, fMRI has a low temporal resolution of about 1 or 2 seconds. Additionally, the hemodynamic 

response introduces a physiological delay from 3 to 6 seconds [84]. fMRI appears unsuitable for rapid 

communication in BCI systems and is highly susceptible to head motion artifacts.  
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In BCI systems, fMRI is typically used to measure the Blood Oxygen Level Dependent (BOLD) 

during neuronal activation [85]. Although the BOLD signal is not directly related to neuronal activity, 

a correspondence between both does exist [86]. The use of fMRI in BCI technology is relatively 

recent. Before the emergence of real-time fMRI, brain activity recording by fMRI has traditionally 

taken a long time. The data acquired by fMRI techniques were processed offline and the results only 

became available after several hours or even days [87]. fMRI-based BCIs have been made possible, 

thanks to the development of real-time fMRI [84,88,89]. The information transfer rate in fMRI-based 

BCIs is between 0.60 and 1.20 bits/min [90]. Non-clinical fMRI applications are not expected because 

fMRI requires overly bulky and expensive hardware. 

2.6. Near Infrared Spectroscopy (NIRS) 

NIRS is an optical spectroscopy method that employs infrared light to characterize noninvasively 

acquired fluctuations in cerebral metabolism during neural activity. Infrared light penetrates the skull 

to a depth of approximately 1–3 cm below its surface, where the intensity of the attenuated light allows 

alterations in oxyhemoglobin and deoxyhemoglobin concentrations to be measured. Due to shallow 

light penetration in the brain, this optical neuroimaging technique is limited to the outer cortical layer. 

In a similar way to fMRI, one of the major limitations of NIRS is the nature of the hemodynamic 

response, because vascular changes occur a certain number of seconds after its associated neural 

activity [91]. The spatial resolution of NIRS is quite low, in the order of 1 cm [92]. Nevertheless, 

NIRS offers low cost, high portability, and an acceptable temporal resolution in the order of  

100 milliseconds [93].  

A NIRS system consists of a light source, a driving electronic device, a light detector, signal 

processing devices, and a recording device. The light source is an infrared emitting diode (IRED) 

placed in direct contact with the scalp. The driving electronic device is an electronic circuit that 

controls the IRED in order to modulate the light. The light detector is a photodiode placed right next to 

the light source. The signal processing devices are amplifiers and filters that process the electrical 

signal and reduce the noise due to ambient light. The recording device is a personal computer or any 

other device that digitalizes, stores, and displays the electrical signal. 

Ensuring good coupling light from the optical sources and detectors to and from the subject’s head 

is not a trivial issue. Head motions or hair obstruction can worsen performance and signal quality [91]. 

Good quality signals and noise reduction, especially background noise induced by head motions, are 

important requirements in real time BCI systems. Hair obstruction can be overcome by combing the 

hair out of the photons’ path by means of hair gel and hair clips [91]. Noise can be reduced partially by 

bandpass filtering, moving averaging, and Wiener filtering. These classes of algorithms usually fail to 

remove abrupt spike-like noise produced by head motion [94]. Head motion artifacts can be minimized 

by ensuring rigid optode positioning. Solutions have been introduced that are based on helmets, 

thermoplastic molded to the contours of each subject’s head, spring-loaded fibers attached to  

semi-rigid plastic forms, and fibers embedded in neoprene rubber forms [95]. Background noise effects 

can also be attenuated by exploiting the strong statistical association between oxygenated and 

deoxygenated hemoglobin dynamics [96]. 
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Although NIRS is relatively new measurement modality, NIRS promises to be a potent 

neuroimaging modality for future applicability to BCIs [91,97]. NIRS provides now a low information 

transfer rate of about 4 bits/min but it would be increased in the future [98]. This neuroimaging 

modality might be a good alternative to EEG, as neither conductive gel nor corrosive electrodes are 

required. Nevertheless, communication speeds in NIRS-based BCIs are limited due to the inherent 

delays of the hemodynamic response. Some studies have already demonstrated the feasibility of mental 

task detection through NIRS-derived optical responses [93,99,100]. 

3. Control Signal Types in BCIs  

The purpose of a BCI is to interpret user intentions by means of monitoring cerebral activity. Brain 

signals involve numerous simultaneous phenomena related to cognitive tasks. Most of them are still 

incomprehensible and their origins are unknown. However, the physiological phenomena of some 

brain signals have been decoded in such way that people may learn to modulate them at will, to enable 

the BCI systems to interpret their intentions. These signals are regarded as possible control signals  

in BCIs.  

Numerous studies have described a vast group of brain signals that might serve as control signals in 

BCI systems. Nevertheless, only those control signals employed in current BCI systems will be 

discussed below: visual evoked potentials, slow cortical potentials, P300 evoked potentials, and 

sensorimotor rhythms. All the signal controls are listed in Table 2, along with some of their main features. 

Table 2. Summary of control signals. 

Signal Physiological phenomena 
Number of 

choices 
Training 

Information 

transfer rate 

VEP Brain signal modulations in the visual cortex High  No 
60–100 

bits/min  

SCP Slow voltages shift in the brain signals 
Low (2 or 4, very 

difficult) 
Yes 5–12 bits/min 

P300 Positive peaks due to infrequent stimulus High No 
20–25 

bits/min 

Sensorimotor 

rhythms 

Modulations in sensorimotor rhythms 

synchronized to motor activities 
Low (2, 3, 4, 5) Yes 3–35 bits/min 

3.1. Visual Evoked Potentials (VEPs) 

VEPs are brain activity modulations that occur in the visual cortex after receiving a visual  

stimulus [101]. These modulations are relatively easy to detect since the amplitude of VEPs increases 

enormously as the stimulus is moved closer to the central visual field [102].  

VEPs may be classified according to three different criteria [103]: (i) by the morphology of the 

optical stimuli, (ii) by the frequency of visual stimulation; and (iii) by field stimulation. According to 

the first criterion, VEPs may be caused by using flash stimulation or using graphic patterns such as 

checkerboard lattice, gate, and random-dot map. According to the frequency, VEPs can also be 

classified as transient VEPs (TVEPs) and as steady-state VEPs (SSVEPs). TVEPs occur when the 
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frequency of visual stimulation is below 6 Hz, while SSVEPs occur in reaction to stimuli of a higher 

frequency [101,104]. Lastly, according to the third criterion, VEPs can be divided into whole field 

VEPs, half field VEPs, and part field VEPs depending on the area of on-screen stimulus. For instance, 

if only half of the screen displays graphics, the other half will not display any visual stimulation, and 

the person will look at the centre of the screen, which will induce a half field VEP. 

TVEPs can be elicited by any change in the visual field. Those used most frequently are TVEPs are: 

(i) flash TVEPs that are caused by flashing lights; (ii) pattern onset/offset TVEPs that are caused by 

letting a pattern appear abruptly on a diffuse background; and (iii) pattern reversal TVEPs that are 

caused by reversing the phase of a pattern i.e., a checkerboard lattice that changes the checks from 

black to white and from white to black abruptly [105].  

The evoked responses vary with the stimulus presented. Flash TVEPs present a series of negative 

and positive peaks. The most prominently peaks are negative (N2) and positive (P2) peaks at around 

90 ms and 120 ms respectively [105]. Pattern onset/offset TVEPs have three main peaks: C1 (positive, 

75 ms), C2 (negative, 125 ms), and C3 (positive, 150 ms) [105]. Pattern reversal TVEPs usually present 

one negative peak at 75 ms, one positive peak at 100 ms, and one negative peak at 135 ms [105].  

SSVEPs are elicited by the same visual stimulus. In this case, the stimulus changes at a frequency 

higher than 6 Hz. If the stimulus is a flash, SSVEP shows a sinusoidal-like waveform, the fundamental 

frequency of which is the same as the blinking frequency of the stimulus. If the stimulus is a pattern, 

the SSVEP occurs at the reversal rate and at their harmonics [106]. In contrast to TVEP, constituent 

discrete frequency components of SSVEPs remain closely constant in amplitude and phase over long 

periods of time [107]. SSVEPs are less susceptible than TVEPs to artifacts produced by blinks and eye 

movements [108] and to electromyographic noise contamination [109]. Indeed, TVEPs not are 

typically used for BCI.  

SSVEP-based BCIs allow users to select a target by means of an eye-gaze. The user visually fixes 

attention on a target and the BCI identifies the target through SSVEP features analysis. Considering a 

BCI as a communications channel, SSVEP-based BCIs can be classified into three categories 

depending on the specific stimulus sequence modulation in use [110]: time modulated VEP (t-VEP) 

BCIs, frequency modulated VEP (f-VEP) BCIs, and pseudorandom code modulated VEP (c-VEP) 

BCIs. VEPs that react to different stimulus sequences should be orthogonal or near orthogonal to each 

other in some domain to ensure reliable identification of the target [110]. In a t-VEP BCI, the flash 

sequences of different targets are orthogonal in time. That is, the flash sequences for different targets 

are either strictly non-overlapping or stochastic. In an f-VEP BCI, each target is flashed at a unique 

frequency, generating a periodic sequence of evoked responses with the same fundamental frequency 

as its harmonics. In a c-VEP BCI, pseudo-random sequences are used. The duration of ON and OFF 

states of each target’s flash is determined by a pseudorandom sequence. Signal modulations can 

optimize the information transfer rate. Indeed, code modulation provides the highest communication 

speed. Table 3 summarizes the features of each modulation. 
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Table 3. Features of VEP modulations: t-VEP, f-VEP and, c-VEP. 

VEP modulation Features 

t-VEP 

− Relatively low information transfer rate (<30 bits/min) 

− Synchronous signal is necessary 

− No user training required 

f-VEP 

− High information transfer rate (30–60 bits/min) 

− Simple system configuration 

− No user training required 

− More suitable for application with few options 

c-VEP 

− Very high information transfer rate (>100 bits/min) 

− Synchronous signal is necessary 

− User training required 

− More suitable for application with many options 

The typical VEP-based BCI application displays flashing stimuli, such as digits or letters, on a 

screen to induce SSVEPs while the user stares at one of the symbols. The user can move their gaze to 

the flashing digits or letters, in order to communicate with the computer [111]. The advantage of this 

type of control signal is that very little training is required. However, it presents the drawback that the 

user has to watch the screen and keep his eyes fixed on one point. This type of control signal can only 

be used for exogenous BCIs (see Section 0). Therefore, VEPs are not suitable for patients in advanced 

stages of Amyotrophic Lateral Sclerosis (ALS) or with uncontrollable eye or neck movements. Some 

independent SSVEP-based BCIs that are controlled by the attention of the user have been introduced to 

overcome this drawback [112,113]. 

SSVEP are usually elicited through light-emitting diodes (LEDs), cathode-ray tube (CRT) monitors, 

or liquid crystal display (LCD). LEDs outperform LCD or CRT stimulators but they need more 

complex hardware. LCD and CRT monitors make the target presentation easier than LED stimulators, 

because both systems can easily be connected to a PC. However, LED stimulators may be preferable 

for a multiple target BCI, because the refresh rate of an LCD or CRT monitor can limit the number of 

targets. LED stimulators offer more versatility because the flickering frequency and phase of each 

LED can be controlled independently by a programmable logic device [114]. The stimulation decision 

can be made on the basis of the number of choices that the BCI offers [115]. LCD screens are optimal 

for low complexity BCI (less than 10 choices), because they induce less eye-tiredness than CRT 

screens. For medium complexity BCI (10–20 choices), LCD or CRT screens are optimal. For high 

complexity BCI (more than 20 commands), LED are preferred. 

3.2. Slow Cortical Potentials (SCPs)  

SCPs are slow voltage shifts in the EEG that last a second to several seconds. SCPs belong to the 

part of the EEG signals below 1 Hz [116]. SCPs are associated with changes in the level of cortical 

activity. Negative SCPs correlate with increased neuronal activity, whereas positive SCPs coincide 

with decreased activity in individual cells [116]. These brain signals can be self-regulated by both 

healthy users and paralyzed patients to control external devices by means of a BCI. SCP shifts can be 

used to move a cursor and select the targets presented on a computer screen [117]. 
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People can be trained to generate voluntary SCP changes using a thought-translation device [117]. 

The thought-translation device is a tool used for self-regulation SCP training, which shows  

visual-auditory marks so that the user can learn to shift the SCP. The thought-translation device 

typically comprises a cursor on a screen in such a way that the vertical position of the cursor constantly 

reflects the amplitude of SCP shifts. Although most thought-translation devices show continuous 

feedback, it is possible to train SCP self-modulation in the absence of continuous feedback [118]. 

Success in SCP self-regulation training depends on numerous factors, such as the patient’s 

psychological and physical state, motivation, social context, or the trainer-patient relationship [117]. It 

is known that the learning capability of the user drastically affects SCP modulation training.  

Self-regulation training is therefore strongly recommended for patients at the early stage of a 

progressive disease [117]. Furthermore, initial SCP modulation skills have an effect on future 

performance following training [119]. Therefore, the value of SCPs as a suitable control signal for each 

patient can only be determined on the basis of initial trials. Other factors, such as sleep quality, pain, 

and mood also have an influence on self-regulation performance [117]. Their effects are not identical 

for all patients and further investigation is certainly needed to establish general rules on this matter. 

Self-regulation of SCPs has been tested extensively with patients suffering from ALS [120–122]. 

Typical accuracy rates achieved for SCP classification are acceptable and vary between 70 and 80 per 

cent, but the rates of information provided by SCP-based BCI are relatively low. Besides, longer 

training is required to use SCP-based BCI and it is likely that users will need continuous practice for 

several months. 

3.3. P300 Evoked Potentials  

P300 evoked potentials are positive peaks in the EEG due to infrequent auditory, visual, or 

somatosensory stimuli. These endogenic P300 responses are elicited about 300 ms after attending to an 

oddball stimulus among several frequent stimuli [123,124]. Some studies have proven that the less 

probable the stimulus, the larger the amplitude of the response peak [125]. The use of P300-based 

BCIs does not require training. However, the performance may be reduced because the user gets used 

to the infrequent stimulus and consequently P300 amplitude is decreased [126].  

A typical application of a BCI based on visual P300 evoked potentials comprises a matrix of letters, 

numbers, or other symbols or commands [123,127,128]. The rows or columns of this matrix are 

flashed at random while the EEG is monitored. The user gazes at the desired symbol and counts how 

many times the row or column containing the desired choice flashes. P300 is elicited only when the 

desired row or column flashes. Thus, the BCI uses this effect to determine the target symbol. Due to 

the low signal-to-noise ratio in EEG signals, the detection of target symbols from a single trial is very 

difficult. The rows or columns must be flashed several times for each choice. The epochs corresponding to 

each row or column are averaged over the trials, in order to improve their accuracy. However, these 

repetitions decrease the number of choices per minute, e.g., with 15 repetitions, only two characters are 

spelled per minute [123]. Although most of the applications based on P300 evoked potentials employ 

visual stimuli, auditory stimuli have been used for people with visual impairment [129]. 

P300-based BCIs provide a very low rate of information transmission because the classifier based 

on an average is too simple, and the accuracy of P300 potential detection is too low [130]. 
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Consequently, too many trials are required to select a single symbol in the matrix. Accuracy of  

P300-based BCIs can be improved, while using a more complicated classifier than a simple average to 

ensure that the number of repetitions remain unaffected [130,131]. Other studies have proven that the 

detection accuracy of visual P300 evoked potentials also depends on the properties of the visual matrix 

such as the dimensions or colors of the symbols. Performance decreases when matrices with smaller 

symbols are used [132], and it is enhanced when a green and blue chromatic flicker matrix is used, 

rather than a gray and black one [133,134].  

Information transmission rates provided by P300-based BCI can be also improved by considering 

the BCI as a noisy transmission system. BCI can therefore benefit from the use of error correcting 

codes [135]. However, optimizing the code solely according to the maximal minimum-Hamming-distance 

implies an increase in target frequency of target stimuli which might violate physiological constraints 

leading to difficulties in classifying the individual ERPs, due to overlap and refractory effects. Further, 

overlap and refractory effects are generally the main error source in these kinds of BCIs [136]. Some 

recent novel approaches have tried to reduce them, by superimposing the targets on a checkerboard [137] 

or by using alternative stimulus type methods based on motion [136]. 

The P300 response is not markedly affected by whether or not the subject gazes directly at the 

target, in contrast to the VEP response, which is larger when the target is foveated [138]. This 

distinction is important for clinical applications, because eye movements are often impaired or lost in 

the target population. Nevertheless, the performance of a P300-based BCI is substantially improved 

when subjects gaze at the desired item [138]. Therefore, the performance of the visual P300-based 

BCIs depends not only on the P300-evoked potential, but also on the VEP response that, in turn, 

strongly depends on eye-gaze direction. 

3.4. Sensorimotor Rhythms (mu and beta rhythms)  

Sensorimotor rhythms comprise mu and beta rhythms, which are oscillations in the brain activity 

localized in the mu band (7–13 Hz), also known as the Rolandic band, and beta band (13–30 Hz), 

respectively. Both rhythms are associated in such a way that some beta rhythms are harmonic mu 

rhythms, although some beta rhythms may also be independent [139]. The amplitude of the 

sensorimotor rhythms varies when cerebral activity is related to any motor task although actual 

movement is not required to modulate the amplitude of sensorimotor rhythms [140,141]. Similar 

modulation patterns in the motor rhythms are produced as a result of mental rehearsal of a motor act 

without any overt motor output [140]. Sensorimotor rhythms have been used to control BCIs, because 

people can learn to generate these modulations voluntarily in the sensorimotor rhythms [36,142].  

Sensorimotor rhythms can endure two kinds of amplitude modulations known as event-related 

desynchronization (ERD) and event-related synchronization (ERS) that are generated sensory 

stimulation, motor behavior, and mental imagery [36]. ERD involves an amplitude suppression of the 

rhythm and ERS implies amplitude enhancement. Figure 2 (left panel) shows the temporal behavior of 

ERD and ERS during a voluntary movement experiment which involves brisk finger lifting [36]. The 

mu band ERD starts 2.5 s before movement on-set, reaches the maximal ERD shortly after  

movement-onset, and recovers its original level within a few seconds. In contrast, the beta rhythm 

shows a short ERD during the movement initiation of movement, followed by ERS that reaches the 
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maximum after movement execution. This ERS occurs while the mu rhythm is still attenuated.  

Figure 2 also shows the gamma oscillation (36–40 Hz), which is another rhythm related to motor tasks 

as well [36]. Gamma rhythms reveal an ERS shortly before movement-onset. Finally, the right panel of 

Figure 2 illustrates that simultaneous ERD and ERS are possible at different scalp locations [36]. 

Figure 2. Left panel: Superimposed band power time courses computed for three different 

frequency bands (10–12 Hz, 14–18 Hz, and 36–40 Hz) from EEG trials recorded from 

electrode position C3 during right index finger lifting. EEG data triggered with respect to 

movement-offset (vertical line at t = 0 s); Right panel: Examples of ongoing EEG 

recorded during right finger movement (adapted from [36]). 

 

Sensorimotor rhythms are related to motor imagery without any actual movement [141]. This makes 

it possible to use sensorimotor rhythms for the design of endogenous BCIs, which are more useful than 

exogenous BCIs. Nevertheless, self-control of sensorimotor rhythms is not easy, and most people have 

difficulties with motor imagery. People tend to imagine visual images of related real movements, 

which is not sufficiently useful for a BCI system, because the patterns of these sensorimotor rhythms 

differ from actual motor imagery. User training should emphasize kinesthetic experiences instead of 

visual representations of actions [143]. Motor imagery training is traditionally based on visual or 

auditory feedback [144]. This kind of training asks the users to perform a certain motor imagery task, 

and then the sensorimotor rhythms are extracted and classified by comparing them with a reference. 

Finally, visual or auditory feedback is provided to the participant according to the success of the result. 

This kind of training has been widely used although usually its effectiveness was not very high [145]. 

Hwang et al. [145] presented more effective motor imagery training based on a system that displayed 

real-time cortical activity as feedback, which allowed the users to watch their own cortical activity 

through a real-time monitoring system. 

Sensorimotor rhythms have been investigated extensively in BCI research. Well-known BCI 

systems such as Wadsworth [146], Berlin [147], or Graz [148] BCIs employ sensorimotor rhythms as 

control signals. The BCIs based on sensorimotor rhythms can operate in either synchronous or 

asynchronous mode. The latest advances in the field of BCIs based on sensorimotor rhythms have 

shown that it is possible to predict human voluntary movements before they occur based on the 

modulations in sensorimotor rhythms [149]. Furthermore, this prediction could be provided without 

the user making any movements at all. 
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4. Types of BCIs 

The BCIs can be categorized into (i) exogenous or endogenous and (ii) synchronous (cue-paced) or 

asynchronous (self-paced). Types of BCI are listed in Tables 4 and 5, along with information related to 

brain signals that can be modulated to convey information as well as advantages and disadvantages. 

Also, BCIs can be classified into dependent and independent [2]. This distinction will not be detailed 

in this review because it is very similar to exogenous and endogenous distinction. Advantages and 

disadvantages in both taxonomies are analogous. 

Table 4. Main differences between exogenous and endogenous BCI. 

Approach Brain signals Advantages Disadvantages 

Exogenous 

BCI 

− SSVEP 

− P300 

− Minimal training  

− Control signal set-up easily and 

quickly 

− High bit rate (60 bits/min) 

− Only one EEG channel required 

− Permanent attention to  

external stimuli 

− May cause tiredness in  

some users 

Endogenous 

BCI 

− SCPs 

− Sensorimotor 

rhythms 

− Independent of any stimulation 

− Can be operated at free will 

− Useful for users with sensory  

organs affected 

− Suitable for cursor control 

applications 

− Very time-consuming training 

(months or weeks) 

− Not all users are able to  

obtain control 

− Multichannel EEG recordings 

required for good performance 

− Lower bit rate (20–30 bits/min) 

Table 5. Main differences between synchronous and asynchronous BCIs. 

Approach Advantages Disadvantages 

Synchronous 

BCI 

− Simpler design and performance evaluation 

− The user can avoid generating artifacts since 

they can perform blinks and other eye 

movements when brain signals are not analyzed 

− Does not offer a more natural 

mode of interaction  

Asynchronous 

BCI 

− No requirement to wait for external cues 

− Offers a more natural mode of interaction 

− Much more complicate design 

− More difficult evaluation 

According to the nature of the signals used as input, BCI systems can be classified as either 

exogenous or endogenous. Exogenous BCI uses the neuron activity elicited in the brain by an external 

stimulus such as VEPs or auditory evoked potentials [150]. Exogenous systems do not require 

extensive training since their control signals, SSVEPs and P300, can be easily and quickly set-up. 

Besides, the signal controls can be realized with only one EEG channel and can achieve a high 

information transfer rate of up to 60 bits/min. On the other hand, endogenous BCI is based on  

self-regulation of brain rhythms and potentials without external stimuli [150]. Through neurofeedback 

training, the users learn to generate specific brain patterns which may be decoded by the BCI such as 

modulations in the sensorimotor rhythms [151] or the SCPs [117]. The advantage of an endogenous 

BCI is that the user can operate the BCI at free will and move a cursor to any point in a  
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two-dimensional space, while an exogenous BCI may constrain the user to the choices presented. Also, 

endogenous BCI are especially useful for users with advanced stages of ALS or whose sensory organs 

are affected. Table 4 summarizes the differences between exogenous and endogenous BCIs. 

According to the input data processing modality, BCI systems can be classified as synchronous or 

asynchronous. Synchronous BCIs analyze brain signals during predefined time windows. Any brain 

signal outside the predefined window is ignored. Therefore, the user is only allowed to send commands 

during specific periods determined by the BCI system. For example, the standard Graz BCI [148] 

represents a synchronous BCI system. The advantage of a synchronous BCI system is that the onset of 

mental activity is known in advance and associated with a specific cue [152]. Moreover, the patients 

may also perform blinks and other eye movements, which would generate artifacts, if the BCI did not 

analyze the brain signals to avoid their misleading effects. This simplifies the design and evaluation of 

synchronous BCI. Asynchronous BCIs continuously analyze brain signals no matter when the user 

acts. They offer a more natural mode of human-machine interaction than synchronous BCI. However, 

asynchronous BCIs are more computation demanding and complex. Table 5 summarizes the 

differences between synchronous and asynchronous BCIs. 

5. Features Extraction and Selection  

Different thinking activities result in different patterns of brain signals. BCI is seen as a pattern 

recognition system that classifies each pattern into a class according to its features. BCI extracts some 

features from brain signals that reflect similarities to a certain class as well as differences from the rest 

of the classes. The features are measured or derived from the properties of the signals which contain 

the discriminative information needed to distinguish their different types. 

The design of a suitable set of features is a challenging issue. The information of interest in brain 

signals is hidden in a highly noisy environment, and brain signals comprise a large number of 

simultaneous sources. A signal that may be of interest could be overlapped in time and space by 

multiple signals from different brain tasks. For that reason, in many cases, it is not enough to use 

simple methods such as a band pass filter to extract the desired band power.  

Brain signals can be measured through multiples channels. Not all information provided by the 

measured channels is generally relevant for understanding the underlying phenomena of interest. 

Dimension reduction techniques such as principal component analysis or independent component 

analysis can be applied to reduce the dimension of the original data, removing the irrelevant and 

redundant information. Computational costs are thereby reduced.  

Brain signals are inherently non-stationary. Time information about when a certain feature occurs 

should be obtained. Some approaches divide the signals into short segments and the parameters can be 

estimated from each segment. However, the segment length affects the accuracy of estimated features. 

FFT performs very poorly with short data segments [153]. Wavelet transform or adaptive autoregressive 

components are preferred to reveal the non-stationary time variations of brain signals. Also, a novel 

technique called stationary subspace analysis (SSA) has recently been introduced to deal with the  

non-stationarity of EEG signals [154]. SSA decomposes multivariate time series into stationary and 

non- stationary components. 
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Multiples features can be extracted from several channels and from several time segments before 

being concatenated into a single feature vector. One of the major difficulties in BCI design is choosing 

relevant features from the vast number of possible features. High dimensional feature vectors are not 

desirable due to the “curse of dimensionality” in training classification algorithms (see next section). 

The feature selection may be attempted examining all possible subsets of the features. However, the 

number of possibilities grows exponentially, making an exhaustive search impractical for even a 

moderate number of features. Some more efficient optimization algorithms can be applied with the aim 

of minimizing the number of features while maximizing the classification performance. 

This section discusses methods to obtain the relevant characteristics of brain signals as well as 

feature selection methods. Firstly, dimensional reduction methods, such as principal component 

analysis or independent component analysis are explained. Secondly, time and/or frequency methods, 

such as matched filtering or wavelet transform, and parametric modeling, such as autoregressive 

component, are also surveyed. Thirdly, an explanation is given of the common spatial pattern 

algorithm. This method designs a preprocessing spatial filter, by means of spatial covariance from input 

data and signal whitening, that enhances the difference between classes before the feature extraction 

stage. And, finally, feature selection methods such as genetic algorithms or sequential selection are 

included. All these methods, including feature extraction and feature selection methods, are listed 

respectively in Tables 6 and 7 along with information on their properties and BCI applications. 

Table 6. Summary of feature extraction methods. 

 Method Properties Applications 

Dimension 

reduction 

PCA 

− Linear transformation 

− Set of possibly correlated observations is transformed into a set of 

uncorrelated variables 

− Optimal representation of data in terms of minimal mean-square-error 

− No guarantees always a good classification 

− Valuable noise and dimension reduction method. PCA requires that 

artifacts are uncorrelated with the EEG signal 

[155,157,158] 

ICA 

− Splits a set of mixed signals into its sources 

− Mutual statistical independence of underlying sources is assumed 

− Powerful and robust tool for artifact removal. Artifacts are required 

to be independent from the EEG signal 

− May corrupt the power spectrum 

[160,161, 

164–168] 

Space CSP 

− Spatial filter designed for 2-class problems. Multiclass extensions exist 

− Good result for synchronous BCIs. Less effective for asynchronous 

BCIs 

− Its performance is affected by the spatial resolution. Some electrode 

locations offer more discriminative information for some specific 

brain activities than others 

− Improved versions of CSP: WCSP, CSSP, CSSSP 

[183–187] 
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Table 6. Cont. 

Time-

frequency 

AR 

− Spectrum model 

− High frequency resolution for short time segments 

− Not suitable for non-stationary signals 

− Adaptive version of AR: MVAAR 

[170,172] 

MF 

− Detects a specific pattern on the basis of its matches with 

predetermined known signals or templates 

− Suitable for detection of waveforms with consistent temporal 

characteristics 

[151,173] 

CWT 
− Provides both frequency and temporal information 

− Suitable for non-stationary signals 
[179,180] 

DWT 

− Provides both frequency and temporal information 

− Suitable for non-stationary signals 

− Reduces the redundancy and complexity of CWT 

[181,182] 

Table 7. Summary of feature extraction methods. 

 Method Properties Applications

Features 

selection 

GA 
− High resource consumption 

− Possible premature convergence 
[188,189] 

SFS/SBS − Suboptimal methods [191,192] 

SFFS/SBFS 

− Modified versions of SFS/SBS methods 

− Based on plus l-take away r algorithm 

− Partially overcome the deficiencies of SFS/SBS 

[194–196] 

5.1. Principal Component Analysis (PCA)  

PCA is a statistical features extraction method that uses a linear transformation to convert a set of 

observations possibly correlated into a set of uncorrelated variables called principal components. 

Linear transformation generates a set of components from the input data, sorted according to their 

variance in such a way that the first principal component has the highest possible variance. This 

variance allows PCA to separate the brain signal into different components. 

PCA projects the input data on a k-dimension eigenspace of k eigenvectors, which are calculated 

from the covariance matrix ∑ of the training data p = [p1 p2 
… 

pn] [155]. pi is i-th d-dimension training 

sample, and n is the number of samples.  

The covariance matrix ∑ is computed as: ∑ ൌ ෍ሺ݌௜ െ ݉ሻሺ݌௜ െ ݉ሻ௧௡
௜ୀଵ  (1)

where, ݉ ൌ ଵ௡ ∑ ௜௡௜ୀଵ݌  is the mean vector of the training samples pi. 

The covariance matrix ∑ is a real and symmetric ݀ ݔ ݀ matrix, therefore ∑ has d different 

eigenvectors and eigenvalues. By means of the eigenvalues, it is possible to know which eigenvectors 

represent the most significant information contained in the dataset. The eigenvectors with the highest 
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eigenvalue represent the principal components of the training dataset p. PCA selects that k, with k < d, 

eigenvectors having the largest eigenvalues. These selected eigenvectors serve to build a projection 

matrix A that will be used to extract the feature vector from the test data q. The k eigenvectors are 

sorted into columns in Matrix A, such that the first column of A corresponds to the largest eigenvalue. 

Finally, PCA computes the feature vector v from the data in matrix A, by projecting the test data q onto 

the new subspace, such that: ݒ ൌ ݍ௧ሺܣ െ ݉ሻ  (2)

where, ݉ ൌ ଵ௡ ∑ ௜௡௜ୀଵ݌  represents the mean vector of training samples pi. 

PCA is also a procedure to reduce the dimension of the feature. Since the number of columns is less 

than the number of eigenvectors, the dimension of the output projected data is less than the dimension 

of the input data. This decrease in dimensionality can reduce the complexity of the subsequent 

classifying step in a BCI system.  

PCA does not always guarantee a good classification since the best discriminating components may 

not figure among the largest principal components [156]. PCA reduces data dimension by seeking a 

new optimal representation of data in terms of minimal mean-square-error between the representation 

and the original data. It will not guarantee that the discriminative features are optimal for classification. 

Despite this shortcoming, it has been proven that PCA is a reliable noise reduction method. 

With regard to the applications of PCA in BCI systems, PCA has been used to identify the 

artifactual components in a reasonably successful way in EEG signals and to reconstruct the signals 

without the artifactual components [157,158]. Nevertheless, the artifacts must not be correlated with 

the EEG signal for PCA to function in this way. PCA has also been employed, in order to reduce 

feature space dimensionality [155].  

5.2. Independent Component Analysis (ICA) 

ICA is a statistical procedure that splits a set of mixed signals into its sources with no previous 

information on the nature of the signal. The only assumption involved in ICA is that the unknown 

underlying sources are mutually independent in statistical terms. ICA assumes that the observed EEG 

signal is a mixture of several independent source signals coming from multiple cognitive activities or 

artifacts. ICA therefore expresses the resulting EEG signal x(t) in relation to their sources s(t) as: ࢞ሺݐሻ ൌ ሻሻݐሺ࢙ሺࢌ ൅ ሻ (3)ݐሺ࢔

where, f is any unknown mixer function, and n(t) is an additive random noisy vector. The dimension of 

the input vector s(t) depends on the number of sources. The dimension of output vector x(t) is equal to 

the number of measured data channels. The number of sources is usually assumed to be less than or 

equal to the number of channels although more generalized ICA methods are possible [159]. 

The whole ICA problem consists in the calculation of the unmixing function by inverting f and 

obtaining an estimation of s(t), by mapping x(t) to the source space. To solve the problem, ICA can fall 

into two different models on the basis of f, which may be either a linear or nonlinear function. The 

nonlinear assumption is suitable in those cases where the linear model might be too simple to describe 

the observed data x(t). However, the nonlinear problem is usually too complex and generally 

intractable due to its high number of indeterminations. The assumption of a linear mixing function 
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simplifies Equation (3). It is possible to rewrite it as a matrix multiplication where A is the mixing 

matrix. The Equation (4) gives the mathematical expression of the linear ICA model: ࢞ሺݐሻ ൌ ሻݐሺ࢙࡭ ൅ ሻ (4)ݐሺ࢔

Although the approximation given by Equation (4) can be considered too simple, it works 

reasonably well in brain signal processing applications. Furthermore, it is possible to remove the noise 

term n(t) from Equation (4), by assuming that the observed data is noiseless or that the noise is too 

weak for consideration [160,161]. Finally, s(t) and A are obtained from x(t) by means of certain 

algorithms, such as Infomax [162] or further modification of the Infomax [163]. 

ICA has traditionally been used as a preprocessing tool before the feature extraction step, in order to 

remove ocular artifacts in BCI systems [164–166]. Although ICA has been proven to be a powerful 

and robust tool for artifact removal in signal analysis, some studies have indicated that artifact 

suppression may also corrupt the power spectrum of the underlying neural activity [167]. In addition, 

ICA requires that the artifacts are independent in relation to the EEG signal. 

It is also possible to find authors that have employed ICA as a classifier. ICA can be modified to 

classify EEG signals by fitting the generative ICA model to each task and employing Bayes’ rule to 

create the classifier [168].  

5.3. AutoRegressive Components (AR)  

AR spectral estimation is a method for modeling signals. AR models the EEG signal as the output 

random signal of a linear time invariant filter, where the input is white noise with a mean of zero and a 

certain variance of σ2
. The aim of the AR procedure is to obtain the filter coefficients, since it is 

assumed that different thinking activities will produce different filter coefficients. The filter 

coefficients will be used as the features of the signal.  

AR assumes that the transfer function of the filter will only contain poles in the denominator. The 

number of poles in the denominator corresponds to the order of the autoregressive model. The 

assumption of an all-pole filter makes the filter coefficients computation easier because it is only 

necessary to solve linear equations.  

Mathematically, the AR model of order p describes the EEG signal y(t) as: ݕሺݐሻ ൌ ܽଵݕሺݐ െ 1ሻ ൅ ܽଶݕሺݐ െ 2ሻ ൅ ܽଷݕሺݐ െ 3ሻ ൅ ڮ ൅ ܽ௣ݕሺݐ െ ሻ݌ ൅ ݊ሺݐሻ (5)

where, ai is the i-th filter coefficient, and n(t) is the noise. There are several methods that compute the 

filter coefficients such as the Yule-Walker, Burg, covariance, and forward-backward algorithms [169]. 

The resulting coefficients can be used to estimate the power spectrum of the EEG signal y(ω),  

such that: ݕሺ߱ሻ ൌ 1ห1 െ ∑ ܽ௞ ݁ି௝௞ఠ௣௞ୀଵ หଶ (6)

where, ak are the estimated filter coefficients, and p is the AR model order, in other words, the number 

of poles.  

In the AR model, the determination of an appropriate order p for a given input signal is a trade-off 

issue. If the order is too low to model the input signal, the result will not faithfully represent the signal 
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because the spectrum is too smooth. In contrast, if the order is too high, the spectrum may exhibit 

spurious peaks. 

AR spectral estimation is preferred to Fourier Transform, because of its superior resolution for short 

time segments [170]. Nevertheless, AR performs poorly when the signal is not stationary [171]. Due to 

the non-stationary nature of EEG signals, a multivariate adaptive AR (MVAAR) model has been 

proposed to design more effective on-line BCI systems. Jiang et al. [172] applied MVAAR for the 

classification of motor imagery, showing that MVAAR is a valuable adaptive method for feature 

extraction. The computation algorithm was very similar to the original AR model. In a BCI with m 

channels, the vector of m EEG values, at each point in time k, was represented as: ݕԦ௞ ൌ ሾݕ௞,ଵ ௞,ଶݕ … ௞,௠ሿ் (7)ݕ

As in the AR case, the MVAAR model was expressed as: ݕԦ௞ ൌ Ԧ௞ିଵݕଵܣ ൅ Ԧ௞ିଶݕଶܣ ൅ Ԧ௞ିଷݕଷܣ ൅ ڮ ൅ Ԧ௞ି௣ݕ௣ܣ ൅ ሬ݊Ԧ௞ (8)

where, ሬ݊Ԧ௞ was the vector of white noise values, ܣଵ ൉൉൉  ௣ were the adaptive coefficients, and p was theܣ

model order. The Recursive Least Squares algorithm, a special variant of the Kalman Filter, were used 

to update coefficients ܣଵ ൉൉൉  .௣ at every point kܣ

5.4. Matched Filtering (MF) 

MF is a feature extraction method that attempts to detect a specific pattern on the basis of its 

matches with predetermined known signals or templates. The intention of the user is revealed by 

means of the correlation between the unknown EEG signals and the set of templates. Each template 

represents an intention of the user. A higher correlation would imply better matching between the 

template and the user’s intention. Each matched filter can simply be modeled as a sum of the 

harmonically related sinusoidal components [151]: 

ሺ݊ሻܨܯ ൌ ෍ ܽ௞cos ൬2݇ߨ ி݂௦݂ ݊ ൅ ௞൰ேߔ
௞ୀଵ  (9)

where, n is the template sample number, fs is the sampling frequency, fF is the fundamental frequency 

of the rhythm template, N-1 is the number of harmonics, and at and ߔ௞are the amplitude and phase of 

the individual harmonics, respectively. The model parameters at and ߔ௞ can be obtained from the FFT 

spectrum [151]. 

MF has been proven especially effective for the detection of waveforms with consistent temporal 

characteristics. Krusienski et al. [151] used MF for the identification of user intentions through µ-

rhythms and Brunner et al. [173] also used it for SSVEP feature extraction. 

5.5. Wavelet Transform (WT) 

WT is a mathematical tool widely used for extracting information from many different kinds of 

data, such as audio or image data, among others. WT is particularly suitable when signals are not 

stationary, because it provides a flexible way of representing the time-frequency of a signal [174].  
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Wavelets are functions of varying frequency and limited duration that allow simultaneous study of 

the signal in both the time and the frequency domain [175], in contrast to other modalities of signal 

analysis such as Fourier transform (FT). FT provides only an analysis of the signal activity in the 

frequency domain. FT gives information about the frequency content, but it is not accompanied by 

information on when those frequencies occur. Short-term Fourier Transform (STFT) was proposed to 

overcome this shortcoming of the Fourier analysis. The STFT divides the signal into successive time 

windows and applies the FT in each epoch of the signal in time. In this approach, the design of window 

length is a trade-off because smaller windows lead to higher temporal resolution but also to lower 

frequency resolution at the same time. The WT overcomes this drawback by decomposing the signal in 

both the time and the frequency domain at multiple resolutions, by using a modulated window that is 

shifted along the signal at various scales. 

Continuous wavelet transform (CWT) is defined as the convolution of the signal ݔሺݐሻ with the 

wavelet function ߰௦,ఛሺݐሻ [175]: ݓሺݏ, ߬ሻ ൌ න כሻ߰௦,ఛݐሺݔ ሺݐሻ݀ݐஶ
ିஶ ,ݏሺݓ(10)  ߬ሻ is the wavelet coefficient that corresponds to the frequency associated with the scale s and the 

time τ of the wavelet function ߰௦,ఛሺݐሻ, and the symbol ‘*’ expresses the complex conjugation. The 

wavelet function ߰௦,ఛሺݐሻ is a dilated and shifted version of a mother wavelet ߰ሺݐሻ: ߰௦,ఛሺݐሻ ൌ ݏ√1 ߰ሺݐ െ ݏ߬ ሻ (11)

A mother wavelet can take multiples shapes, but it always satisfies the next condition: න ߰ሺݐሻ݀ݐ ൌ 0ஶ
ିஶ  (12)

The CWT defined in the Equation (10) is actually a kind of template matching, similar to a matched 

filter in which the cross variance between the signal and a predefined waveform is calculated [151]. 

The advantage of the CWT over classic template matching methods arises from the special properties 

of the wavelet template. The wavelets are suitable for transient signal analysis, in which the spectral 

properties of the signal vary over time [176]. 

WT is a powerful tool for the decomposition of transient brain signals into their constituent parts, 

based on a combination of criteria such as frequency and temporal position. Signals of identical 

frequency ranges can be distinguished by means of the temporal position. Likewise, it is possible to 

separate temporally overlapping processes thanks to the different frequency content. 

The CWT introduces a lot of redundancy and complexity since it involves the analysis of a signal at 

a very high number of frequencies using multiple dilations and shifting of the mother wavelet. Discrete 

wavelet transform (DWT) was introduced to reduce this redundancy and complexity. The DWT 

translates and dilates the mother wavelet in certain discrete values only [177]. Farina et al. [178] 

showed a pattern recognition approach for the classification of single trial movement-related cortical 

potentials, where the feature space is built from coefficients of a discrete wavelet transformation. 

Although DWT is less redundant and less complex than CWT, CWT is still employed to extract 
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features from P300 and SCP, because it can clarify subtle information that DWT is unable to  

extract [179]. 

The use of WT requires the selection of a mother wavelet. Many different mother wavelets can be 

found in BCI applications and the selection of any one depends on what types of features need to be 

extracted from the signal. The Mexican Hat wavelet is well localized in the time domain and is 

employed for the localization of ERP components in time [179]. The Morlet wavelet is well localized 

in the frequency domain and has been used for the analysis of gamma activity [180]. The bi-scale 

wavelet has been employed successfully for designing an asynchronous BCI based on detection of 

imaginary movement in the 1–4 Hz frequency range [181]. Also, the Daubechies wavelet, a very  

well-known mother wavelet, has been used for the classification of SCPs [182]. 

5.6. Common Spatial Pattern (CSP) 

CSP is a feature extraction method that projects multichannel EEG signals into a subspace, where 

the differences between classes are highlighted and the similarities are minimized. It aims to make the 

subsequent classification much more effective, by designing a spatial filter that transforms the input 

data into output data with an optimal variance for the subsequent discrimination [183]. CSP has been 

designed for the analysis of multichannel data belonging to 2-class problems. Nevertheless, some 

extensions for multiclass BCIs have also been proposed [184].  

CSP calculates the normalized spatial covariance C from the input data E, which represents the raw 

data of a single trial, by means of: ܥ ൌ ᇱሻ (13)ܧܧሺ݁ܿܽݎݐԢܧܧ

where, E is an ܰ ݔ ܶ matrix, in which T is the number of channels, i.e., recording electrodes, and N the 

number of samples per channel. The apostrophe Ԣ denotes the transpose operator, while trace(x) is the 

sum of the diagonal elements of x. 

Assuming CSP is used to classify two classes, e.g., left and right motor imagery, CSP calculates the 

spatial covariances ܥ௟ഥ  and ܥҧ௥ for each of the two classes by averaging the covariances over the 

successive training trials of each class over time. The composite spatial covariance ܥ௖ is computed as: ܥ௖ ൌ ௟ഥܥ ൅ ҧ௥ (14)ܥ

Since ܥ௖ is real and symmetric, it can be factored as ܥ௖ ൌ ௖ܷߣ௖ ௖ܷᇱ, where ௖ܷ is the matrix of 

eigenvectors, and ߣ௖ is the diagonal matrix of eigenvalues.  

By means of the whitening transform: ܲ ൌ ඥߣ௖ି ଵ ௖ܷᇱ (15)

the variances are equalized in the space spanned by ௖ܷᇱ and all eigenvalues of ܲܥҧ௖ܲԢ are equal to one. If ܥҧ௟ and ܥҧ௥ are transformed as: ௟ܵ ൌ ҧ௟ܲԢ (16)ܵ௥ܥܲ ൌ ҧ௥ܲԢܥܲ (17)

then, ௟ܵ and ܵ௥ will share common eigenvectors. If ௟ܵ ൌ Ԣ, then ܵ௥ܤ௟ߣܤ ൌ ௟ߣ Ԣ, andܤ௥ߣܤ ൅ ௥ߣ ൌ  ,ܫ

where ܫ is the identity matrix. As a result of the sum of two corresponding eigenvalues being always 
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one, the eigenvectors with the largest eigenvalues for ௟ܵ correspond to the smallest eigenvalue for ܵ௥, 

and vice versa. This property is very useful for subsequent classification, because the variance of the 

signal is maximized for one class while minimized for the other class. 

Finally, the feature vector Z is obtained from the trial E as:  ܼ ൌ (18) ܧܹ

where, ܹ ൌ ሺܤᇱܲሻԢ is the spatial filter matrix built by the CSP procedure. 

CSP increases the accuracy of synchronous BCIs where it is allowed to send signals only during 

certain predefined time periods. However, CSP does not offer the same improvement in asynchronous 

BCIs. This is mainly due to the nonstationary properties of EEG signals [185]. Also, the performance 

of CSP is affected by the spatial resolution, and it has been proven that some electrode locations offer 

more discriminative information for some specific brain activities than others. For these reasons, 

several methods improving the original CSP method have been proposed to increase the performance: 

Wavelet Common Spatial Pattern (WCSP) [185], Common Spatio-Spectral Pattern (CSSP) [186], and 

Common Sparse Spectral Spatial Pattern (CSSSP) [187]. 

5.7. Genetic Algorithm (GA)  

GA is an optimization procedure to establish whether a certain set of features is the most efficient. 

GA has been used in very diverse fields to solve optimization problems. In BCI research, GA has been 

used as an automatic method to extract an optimal set of relevant features [188,189]. 

The baseline of the algorithm is a population of candidate solutions called individuals, creatures, or 

phenotypes which are encoded by strings named chromosomes or the genotype of the genome. These 

strings are coded either by binary information or no binary information. The standard steps of the GA 

can be explained briefly as follows (Figure 3). GA begins with an initial population which is randomly 

generated unless the algorithm has previous of the final solution. In the case of having initial 

information, the initial population may be directed towards areas where optimal solutions are more 

likely to reduce the number of iterations. The fitness of every individual population is evaluated. 

According to their fitness, some representatives of the population may be discarded to vacate space for 

newly generated individuals. Other individuals may be selected as parents in order to breed new 

individuals. Also, some individuals may be stochastically selected to keep diversity in the population 

preventing premature convergence. After the selection step, the individuals are crossed with each 

other. In the crossover step, mating is performed among the selected parents to generate one or more 

offspring. To keep a fixed population size, the number of offspring is usually the same as the number 

of discarded individuals. The parents’ genes are split into pieces and then combined to form new 

offspring. Following the crossover step, mutations are introduced to alter the population in order to 

avoid converging towards a local suboptimum solution before exploring the entire search space. As a 

result of the mutation, it is possible to discover areas that cannot be explored by crossover. Finally, the 

fitness of the new population is evaluated. When an acceptable solution is reached or the maximum 

number of generations has been produced, the algorithm is terminated. Otherwise, another iteration of 

the algorithm is produced. 
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Figure 3. Genetic algorithm. 

 

5.8. Sequential Selection 

Sequential selection is an optimization approach that aims at finding the optimal subset of features 

by adding or removing features sequentially. There are two algorithms that perform sequential 

selection: sequential forward selection and sequential backward selection. 

Sequential forward selection (SFS) [190] is a bottom up algorithm. Firstly, the best individual 

feature is found as the first feature in the subset. Next, for each subsequent step, the algorithm chooses 

the feature from the remaining set, which in combination with the previously selected features, yields 

the best subset of features. Finally, the algorithm finishes when the required number of features is 

reached. The shortcoming of this algorithm is that the superfluous features are not removed once other 

features are added. Sequential backward selection (SBS) [190], in contrast to SFS, is a top down 

process. The process starts with the entire set of features and removes step by step features in such a 

way that the error is as low as possible. This algorithm is also suboptimal, because it discards some 

features that may be helpful after discarding other features. SFS has been used with success in the field 

of BCIs [191,192]. 

Another refined method is introduced to partially overcome the aforementioned deficiencies. This 

method, known as plus l take away r method (l > r), adds l features, and remove r features that is not 

working well with other selected features. Sequential forward floating search (SFFS) or sequential 

backward floating search (SBFS) are based on the plus l-take away r method [193]. SFFS starts with a 

null feature set and, for each step, the r best features are included in the current feature set. In other 

words, r steps of SFS are performed. Next, the algorithm verifies the possibility that some feature may 

be excluded. Then, l worst features are eliminated from the set; in other words, l steps of SBS. SFFS 

increases and decreases the number of features until the desired number of features is reached. SBFS 

works analogously, but starting with the full feature set and performing the search until the desired 

dimension is reached, using SBS and SFS steps.  

In BCI research, SFFS has been used to reduce the dimensionality of the feature space to an 

appropriate size for the available training data [194–196]. 
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6. Artifacts in BCIs 

Artifacts are undesirable signals that contaminate brain activity and are mostly of non-cerebral 

origin. Since the shape of neurological phenomenon is affected, artifacts may reduce the performance 

of BCI-based systems. Artifacts may be classified into two major categories: physiological artifacts 

and non-physiological or technical artifacts. 

Physiological artifacts are usually due to muscular, ocular and heart activity, known as 

electromyography (EMG), electrooculography (EOG), and electrocardiography (ECG) artifacts 

respectively [197]. EMG artifacts, which imply typically large disturbances in brain signals, come 

from electrical activity caused by muscle contractions, which occur when patients are talking, chewing 

or swallowing. EOG artifacts are produced by blinking and other eye movements. Blinking makes 

generally high-amplitude patterns over brain signals in contrast to eye movements which produce  

low-frequency patterns. These electrical patterns are due to the potential difference between the cornea 

and the retina, as their respective charges are positive and negative. For that reason, the electric field 

around the eye changes when this dipole moves. EOG artifacts mostly affect the frontal area, because 

they are approximately attenuated according to the square of the distance [198]. Finally, ECG artifacts, 

which reflect heart activity, introduce a rhythmic signal into brain activity [197]. 

Technical artifacts are mainly attributed to power-line noises or changes in electrode impedances, 

which can usually be avoided by proper filtering or shielding [197]. Therefore, the BCI community 

focuses principally on physiological artifacts, given that their reduction during brain activity 

acquisition is a much more challenging issue than non-physiological artifact handling. 

Several ways of handling physiological artifacts can be found in the literature. Artifacts may be 

avoided, rejected or removed from recordings of brain signals. Artifact avoidance involves asking 

patients to avoid blinking or moving their body during the experiments [199]. This approach to artifact 

handling is very simple, because it does not require any computation as brain signals are not assumed 

to have artifacts. However, this assumption is not always feasible given that some artifacts -

involuntary heart beats, eye and bodily twitches- are not easily avoidable during data recording, 

especially in cases of strong neurological disorders [199]. Artifact rejection approaches suggest 

discarding the epochs contaminated by the artifacts. Manual artifact rejection is an option to remove 

artifacts in brain signals and an expert could identify and eliminate all artifact-contaminated epochs. 

The main disadvantage in using manual rejection is that it requires intensive human labor, so this 

approach is not suitable for on-line BCI systems. Nevertheless, this task can be performed 

automatically by EMG and EOG artifact detection. If EMG and EOG signals are monitored, the brain 

signal samples may be removed whenever ocular or muscular activity of the arms is detected [200]. 

Automatic rejection is an effective way of artifact handling, but it may fail when EOG amplitudes are 

too small. Besides, rejection methodology means that the user loses device control when artifact 

contaminated signals are discarded. Instead of rejecting samples, the artifact removal approach 

attempts to identify and remove artifacts while keeping the neurological phenomenon intact. Common 

methods for removing artifacts in EEG are linear filtering, linear combination and regression, BSS and 

PCA [197]; some of which were discussed in Section 0. 

Instead of avoided, rejected or removed artifacts from recordings of brain signals, some systems 

acquire and process artifacts to offer a communication path that either disabled or healthy people can 
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use in many tasks and in different environments. This kind of system is not considered a BCI, because 

communication is not independent of peripheral nerves and muscles. EMG computer interface [201], 

human-computer interface (HCI) [202], EMG-based human-computer interface [203], EMG-Based 

Human-Machine Interface [204], EMG-based human-robot interface [205], muscle-computer interface 

(MuCI) [206], man-machine interface (MMI) [207], and biocontroller interface [208] are different 

terms used to name communication interfaces in the scientific literature that can employ artifact 

signals, among others. These systems usually have greater reliability than BCIs, but they cannot be 

used by severely disabled people with strong constraints in voluntary movements. 

7. Classification Algorithms 

The aim of the classification step in a BCI system is recognition of a user’s intentions on the basis 

of a feature vector that characterizes the brain activity provided by the feature step. Either regression or 

classification algorithms can be used to achieve this goal, but using classification algorithms is 

currently the most popular approach [209]. 

Regression algorithms employ the features extracted from EEG signals as independent variables to 

predict user intentions. In contrast, classification algorithms use the features extracted as independent 

variables to define boundaries between the different targets in feature space. McFarland et al. [210] 

illustrated the differences between the two alternatives. For a two-target case, both the regression 

approach and the classification approach require the parameters of a single function to be determined. 

In a four-target case, assuming that the targets are distributed linearly, the regression approach still 

requires only a single function. In contrast, the classification approach requires the determination of 

three functions, one for each of the three boundaries between the four targets. Therefore, the 

classification approach might be more useful for two-target applications and the regression approach 

may be preferable for greater numbers of targets, when these targets can be ordered along one or more 

dimensions. Moreover, the regression approach is better for continuous feedback e.g., applications 

which involve continuous control of cursor movement. Figure 4 illustrates the differences between 

classification and regression approaches.  

Figure 4. Classification and regression approaches to BCI control of two-targets (adapted 

from [210]). The regression algorithms employ the features extracted from EEG signals as 

independent variables to predict user intentions. In contrast, the classification approach 

uses the features extracted as independent variables to define boundaries between the 

different targets in feature space. 

 Classification Regression
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Classification algorithms can be developed via either offline, online or both kinds of sessions. The 

offline session involves the examination of data sets, such as BCI competitions data sets [211], which 

are collected from an adaptive or closed-loop system. The statistics of the data may be estimated from 

observations across entire sessions and long-term computations may be performed. The results can be 

reviewed by the analyst with the aim of fine-tuning the algorithms. Offline data analysis is valuable, 

but it does not address real-time issues. In contrast, online sessions provide a means of BCI system 

evaluation in a real-world environment. The data are processed in a causal manner and the algorithms 

are tested in an environment in which the users change over the time as a result of e.g., changes in 

motivation or fatigue. Although some researchers test new algorithms with only offline data, both 

offline simulation and online experiments are necessary for effective algorithm design in closed-loop 

systems. In other words, offline simulation and cross-validation can be valuable methods to develop 

and test new algorithms, but only online analysis can yield solid evidence of BCI system  

performance [137,212,213]. 

Classification algorithms have traditionally been calibrated by users through supervised learning 

using a labeled data set. It is assumed that the classifier is able to detect the patterns of the brain signal 

recorded in online sessions with feedback. However, this assumption results in a reduction in the 

performance of BCI systems, because the brain signals are inherently non-stationary. In this regard, 

Shenoy et al. [214] described two main sources of non-stationarity. On the one hand, the patterns 

observed in the experimental samples during calibration sessions may be different from those recorded 

during the online session. On the other hand, progressive mental training of the users or even  

changes in concentration, attentiveness, or motivation may affect the brain signals. Therefore, adaptive 

algorithms are essential for improving BCI accuracy. Adaptation to non-stationary signals is 

particularly necessary in asynchronous and non-invasive BCIs [215,216]. 

Apart from the fact that supervised learning is not optimal for non-stationary signals classification, 

large data sets and, thus, long initial calibration sessions are usually required to achieve acceptable 

accuracy. Semi-supervised learning has been suggested to reduce training time and to update the 

classifier in the online session on a continuous basis [217]. In semi-supervised learning, the classifier is 

initially trained using a small labeled data set, after which the classifier is updated with on-line test data.  

In a realistic BCI scenario, the signal associated with the subject’s intentions is not usually known 

and the labels are not available. Either unsupervised learning or reinforcement learning can be applied 

for BCI adaptation when the labeled data set is not available. Unsupervised methods attempt to find 

hidden structures in unlabeled data, in order to classify them. Some unsupervised methods rely on 

techniques for co-adaptive learning of user and machine [218,219] or covariate shift adaptation [220]. 

Reinforcement learning methods are based on the fact that distinguishing EEG potentials are elicited 

when a subject is aware of an erroneous decision. These potentials are used as learning signals to 

prevent that error from being repeated in the future [221]. 

The adaptation generally results in enhanced performance. Nevertheless, it is worth highlighting 

that inherent risks exist in an adaptive BCI. A BCI that learns too fast may confuse the user, because 

training will take place in a changing environment [222]. In addition, adaptive procedures can hide 

some relevant signal features. Accordingly, there is a tradeoff between highly sensitive adaptation and 

feature extraction. 
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Classifiers also have to face two main problems related to the pattern recognition task: the curse of 

dimensionality and the bias-variance tradeoff. The curse of dimensionality means that the number of 

training data needed to offer good results increases exponentially with the dimensionality of the feature 

vector [223]. Unfortunately, the available training sets are usually small in BCI research, because 

training process takes a long time and is a tiring process for users. The bias-variance tradeoff 

represents the natural trend of the classifiers towards a high bias with low variance and vice versa. 

Stable classifiers are characterized by high bias with low variance, while unstable classifiers show high 

variance with low bias. To achieve the lowest classification error, bias and variance should be low 

simultaneously. A set of stabilization techniques such as the combination of classifiers or regularization 

can be used to reduce the variance. 

The design of the classification step involves the choice of one or several classification algorithms 

from many alternatives. Several classification algorithms have been proposed such as k-nearest 

neighbor classifiers, linear classifiers, support vector machines, and neural networks, among others. 

The general trend prefers simple algorithms to complex alternatives. Simple algorithms have an 

inherent advantage because their adaptation to the features of the brain signal is inherently simpler and 

more effective than for more complex algorithms. Nevertheless, simple algorithms, whenever 

outperformed in online and offline evaluations, should be replaced by more complex alternatives [213].  

Table 8. Summary of classification methods. 

 Approach Properties Applications 

Generative 

model 

Bayesian 

analysis 

− Assigns the observed feature vector to the labeled class to which it has 

the highest probability of belonging 

− Produces nonlinear decision boundaries 

− Not very popular in the BCI systems 

[245–248] 

Linear 

LDA 

− Simple classifier with acceptable accuracy 

− Low computation requirements 

− Fails in the presence of outliers or strong noise. Regularization required 

− Usually two class. Extended multiclass version exits. 

− Improved LDA versions: BLDA, FLDA 

[179,230,231,

233–235] 

SVM 

− Linear and non-linear (Gaussian) modalities 

− Binary or multiclass method 

− Maximizes the distance between the nearest training samples and the 

hyperplanes 

− Fails in the presence of outliers or strong noise. Regularization required 

− Speedy classifier 

[131,228,230,

237,239–244] 

Non-linear k-NNC 

− Uses metric distances between the test feature and their neighbors  

− Multiclass 

− Efficient with low dimensional feature vectors. Very sensitive to the 

dimensionality of the feature vectors 

[227–229] 

ANN 

− Very flexible classifier 

− Multiclass 

− Multiple architectures (PNN, Fuzzy ARTMAP ANN, FIRNN, PeGNC) 

[200,215, 

249–256] 
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Finally, certain inherent dangers of classification algorithm usage should be pointed out. Although 

classification algorithms have clearly helped to characterize task relevant brain states, several pitfalls 

may occur when these algorithms are used by non-experts. Bias and variance of the estimated error of 

the algorithms, and their overfitting are the main source of difficulties [224]. If a classifier is 

overfitted, then it will only be able to classify the training data or similar data. Overfitting can be 

avoided by restricting the complexity of the classification procedure [224]. Classification error is 

estimated by means of cross validation. Once a classification algorithm is trained, the algorithm is 

validated on a validation data set, which should be independent of the training data set. This procedure 

is usually repeated several times, using different partitions of the sample data. The resulting validation 

errors are averaged across multiple rounds. This approach presents some inherent dangers that must be 

prevented, because some elements of the partition may not be independent of each other or may not be 

identically distributed, among other reasons [224].Next, this section presents the properties of a set of 

classifiers, in order to make it easier to choose an appropriate classifier for a given type of BCI. All 

classifier methods are listed in Table 8, along with their main properties. 

7.1. K-Nearest Neighbor Classifier (k-NNC) 

K-nearest neighbor classifiers (k-NNC) are based on the principle that the features corresponding to 

the different classes will usually form separate clusters in the feature space, while the close neighbors 

belong to the same class. This classifier takes k metric distances into account between the test samples 

features and those of the nearest classes, in order to classify a test feature vector. The metric distances 

are a measure of the similarities between the features of the test vector and the features of each class. 

The advantage of taking k neighbors into account in the classification is that error probability in the 

decision is decreased. Some training samples may be affected by noise and artifacts, which may 

seriously influence the classification results. If a decision involving several neighbors is made, then it 

is less likely that an error will occur, because the probability of several simultaneous erroneous datum 

is much lower [225]. 

Rather than only the closest sample, if several k closest classes are considered, then a voting scheme 

is required to decide between competing choices. Since there are no reasons to assume that the 

distributions of those neighbors are homogenous, it is clear to see that the k-NNC has to assign 

different ranks to the nearest neighbors, according to their distances from the test example. Therefore, 

k-NNC needs to define a weighting function, which varies with the distance in such a way that the 

output value decreases as the distance between the test feature vector and the neighbor increases. The 

function defined by Equation (19) [226] meets this requirement: 

ሺ௜ሻݓ ൌ ቐ݀ሺ௞ሻ െ ݀ሺ௜ሻ݀ሺ௞ሻ െ ݀ሺଵሻ ݂݅ ݀ሺ௞ሻ ് ݀ሺଵሻ1 ݂݅ ݀ሺ௞ሻ ൌ ݀ሺଵሻ (19)

where, ݀ሺ௜ሻ denotes the distance of the i-th nearest neighbor from a test example. That is, ݀ሺଵሻ 
corresponds to the nearest neighbor and ݀ሺ௞ሻ to the furthest. The decision rule of k-NNC assigns the 

unknown examples to the class with the greatest sum of weights among its k nearest neighbors. 

k-NNC is not very common in BCI research, because this classifier is very sensitive to the 

dimensionality of the feature vector [227]. Nevertheless, k-NNC has been proven to be efficient with 
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low dimension feature vectors. Also, k-NNC has been tested in a multiclass environment [228] and 

applied to cursor movements on a vertical axis, when classifying SCPs [229]. 

7.2. Linear Discriminant Analysis (LDA) 

LDA is a very simple classifier that provides acceptable accuracy without high computation 

requirements. LDA is very common in the BCI community and is a good choice for designing online 

BCI systems with a rapid response, but limited computational resources. LDA provides relatively 

acceptable accuracy and has been used successfully in numerous BCI systems, such as P300  

speller [179], multiclass [230], or synchronous [231] BCIs. Nevertheless, it can lead to completely 

erroneous classifications in the presence of outliers or strong noise [232]. LDA is usually applied to 

classify patterns into two classes, although it is possible to extend the method to multiples classes [230]. 

For a two-class problem, LDA assumes that the two classes are linearly separable. According to this 

assumption, LDA defines a linear discrimination function which represents a hyperplane in the feature 

space in order to distinguish the classes. The class to which the feature vector belongs will depend on 

the side of the plane where the vector is found (Figure 5). In the case of an N-class problem (N > 2), 

several hyperplanes are used. The decision plane can be represented mathematically as: ݃ሺ࢞ሻ ൌ ்࢞ݓ ൅ ଴ (20)ݓ

where, w is known as the weight vector, x is the input feature vector and w0 is a threshold. The input 

feature vector is assigned to one class or the other on the basis of the sign of ݃ሺ࢞ሻ. 

Figure 5. Linear classifier and margins. The decision boundary is the thick line. (adapted from [232]). 

 

There are many methods to compute w. For example, w may be calculated as [233]: ݓ ൌ ஼ିߑ ଵሺμଶ െ μଵሻ (21)

where, μi is the estimated mean of class i and ߑ஼ ൌ ଵଶ(ߑଵ ൅  ଶሻ is the estimated common covarianceߑ 

matrix; the average of the two class empirical covariance matrices. The estimators of the covariance 

matrix and of the mean are calculated as:  ߑ ൌ 1݊ െ 1 ෍ሺݔ௜ െ μሻሺݔ௜ െ μሻ்௡
௜ୀଵ  (22)
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 μ ൌ 1݊ ෍ ௜௡ݔ
௜ୀଵ  (23)

where, ࢞ is a matrix containing n feature vectors ݔଵ, ,ଶݔ … , ௡ݔ א  Թௗ. 

Figure 6. Eigenvalue spectrum of a given covariance matrix (bold line) and eigenvalue 

spectra of covariance matrices estimated from a finite number of samples (N = 50, 100, 200, 

500). Note that accuracy increases as the number of trials increase (adapted from [233]). 

 

The estimation of the covariance defined in Equation (22) is unbiased and has good properties 

under usual conditions. Nevertheless, it may become imprecise in some cases where the dimensionality 

of the features is too high compared to the number of available trials. The estimated covariance matrix 

is different from the true covariance matrix, because the large eigenvalues of the original covariance 

matrix are over estimated and the small eigenvalues are under estimated (Figure 6). It leads to a 

systematic error which degrades LDA performance [233]. 

For this reason, a new procedure has been proposed to estimate the covariance, improving the 

standard estimator defined in the Equation (22). The new standard estimator of the covariance matrix 

is given by: ߑሺߛሻ ൌ ሺ1 െ ߑሻߛ ൅ (24) ܫߥߛ

The γ value is referred to as a shrinkage parameter and is tunable between 0 and 1. ν is defined as ݁ܿܽݎݐሺߑሻ/݀ with d being the dimensionality of the features space. The selection of a shrinkage 

parameter implies a trade-off and is estimated on the basis of the input data [234].  

Some improved algorithms have been introduced based on LDA such as Fisher LDA (FLDA) and 

Bayesian LDA (BLDA) [235]. In the first example, performance was improved by projecting the data 

to a lower dimensional space, in order to achieve larger intervals between the projected classes and, 

simultaneously, to reduce the variability of the data in each class. However, FLDA does not work well 
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when the number of features becomes too large in relation to the number of training examples. This is 

known as the small sample size problem [235].  

The second modification can be seen as an extension of FLDA. BLDA solves the small sample size 

problem by introducing a statistical method known as regularization. The regularization is estimated 

through Bayesian analysis of training data and is used to prevent overfitting of high dimensional and 

possibly noisy datasets. Overfitting means the classifier has lost generality and is therefore undesirable 

in a classifier. If a classifier is overfitted, then it is only able to classify the training data or similar data. 

In comparison to FLDA, the BLDA algorithm provides higher classification accuracy and bitrates, 

especially in those cases where the number of features is large [235]. Additionally, BLDA requires 

only slightly more computation time, which is a crucial requirement in real BCI systems. 

7.3. Support Vector Machine (SVM) 

SVM is a classifier that, in a similar way to LDA classifiers, constructs a hyperplane or set of 

hyperplanes, in order to separate the feature vectors into several classes. However, in contrast to LDA, 

SVM selects the hyperplanes that maximize the margins, that is, the distance between the nearest 

training samples and the hyperplanes [236]. The basis of SVM is to map data into a high dimensional 

space and find a separating hyperplane with the maximal margin [237] according to Cover’s theorem 

on the separability of patterns [238]. Cover’s theorem states that a complex classification problem cast 

in a high-dimensional nonlinear space is more likely to be linearly separable than in a low-dimensional 

nonlinear space. Also, as for linear analysis classifier, an SVM uses regularization, in order to prevent 

the classifier from accommodating possibly noisy datasets. 

SVM has been used to classify feature vectors for binary [239,240] and multiclass problems [228,230]. 

It has also been successfully used in a large number of synchronous BCIs [131,230,240]. Such a 

classifier is regarded as a linear classifier, since it uses one or several hyperplanes. Nevertheless, it is 

also possible to create a SVM with non-linear decision boundary by means of a kernel function K(x, y). 

Non-linear SVM leads to a more flexible decision boundary in the data space, which may increase 

classification accuracy. The kernel that is usually used in the BCI field is the Gaussian or Radial Basis 

Function (RBF): ܭሺݔ, ሻݕ ൌ exp ቆെԡݔ െ ଶߪԡଶ2ݕ ቇ (25)

The Gaussian SVM has been applied in BCIs to classify P300 evoked potentials [241–243]. 

SVM has been widely used in BCI, because it is a simple classifier that performs well and is robust 

with regard to the curse of dimensionality, which means a large training set is not required for good 

results, even with very high dimensional feature vectors [228]. These advantages come at the expense 

of execution speed. Nevertheless, SVM is speedy enough for real-time BCIs [243,244]. 

7.4. Bayesian Statistical Classifier 

Bayesian statistical classifier is a classifier which aims to assign, with the highest probability, an 

observed feature vector x from its class y. The Bayes’ rule is used to obtain the a posteriori probability ܲሺݔ|ݕሻ that a feature vector has of belonging to a given class. Assuming, for example, two classes L 
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and R corresponding to imaginary left and right movements of the hand, the a posteriori probabilities 

of each class are computed using the Bayes’ rule as: ܲሺݔ|ݕሻ ൌ ܲሺݕሻܲሺݕ|ݔሻܲሺݔሻ ൌ ܲሺݕሻܲሺݕ|ݔሻܲሺܮ|ݔሻܲሺܮሻ ൅ ܲሺݔ|ܴሻܲሺܴሻ ൌ ܲሺݕ|ݔሻܲሺܮ|ݔሻ ൅ ܲሺݔ|ܴሻ (26)

Typically, it is assumed that the a priori probabilities are equal, P(y) = P(L) = P(R) = 0.5, since it 

is supposed the user has no predilection for any movement. In order to calculate the probabilities ܲሺݔ|ݕሻ, it is usually supposed that a Gaussian statistical distribution applies to the features for each 

class, although it may also be assumed that the distribution is a weighted mixture of Gaussian 

distributions [245]: 

ܲሺݕ|ݔሻ ൌ ෍ ௜ெݓ
௜ୀଵ ܲሺݔ|ܿ௜ሻ (27)

where, wi is the weight of each Gaussian prototype and M is the number of prototypes. Two ways are 

feasible to estimate the Gaussian prototypes mixture [245]. The first is to divide the feature space in 

several equally sized regions and calculate the mean and variance of the Gaussian prototypes in each 

area from training data. The set of Gaussian prototypes is equally weighted and the weights wi are 

equal to ଵெ. The second uses a Gaussian mixture models (GMM). The different weights wi and the 

mean, variance, and covariance matrices that define each Gaussian prototype, are calculated by the 

expectation maximization (EM) algorithm. EM algorithm is an iterative procedure which guarantees 

the maximum likelihood or maximum a posteriori (MAP) estimates of the parameters in the statistical 

model. Lui et al. [246] made GMM adaptive to significant changes in the statistical distribution of the 

data during long-term use. In these improvements, the initial mean, variance and covariance of each 

class is updated over time using a specific number of recent trials. 

Bayesian statistical classifiers are not very popular in the BCI community. Nevertheless, they have 

been used for classifying motor imagery [247] or visual P300 evoked potentials [248]. 

7.5. Artificial Neural Network (ANN) 

ANNs are non-linear classifiers that have been used in many applications, in a wide variety of 

disciplines such as computer science, physics, and neuroscience. The idea of ANNs is inspired in how 

the brain processes the information. The purpose is to mimic brain activity that immediately solves 

certain problems, which a conventional computer program processes poorly. For example, ANNs are 

widely used in pattern recognition, because they are capable of learning from training data. The ability 

to learn from examples is one of most important properties of ANNs. Once trained, the ANNs are 

capable of recognizing a set of training data-related patterns. ANNs are therefore associated with BCI 

applications, since pattern recognition is performed to ascertain user intentions.  

An ANN comprises a set of nodes and connections that are modified during the training process. 

The ANN is fed on a set of training examples and the output is observed. If the output is incorrect, then 

the internal weights are modified by the training algorithm to minimize the difference between desired 

and actual output. This training continues until the network reaches a steady state, where no further 
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significant improvement is achieved. In this state, not only should the ANN produce correct outputs for 

all examples of the training set, but also for inputs that were not encountered during training. 

From a mathematical point of view, ANNs define a mapping from an input space to an output 

space, that can be described as a vector-valued function ࢟ ൌ  ሺ࢞ሻ, where both x and y may be of anyࢌ

dimensionality. The mapping function f is a combination of mappings, which are individually 

performed by single nodes or neurons. Each neuron processes the information non-linearly and the 

resulting mapping is therefore non-linear. This property is important, especially in those cases where 

the physical mechanism that generates the input signal is non-lineal. 

One of the most well-known ANN structures is the multilayer perceptron (MLP) introduced by 

Rumelhart and McClelland in 1986. MLPs are very flexible classifiers that can classify any number of 

classes and adapt to numerous kinds of problems. In the field of BCIs, MLP have been applied to 

classify two [249], three [200], and five [250] different tasks, and to design synchronous [251] and 

asynchronous [215] BCIs. Moreover, MLP has been used for preprocessing EEG signals before the 

feature extraction step rather than the classification step, in order to improve the separability of EEG 

features [252].  

Besides MLP, different types of ANN architecture have been used in the design of BCI systems 

such as Probabilistic Neural Networks (PNN) [253, 254], Fuzzy ARTMAP Neural Networks [255], 

Finite Impulse Response Neural Networks (FIRNN) [251] or Probability estimating Guarded Neural 

Classifiers (PeGNC) [256]. 

8. BCI Applications  

BCIs offer their users new communication and control channels without any intervention of 

peripheral nerves and muscles. Hence, many researchers focus on building BCI applications, in the 

hope that this technology could be helpful for those with severe motor disabilities. Various BCI 

applications have very recently been developed thanks to significant advances in the field of  

EEG-based BCI. EEG signals are used by most BCI applications, because they offer an acceptable 

signal quality that combines low cost and easy-to-use equipment. Thanks to BCI applications, it is 

hoped that the quality of life of severely disabled people can be improved. Likewise, the attention 

given by caregivers will be less intensive, reducing its costs and making the life of relatives less 

onerous. Moreover, BCI applications potentially represent a powerful tool for revealing hidden 

information in the user’s brain that cannot be expressed. 

The main target populations for BCI applications fall into three classes. The first group includes 

Complete Locked-In State (CLIS) patients who have lost all motor control, because they may be at a 

terminal stage of ALS or suffer severe cerebral palsy. The second group comprises Locked-In State 

(LIS) patients who are almost completely paralyzed, but with residual voluntary movement, such as 

eye movement, eye blinks, or twitches with the lip. The third group of potential BCI users includes 

abled bodied people and those with substantial neuromuscular control, particularly speech and/or hand 

control. BCI have little to offer to the third group, because they can send the same information much 

more quickly and easily via other interfaces, rather than a BCI. Despite this, BCIs are increasingly 

used by healthy people in neuromarketing and video games as a tool to reveal affective information of 
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the users, which cannot be so easily reported through conventional interfaces. Likewise, BCI can be 

used for some people that suffer from neurological disorders such as schizophrenia or depression.  

The level of impairment of the potential target population is related to the performance of a BCI 

system. Kübler et al. [257] reported a strong correlation between physical impairment and BCI 

performance. CLIS patients were unable to control a BCI. Voluntary brain regulation for communication 

was only possible in LIS patients. However, considering only LIS patients, this relationship between 

physical impairment and BCI performance disappeared. Figure 7 shows the relationship between BCI 

application areas and BCI information transfer rates and user capabilities. 

Figure 7. Relationship between BCI application areas, BCI information transfer rates and 

user capabilities. Horizontal axis: information transfer rate that would make the application 

controllable. Vertical axis: the degree of capability. 

 

It is currently unclear whether BCI technology will ever outperform other established technologies 

that include eye or muscle-based devices. Currently the latter devices tend to be easier to use and offer 

better benefit/cost ratios [258,259]. For example, the detection of eye movement is quicker, easier, and 

more accurate than the detection of ERP modulations. A spelling rate of 10 words per minute can be 

obtained with unimpaired eye movement, by means of an eyetracker [260]. In that regard, hybrid BCI 

systems have been proposed to improve performance. They are the combination of two different kinds 

of BCIs or the combination a BCI with other existing assistive technology [261]. Unless the 

performance of BCI systems improves considerably, BCI as assistive technology may only be 

especially attractive for severely disabled people, when other technologies are unsuitable.  

At present, LIS patients and those likely to develop CLIS constitute the principal candidates for 

BCI. Despite the low information transfer rates provided by BCI, the high grade of disability among 

LIS patients force them to use a BCI rather than more reliable conventional interfaces, such as muscle 

or eye-gaze based system. Eye-gaze control constraints in some LIS patients are an important issue, 

because they are obliged to use BCIs that does not depend on eye-gaze control [262,263]. Also,  

eye-gaze control constraints make some BCI applications more difficult, such as steering a wheelchair.  

Nowadays, there are a vast number of very different BCI applications, such as word processors, 

adapted web browsers, brain control of a wheelchair or neuroprostheses, and games, among others. 

However, most applications have solely been designed for training or demonstration purposes. Despite 

the most recent significant advances in BCI technology, there are still many challenges to employing 

BCI control for real-world tasks [264]: (i) the information transfer rate provided by BCIs is too low for 
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natural interactive conversation, even for experienced subjects and well-tuned BCI systems; (ii) the 

high error rate further complicates the interaction; (iii) BCI systems cannot be used autonomously by 

disabled people, because BCI systems require assistants to apply electrodes or signal-receiving devices 

before the disabled person can communicate; (iv) a BCI user may be able to turn the BCI system off by 

means of brain activity as input, but usually cannot turn it back on again, which is termed the “Midas 

touch” problem; and (v) handling BCI applications demands a high cognitive load that can usually be 

achieved by users in quiet laboratory environment, but not in the real world. Nevertheless, despite all 

these challenging difficulties, the first steps on the path to long-term independent home use of BCIs 

have already been taken [12]. 

Before describing the practical usage of BCI applications, it is worth considering the distinction 

between BCIs and their applications [8]. As a tool that executes a specific function, particular BCI 

specifications correspond to the way it performs that function. These specifications can therefore be 

applied to wide variety of applications, even though the function remains unchanged. The important 

thing in BCI evaluation is its performance when executing its specific function. In contrast, 

applications are described in terms of the tools they employ and the purposes they serve. Therefore, 

BCI evaluation focuses on how well it performs its purpose. In other words, the term BCI refers to the 

system that records, analyses, and translates the input into commands and the term application denotes 

the environment in which the BCI estimated output commands are applied. Consequently, the 

evaluation procedures for BCI systems and their applications differ in each case. The following  

sub-sections briefly describe BCI applications, classified into five main areas: communication, motor 

restoration, environmental control, locomotion and entertainment. 

8.1. Communication 

BCI applications for communication deal with severe communication disabilities resulting from 

neurological diseases. This kind of application probably represents the most pressing research in the 

field of BCI, because communication activity is essential for humans. Applications for communication 

purposes outline an operation that typically displays a virtual keyboard on screen, where the user 

selects a letter from the alphabet by means of a BCI. The distinguishing element in each approach is 

usually the BCI and the type of control signal. 

Voluntary control of SCPs may be used for letter selection. With extensive training, completely 

paralyzed patients are able to produce positive and negative changes in their SCP to drive the vertical 

movement of a cursor [117]. Based on this kind of control signal, Birbaumer et al. [265] developed a 

spelling device with an on-screen display, which used a cursor to select letters of the alphabet. Trials 

involving two patients at advanced stages of ALS showed that they achieved a rate of about  

2 characters per minute when writing text messages. Other types of control signals, such as detection 

of eye blinks [266], which normally represent an artifact in EEG signals, or classification of three 

mental tasks [215], are also used to select the blocks or characters in a virtual keyboard. Both 

approaches are nearly the same apart from the control signal. In both cases, the virtual keyboard 

consisted of a total of 27 symbols, 26 English letters plus the space to separate words, organized in a 

three row by nine column matrix. Likewise, both applications were based on the same protocol of 

writing a single letter, which required three steps. Firstly, the whole keyboard was divided into three 
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blocks, each with nine letters each. Then, the user could select a set of nine letters by producing a 

single, two or three eye blinks [266] or imagining one of three available tasks [215] depending on the 

case. After the first selection, the set of nine letters was distributed into three subsets, each with three 

letters, and once again the user again selected one of them. Finally, at the third level, the user chose a 

single letter amongst the three remaining symbols. The correct spelling rate of each speller was one 

character per minute using blinks [266] and 2.73 characters per minute for three mental tasks [215]. 

Obermaier et al. [267] also designed a letter spelling based on standard Graz-BCI which also 

included a virtual keyboard. The letter selection protocol is very similar to the approaches discussed 

above, except that the entire alphabet consisted of 32 letters and was divided into two halves at each 

step. In this case, the user chooses either subset of letters by EEG modulation through mental hand and 

leg motor imagery. The spelling rate achieved by three healthy users varied between 0.5 and 0.85 letters 

per minute. This is a lower rate than in previous cases, nevertheless, it appears easy to increase the 

number of letters spelled per minute just by expanding the number of classes to more than two. 

P300 event-related brain potentials are also very popular in BCI letter spelling applications.  

P300-based BCIs have been proven sufficiently suitable for ALS patients in the early and middle 

stages of the disease [268]. Besides, this kind of BCI is very handy because the P300 response occurs 

spontaneously and consequently does not require substantial training. Furthermore, recent progress 

with P300-based spellers have allowed the development of commercial applications available to the 

general public [269]. One of the best-known P300 spellers was designed by Farwell and Donchin in 

1988 [123]. In this speller, the 26 letters of the alphabet, together with several other symbols and 

commands, are displayed on-screen in a 6 × 6 matrix (Figure 8) with randomly flashing rows and 

columns. Then, the user focuses attention on the screen and concentrates successively on the characters 

to be written, while the EEG response is monitored. Two P300 are elicited for each looked-for element 

on the matrix, when the desired row or column flashed, thereby allowing the system to identify the 

desired symbol. The results of the Farwell-Donchin speller trials involving 4 healthy people yielded an 

acceptable spelling rate of about 2 characters per minute. 

Figure 8. Original P300 speller. Matrix of symbols displayed on a screen computer which 

serves as the keyboard or prosthetic device (adapted from [123]). 

 

The Farwell-Donchin speller provides a relatively high rate and accuracy, but its precision can be 

improved by reducing perceptual errors in the Farwell-Donchin paradigm [270]. Perceptual error 

happens when a P300 response is elicited due to flashing rows or columns adjacent to the target 

symbol, an issue which is its major source of error. Hence, a new letter distribution was presented to 
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overcome this problem (Figure 9) [270]. The idea is to have several regions flashing instead of using 

rows and columns. The characters are placed into a two-level distribution. At the first level, the 

characters are distributed into seven groups, each with seven characters, which are also flashing 

randomly. The group containing the target character is found by P300 detection. At the second level, 

the characters in the detected group are repositioned and the level one procedure is repeated, and so on 

until the target character is finally selected.  

Figure 9. The proposed region-based paradigm for the improved P300 speller: (a) The first 

level of intensification where each group contains up to seven characters; and (b) One 

region is expanded at the second level (adapted from [270]). 

(a) (b) 

Townsend et al. [137] presented a newly enhanced BCI based on a checkerboard paradigm instead 

of the standard row/column paradigm introduced by Farwell and Donchin. In this new approach, the 

standard matrix containing the targets was superimposed on a checkerboard. Trials with advanced ALS 

patients and healthy people showed a significantly higher mean accuracy for the checkerboard 

paradigm than for the row/column paradigm. Ahi et al. [271] also recently improved the  

Farwell-Donchin P300 speller by introducing a dictionary to decrease the number of misclassifications 

in the spelling. The dictionary was used for checking the candidate word proposed by the classifier of 

P300 responses. In case of misspelling, the dictionary gave a certain number of suggestions from 

which the system could select. Additionally, in order to reduce the probability of misspelling due to 

perceptual errors, the usual letter position in the matrix was changed according to the analysis of word 

similarities in the constructed dictionary.  

All previous P300 spellers are based on the recording of visual event-related brain potentials. 

However, there is no sense in using visual stimuli in cases of severely paralyzed patients with impaired 

vision or poor control over eye movements. In these cases, auditory stimulation is used in order to 

make P300 spellers suitable for this group of patients [129,272–274]. 

Other important applications of communication-related BCIs are Internet browsers adapted to users 

with severe disabilities because, over the last decade, the Internet has become a very important part of 

daily life. In this area, “Descartes” is one of the first EEG-controlled web browsers which can be 

operated by SCPs [275]. Its browser interface is based on arranging the links alphabetically in a 

dichotomous decision tree, where the user selects or rejects each item, producing positive or negative 

SCP shifts. “Descartes” presents the shortcoming that only a limited number of web pages can be 
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browsed, because the user receives a number of predefined links arranged in a tree at the start of the 

web surfing. Besides, graphical links cannot be chosen since the textual label is used to identify the 

link. A more advanced prototype, called “Nessi”, overcomes these shortcomings thanks to a better user 

interface [276]. Colored frames are placed around links or selectable items on the web page instead of 

arranging the links in a tree. More recently, evoked potentials are also used to enhance browser 

functionality. Mugler et al. [128] built an Internet browser with P300 control where the options are all 

presented as icons in an 8x8 matrix. Jinghai et al. [103] developed a browser based on VEPs. One of 

the advantages of ERPs is that they occur quickly and can lead to relatively high web surfing speeds. 

8.2. Motor Restoration 

Spinal cord injury (SCI) or other neurological diseases with associated loss of sensory and motor 

functions dramatically decrease the patient’s quality of life and create life-long dependency on home 

care services. Motor restoration may alleviate their psychological and social suffering. Restoring 

movement, such as grasping, is feasible in quadriplegic patients through neuroprostheses guided by 

functional electrical stimulation (FES). FES compensates for the loss of voluntary functions by 

eliciting artificial muscle contractions. Electrical currents generate artificial action potential by 

depolarizing intact peripheral motor nerves that innervate the targeted muscle and cause a muscle 

contraction (see [277] for a review). EEG-based BCI can be used to generate a control signal for the 

operation of FES, because EEG signals are unaffected by electrical activation of upper extremity 

muscles [278]. Thanks to their merging of BCI and FES, Pfurtscheller et al. [279] developed an 

application where a tetraplegic patient, suffering from a traumatic spinal cord injury, was able to 

control paralyzed hands to grasp a cylinder. In that application, the patient generated beta oscillations 

in the EEG by foot movement imagery. Then, the BCI analyzed and classified the beta burst and the 

output signal was used to control the FES device that activated the extremity. Also, FES has been used 

for rehabilitation training after a stroke. Hu et al. [280] developed a combined FES-robot system which 

was continuously driven by the user’s residual electromyography on the affected side for wrist joint 

training after a stroke, in order to involve the user’s own neuromuscular effort during the training. 

FES has been proven to be an effective way to restore movement. Nevertheless, FES requires the 

use of residual movements, which are not possible in severely injured patients. For this reason, some 

groups have started to explore approaches that couple neuroprostheses and BCI without FES 

intervention. Pfurtscheller et al. [281] demonstrated that a tetraplegic patient, whose residual  

upper-limb muscle activity was restricted to the left biceps, due to an upper spinal cord injury, could 

effectively control a hand orthosis using changes in Rolandic oscillations, which were produced by 

motor imagery. A lengthy training period was required to use this application. However, the patient 

was finally able to open and close the hand orthosis almost without any errors. Some years later, the 

same group validated the coupling of EEG-based BCIs and an implanted neuroprosthesis giving 

further evidence that BCI is a feasible option for the control of a neuroprostheses [282]. In this study, 

BCI classified distinctive EEG-patterns that involved power decreases in certain specific frequency 

bands. These patterns were generated by the user from mental imagery of his paralyzed left hand in motion.  

More recently, ERPs are also used to provide motor restoration. Muller et al. [13] presented a novel 

neuroprosthetic device for the restoration of the grasp function for people spinal cord injuries. This 
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neuroprosthetic device consisted of a dual-axis electrical hand prosthesis controlled by BCI based on 

four-class SSVEPs. Hence, it is possible to select only four movements according to the four LEDs 

flickering in different frequencies. The user’s gaze shifted between the different LEDs in order to 

select a movement. One light on the finger index flickering at 6 Hz and another light on the pinky 

finger flickering at 7 Hz served to turn the hand in supination or pronation. The two remaining lights 

on the wrist flickering at 8 Hz and 13 Hz represented the orders to open and close each hand. 

Within the field of BCI application in motor restoration, BCI systems have been also applied for 

movement reconstruction in patients with severe post-stroke motor disability. BCI training is 

hypothesized to provide feedback to sensorimotor cortex and, by doing so, movement is restored as 

cerebral pathways reorganize to link up motor commands with motor movements. Buch et al. [283] 

developed a BCI system that used MEG activity evoked by patient intent to move a completely 

paralyzed hand, in order to control grasping motions of a mechanical orthosis attached to the affected 

hand. Thanks to the hand prosthesis attached to the paralyzed hand and using visual feedback, the 

patient could learn to open a hand by increasing SMR over the injured hemisphere and to close the 

hand by decreasing it. MEG provides a much larger and more localized SMR response, which means 

that even a digit finger may be controlled [284]. 

MEG-based BCI is too expensive for widespread applications. For that reason, Broetz et al. [285] 

proposed a combination of MEG and EEG-based BCIs. Initially, the MEG-based BCI was used to 

boost rehabilitation training success. Later, the user continued rehabilitation training with an EEG-based 

BCI; a more affordable technology than MEG. Finally, the patient practiced physiotherapy training. 

The results of this study suggest that the combination of BCI training with goal-directed active 

physical therapy improves the motor abilities of chronic stroke patients. In similar experiments,  

Caria et al. [286] reaffirmed the success of a combination of BCI training and physiotherapy. This 

study encourages further research on the role of BCIs in brain plasticity and post-stroke recovery. 

8.3. Environmental Control 

One of the main goals of BCI-based applications is to achieve maximum independence for the 

patient, despite any motor disability. People who suffer severe motor disabilities are often homebound 

and for this reason, environmental control applications focus on the control of domestic devices such 

as TV, lights or ambient temperatures. Apart from improving the quality of life of severely disabled 

people, assistive devices mean that the tasks of the caregiver are less intensive, costs are reduced, and 

the life of relatives is less onerous.  

Cincotti et al. [14] presented a pilot study dealing with the integration of BCI technology into the 

domestic environment. In this study, fourteen patients with severe motor disabilities, due to 

progressive neurodegenerative disorders, tested a device that provided environmental control through 

an interface designed to support different levels of motor capacities for each user. Typical peripherals 

such as keyboard, mouse or joystick were offered to allow the device control through upper limb 

residual motor abilities. Head trackers and microphones for voice recognition were also available in 

cases of people with impaired limbs but intact neck muscles and comprehensive speech. Lastly, in 

cases of totally disabled people, the system could be controlled by voluntary modulations of 

sensorimotor rhythms recorded by the EEG-based BCI. Thereby, the application offered the patient 
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different access modalities that matched their gradual loss of motor abilities due to progressive 

neurodegenerative diseases. As output devices, the system allowed the use of a basic group of 

domestic appliances such as lights, TV and stereo sets, a motorized bed, an acoustic alarm, a front door 

opener, and a telephone, as well as wireless cameras to monitor the surrounding environment.  

Invasive techniques have also been proposed in environmental control applications. Hochberg et al. [287] 

implanted BrainGate sensors in the primary motor cortex of a tetraplegic patient to control a cursor. 

The initial trials yielded promising results, where the patient could handle e-mail applications or 

operate devices such as a television by imagining limb motions, even while conversing. 

8.4. Locomotion  

BCI applications that allow disabled people to control a means of transportation represent an 

important field in their use. Thanks to these applications, people suffering from paraplegia or with 

other physical impairments can autonomously drive a wheelchair, making them more autonomous and 

improving their life quality. Portability is a necessity for these kinds of applications. Hence the use of a 

BCI based on EEG recording is enforced. EEG signals are typically very noisy and are highly variable, 

which means a relatively long time between commands that will be of high uncertainty. Therefore, the 

main challenge is to achieve sufficient accuracy in driving as well as reaching real-time control, in 

spite of the ultra-low information transfer rates provided by BCI. For this reason, some studies on 

BCIs proposed invasive techniques to record EEG signals, because they achieved more spatial 

resolution and reduced noise. Serruya et al. [288] experimented with monkeys implanting an electrode 

array in the motor cortex. These initial experiments showed that the monkeys were able to move a 

computer cursor to any position, opening up new human applications.  

However, the risks related to invasive BCIs lead research towards building non-invasive 

applications for human use. Some pilot experiments concerned with locomotion illustrate the 

feasibility of using EEG signals for continuous control of a mobile robot in an indoor environment 

with several rooms, corridors, and doorways [215,289]. The results of these experiments opened the 

possibility for physically disabled people to use a portable EEG-based BCI for controlling wheelchairs. 

To the best of our knowledge, in 2005, Tanaka et al. [127] presented the first application of wheelchair 

control using only EEG. In this study, the surrounding floor was divided into squares between which 

the user decided to move by imagining left or right-limb movements. Driven by user decisions, the 

wheelchair therefore moved from one square to another. Tests with six healthy subjects were quite 

encouraging and demonstrated the viability of wheelchairs control solely through the use of EEG signals. 

In wheelchair control by BCI-based systems, the usual problems are the infrequent control signal 

and the low information transfer rate and accuracy provided by a BCI. In that respect, some 

improvements have been presented over the past few years. Synchronous P300-based BCIs have been 

introduced in order to assure better accuracy. Likewise, to overcome the usual low bit rate in BCIs, the 

systems have been endowed with certain autonomy, decreasing the number of interactions required. 

Rebsamen et al. [290] designed a simplified wheelchair control by constraining the movements to 

guidepaths defined by the patient or a helper. These guidepaths were attached to a specific point in the 

environment and stored by the system. The user selected the destination through a P300-based BCI and 

the wheelchair automatically followed the path. The user only had to decide when the wheelchair 
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would stop. For path guidance, the system steering the wheelchair had to be kept informed of its 

localization uninterruptedly. To that effect, the wheelchair relied on an odometer and a bar-code 

scanner to read bar-code patterns previously placed on the floor along the paths. Some years later, the 

system was improved to ensure safer control. Two faster BCIs based on P300 and the µ/β rhythm were 

employed, allowing the user to stop the wheelchair more quickly [291]. Both applications were tested 

with healthy people.  

The main disadvantage found in the preceding approaches is that the control assistance has little 

flexibility and is not capable of dealing with unknown and populated scenarios. Iturrate et al. [292] 

overcame this shortcoming by making the system create a dynamic reconstruction of the surrounding 

scenario. Other studies suggested that help should only be available in those cases where the user 

experienced more difficulties driving the wheelchair e.g., in a narrow corridor [216,293,294]. Three 

levels of assistance may be possible in the shared control: collision avoidance, obstacle avoidance and 

orientation recovery, which are only activated as required by the user [293]. Before executing the 

user’s steering commands, the share control evaluates the situation from the data provided by a set of 

laser scanners. Scanners inspect the environment and detect potential obstacles or walls. 

8.5. Entertainment 

Entertainment-orientated BCI applications have typically had a lower priority in this field. Until 

now, research into BCI technology has usually focused on assistive applications, such as spelling 

devices, wheelchair control or neuroprostheses rather than applications with entertainment purposes. 

However, interest in entertainment applications has arisen over the recent years due to the significant 

advances in this technology. In fact, improvements in its performance have opened the way to 

extending BCI use to non-disabled people. BCIs create a new interaction modality which may turn 

video games into even more challenging and attractive experiences. Additionally, BCI may provide a 

way of accessing knowledge on the user’s experiences, thereby improving games through information 

from brain activity. BCIs can report when the gamer is bored, anxious or frustrated with the aim of 

using this knowledge for designing future games [295]. 

Figure 10. Pacman game. The gamer has to move through the maze to reach the exit in the 

right wall. The shortest path is marked with gray track marks, but the gamer can decide to 

run the rest of maze to receive additional credits (adapted from [296]). 
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neuroheadset (Figure 11(b)) with software applications that can respond to user brainwaves or mental 

states. Likewise, it provides a set of software tools for developers. Also, large software companies such 

as Microsoft have shown interest in BCI research, exploring the development of pilot novel 

applications that use BCIs [301].  

8.6. Other BCI Applications 

BCI systems have also been used in a broad variety of applications beyond the traditional areas of 

communication, motor restoration, environmental control, locomotion, and entertainment. The ability 

of BCI feedback to induce cortical plasticity may be the basis for medical applications. Users can 

acquire selective control over certain brain areas by means of neurofeedback, with the aim of inducing 

behavioral changes in the brain. Neurofeedback provided by a BCI system may improve cognitive 

performance [302,303], speech skills [304], affection [305], and pain management [306], and has been 

used in the treatment of mental disorders, such as epilepsy [307,308], attention deficit [309], 

schizophrenia [310], depression [311], alcohol dependence [312], or paedophilia [313]. On the other 

hand, brain signal recordings can be used in an assessment of brain functions to evaluate their status in 

health and disease [314]. 

The opportunity to examine brain signals can also be commercially exploited. Neuromarketing is a 

relatively young field of research that applies neuroscientific methods to marketing research. To date, 

few neuromarketing studies have been conducted, although some evidence has been found to suggest 

that neuroimaging could have a role in several areas of marketing [315–318]. Neuromarketing may 

provide a more efficient trade-off between costs and benefits. Product concepts could be tested by 

means of neuromarketing, removing those that are not promising at the start of the manufacturing 

process. This would lead to a more efficient distribution of sources, because only the more promising 

products would be developed [319]. In addition, neuromarketing may be a source of more accurate 

information on the underlying preferences of the users, rather than data from standard market research 

studies [319]. Neuroimaging may reveal hidden information on consumers’ true preferences that 

cannot be explicitly expressed. The brain’s response to advertisements could be measured and the 

effectiveness of advertising campaigns could therefore be quantified. 

Despite it being an emerging field, several companies such as Neurofocus [320], Neuroconsult [321], 

Neuro Insight [322] or EmSense [323], among others, currently offer neuromarketing services. It is 

also attracting increasing attention among researchers. The field has raised some ethical issues 

concerning this technology, in as much as it may be able to manipulate the brain and consumer 

behavior [324]. 

9. Conclusions 

This article has reviewed the state-of-the-art of BCI systems, discussing fundamental aspects of BCI 

system design. The most significant goals that have driven BCI research over the last 20 years have 

been presented. It has been noted that many breakthroughs were achieved in BCI research. Different 

neuroimaging approaches have been successfully applied in BCI: (i) EEG, which provides acceptable 

quality signals with high portability and is by far the most usual modality in BCI; (ii) fMRI and MEG, 

which are proven and effective methods for localizing active regions inside the brain; (iii) NIRS, 
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which is a very promising neuroimaging method in BCI; and (iv) invasive modalities, which have been 

presented as valuable methods to provide the high quality signals required in some multidimensional 

control applications e.g., neuroprostheses control.  

A wide variety of signal features and classification algorithms have been tested in the BCI design. 

Although BCI research is relatively young, many advances have been achieved in a little over two 

decades, because many of these methods are based on previous signal processing and pattern 

recognition research. Many studies have demonstrated the valuable accuracy of BCIs and provided 

acceptable information bit rate, despite the inherent major difficulties in brain signal processing. 

Accordingly, user training time has been significantly reduced, which has led to more widespread BCI 

applications in the daily life of disabled people, such as word processing, browsers, email, wheelchair 

control, simple environmental control or neuroprostheses among others.  

In spite of the recent important advances in the BCI field, some issues still need to be solved. First, 

the relative advantages and disadvantages of the different signal acquisition methods are still unclear. 

Their clarification will require further human and animal studies. Second, invasive methods need 

further investigation to deal with tissue damage, risk of infection, and long-term stability concerns. 

Electrodes that contain neurotropic mediums that promote neuronal growth and wireless transmission 

of neuronal signals recorded have already been proposed. Third, the electrophysiological and 

metabolic signals that are best able to encode user intent should be better identified and characterized. 

The majority of BCI studies have treated time, frequency, and spatial dimensions of brain signals 

independently. These signal dimension interdependencies may lead to significant improvement in BCI 

performance. Fourth, information bit rate provided by current BCIs is low for effective human-

machine interaction in some applications. Exogenous-based BCI may provide much higher throughput. 

Fifth, the unsupervised adaptation is a key challenge for BCI deployment outside the lab. Some 

moderately successful adaptive classification algorithms have already been proposed. And finally, 

most BCI applications are at the research stage and they are not ready to be introduced into people’s 

homes for continuous use in their daily life. In addition to their low information transfer rates and 

variable reliability, most current BCI systems are uncomfortable, because the electrodes need to be 

moistened, the software may require initiation, and the electrode contacts need continuous correction. 

An easy-to-use P300-based BCI with remote monitoring using a high-speed internet connection has 

already been proposed to reduce dependence on technical experts. 

The latest advances in BCI research suggest that innovative developments may be forthcoming in 

the near future. These achievements and the potential for new BCI applications have obviously given a 

significant boost to BCI research involving multidisciplinary scientists e.g., neuroscientists, engineers, 

mathematicians, and clinical rehabilitation specialists, among others. Interest in the BCI field is 

expected to increase and BCI design and development will in all probability continue to bring benefits 

to the daily lives of disabled people. Furthermore, recent commercial interest within certain companies 

suggests that BCI systems may find useful applications in the general population, and not just for 

people living with severe disabilities. In the near future, BCI systems may therefore become a new 

mode of human-machine interaction with levels of everyday use that are similar to other current interfaces. 
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