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Brain-Computer Interfaces
and Human-Computer Interaction

Desney Tan and Anton Nijholt

Abstract Advances in cognitive neuroscience and brain imaging technologies have
started to provide us with the ability to interface directly with the human brain. This
ability is made possible through the use of sensors that can monitor some of the
physical processes that occur within the brain that correspond with certain forms
of thought. Researchers have used these technologies to build brain-computer in-
terfaces (BCIs), communication systems that do not depend on the brain’s normal
output pathways of peripheral nerves and muscles. In these systems, users explicitly
manipulate their brain activity instead of using motor movements to produce signals
that can be used to control computers or communication devices.

Human-Computer Interaction (HCI) researchers explore possibilities that allow
computers to use as many sensory channels as possible. Additionally, researchers
have started to consider implicit forms of input, that is, input that is not explicitly
performed to direct a computer to do something. Researchers attempt to infer infor-
mation about user state and intent by observing their physiology, behavior, or the
environment in which they operate. Using this information, systems can dynami-
cally adapt themselves in order to support the user in the task at hand.

BCIs are now mature enough that HCI researchers must add them to their tool
belt when designing novel input techniques. In this introductory chapter to the book
we present the novice reader with an overview of relevant aspects of BCI and HCI,
so that hopefully they are inspired by the opportunities that remain.
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1.1 Introduction

For generations, humans have fantasized about the ability to communicate and inter-
act with machines through thought alone or to create devices that can peer into per-
son’s mind and thoughts. These ideas have captured the imagination of humankind
in the form of ancient myths and modern science fiction stories. However, it is only
recently that advances in cognitive neuroscience and brain imaging technologies
have started to provide us with the ability to interface directly with the human brain.
This ability is made possible through the use of sensors that can monitor some of
the physical processes that occur within the brain that correspond with certain forms
of thought.

Primarily driven by growing societal recognition for the needs of people with
physical disabilities, researchers have used these technologies to build brain-
computer interfaces (BCIs), communication systems that do not depend on the
brain’s normal output pathways of peripheral nerves and muscles. In these systems,
users explicitly manipulate their brain activity instead of using motor movements to
produce signals that can be used to control computers or communication devices.
The impact of this work is extremely high, especially to those who suffer from
devastating neuromuscular injuries and neurodegenerative diseases such as amy-
otrophic lateral sclerosis, which eventually strips individuals of voluntary muscular
activity while leaving cognitive function intact.

Meanwhile, and largely independent of these efforts, Human-Computer Interac-
tion (HCI) researchers continually work to increase the communication bandwidth
and quality between humans and computers. They have explored visualizations and
multimodal presentations so that computers may use as many sensory channels as
possible to send information to a human. Similarly, they have devised hardware and
software innovations to increase the information a human can quickly input into
the computer. Since we have traditionally interacted with the external world only
through our physical bodies, these input mechanisms have mostly required perform-
ing some form of motor activity, be it moving a mouse, hitting buttons, using hand
gestures, or speaking.

Additionally, these researchers have started to consider implicit forms of input,
that is, input that is not explicitly performed to direct a computer to do some-
thing. In an area of exploration referred to by names such as perceptual com-
puting or contextual computing, researchers attempt to infer information about
user state and intent by observing their physiology, behavior, or even the envi-
ronment in which they operate. Using this information, systems can dynamically
adapt themselves in useful ways in order to better support the user in the task at
hand.

We believe that there exists a large opportunity to bridge the burgeoning research
in Brain-Computer Interfaces and Human Computer Interaction, and this book at-
tempts to do just that. We believe that BCI researchers would benefit greatly from
the body of expertise built in the HCI field as they construct systems that rely solely
on interfacing with the brain as the control mechanism. Likewise, BCIs are now
mature enough that HCI researchers must add them to our tool belt when designing
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novel input techniques (especially in environments with constraints on normal motor
movement), when measuring traditionally elusive cognitive or emotional phenom-
ena in evaluating our interfaces, or when trying to infer user state to build adaptive
systems. Each chapter in this book was selected to present the novice reader with
an overview of some aspect of BCI or HCI, and in many cases the union of the two,
so that they not only get a flavor of work that currently exists, but are hopefully
inspired by the opportunities that remain.

1.1.1 The Evolution of BCIs and the Bridge with Human
Computer Interaction

The evolution of any technology can generally be broken into three phases. The
initial phase, or proof-of-concept, demonstrates the basic functionality of a technol-
ogy. In this phase, even trivially functional systems are impressive and stimulate
imagination. They are also sometimes misunderstood and doubted. As an example,
when moving pictures were first developed, people were amazed by simple footage
shot with stationary cameras of flowers blowing in the wind or waves crashing on
the beach. Similarly, when the computer mouse was first invented, people were in-
trigued by the ability to move a physical device small distances on a tabletop in
order to control a pointer in two dimensions on a computer screen. In brain sensing
work, this represents the ability to extract any bit of information directly from the
brain without utilizing normal muscular channels.

In the second phase, or emulation, the technology is used to mimic existing tech-
nologies. The first movies were simply recorded stage plays, and computer mice
were used to select from lists of items much as they would have been with the nu-
meric pad on a keyboard. Similarly, early brain-computer interfaces have aimed to
emulate functionality of mice and keyboards, with very few fundamental changes to
the interfaces on which they operated. It is in this phase that the technology starts to
be driven less by its novelty and starts to interest a wider audience interested by the
science of understanding and developing it more deeply.

Finally, the technology hits the third phase, in which it attains maturity in its
own right. In this phase, designers understand and exploit the intricacies of the new
technology to build unique experiences that provide us with capabilities never be-
fore available. For example, the flashback and crosscut, as well as “bullet-time”
introduced more recently by the movie the Matrix have become well-acknowledged
idioms of the medium of film. Similarly, the mouse has become so well integrated
into our notions of computing that it is extremely hard to imagine using current in-
terfaces without such a device attached. It should be noted that in both these cases,
more than forty years passed between the introduction of the technology and the
widespread development and usage of these methods.

We believe that brain-computer interface work is just now coming out of its in-
fancy, and that the opportunity exists to move it from the proof-of-concept and em-
ulation stages into maturity. However, to do this, we will have not only have to
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continue the discovery and invention within the domain itself, but also start to build
bridges and leverage researchers and work in other fields. Meanwhile, the human
computer interaction field continues to work toward expanding the effective infor-
mation bandwidth between human and machine, and more importantly to design
technologies that integrate seamlessly into our everyday tasks. Specifically, we be-
lieve there are several opportunities, though we believe our views are necessarily
constrained and hope that this book inspires further crossover and discussion. For
example:

• While the BCI community has largely focused on the very difficult mechanics
of acquiring data from the brain, HCI researchers could add experience design-
ing interfaces that make the most out of the scanty bits of information they have
about the user and their intent. They also bring in a slightly different viewpoint
which may result in interesting innovation on the existing applications of interest.
For example, while BCI researchers maintain admirable focus on providing pa-
tients who have lost muscular control an alternate input device, HCI researchers
might complement the efforts by considering the entire locked-in experience, in-
cluding such factors as preparation, communication, isolation, and awareness,
etc.

• Beyond the traditional definition of Brain-Computer Interfaces, HCI researchers
have already started to push the boundaries of what we can do if we can peer into
the user’s brain, if even ever so roughly. Considering how these devices apply
to healthy users in addition to the physically disabled, and how adaptive system
may take advantage of them could push analysis methods as well as application
areas.

• The HCI community has also been particularly successful at systematically ex-
ploring and creating whole new application areas. In addition to thinking about
using technology to fix existing pain points, or to alleviate difficult work, this
community has sought scenarios in which technology can augment everyday hu-
man life in some way. We believe that we have only begun to scratch the surface
of the set of applications that brain sensing technologies open, and hope that
this book stimulates a much wider audience to being considering these scenar-
ios.

The specific goals of this book are three-fold. First, we would like to provide back-
ground for researchers that have little (or no) expertise in neuroscience or brain
sensing so that they gain appreciation for the domain, and are equipped not only
to read and understand articles, but also ideally to engage in work. Second, we
will present a broad survey of representative work within the domain, written by
key researchers. Third, because the intersection of HCI/BCI is relatively new, we
use the book to articulate some of the challenges and opportunities for using brain
sensing in HCI work, as well as applying HCI solutions to brain sensing work. We
provide a quick overview and outline in the remainder of this introductory chap-
ter.
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1.2 Brain Imaging Primer

1.2.1 Architecture of the Brain

Contrary to popular simplifications, the brain is not a general-purpose computer
with a unified central processor. Rather, it is a complex assemblage of competing
sub-systems, each highly specialized for particular tasks (Carey 2002). By studying
the effects of brain injuries and, more recently, by using new brain imaging tech-
nologies, neuroscientists have built detailed topographical maps associating differ-
ent parts of the physical brain with distinct cognitive functions.

The brain can be roughly divided into two main parts: the cerebral cortex and
sub-cortical regions. Sub-cortical regions are phylogenetically older and include a
areas associated with controlling basic functions including vital functions such as
respiration, heart rate, and temperature regulation, basic emotional and instinctive
responses such as fear and reward, reflexes, as well as learning and memory. The
cerebral cortex is evolutionarily much newer. Since this is the largest and most com-
plex part of the brain in the human, this is usually the part of the brain people
notice in pictures. The cortex supports most sensory and motor processing as well
as “higher” level functions including reasoning, planning, language processing, and
pattern recognition. This is the region that current BCI work has largely focused on.

1.2.2 Geography of Thought

The cerebral cortex is split into two hemispheres that often have very different func-
tions. For instance, most language functions lie primarily in the left hemisphere,
while the right hemisphere controls many abstract and spatial reasoning skills. Also,
most motor and sensory signals to and from the brain cross hemispheres, meaning
that the right brain senses and controls the left side of the body and vice versa.
The brain can be further divided into separate regions specialized for different func-
tions. For example, occipital regions at the very back of the head are largely devoted
to processing of visual information. Areas in the temporal regions, roughly along
the sides and lower areas of the cortex, are involved in memory, pattern matching,
language processing, and auditory processing. Still other areas of the cortex are de-
voted to diverse functions such as spatial representation and processing, attention
orienting, arithmetic, voluntary muscle movement, planning, reasoning and even
enigmatic aspects of human behavior such as moral sense and ambition.

We should emphasize that our understanding of brain structure and activity is still
fairly shallow. These topographical maps are not definitive assignments of location
to function. In fact, some areas process multiple functions, and many functions are
processed in more than one area.
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1.2.3 Measuring Thought with Brain Imaging

Regardless of function, each part of the brain is made up of nerve cells called neu-
rons. As a whole, the brain is a dense network consisting of about 100 billion neu-
rons. Each of these neurons communicates with thousands of others in order to
regulate physical processes and to produce thought. Neurons communicate either
by sending electrical signals to other neurons through physical connections or by
exchanging chemicals called neurotransmitters. When they communicate, neurons
need more oxygen and glucose to function and cause an increase in blood flow to
active regions of the brain.

Advances in brain imaging technologies enable us to observe the electric, chem-
ical, or blood flow changes as the brain processes information or responds to var-
ious stimuli. Using these techniques we can produce remarkable images of brain
structure and activity. By inspecting these images, we can infer specific cognitive
processes occurring in the brain at any given time.

Again, we should emphasize that with our current understanding, brain imaging
allows us only to sense general cognitive processes and not the full semantics of our
thoughts. Brain imaging is, in general, not mind reading. For example, although we
can probably tell if a user is processing language, we cannot easily determine the se-
mantics of the content. We hope that the resolution at which we are able to decipher
thoughts grows as we increase our understanding of the human brain and abstract
thought, but none of the work in this book is predicated on these improvements
happening.

1.2.4 Brain Imaging Technologies

There are two general classes of brain imaging technologies: invasive technologies,
in which sensors are implanted directly on or in the brain, and non-invasive tech-
nologies, which measure brain activity using external sensors. Although invasive
technologies provide high temporal and spatial resolution, they usually cover only
very small regions of the brain. Additionally, these techniques require surgical pro-
cedures that often lead to medical complications as the body adapts, or does not
adapt, to the implants. Furthermore, once implanted, these technologies cannot be
moved to measure different regions of the brain. While many researchers are experi-
menting with such implants (e.g. Lal et al. 2004), we will not review this research in
detail as we believe these techniques are unsuitable for human-computer interaction
work and general consumer use.

We summarize and compare the many non-invasive technologies that use only
external sensors in Fig. 1.1 (see the Appendix of this Chapter). While the list may
seem lengthy, only Electroencephalography (EEG) and Functional Near Infrared
Spectroscopy (fNIRS) present the opportunity for inexpensive, portable, and safe
devices, properties we believe are important for brain-computer interface applica-
tions in HCI work.
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1.2.4.1 Electroencephalography (EEG)

EEG uses electrodes placed directly on the scalp to measure the weak (5–100 µV)
electrical potentials generated by activity in the brain (for a detailed discussion of
EEG, see Smith 2004). Because of the fluid, bone, and skin that separate the elec-
trodes from the actual electrical activity, signals tend to be smoothed and rather
noisy. Hence, while EEG measurements have good temporal resolution with delays
in the tens of milliseconds, spatial resolution tends to be poor, ranging about 2–3 cm
accuracy at best, but usually worse. Two centimeters on the cerebral cortex could be
the difference between inferring that the user is listening to music when they are in
fact moving their hands. We should note that this is the predominant technology in
BCI work, as well as work described in this book.

1.2.4.2 Functional Near Infrared Spectroscopy (fNIRS)

fNIRS technology, on the other hand, works by projecting near infrared light into
the brain from the surface of the scalp and measuring optical changes at various
wavelengths as the light is reflected back out (for a detailed discussion of fNIRS, see
Coyle et al. 2004). The NIR response of the brain measures cerebral hemodynamics
and detects localized blood volume and oxygenation changes (Chance et al. 1998).

Since changes in tissue oxygenation associated with brain activity modulate the
absorption and scattering of the near infrared light photons to varying amounts,
fNIRS can be used to build functional maps of brain activity. This generates images
similar to those produced by traditional Functional Magnetic Resonance Imaging
(fMRI) measurement. Much like fMRI, images have relatively high spatial resolu-
tion (<1 cm) at the expense of lower temporal resolution (>2–5 seconds), limited
by the time required for blood to flow into the region.

In brain-computer interface research aimed at directly controlling computers,
temporal resolution is of utmost importance, since users have to adapt their brain
activity based on immediate feedback provided by the system. For instance, it would
be difficult to control a cursor without having interactive input rates. Hence, even
though the low spatial resolution of these devices leads to low information trans-
fer rate and poor localization of brain activity, most researchers currently adopt
EEG because of the high temporal resolution it offers. However, in more recent
attempts to use brain sensing technologies to passively measure user state, good
functional localization is crucial for modeling the users’ cognitive activities as accu-
rately as possible. The two technologies are nicely complementary and researchers
must carefully select the right tool for their particular work. We also believe that
there are opportunities for combining various modalities, though this is currently
underexplored.
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1.3 Brain Imaging to Directly Control Devices

1.3.1 Bypassing Physical Movement to Specify Intent

Most current brain-computer interface work has grown out of the neuroscience and
medical fields, and satisfying patient needs has been a prime motivating force. Much
of this work aims to improve the lives of patients with severe neuromuscular dis-
orders such as amyotrophic lateral sclerosis (ALS), also popularly known as Lou
Gerig’s disease, brainstem stroke, or spinal cord injury. In the latter stages of these
disorders, many patients lose all control of their physical bodies, including sim-
ple functions such as eye-gaze. Some even need help with vital functions such as
breathing. However, many of these patients retain full control of their higher level
cognitive abilities.

While medical technologies that augment vital bodily functions have drastically
extended the lifespan of these patients, these technologies do not alleviate the men-
tal frustration or social isolation caused by having no way to communicate with
the external world. Providing these patients with brain-computer interfaces that al-
low them to control computers directly with their brain signals could dramatically
increase their quality of life. The complexity of this control ranges from simple
binary decisions, to moving a cursor on the screen, to more ambitious control of
mechanical prosthetic devices.

Most current brain-computer interface research has been a logical extension of
assistive methods in which one input modality is substituted for another (for detailed
reviews of this work, see Coyle et al. 2003; Vaughan 2003). When users lose the use
of their arms, they typically move to eye or head tracking, or even speech, to control
their computers. However, when they lose control of their physical movement, the
physiological function they have the most and sometimes only control over is their
brain activity.

1.3.2 Learning to Control Brain Signals

To successfully use current direct control brain-computer interfaces, users have to
learn to intentionally manipulate their brain signals. To date, there have been two
approaches for training users to control their brain signals (Curran and Stokes 2003).
In the first, users are given specific cognitive tasks such as motor imagery to generate
measurable brain activity. Using this technique the user can send a binary signal to
the computer, for example, by imagining sequences of rest and physical activity
such as moving their arms or doing high kicks. The second approach, called operant
conditioning, provides users with continuous feedback as they try to control the
interface. Users may think about anything (or nothing) so long as they achieve the
desired outcome. Over many sessions, users acquire control of the interface without
being consciously aware of how they are performing the task. Unfortunately, many
users find this technique hard to master.
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Other researchers have designed interfaces that exploit the specific affordances
of brain control. One such interface presents a grid of keys, each representing a
letter or command (Sutter 1992). Each row or column of the grid flashes in rapid
succession, and the user is asked to count the number of flashes that occur over the
desired key. The system determines the row and column of interest by detecting an
event-related signal called the P300 response, which occurs in the parietal cortex
about 300 milliseconds after the onset of a significant stimulus.

We believe that there remains much work to be done in designing interfaces that
exploit our understanding of cognitive neuroscience and that provide the maximum
amount of control using the lowest possible bit rate (for discussion of this and other
research challenges in this area, see Wolpaw et al. 2002). We believe that expertise
in human-computer interaction can be leveraged to design novel interfaces that may
be generally applicable to brain-computer interfaces and low bit rate interactions.

1.3.3 Evaluation of Potential Impact

We are still at a very early stage in brain-computer interface research. Because cur-
rent systems require so much cognitive effort and produce such small amounts of
control information (the best systems now get 25 bits/minute), they remain useful
mainly in carefully controlled scenarios and only to users who have no motor alter-
natives. Much work has to be done before we are able to successfully replace motor
movement with brain signals, even in the simplest of scenarios.

While researchers believe that these interfaces will get good enough to vastly
improve the lives of disabled users, not all are certain that brain-computer interfaces
will eventually be good enough to completely replace motor movement even for
able-bodied users. In fact, many researchers have mixed feelings on whether or not
this is useful or advisable in many situations. However, we do foresee niche appli-
cations in which brain-computer interfaces might be useful for able-bodied people.

For example, since these interfaces could potentially bypass the lag in mentally
generating and executing motor movements, they would work well in applications
for which response times are crucial. Additionally, they could be useful in scenarios
where it is physically difficult to move. Safety mechanisms on airplanes or space-
craft could benefit from such interfaces. In these scenarios, pilots experiencing large
physical forces do not have much time to react to impending disasters, and even
with limited bandwidth brain control could be valuable. Also, since brain control
is intrinsically less observable than physical movement, brain-computer interfaces
may be useful for covert operation, such as in command and control or surveillance
applications for military personnel.

Brain-computer interfaces could also be successful in games and entertainment
applications. In fact, researchers have already begun to explore this lucrative area
to exploit the novelty of such an input device in this large and growing market.
One interesting example of such a game is Brainball, developed at the Interactive
Studio in Sweden (Hjelm and Browall 2000). In this game, two players equipped
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with EEG are seated on opposite sides of a table. Players score simply by moving
a ball on the table into the opponent’s goal. The unusual twist to this game is that
users move the ball by relaxing. The more relaxed the EEG senses the user to be,
the more the ball moves. Hence, rather than strategic thoughts and intense actions,
the successful player must learn to achieve calmness and inactivity. At the time this
book was written, various game companies (such as Mattel) have already released
consumer devices (toys) that claim some form of EEG control, with multiple others
pending release.

1.4 Brain Imaging as an Indirect Communication Channel

1.4.1 Exploring Brain Imaging for End-User Applications

As HCI researchers, we are in the unique position to think about the opportunities
offered by widespread adoption of brain-computer interfaces. While it is a remark-
able endeavor to use brain activity as a novel replacement for motor movement, we
think that brain-computer interfaces used in this capacity will probably remain teth-
ered to a fairly niche market. Hence, in this book, we look beyond current research
approaches for the potential to make brain imaging useful to the general end-user
population in a wide range of scenarios.

These considerations have led to very different approaches in using brain imag-
ing and brain-computer interfaces. Rather than building systems in which users in-
tentionally generate brain signals to directly control computers, researchers have
also sought to passively sense and model some notion of the user’s internal cogni-
tive state as they perform useful tasks in the real world. This approach is similar
to efforts aimed at measuring emotional state with physiological sensors (e.g. Pi-
card and Klein 2002). Like emotional state, cognitive state is a signal that we would
never want the user to intentionally control, either because it would distract them
from performing their tasks or because they are not able to articulate the informa-
tion.

People are notoriously good at modeling the approximate cognitive state of other
people using only external cues. For example, most people have little trouble de-
termining that someone is deep in thought simply by looking at them. This ability
mediates our social interactions and communication, and is something that is no-
tably lacking in our interactions with computers. While we have attempted to build
computer systems that make similar inferences, current models and sensors are not
sensitive enough to pick up on subtle external cues that represent internal cognitive
state. With brain imaging, we can now directly measure what is going on in a user’s
brain, presumably making it easier for a computer to model this state.

Researchers have been using this information either as feedback to the user, as
awareness information for other users, or as supplementary input to the computer
so that it can mediate its interactions accordingly. In the following subsections, we
describe threads that run through the various chapters, consisting of understanding
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human cognition in the real world, using cognitive state as an evaluation metric for
interface design, as well as building interfaces that adapt based on cognitive state.
We think that this exploration will allow brain imaging, even in its current state, to
fundamentally change the richness of our interactions with computers. In fact, much
like the mouse and keyboard were pivotal in the development of direct manipulation
interfaces, brain imaging could revolutionize our next generation contextually aware
computing interfaces.

1.4.2 Understanding Cognition in the Real World

Early neuroscience and cognitive psychology research was largely built upon case
studies of neurological syndromes that damaged small parts of the brain. By study-
ing the selective loss of cognitive functions caused by the damage, researchers were
able to understand how specific parts of the brain mediated different functions. More
recently, with improvements in brain imaging technologies, researchers have used
controlled experiments to observe specific brain activations that happen as a result
of particular cognitive activities. In both these approaches, the cognitive activities
tested are carefully constructed and studied in an isolated manner.

While isolating cognitive activities has its merits, we believe that measuring brain
activity as the user operates in the real world could lead to new insights. Researchers
are already building wearable brain imaging systems that are suitable for use outside
of the laboratory. These systems can be coupled with existing sensors that measure
external context so that we can correlate brain activity with the tasks that elicit this
activity. While the brain imaging device can be seen as a powerful sensor that in-
forms existing context sensing systems, context sensing systems can also be viewed
as an important augmentation to brain imaging devices.

Again, we believe that there are opportunities here that are currently underex-
plored. Using this approach, we are able not only to measure cognitive activity in
more complex scenarios than we can construct in the laboratory, but also to study
processes that take long periods of time. This is useful in tasks for which the brain
adapts slowly or for tasks that cannot be performed on demand in sterile labora-
tory environments, such as idea generation or the storage of contextual memory
cues as information is learned. Also, while neuroscience studies have focused on
the dichotomy between neurologically disabled and normal patients, we now have
the opportunity to study other individual differences, perhaps due to factors such
as gender, expertise on a given task, or traditional assessment levels of cognitive
ability. Finally, we believe that there exists the opportunity to study people as they
interact with one another. This can be used to explore the neural basis of social
dynamics, or to attempt to perform dynamic workload distribution between people
collaborating on a project. Furthermore, having data from multiple people operating
in the real world over long periods of time might allow us to find patterns and build
robust cognitive models that bridge the gap between current cognitive science and
neuroscience theory.
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1.4.3 Cognitive State as an Evaluation Metric

In a more controlled and applied setting, the cognitive state derived from brain imag-
ing could be used as an evaluation metric for either the user or for computer systems.
Since we can measure the intensity of cognitive activity as a user performs certain
tasks, we could potentially use brain imaging to assess cognitive aptitude based on
how hard someone has to work on a particular set of tasks. With proper task and
cognitive models, we might use these results to generalize performance predictions
in a much broader range of scenarios.

For example, using current testing methods, a user who spends a huge amount of
cognitive effort working on test problems may rate similarly to someone who spent
half the test time daydreaming so long as they ended up with the same number of
correct answers. However, it might be useful to know that the second user might
perform better if the test got harder or if the testing scenario got more stressful.
In entertainment scenarios such as games, it may be possible to quantify a user’s
immersion and attentional load. Some of the work in this book is aimed at validating
brain imaging as a cognitive evaluation method and examine how it can be used to
augment traditional methods.

Rather than evaluating the human, a large part of human-computer interaction
research is centered on the ability to evaluate computer hardware or software in-
terfaces. This allows us not only to measure the effectiveness of these interfaces,
but more importantly to understand how users and computers interact so that we
can improve our computing systems. Thus far, researchers have been only partially
successful in learning from performance metrics such as task completion times and
error rates. They have also used behavioral and physiological measures to infer cog-
nitive processes, such as mouse movement and eye gaze as a measure of attention,
or heart rate and galvanic skin response as measures of arousal and fatigue. How-
ever, there remain many cognitive processes that are hard to measure externally.
For these, they typically resort to clever experimental design or subjective ques-
tionnaires which give them indirect metrics for specific cognitive phenomena. For
example, it is still extremely difficult to accurately ascertain cognitive workloads or
particular cognitive strategies used, such as verbal versus spatial memory encoding.

Brain sensing provides the promise of a measure that more directly quantifies the
cognitive utility of our interfaces. This could potentially provide powerful measures
that either corroborate external measures, or more interestingly, shed light on the
interactions that we would have never derived from external measures alone. Var-
ious researchers are working to generalize these techniques and provide a suite of
cognitive measures that brain imaging provides.

1.4.4 Adaptive Interfaces Based on Cognitive State

If we take this idea to the limit and tighten the iteration between measurement, eval-
uation, and redesign, we could design interfaces that automatically adapt depending
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on the cognitive state of the user. Interfaces that adapt themselves to available re-
sources in order to provide pleasant and optimal user experiences are not a new con-
cept. In fact, researchers have put quite a bit of thought into dynamically adapting
interfaces to best utilize such things as display space, available input mechanisms,
device processing capabilities, and even user task or context.

For example, web mechanisms such as hypertext markup language (HTML) and
cascading style sheets (CSS) were implemented such that authors would specify
content, but leave specific layout to the browsers. This allows the content to reflow
and re-layout based on the affordances of the client application. As another example,
researchers have built systems that model the user, their surroundings, and their
tasks using machine learning techniques in order to determine how and when to
best interrupt them with important notifications (Horvitz et al. 1998). In their work,
they aim to exploit the computing environment in a manner that best supports user
action.

Adapting to users’ limited cognitive resources is at least as important as adapting
to specific computing affordances. One simple way in which interfaces may adapt
based on cognitive state is to adjust information flow. For example, verbal and spa-
tial tasks are processed by different areas of the brain, and cognitive psychologists
have shown that processing capabilities in each of these areas is largely independent
(Baddeley 1986). Hence, even though a person may be verbally overloaded and not
able to attend to any more verbal information, their spatial modules might be capable
of processing more data. Sensory processes such as hearing and seeing, have similar
loosely independent capabilities. Using brain imaging, the system knows approxi-
mately how the user’s attentional and cognitive resources are allocated, and could
tailor information presentation to attain the largest communication bandwidth pos-
sible. For example, if the user is verbally overloaded, additional information could
be transformed and presented in a spatial modality, and vice versa. Alternatively, if
the user is completely cognitively overloaded while they work on a task or tasks, the
system could present less information until the user has free brain cycles to better
deal with the details.

Another way interfaces might adapt is to manage interruptions based on the user’s
cognitive state. Researchers have shown that interruptions disrupt thought processes
and can lead to frustration and significantly degraded task performance (Cutrell et
al. 2001). For example, if a user is thinking really hard, the system could detect
this and manage pending interruptions such as e-mail alerts and phone calls ac-
cordingly. This is true even if the user is staring blankly at the wall and there are
no external cues that allow the system to easily differentiate between deep thought
and no thought. The system could also act to minimize distractions, which include
secondary tasks or background noise. For example, a system sensing a user getting
verbally overloaded could attempt to turn down the music, since musical lyrics get
subconsciously processed and consume valuable verbal resources. Or perhaps the
cell phone could alert the remote speaker and pause the phone call if the driver has
to suddenly focus on the road.

Finally, if we can sense higher level cognitive events like confusion and frus-
tration or satisfaction and realization (the “aha” moment), we could tailor inter-
faces that provide feedback or guidance on task focus and strategy usage in training
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scenarios. This could lead to interfaces that drastically increase information under-
standing and retention.

1.5 The Rest of the Book

The chapters in this book are divided into four sections, which loosely parallel the
goals of the book:

Part I, Overview and Techniques.

Chapter 2 (Neural Control Interfaces) opens the book by outlining some of the
unique challenges and opportunities for designing BCI control interfaces. It presents
a loose taxonomy of different factors that should be considered and provides a nice
framework for pursuing work in this space. Chapter 3 (Could Anyone Use a BCI?)
explores the phenomenon of “BCI illiteracy”, the observation that most BCI systems
do not typically work for all users. It uses this as grounding for discussion around
standardized lingo and measurement metrics to facilitate discussions and compar-
isons across systems. Chapter 4 (Using Rest Class and Control Paradigms for Brain
Computer Interfacing) addresses one specific technical challenge in BCI work, the
Midas Touch problem. This is a classic HCI problem in which the control system
must distinguish between intended commands and everyday actions, in this case
thoughts. Chapter 5 (EEG-Based Navigation from a Human Factors Perspective)
presents the analogy between designing BCIs and navigation devices, which include
components of planning (cognition), steering (perception), and control (sensation).
This provides an interesting way of considering the integration between human fac-
tors and BCI work.

Part II, Applications.

Chapter 6 (Applications for Brain-Computer Interfaces) presents a broad survey of
applications for BCI systems and characterizes the range of possibilities for neural
control. Among these are applications for assistive technologies, recreation, cog-
nitive diagnostics and augmented cognition, as well as rehabilitation and prosthet-
ics. Chapter 7 (Direct Neural Control of Anatomically Correct Robotic Hands) de-
scribes the potential to achieve dexterous control of prosthetic hands using BCIs.
The chapter describes both the requirements for the BCI, as well as the match with a
fully anthropomorphic robot hand that the authors have developed. Chapter 8 (Func-
tional Near-Infrared Sensing and Environmental Control Applications) describes the
relatively young fNIRS technology, as well as potential benefits in environmental-
control BCIs. Chapter 9 (Cortically-Coupled Computer Vision) complements stan-
dard control work with a novel paradigm that extracts useful information processing
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using brain sensing technologies. Specifically, authors present visual search and im-
age retrieval applications that use EEG to automatically decode whether an image
is relevant or grabs a user’s attention. Chapter 10 (Brain-Computer Interfaces and
Games) surveys the state of the art of BCI in games and discusses factors such as
learnability, memorability, efficiency, as well as user experience and satisfaction in
this context.

Part III, Brain-Sensing in Adaptive User Interfaces.

Chapter 11 (Brain-based Indices for User System Symbiosis) introduces the concept
of operator models and the usefulness of brain-based indices in creating computer
systems that respond more symbiotically to human needs. Chapter 12 (Enhancing
Human-Computer Interaction with Input from Active and Passive Brain-Computer
Interfaces) describes the transition from direct control BCIs that provide explicit
commands to passive BCIs that implicitly model user state as secondary input to
adaptive systems. Chapter 13 (From Brain Signals to Adaptive Interfaces: Using
fNIRS in HCI) ties several of the previous chapters together (e.g. Chapter 8 and 10)
and describes details of fNIRS technology that are critical in considering the design
of BCI-based adaptive systems.

Part IV, Tools.

Chapter 14 (Matlab-Based Tools for BCI Research) reviews freely available stan-
dalone Matlab-based software, and drills into BCI-Lab as well as the Fieldtrip and
Datasuite environments. Chapter 15 (Using BCI2000 for HCI-Centered BCI Re-
search) rounds the book up with an overview of the BCI2000 system, a popular
framework for implementing general-purpose BCIs and one that HCI researchers
getting into the field could benefit from.
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